CMPE 598 - Lecture Notes

Mert Kalaylıoğlu

April 24, 2018

1. Shor's Algorithm for Factorization

Given a positive integer, find its factors.

There exists a fast classical algorithm for detecting whether the number is prime. If so, problem solved.

There exists a fast classical algorithm for detecting whether the number is a power (i.e. of the form a^b for b > 1).

 $x=a^b$

log x = b * log a so b cannot be bigger than logx.

Binary Search: If you can find a factor, you can find all other factors as well using the same method repeatedly.

Assume you are given a number pq where p and q are primes.

We want to factor a large integer N.

FACTORING is reduced to finding a non-trivial square root of 1 modulo N.
y² ≡ 1 (modN) (y ∈ 1, 2, ..., N − 1)
if N = 15
trivial square roots of 1 (mod 15)

 $1^2 \equiv 1 \pmod{15}$ not exciting $(-1)^2 \equiv 1 \pmod{15}$ not exciting $14^2 \equiv 1 \pmod{15}$ not exciting $-1 \equiv 14 \pmod{15}$

non-trivial square root of 1 (mod 15)

 $4^2 \equiv 1 \ (mod15)$

If y is a non-trivial square root of 1 mod N,

Then N divides $y^2 - 1 = (y + 1)(y - 1)$, but N does **not** divide neither y - 1

nor y + 1. So this means that gcd(y - 1, N) > 1 because if y - 1 and N were relatively prime, then since N divides (y-1)(y+1), it would have to divide (y+1).

 Finding such a root is reduced to computing the order of a random integer modulo N.

Pick a random number X (mod N).

The order of X (mod N) is the smallest number r such that $X^r \equiv 1 \pmod{N}$.

Example: The order of 2 mod 15 is 4. $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 1, 2^5 = 2, 2^6 = 4, 2^7 = 8, 2^8 = 1, \dots$

• The order of an integer is precisely the period of a particular periodic superposition.

"Period = Order"

• And, periods of superpositions can be found by the quantum FFT.

Classical FFT's input is an M-dimensional, complex valued vector α (where M is a power of 2, say 2^m) and its output is an M-dimensional, complex valued vector β ;

$$\begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{M-1} \end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W & W^{2} & \dots & W^{M-1} \\ 1 & W^{2} & W^{4} & \dots & W^{2(M-1)} \\ 1 & W^{3} & W^{6} & \dots & W^{3(M-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W^{(M-1)} & W^{2(M-1)} & \dots & W^{(M-1)(M-1)} \end{bmatrix} \begin{bmatrix} \alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{M-1} \end{bmatrix}$$
(1)

where W is a complex M^{th} root of unity. FFT runs in O(M * log M) steps. **Input:** A superposition of m = log M qubits $|\alpha\rangle = \sum_{j=0}^{M-1} \alpha_j |j\rangle$.

$$\begin{bmatrix} \alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{M-1} \end{bmatrix} = \alpha_{0} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \alpha_{1} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \alpha_{2} \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \alpha_{M-1} \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
(2)

Method: We'll use $O(m^2)$ quantum operations to obtain the superposition. $|\beta{>}=\sum_{j=0}^{M-1}\beta_j\ |j{>}$

Output: A random m-bit number j (i.e. $0 \le j \le M - 1$), from the probability distribution $Pr[j] = |\beta_j|^2$.

Suppose the input to quantum Fourier sampling is periodic with period k, for some k that divides M. Then the output will be a multiple of $\frac{M}{k}$, and it is equally likely to be any of the k multiples of $\frac{M}{k}$.

$$|\alpha\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{M-1} \end{pmatrix}$$
(3)

 $|\alpha\rangle$ is such that $\alpha_j = \alpha_i$ whenever $i = j \mod k$ where k is a particular integer that divides M. So there are $\frac{M}{k}$ repetitions of same sequence $(\alpha_0, \alpha_1, ..., \alpha_{k-1})$ of length k.

And suppose exactly one of these k numbers is non-zero, say α_i .

Suppose the vector $|\alpha\rangle = (\alpha_0, \alpha_1, ..., \alpha_{M-1})^T$ is periodic with period k with no offset (that is, the non-zero terms are $\alpha_0, \alpha_k, \alpha_{2k}, ...$). Thus $|\alpha\rangle = \sum_{j=0}^{\frac{M}{k}-1} \sqrt{\frac{k}{M}} |jk\rangle$.

