# Named Entity Recognition

Atıl Vural & Dilek Kayahan

### Outline

- Introduction
- The approaches and methods used
- Different Languages
- Success Criteria
- State-of-the-art success rates
- Use Cases
- Systems and tools
- Available datasets and corpora

### An explanation of the topic

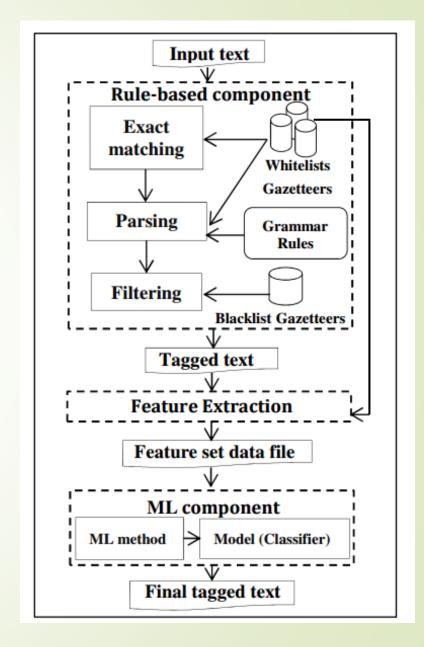
- Natural language processing (NLP) is a field of computer science to establish connection between computers and human languages
- Named entity recognition is used for finding and classifying expressions in text into predefined categories, named entities (NE).
- NE refers to real-world objects which are examples of person, location, organization, etc
- Today, state-of-the-art NER systems for English scored up to 94% of F-Measure with recall and precision weighted equally while human experts scored about 97%

# The approaches and methods used to solve it

- Three approaches for Named Entity Recognition
  - Rule-base Named Entity Recognition
  - Machine Learning NER
  - Hybrid NER

## Rule-Based Named Entity Recognition

- Predefined transformation rules;
  - Hand-crafted grammar rules
  - Gazetteers
  - Language dependent


 $\langle Prof., Capitalized\_word(X) \rangle \Rightarrow person\_named(X)$ 

# Machine Learning Approach

- Entity recognition as a classification problem
- Statistical models;
  - Conditional Random Fields
  - Maximum Entropy Markov Model
  - Support Vector Machine
  - Hidden Markov Models

## Hybrid Approach

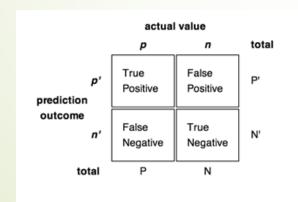
- Combination of rule-based and machine learning approaches
- 73 rules, 93 gazetteers 23.929 named entities
- 88.2% success rate



# How the approaches differ among different languages

### Problems:

- No standardization of written text Arabic
- Ambiguity Arabic
- Lots of variations exists in spelling writing style Indian Languages
- Complex structure Common
- Lack of resources Common


# How the approaches differ among different languages

### Used Methods:

- Indian Language, Greek -> Rule based approach with adequate directory
- Arabic Language -> A hybrid system (Rule-based NER, Feature Engineering and ML-based NER)

### The success criteria used for evaluation

- Precision, Recall and F-Score to evaluate algorithms
- Recall is the fraction of relevant instances that are retrieved (TP/(TP + FN))
- Precision is the fraction of retrieved instances which are relevant
- TP /(TP + FP))
- F-Score is the harmonic mean of precision and recall



$$F_1 = 2 \cdot rac{1}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$
 .

### State-of-the-art success rates

Hand-crafted Rule based approach

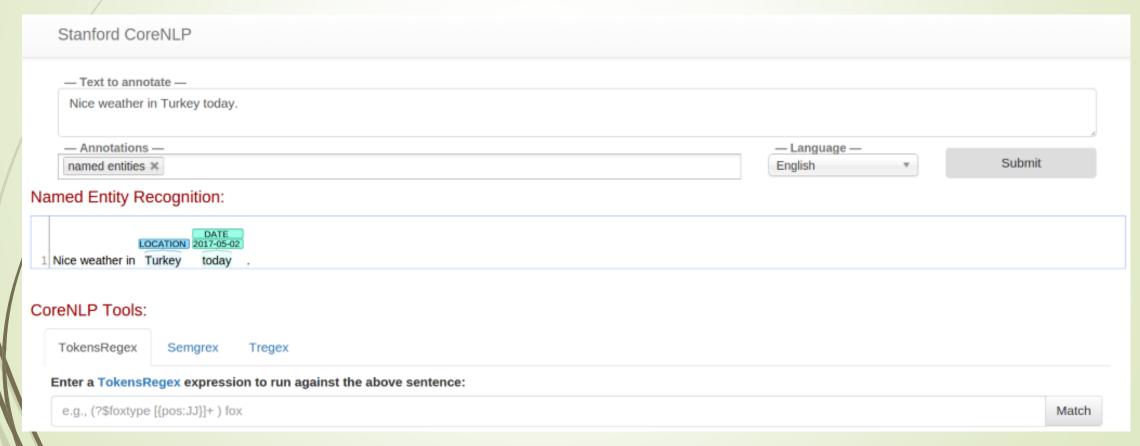
|           | Organization | Person | Location |
|-----------|--------------|--------|----------|
| Precision | 0.898        | 0.875  | 0.905    |
| Recall    | 0.842        | 0.765  | 0.756    |
| F-measure | 0.869        | 0.816  | 0.824    |

