Question Answering Systems

Melih Barsbey & Merve Ünlü

CMPE 561
Bogazici University

May 10, 2017
Introduction

What is Question Answering?
History
Example Use Cases

Approaches to Question Answering

Knowledge-based Question Answering
IR-based Question Answering
Machine Comprehension Oriented Question Answering

Datasets and Success Rates, and Frequently Used Databases

Datasets Used by Different Approaches

In Knowledge-based Question Answering Systems
In IR-based Question Answering Systems
In Machine Comprehension Oriented Systems

Most Commonly Used Databases

QA in Non-English Languages

Systems and Tools Currently Used and Current Applications

Systems and Tools
Applications

Conclusion
Introduction

What is Question Answering (QA)?

Aim Provide accurate answers to questions posed in natural language.

A QA system generally consists of 3 modules:

- Question Processing
- Document Processing
- Answer Processing

A multidisciplinary task: Natural Language Processing, Information Retrieval, Database Management, Cognitive Science
History

Earliest task in NLP around 1960s, generally domain specific

- **BASEBALL (1961)** *How many games did the Yankees play in July?*
- **LUNAR (1973)** *How many samples contain Titanium?*
- **MASQUE (1995)** *What is the salary of each manager?*

With the rise of web, IR-based and Machine Oriented Systems

- **Webclopedia (2000)** IR-based QA system accessible via the web
- **Mulder (2001)** fully-automated question-answering system available on the web
- **AnswerBus (2002)** open-domain QA system based Web IR
Example Use Cases

- Given the breadth of the area, use cases can be of great variety
- A doctor, looking for the most common symptoms of meningitis
- A movie aficionado looking to find the first movie Robert De Niro and Joe Pesci starred together
- A traveler arriving in Istanbul, looking for vegan restaurants
- A computer scientist looking to automatize comprehension of stories
Knowledge-based QA

- Structured database
- Simple and small vocabulary
- If closed-domain for expert users
- If open-domain for casual users
- Transform questions into logical forms

<table>
<thead>
<tr>
<th>Question</th>
<th>Logical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>When was Ada Lovelace born?</td>
<td><code>birth-year (Ada Lovelace, ?x)</code></td>
</tr>
<tr>
<td>What is the largest state</td>
<td><code>argmax(\lambda.x.\text{state}(x), \lambda.x.\text{size}(x))</code></td>
</tr>
<tr>
<td>What states border Texas?</td>
<td><code>\lambda x.\text{state}(x) \text{ and borders}(x, \text{texas})</code></td>
</tr>
</tbody>
</table>

Table: Logical Forms
Knowledge-based QA

1. **Rule-Based Methods** hand written rules to extract patterns from the questions and answers. Less training data, but expert knowledge is needed. (Ex: Quarc)

2. **Supervised Methods** Training data consists of pairs: a question and its logical form. (Ex: Geoquery)

3. **Semi-supervised Methods** Start with a small labeled data, use supervision distant approaches to boost the dataset.
Evaluating Knowledge-based QA Systems

- Accuracy is a frequently used method of evaluation in question answering systems
- F1 score can be used

\[
F1 = \frac{2 \times (p \times r)}{(p + r)}
\]

- Sometimes instead of exact match, partial matches can be considered while calculating precision and recall, thus rewarding partially correct answers as well as full ones
Information Retrieval Based QA

- Also called text-based question answering
- No structured database
- Making use of vast amounts of unstructured (or semi-structured) data
- Most appropriate for factoid questions

![Diagram of an IR-based QA system](image)

Figure: A generic IR-based QA system [3]
Question Processing in IR-based QA

Two important tasks:

1. **Answer type detection** (a.k.a. question classification)
 - Deciding what type of answer is wanted
 - Very important for later stages.
 - Could be handled with regular expressions or using supervised machine learning

2. **Query formulation**
 - Deciding on what to feed the information retrieval system
 - Some parts of the original question removed
 - Query reformulation or query expansion might be needed
Document/Passage Selection in IR-based QA

- Finding relevant documents
- However document is a too coarse unit for ranking results
- Passages within documents selected
- Pre-elimination of passages according to the answer type
- Rank the rest of the passages (most frequently, using supervised machine learning), select the first one
Answer Extraction

