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1 Two-way quantum finite automata

As opposed to one-way automata, being two-way allows the machine to move
on its input tape which is marked with a ¢ at its start and $ at the end. A
superoperator(transition matrix) is applied to the quantum part. The moves
consist of two parts.

1. Evolution of the quantum state according to the superoperator associated
with the current configuration.The superoperator is applied giving a new
superposition and coin outcome with an associated probability.

2. The classical state, the coin outcome and the scanned symbol determine
the next classical state and tape head direction.

A = {anbn|n ∈ N} is a non-regular language that cannot be recognized by two-
way classical DFAs. Given below is a bounded error algorithm that recognizes
this language in polynomial expected time for two way automaton augmented
with a few quantum bits as described above. k is the error adjustment parameter
to be increased if a lower error bound is needed.

1



Algorithm 1: Bounded error, polynomial algorithm for the anbn

1 Check if the input is of the form a+b+, otherwise REJECT
2 Move the head to the first input symbol and set the quantum state to |q0〉
3 LOOP While the currently scanned symbol is not $
4 if current symbol is a then

5 Rotate the qubit with angle
√

2π
6 Move the head to the right

7 if current symbol is b then

8 Rotate the qubit with angle −
√

2π
9 Move the head to the right

10 Measure the qubit. If the result is |q1〉, REJECT
11 DO two times
12 Move the tape head to the first input symbol
13 LOOP While the currently scanned symbol is not $ or ¢
14 Simulate a classical coin flip. If the result is heads, move right.

Otherwise, move left.

15 If the both times the loop ended at $, simulate k coin flips.
16 If all coin flip results are heads, ACCEPT.

If the input is of the form anbn
′

and n 6= n′, this machine rejects after the

first loop at line 10 with probability at least
1

2(n− n′)2
.

Proof. The quantum state gets rotated by a total of
√

2(n− n′)π radians. The
probability of observing |q1〉 is

Pr(q1) = sin2 (
√

2(n− n′)π)

We bound Pr(q1) as follows.Let k be the closest integer to
√

2(n − n′). As-
sume that k <

√
2(n− n′)2 − 1 (the other case is symmetric). Then k ≤√

2(n− n′)2 − 1 because k2 is an integer and 2(n−n′)2−1 is the largest integer

that is less than (
√

2(n− n′)2)

(
√

2(n− n′)−
√

2(n− n′)2 − 1)(
√

2(n− n′) +
√

2(n− n′)2 − 1)

= 2(n− n′)2 − 2(n− n′)2 + 1 = 1
√

2(n− n′)− k ≥
√

2(n− n′)−
√

2(n− n′)2 − 1

=
1√

2(n− n′) +
√

2(n− n′)2 − 1
>

1

2
√

2(n− n′)

We have

0 <
√

2(n− n′)− k < 1

2
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(because k is the closest integer) ∀x ∈
[
0,

1

2

]
,

sin(xπ) ≥ 2x

So,

sin2(
√

2(n− n′)π) = sin2
(

(
√

2(n− n′)− k)π
)

≥ 4
(√

2(n− n′)− k
)2
≥ 4

(
1

2
√

2(n− n′)

)2

=
1

2(n− n′)2
>

1

(n+ n′ + 1)2

Each random walk takes expected (n + n′ + 1)2 time. The random walk’s
probability of reaching the (n+ n′ + 1)st cell is exactly

1

n+ n′ + 1

So, repeating it twice and flipping k coins after that gives a probability of
acceptance

pacc =
1

2k(n+ n′ + 1)2

Machine rejects at line 10 with probability

prej >
1

2(n− n′)2

Overall, if n = n′ the machine accepts with 0 error. If n 6= n′

pacc
prej

=
1

2k

Loop at line 3 takes O(n+ n′) time and each random walk takes O
(
(n+ n′)2

)
time. Hence, the expected running time of the machine is at most O

(
(n+ n′)4

)
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2 Algorithms for non-constant space machines

Usually our algorithms have flexible memory and we are not limited by a space
restriction. The amount of memory used by algorithm in question is measure
by space complexity of the algorithm and the runtime is measured by time
complexity. It is generally expected to have polynomial size memory and that
harder problems require more memory. Finite state machines were not able to
have access to a flexible memory and had a very limited amount of it. Turing
machine model is not restricted in this sense with access to an unlimited tape
that can be written onto. This lets the Turing machine to solve any problem a
computer is able to do.

There are two main models of computation widely used in the literature
quantum computation.

1. Quantum Turing Machine Model

2. Circuit Model

Quantum Memory is a number of qubits/registers. A 3 qubit operation is an 8x8
matrix. Hadamard(H) and Toffoli(T) gates form a universal gate set for quan-
tum computation. Meaning any other quantum operation can be approximated
to a required degree of precision with enough Hadamard and Toffoli gates.

H =

[
1√
2

1√
2

1√
2

−1√
2

]
H

Figure 1: Hadamard transform in its matrix and gate forms

T =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


x

T

x

y y

z x⊕ (x ∧ y)

Figure 2: Toffoli gate in its matrix and circuit gate forms

We can always assume that a computation that takes t(n) steps in a classical
computer to compute f(x) = y where x is a string of n bits and y is a single
bit saying yes/no can be computed on a quantum turing machine which realizes
the function

f(|x〉 |c〉) = (|x〉 |c⊕ y〉)
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Figure 3: Fanout gate with a Toffoli gate where input b is copied

C CR

input

•


auxiliary

result 0 • 1

Figure 4: Reversing a computation

where we do not show the auxiliary bits which are unchanged at the end in
2t(n) + 1 steps. Figure 4 depicts a reversible computation using gate C and its
reverse CR which takes the input and auxiliary bits and reverts them back to
their original states. The result of the computation is extracted before reversal
occurs.
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