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The observation probability of any state is the square of the modulus (| . |) of its amplitude.
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• Physics ensure that modulus values add up to 1.

• Every Quantum algorithm can be implemented only by using Real Numbers.

In some cases using imaginary numbers makes the task easier but does not increase the
capabilities of Quantum computers.

• Until now only small Quantum computers have been successfully implemented.

• Some say it will never be possible to build Quantum Computers because of noise. Proving
unimplementability of them would be a major discovery as well!!

Probabilistic machines are best represented by stochastic matrices which are square matrices
of size nxn where n is the # of states.
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Strictest Possible Requirements

Definition 0.1. rt-QFA A real-time Quantum Finite Automaton(rtQFA) is a 5-tuple (Q,Σ, q1, {Eσ}σ∈Σ, F )
where Q is the set of states, Σ is the input alphabet, q1 is the initial state, {Eσ}σ∈Σ is the transition
matrices and F is the set of accept states.

Each {Eσ} will be a collection of m | Q | ∗ | Q | dimensional matrices called "operational ele-
ments " for some m ≥ 0. So for each letter we have m matrices which corresponds to the maximum
number of probabilistic branches.
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The second representation allows to represent the tree in a single vector.

So because of m we have two different stochastic processes. (1) The stochastic transition matrix
and (2) which transition matrix to use.

Simple QFA Example

• State set : {q1, q2, q3}

• Σ = {a}

• m = 2
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At the end probabilities add up to 1 according to some criterion.

Step 1: initially
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So classical probabilities are included in the values in the matrix.

-We can only impose unitarity to closed systems such as our universe.
-The room the Quantum computer sits in is unitary not the computer itself.
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Step 2:

Ea,1∗
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So it is like a biased coin branching:
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So we end up with the above situation after two iterations without observing.

Since the probabilities do not add up to 1 we normalize.

Procedure for normalizing:
Divide the vector by the square root of the branching probability.
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Question: Probability to accept after input "aa"?

probability of being in q2:
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If you consider the transition matrices as a big rectangular matrix, probabilities in each column
add up to 1 and all columns are orthogonal.

Ea,1 =


1√
2

0 0

1√
2

0 0

0
1√
2

0



Ea,2 =

0
1√
2

0

0 0 0
0 0 1


-All columns have length 1 and they are pairwise orthogonal.
-The unitary property can be achieved by adding extra columns which represent the rest of the
closed system.
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Density Matrix
We have 2 types of ignorances : Classical probabilistic ignorance and Quantum ignorance. We can
use density matrix to represent both in a single representation.
|ψ > : represents a column vector
< ψ|: represents row version with conjugates of each entry is replaced.
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The density matrix representation : {(pi, |ψi >)|1 ≤ i ≤ n}

P =
∑
i

pi|ψi >< ψi|

Then for the example above we have n=2:
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-Diagonal entries are all real numbers between 0, 1 and add up to 1, they represent transition
probabilities.

-Calculating the density matrix of the next state if you are at P and read a:

P
′

=
∑
i

Ea,i ∗ P ∗ Eta,i

where Eta,i is the complex conjugate of Ea,i, the transition matrix.

So again by using the first example, starting from the initial state:
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• In order to further iterate just change the P inside with the newly found version.

• This is the fundamental syntax of QFAs, from this we can go to more advanced versions.

• So all succeeding programs must satisfy,

(1) probability add up to 1.

(2) columns should be orthogonal.
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Question: Can we convert a function represented by a PFA with this model?

PFA has stochastic transition matrices (Q,Σ, q1,Σσ∈Σ, F ),

T =
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0.5 0.3 0.2
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how to convert it into a Quantum Matrix?

Create 3 matrices,

Ea,1 =

√0.1 0 0√
0.5 0 0√
0.4 0 0



Ea,2 =

0
√

0.1 0

0
√

0.5 0 0
0 0 0



Ea,3 =

0 0
√

0.2

0 0
√

0.2

0 0
√

0.6


If we call quantum version of T as TQ then,
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 in probability values.

Being in the state q1 is 0.1x2 + 0.7y2 + 0.2z2 which satisfies the PFA results. So QFAs can
recognize all regular languages.

Note: If transitions are unitary we can reverse the process. DFAs lack this property, we may
have multiple incoming arrows with the same letter to a single state.

Next Class: Quantum Supremacy! Express non-regular languages or express same language in
less states.
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