
CMPE 598 - Lecture Notes

Gözde Berk

April 10, 2018

Assume that we are given a program which can compute a function f : {0, 1}n → {0, 1}. f can
be assumed as a complicated boolean formula. We can find the correct assignment of bits after
running the program 2n times. f has only one n-bit input which makes it true. All other 2n − 1
inputs make it false. We want to find that particular input. So, worst-case time is equal to 1 run
time x 2n. On average, it is 1 run time x 2

n
2 . Grover’s algorithm to be introduced below runs in

2
n
2 times. Therefore, it provides a speed up.

1 Grover’s algorithm

If somebody gives a classical problem, we can write it in terms of toffoli gates. We will build a
quantum circuit which consists of the big combination of gates such that a big quantum transfor-
mation is going to be handled. We will use n + 1 + m qubits, where m is large enough so we can
compute the transformation

|xσ0m〉 → |x(σ ⊕ f(x))0m〉
x is n-bit, σ is 1-bit and σ ⊕ f(x) is 1-bit. In the end, n bits which are in their original values,

1 bit for the result and m additional bits in their original values are given as output.

The algorithm starts with initializing everything to 0 and then applying Hadamard operation
to first n bits.

H =

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
Firstly, we have n bits with equal probability. (like a uniform number generator)

1

1.1 Pseudocode of the Grover’s algorithm

Initialize everything to 0;
Apply Hadamard operation to the first n bits;

for i = 1...2
n
2 do

Step 1;
1.1 Compute |xσ0m〉 → |x(σ ⊕ f(x))0m〉;
1.2 if the n+ 1st qubit is 1 then

Multiply vector by −1;
else

Do nothing;
end
1.3 Compute |xσ0m〉 → |x(σ ⊕ f(x))0m〉;
Step 2;
2.1 Apply Hadamard to the first n qubits;
2.2;
2.2.1 if the first n qubits are all zero then

Flip the n+ 1st qubit;
end
2.2.2 if the n+ 1st qubit is 1 then

Multiply by −1;
end
2.2.3 if the first n qubits are not all zero then

Flip the n+ 1st qubit;
end
2.3 Apply Hadamard to the first n qubits;

end
Measure the first n qubits, check if the value ”a” you read makes f(a) = 1

Algorithm 1: Grover’s algorithm

1.2 Analysis of the algorithm

Let u = 1

2
n
2

∑
xε{0,1} |x〉, after applying Hadamard to first n.

Let ”a” be the special input that we are looking for.

First n bits can be represented by 2n dimensions. a corresponds to 1 dimension. It can be
represented in 2 dimensions with |a〉 axis and |e〉 axis. In |a〉 axis, seeing one of the 2n − 1 inputs
other than a is 0. In |e〉 axis, seeing a is 0. |e〉 is equally away from all 2n−1 vectors. e corresponds
to the equal superposition of all vectors excluding a. |e〉 =

∑
x 6=a |x〉

Step 1, reflects around |e〉 as in Figure 1.

Before step 1, u = 1

2
n
2
|000...0〉+ 1

2
n
2
|000...1〉+ ...+ 1

2
n
2
|a〉+ ...+ 1

2
n
2
|111...1〉

After step 1, it becomes 1

2
n
2
|000...0〉+ 1

2
n
2
|000...1〉+ ...+ −1

2
n
2
|a〉+ ...+ 1

2
n
2
|111...1〉

The amplitude of |a〉 becomes − but the probability remains the same.

2

|e〉

|a〉

|u〉

after step 1

Figure 1: Step 1 - Reflecting around |e〉

Step 2, reflects around |u〉 as in Figure 2.

The first Hadamard operation rotates the coordinate axis and the second one goes back to the
previous coordinate axis to handle reflection around |u〉.

|e〉

|a〉

|u〉

after step 1

α
α

after step 2

2α

Figure 2: Step 2 - Reflecting around |u〉

3

1.3 Angle Analysis

We know α since the projection of |u〉 on |a〉 has length 1

2
n
2

. If n is big, 1

2
n
2

is small. For small

angles, sinα ' α.

π
2 − arcsin(1

2
n
2

) is the distance to cover

2arcsin(1

2
n
2

) is the distance covered in each iteration

The moves for each step can be seen in Figure 3. (2α in each iteration)

Since α ≥ sinα for α > 0, α = 1

2
n
2

.

As a result, the number of iterations required is approximately 2
n
2 for large values of n.

|e〉

|a〉

|u〉 1

2

α
α

3

4

2α

2α

5

2α

Figure 3: Angle analysis

2 Shor’s algorithm for factorization

Given a positive integer, find its factors.

There exists a fast classical algorithm for detecting whether the number is prime. If so, problem
is solved.

There exists a fast classical algorithm for detecting whether the number is a power. (i.e. of the
form ab for b > 1)

If you can find a factor, you can find all other factors as well using the same method repeatedly.

Shor’s algorithm is a quantum algorithm to find prime factors of an integer. In other words, it
is for integer factorization.

4