A rule based approach by rule mining & Max Entropy

|                | Rule Association |           | Maximum Entropy |           |
|----------------|------------------|-----------|-----------------|-----------|
|                | Recall           | Precision | Recall          | Precision |
| Dict           | 57.57            | 86.62     | 59.24           | 41.15     |
| Bigram         | 34.37            | 93.21     | 57.40           | 65.03     |
| Feature        | 44.84            | 67.75     | 49.56           | 58.99     |
| Bigram+Dict    | 60.44            | 89.59     | 53.72           | 69.48     |
| Feature+Dict   | 66.34            | 83.43     | 43.70           | 60.89     |
| Bigram+Feature | 53.73            | 77.61     | 59.61           | 76.10     |

### State-of-the-art success rates

### A hybrid system


| No. | Entity type | Precision (%) | Recall (%) | F-measure (% |
|-----|-------------|---------------|------------|--------------|
| 1   | Person      | 86.3          | 89.2       | 87.7         |
| 2   | Location    | 77.4          | 96.8       | 85.9         |
| 3   | Company     | 81.45         | 84.95      | 83.15        |
| 4   | Date        | 91.2          | 92.3       | 91.6         |
| 5   | Time        | 97.25         | 94.5       | 95.4         |
| 6   | Price       | 100           | 99.45      | 98.6         |
| 7   | Measurement | 97.8          | 97.3       | 97.2         |
| 8   | Phone no.   | 94.9          | 87.9       | 91.3         |
| 9   | ISBN        | 94.8          | 95.8       | 95.3         |
| 10  | File name   | 95.7          | 97.1       | 96.4         |

# Example use cases

- Question Answering Systems
- Machine Translation Systems
- Text Mining
- Bioinformatics

### Systems and tools used currently

Stanford Named Entity Recognizer (SNER)



### Systems and tools used currently

ITU Turkish Natural Language Processing Pipeline

ITU NLP TOOL

**Turkish Named Entity Recognizer** 

<DOC> <DOC>+BDTag
<S> <S>+BSTag
Bugün bugün+Noun+A3sg+Pnon+Nom bugün+Adverb
Istanbul'da İstanbul+Noun+Prop+A3sg+Pnon+Loc
hava hava+Noun+A3sg+Pnon+Nom hav+Noun+A3sg+Pnon+Dat
güzel güzel+Adj güzel+Noun+NAdj+A3sg+Pnon+Nom güzel+Adverb
 +ESTag
<DOC> <DOC>+EDTag

Send to Ner

# Available data sets and corpora

- Training Data sets
- Development Data sets
- Test Data sets

### Available data sets and corpora

- Reuters Ltd data collection
- RCV1 810.000 Reuters News stories in English

```
parent: None
                child: Root
                               child-description: No Description
                               child-description: STRATEGY/PLANS
parent: CCAT
                child: C11
parent: CCAT
                child: C12
                               child-description: LEGAL/JUDICIAL
                               child-description: REGULATION/POLICY
parent: CCAT
                child: C13
                child: C14
                               child-description: SHARE LISTINGS
parent: CCAT
                child: C15
                               child-description: PERFORMANCE
parent: CCAT
                child: C151
parent: C15
                               child-description: ACCOUNTS/EARNINGS
parent: C151
                child: C1511
                               child-description: ANNUAL RESULTS
parent: C15
                child: C152
                               child-description: COMMENT/FORECASTS
                               child-description: INSOLVENCY/LIQUIDITY
parent: CCAT
                child: C16
                child: C17
                               child-description: FUNDING/CAPITAL
parent: CCAT
parent: C17
                child: C171
                               child-description: SHARE CAPITAL
                child: C172
                               child-description: BONDS/DEBT ISSUES
parent: C17
                child: C173
                               child-description: LOANS/CREDITS
parent: C17
parent: C17
                child: C174
                               child-description: CREDIT RATINGS
                child: C18
                               child-description: OWNERSHIP CHANGES
parent: CCAT
parent: C18
                child: C181
                               child-description: MERGERS/ACQUISITIONS
                child: C182
                               child-description: ASSET TRANSFERS
parent: C18
parent: C18
                child: C183
                               child-description: PRIVATISATIONS
parent: CCAT
                child: C21
                               child-description: PRODUCTION/SERVICES
                child: C22
                               child-description: NEW PRODUCTS/SERVICES
parent: CCAT
                               child-description: RESEARCH/DEVELOPMENT
parent: CCAT
                child: C23
                               child-description: CAPACITY/FACILITIES
                child: C24
parent: CCAT
```

### Available data sets and corpora

- CoNLL-2003
- Special Interest Group on Natural Language Learning (SIGNLL)
- Location, Person, Organization

```
U.N.
         NNP
               I-NP
                      I-ORG
  official
         NN
               I-NP
  Ekeus NNP
               I-NP
                      I-PER
  heads VBZ
               I-VP
     for
         _{
m IN}
               I-PP
Baghdad
         NNP
               I-NP
                      I-LOC
```

# Thank You