Claim:

$$|\beta\rangle = \frac{1}{\sqrt{k}} \sum_{j=0}^{k-1} |\frac{jM}{k}\rangle \tag{4}$$

In the input vector, the coefficient of α_l is $\sqrt{\frac{k}{M}}$ if k divides l, and zero otherwise. The j^{th} coefficient $|\beta\rangle$ is

$$\beta_j = \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} w^{jl} \alpha_l = \frac{\sqrt{k}}{M} \sum_{i=0}^{\frac{M}{k}-1} w^{jik}$$
(5)

So this sum is the geometric series $1 + w^{jk} + w^{2jk} + \dots$ containing $\frac{M}{k}$ terms and with ratio w^{jk} . There are two cases. If the ratio is exactly 1, which happens if $jk \equiv 0 \mod M$, then the sum of the series is just the number of terms. If the ratio isn't 1, apply the usual formula for geometric series to find that the sum is

$$\frac{1 - w^{jk(\frac{M}{k})}}{1 - w^{jk}} = \frac{1 - w^{jM}}{1 - w^{jk}} = 0$$
(6)

So $\beta_j = \frac{1}{\sqrt{k}}$ is M divides jk, and is zero otherwise. Also works (with little modification) for the case where the offset is non-zero.

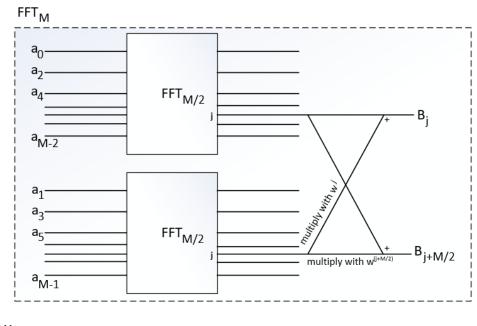
Suppose s independent samples are drawn uniformly from $\{0, \frac{M}{k}, \frac{2M}{k}, ..., \frac{(k-1)M}{k}\}$. Then, with probability at least $1 - \frac{k}{2^s}$, the greatest common divisor of these samples is $\frac{M}{k}$.

Proof: The only way this can fail is if all samples are multiples of $j\frac{M}{k}$, for some j > 1. So, fix any integer $j \ge 2$. The chance that a particular sample is a multiple of $j\frac{M}{k}$ is at most $\frac{1}{j} \le \frac{1}{2}$, so the chance that **all samples** are multiples of $j\frac{M}{k}$ is at most $\frac{1}{2^s}$. The probability that this bad thing will happen for some $j \le k$ is at most $k\frac{1}{2^s}$, since these are k candidates for the number j.

How does the classical FFT work?

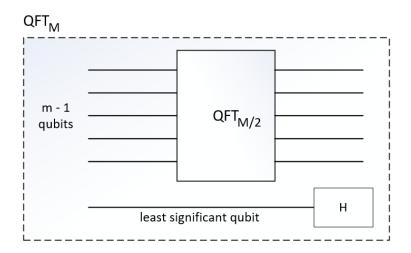
"Divide & Conquer"

from input $(\alpha_0, \alpha_1, ..., \alpha_{M-1})^T$ to output $(\beta_0, \beta_1, ..., \beta_{M-1})^T$



 $w^{\frac{M}{2}} = -1.$

In the quantum version, the input is now encoded in the 2^m amplitudes of m = logM qubits. So the decomposition of the inputs to evens and odds is determined by the least significant qubit. We will design a quantum circuit (subroutine) QFT_M . $QFT_{\frac{M}{2}}$ will be applied to the remaining m-1 qubits.



$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
(7)

$$Other\ lines = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{8}$$

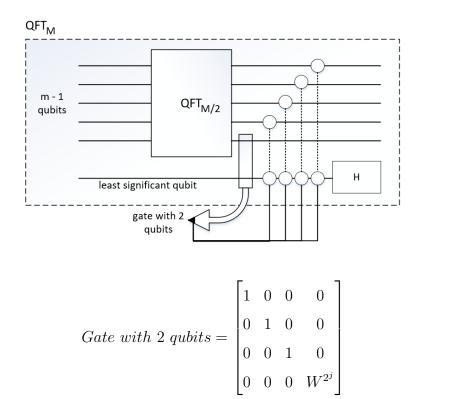
$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & \dots & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \dots & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & 0 & 0 & \dots & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & 0 & 0 & 0 & \dots & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
(9)

$$\begin{array}{l} 01100 \ 0 \rightarrow {\rm even} \\ 01100 \ 1 \rightarrow {\rm odd} \end{array}$$

$$\begin{pmatrix}
\alpha_{y_0} : \text{even} \\
\alpha_{y_1} : \text{odd}
\end{pmatrix}$$
(10)

$$A\begin{pmatrix}\alpha_{y_0}\\\alpha_{y_1}\end{pmatrix} = \begin{pmatrix}\frac{\alpha_{y_0} + \alpha_{y_1}}{\sqrt{2}}\\\frac{\alpha_{y_0} - \alpha_{y_1}}{\sqrt{2}}\end{pmatrix}$$
(11)

For each j, an operation is done in the classical FFT on the $(\frac{M}{2} + j)^{th}$ wire. If j is represented by the m-1 bits $j_1, j_2, ..., j_{m-1}$, then $w_j = \prod_{l=1}^{m-1} w^{2^{j_l}}$. Ex: m = 3, m - 1 = 2, $j_2 j_1$.



(12)