- The system needs to come up with an answer, not just a passage
- If there’s only one named entity of the desired type, it could be returned
- Else, an n-gram tiling or a pattern-matching algorithm can be used
- n-gram tiling: Creating an answer using overlapping n-grams

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td><AP> such as <QP></td>
<td>What is autism?</td>
<td>“, developmental disorders such as autism”</td>
</tr>
<tr>
<td><QP>, a <AP></td>
<td>What is a caldera?</td>
<td>“the Long Valley caldera, a volcanic crater 19 miles long”</td>
</tr>
</tbody>
</table>

Figure: A pattern-matching example [3]
Other Systems and Hybrid systems

- Artificial neural network based models making progress in classical tasks
- Hybrid system can use various information sources

Figure: IBM Watson
Evaluating IR-based QA systems

Two important tasks:

- One method is using **accuracy** (exact match or F1)
- Another: **Mean reciprocal rank (MRR)**.
 - This assumes system returning a list of passages or answers
 - If the answer is in answer #2, reciprocal rank is $1/2 = 0.5$
 - This is averaged over all test questions
- Other methods can factor in confidence in answers, or can produce score if the answer is a list
Machine Comprehension Oriented QA

- A different way of approaching QA
- QA not for answering a user-supplied question
- QA for developing and improving machine comprehension and reasoning.
MCTest Task [6]

James the Turtle was always getting in trouble. Sometimes he'd reach into the freezer and empty out all the food. Other times he'd sled on the deck and get a splinter. His aunt Jane tried as hard as she could to keep him out of trouble, but he was sneaky and got into lots of trouble behind her back.

One day, James thought he would go into town and see what kind of trouble he could get into. He went to the grocery store and pulled all the pudding off the shelves and ate two jars. Then he walked to the fast food restaurant and ordered 15 bags of fries. He didn't pay, and instead headed home.

His aunt was waiting for him in his room. She told James that she loved him, but he would have to start acting like a well-behaved turtle.

After about a month, and after getting into lots of trouble, James finally made up his mind to be a better turtle.

1) What is the name of the trouble making turtle?
 A) Fries
 B) Pudding
 C) James
 D) Jane

2) What did James pull off of the shelves in the grocery store?
 A) pudding
 B) fries
 C) food
 D) splinters

3) Where did James go after he went to the grocery store?
 A) his deck
 B) his freezer
 C) a fast food restaurant
 D) his room

4) What did James do after he ordered the fries?
 A) went to the grocery store
 B) went home without paying
 C) ate them
 D) made up his mind to be a better turtle

Figure: MCTest Example [6]
Facebook’s bAbI Tasks [7]

<table>
<thead>
<tr>
<th>Task 1: Single Supporting Fact</th>
<th>Task 2: Two Supporting Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary went to the bathroom.</td>
<td>John is in the playground.</td>
</tr>
<tr>
<td>John moved to the hallway.</td>
<td>John picked up the football.</td>
</tr>
<tr>
<td>Mary travelled to the office.</td>
<td>Bob went to the kitchen.</td>
</tr>
<tr>
<td>Where is Mary? A: office</td>
<td>Where is the football? A: playground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 5: Three Argument Relations</th>
<th>Task 6: Yes/No Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary gave the cake to Fred.</td>
<td>John moved to the playground.</td>
</tr>
<tr>
<td>Fred gave the cake to Bill.</td>
<td>Daniel went to the bathroom.</td>
</tr>
<tr>
<td>Jeff was given the milk by Bill.</td>
<td>John went back to the hallway.</td>
</tr>
<tr>
<td>Who gave the cake to Fred? A: Mary</td>
<td>Is John in the playground? A: no</td>
</tr>
<tr>
<td>Who did Fred give the cake to? A: Bill</td>
<td>Is Daniel in the bathroom? A: yes</td>
</tr>
</tbody>
</table>

Figure: Example bAbI Tasks [7]
Machine Comprehension Oriented QA

- Neural network based models dominate
- Most likely not feedforward ANN’s
- Recurrent neural networks, with longer memory (GRUs, LSTMs)
- Multimodular systems
- Attention and memory
Machine Comprehension Oriented QA

Figure: Dynamic Memory Networks (Initial formulation) [4]
Machine Comprehension Oriented QA

Figure: Visual question answering with improved dynamic memory networks [8]
Evaluating QA systems for machine comprehension

