Name:

Burak Tepedelen

CMPE 598

Lecture 10

April 24,2018

SHOR'S ALGORITHM

Given a positive integer, find its factors. There exists a fast classical algorithm for detecting whether the number is prime. If so, problem solved. There exists a fast classical algorithm for detecting whether the number is a power (ie. of the form $a^b forb > 1$)

$$x = a^b$$

 $\log x = b * \log a$ so b cannot be bigger than $\log x$

Binary search: : If you can find a factor, you can find all other factors as well using the same method repeatedly.

Assume you are given a number pq where p and q are primes. We want to factor a large integer N.

• FACTORING is reduced to finding a non-trivial square root of 1 modulo $N \Rightarrow y^2 \equiv (mod15)y \in (1,2,3,\ldots,N-1)$

if N=15

trivial square roots:

 $1^2 = 1 \pmod{15} \ (-1)^2 = 1 \pmod{15}$

 $14^2 = 1 \pmod{15}$

example non-trivial root:

 $4^2 = 1 \pmod{15}$

if y is a non-trivial square root of 1 mod N, then N divides $y^2 - 1 \equiv (y+1)(y-1)$, but N does not divide neither (y-1) not (y+1) so this

means that gcd(y-1,N) > 1 because if y-1 and N were relatively prime, then since N divides (y-1)(y+1), it would have to divide (y+1).

• Finding such a root is reduced to computing the order of a random integer modulo N.

Pick a random number X(modN), order of X(modN) is the smallest number r such that $x^r \equiv 1(modN)$

Note: Until this step everything can be solved by classical machines in a fast manner

• The order of an integer is precisely the period of a particular periodic superposition

$$2^{\hat{1}}$$
 $2^{\hat{2}}$ 2^{3} 2^{4} 2^{5} 2^{6} 2^{7} 2^{8} 2 4 8 1 2 4 8 1

Classical FFT's input is an M-dimensional complex valued vector alpha (Where M is a power of 2) and output is a an M-dimensional complex valued vector beta.

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{M-1} \end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w & w^2 & \dots & w^{m-1} \\ 1 & w^2 & w^4 & \dots & w^{2(m-1)} \\ 1 & w^3 & w^6 & \dots & w^{3(m-1)} \\ 1 & w^4 & w^8 & \dots & w^{4(m-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w^{m-1} & w^{2(m-1)} & \dots & w^{(m-1)(m-1)} \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{M-1} \end{bmatrix}$$

Where W is a complex Mth root of unity.

FFT runs in $O(M \log M)$ steps.

• And, periods of superposition can be found by the quantum FFT. Since whole β cannot be accessed because of the quantum reality this is called "Quantum Fourier Sampling".

Input: A superposition of $M = \log M$ qubits $|\alpha\rangle = \sum_{i=0}^{M-1} \alpha_i |j\rangle$.

Method: We'll use $O(m^2)$ quantum operations to obtain superposition $|\beta>=\sum_{i=0}^{M-1}\beta_i|j>$.

Output: A random m-bit number j (ie. $0 \le j \le M-1$), from the probability distribution $P_i[j] = |B_j|^2$.

Suppose the input to quantum Fourier sampling is periodic with the period k, for some k that divides M. Then the output will be a multiple of M/k, and it is equally likely to be any of the k multiples of M/k.

$$|\alpha> = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{M-1} \end{bmatrix} \text{ is such that } \alpha_j = \alpha_i \text{ whenever } i = j (mod k) \text{ where k is a}$$

particular integer that divides M. So there are M/k repetitions of same sequence $(\alpha_0, \alpha_1, \dots, \alpha_{M-1})$ of length k. AND SUPPOSE EXACTLY ONE OF THE K NUMBERS IS NONZERO say α_i .

Suppose the vector $(\alpha_0, \alpha_1, \dots, \alpha_{M-1})^T$ is periodic with period k with no offset. Thus $|\alpha\rangle = \sum_{j=0}^{M/k-1} \sqrt{\frac{k}{M}} |jk\rangle$ (non-zero terms are $\alpha_0, \alpha_1, \dots$)

Claim:
$$|\beta\rangle = \frac{1}{\sqrt{k}} \sum_{j=0}^{k-1} |\frac{jM}{k}|$$

In the input vector, the coefficient of α_l is $\frac{k}{M}$ if k divides l,and zero otherwise. The j_{th} coefficient of $|\beta>$ is $|\beta> = \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} w^{jl} \alpha_l =$

$$\frac{\sqrt{k}}{M} \sum_{i=0}^{Wk-1} w^{jik} .$$

So this sum is the geometric series $1 + w^{jk} + w^{2jk} + \dots$ containing $\frac{M}{k}$ terms and with ratio w^{jk} . There are two cases. If the ratio is exactly 1, which happens if $jk = 0 \pmod{M}$, then the sum of the series is just the number of terms.

If the ratio isn't 1, apply the usual formula for geometric series to find that sum.

So $\beta_j = \frac{1}{\sqrt{k}}$ is M divides jk, and is zero otherwise.

Also work (with little mod function) for the case where the offset isn't zero.

Suppose s independent samples are drawn uniformly from $0, \frac{M}{k}, \frac{2M}{k}, \frac{3M}{k}, \dots, \frac{(k-1)M}{k}$. Then with probability at least $1 - \frac{k}{2^s}$, the greatest common divisor of these samples is M/k.

Proof: The only way this can fail is if all the samples are multiples of j. M/k, for some j > 1. So fix any integer $j \ge 2$.

The chance that particular sample is a multiple of $\frac{jM}{k}$ is at most $\frac{1}{j} \leq \frac{1}{2}$,

so the chance that all samples are multiples of $\frac{jM}{k}$ is at most $\frac{1}{2^s}$. The probability that this bad thing will happen for some $j \leq k$ is at most $k\frac{1}{2^s}$, since there are k candidates for number j.

How does the classical FFT work?

Divide and Conquer

From input $(\alpha_0, \alpha_1, \dots, \alpha_{M-1})^T$ to output $(\beta_0, \beta_1, \dots, \beta_{M-1})^T$.

In the quantum version, the input is now encoded in the 2^M amplitudes of m = log M qubits. So the decomposition of the inputs to evens and odds is determined by the least significant qubit.

We will design a quantum circuit (subroutine) $QFT_M.QFT_{M/2}$ will applied to the remaining m-1 qubits.

Sidenote:

For the 6 qubit system:

$$I(32) \bigotimes H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & \dots & 0 & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & \dots & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & 0 & 0\\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \dots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & & \vdots\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

$$011000 \to even, 011001 \to odd$$

$$A\begin{bmatrix} \alpha_y 0 \\ \alpha_y 1 \end{bmatrix} = \begin{bmatrix} \frac{\alpha_y 0 + \alpha_y 1}{\sqrt{2}} \\ \frac{\alpha_y 0 - \alpha_y 1}{\sqrt{2}} \end{bmatrix}$$

For each j, an operation is done in the classical FFT on the $(\frac{m}{2}+j)th$ wire. If j is represented by the m-1 bits $j_1,j_2,j_3,j_4,\ldots j_{m-1}$ then $w^j=\prod_{l=1}^{m-1}w^{2jl}$.

Gate with 2 qubits =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & W^2 \end{bmatrix}$$