- Most tasks are hand-crafted and very well defined
- Strongly supervised
- Most commonly used metric is exact match accuracy
Common Datasets in Knowledge-based QA Systems

- **WebQuestions** [1] : 6000 question-answer pairs
 - Answers provided by Amazon Mechanical Turk workers using Freebase
 - Current best accuracy (F1) %52,5
- **Free917** [2]
 - 917 hand crafted question and answer pairs
 - Strongly supervised: Allows training for logical parsing.
 - Best accuracy (F1) as of April 2017: 78.6
Common Datasets in IR-based QA Systems

- **SQuAD dataset**
- IR-based methods and machine comprehension
- More than 100,000 questions

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under *gravity*. The main forms of precipitation include drizzle, rain, sleet, snow, *grau-pel* and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals *within a cloud*. Short, intense periods of rain in scattered locations are called “showers”.

What causes precipitation to fall? *gravity*

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? *grau-pel*

Where do water droplets collide with ice crystals to form precipitation? *within a cloud*

Figure: SQuAD dataset questions example [5]
Common Datasets in IR-based QA Systems

SQuAD

The Stanford Question Answering Dataset

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a new reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage. With 100,000+ question-answer pairs on 500+ articles, SQuAD is significantly larger than previous reading comprehension datasets.

Leaderboard

Since the release of our dataset, the community has made rapid progress! Here are the ExactMatch (EM) and F1 scores of the best models evaluated on the test and development sets of v1.1. Will your model outperform humans on the QA task?

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>EM</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r-net (ensemble)</td>
<td>76.922</td>
<td>84.006</td>
</tr>
<tr>
<td></td>
<td>Microsoft Research Asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ReasoNet (ensemble)</td>
<td>75.034</td>
<td>82.552</td>
</tr>
<tr>
<td></td>
<td>MSR Redmond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mnemonic Reader (ensemble)</td>
<td>73.67</td>
<td>81.694</td>
</tr>
<tr>
<td></td>
<td>NUET & Fudan University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SEDT-BIDAF (ensemble)</td>
<td>73.723</td>
<td>81.53</td>
</tr>
<tr>
<td></td>
<td>CMU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIDAF (ensemble)</td>
<td>73.744</td>
<td>81.525</td>
</tr>
<tr>
<td></td>
<td>Allen Institute for AI & University of Washington</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: SQuAD scoreboard [5]
Common Datasets in IR-based QA Systems

- **WebQA dataset** [9]
- Derived from Bing queries, annotated by humans
- Current success rates: \(MRR = 0.7069 \)
Common Datasets in MC-oriented QA Systems

- **MCtest**
 - Current best performance = 66.2% accuracy

James the Turtle was always getting in trouble. Sometimes he'd reach into the freezer and empty out all the food. Other times he'd sled on the deck and get a splinter. His aunt Jane tried as hard as she could to keep him out of trouble, but he was sneaky and got into lots of trouble behind her back.

One day, James thought he would go into town and see what kind of trouble he could get into. He went to the grocery store and pulled all the pudding off the shelves and ate two jars. Then he walked to the fast food restaurant and ordered 15 bags of fries. He didn't pay, and instead headed home.

His aunt was waiting for him in his room. She told James that she loved him, but he would have to start acting like a well-behaved turtle.

After about a month, and after getting into lots of trouble, James finally made up his mind to be a better turtle.

1) What is the name of the trouble making turtle?
 - A) Fries
 - B) Pudding
 - C) James
 - D) Jane

2) What did James pull off of the shelves in the grocery store?
 - A) pudding
 - B) fries
 - C) food
 - D) splinters

3) Where did James go after he went to the grocery store?
 - A) his deck
 - B) his freezer
 - C) a fast food restaurant
 - D) his room

4) What did James do after he ordered the fries?
 - A) went to the grocery store
 - B) went home without paying
 - C) ate them
 - D) made up his mind to be a better turtle

Figure: MCtest Example [6]
Common Datasets in MC-oriented QA Systems

- **bAbI tasks**
- **Current best performance = Almost completely solved**

<table>
<thead>
<tr>
<th>Task 1: Single Supporting Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary went to the bathroom.</td>
</tr>
<tr>
<td>John moved to the hallway.</td>
</tr>
<tr>
<td>Mary travelled to the office.</td>
</tr>
<tr>
<td>Where is Mary? A: office</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 2: Two Supporting Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>John is in the playground.</td>
</tr>
<tr>
<td>John picked up the football.</td>
</tr>
<tr>
<td>Bob went to the kitchen.</td>
</tr>
<tr>
<td>Where is the football? A: playground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 5: Three Argument Relations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary gave the cake to Fred.</td>
</tr>
<tr>
<td>Fred gave the cake to Bill.</td>
</tr>
<tr>
<td>Jeff was given the milk by Bill.</td>
</tr>
<tr>
<td>Who gave the cake to Fred? A: Mary</td>
</tr>
<tr>
<td>Who did Fred give the cake to? A: Bill</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 6: Yes/No Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>John moved to the playground.</td>
</tr>
<tr>
<td>Daniel went to the bathroom.</td>
</tr>
<tr>
<td>John went back to the hallway.</td>
</tr>
<tr>
<td>Is John in the playground? A: no</td>
</tr>
<tr>
<td>Is Daniel in the bathroom? A: yes</td>
</tr>
</tbody>
</table>

Figure: Example bAbI Tasks [7]
Common Datasets in MC-oriented QA Systems

- **MSCOCO-VQA**
- Current best performance = 66%
Most Commonly Used Databases

<table>
<thead>
<tr>
<th>Database</th>
<th>Homepage</th>
<th>Current version</th>
<th>Covered domains</th>
<th>License content</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBpedia</td>
<td>http://dbpedia.org</td>
<td>DBpedia 2015-04</td>
<td>General knowledge</td>
<td>Creative Commons Attribution 3.0, GNU Free Documentation License</td>
</tr>
<tr>
<td>Freebase</td>
<td>http://freebase.com</td>
<td>continuously updated until Mar 31, 2015<sup>a</sup></td>
<td>General knowledge, very broad, sometimes deep</td>
<td>Commons Attribution Only</td>
</tr>
<tr>
<td>OpenCyc</td>
<td>http://opencyc.org</td>
<td>OpenCyc 4.0</td>
<td>Common sense</td>
<td>Creative Commons Attribution 3.0</td>
</tr>
<tr>
<td>Wikidata</td>
<td>http://wikidata.org</td>
<td>Cont. updated since Oct 2012</td>
<td>General knowledge</td>
<td>Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication</td>
</tr>
</tbody>
</table>

Languages
- "Main" DBpedia is English (properties etc.), but linked localized versions are available in 125 languages (localized are textual descriptions such as rdfs:label, rdfs:comment, dbpedia-owl:abstract. There are also links to local versions of Wikipedia).
- Human readable IDs are in English, but every entity and property has an i18n in many languages.
- English
- Almost every language (by community), even dialects.
- All entity names are from English Wikipedia, some rdfs:label values have different languages.

^aGoogle announced to close Freebase on June 30, 2015. However, currently (July 30, 2015) it is still available.

Figure: General Information on Databases
QA in Non-English Languages

Monolingual QA
The questions and answers are in the same language

Cross-lingual QA
The questions and answers are in the different languages
 ▶ Allows users to access information in other languages
 ▶ Recent approaches, translates relevant parts of the question, using machine translation approaches

CLEF-Cross-Language Evaluation Forum an initiative for the evaluation of multilingual IR systems.
Systems and Tools

- **YodaQA** an open source Factoid Question Answering system developed in Java, can use structured or unstructured source.

- **Ephyra** open source QA in Java, published under GNU GPL. Oriented toward IR-based systems.

- **Jacana** specially developed for TREC in Java, hosted by Google Code. Use Freebase, developed for knowledge-based and IR based systems.
Applications

- **Personal Assistance** receive an answer or search results accurate to the question asked by user. Voice-controlled like Siri and Google Now.
- Mobile Application to access the data like Qme! can handle speech driven questions and returns answers in text format.
- Using search engines as QA systems
Google Search results

(a) Knowledge-based
(b) IR-based

Figure: Google answers for the questions
Conclusion

- Ever increasing integration of AI into daily life likely to increase importance of QA even more
- Likely to stay a vibrant area of research
- Improvement and increased hybridisation of knowledge-based and IR-based approaches
- More developments in newer areas such as multimodal, interactive, and machine intelligence oriented question answering

