Signal Processing First

Lecture 10 Filtering Intro

READING ASSIGNMENTS

- This Lecture:
 - Chapter 5, Sects. 5-1, 5-2 and 5-3 (partial)

- Other Reading:
 - Recitation: Ch. 5, Sects 5-4, 5-6, 5-7 and 5-8
 - CONVOLUTION
 - Next Lecture: Ch 5, Sects. 5-3, 5-5 and 5-6

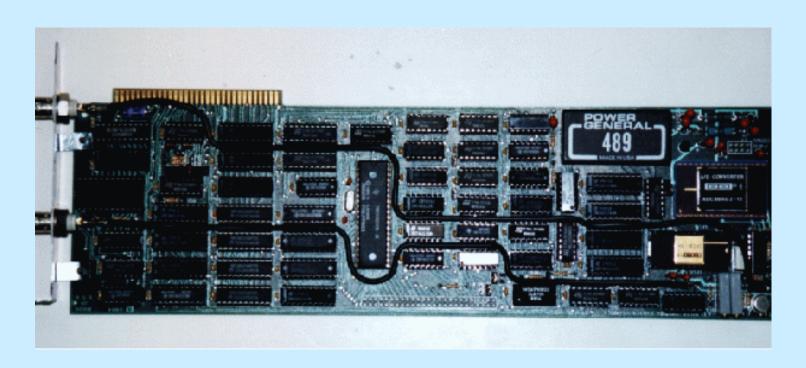
LECTURE OBJECTIVES

- INTRODUCE FILTERING IDEA
 - Weighted Average
 - Running Average
- FINITE IMPULSE RESPONSE FILTERS
 - FIR Filters
 - Show how to <u>compute</u> the output y[n] from the input signal, x[n]

DIGITAL FILTERING

- CONCENTRATE on the COMPUTER
 - PROCESSING ALGORITHMS
 - SOFTWARE (MATLAB)
 - HARDWARE: DSP chips, VLSI
- DSP: DIGITAL SIGNAL PROCESSING

The TMS32010, 1983

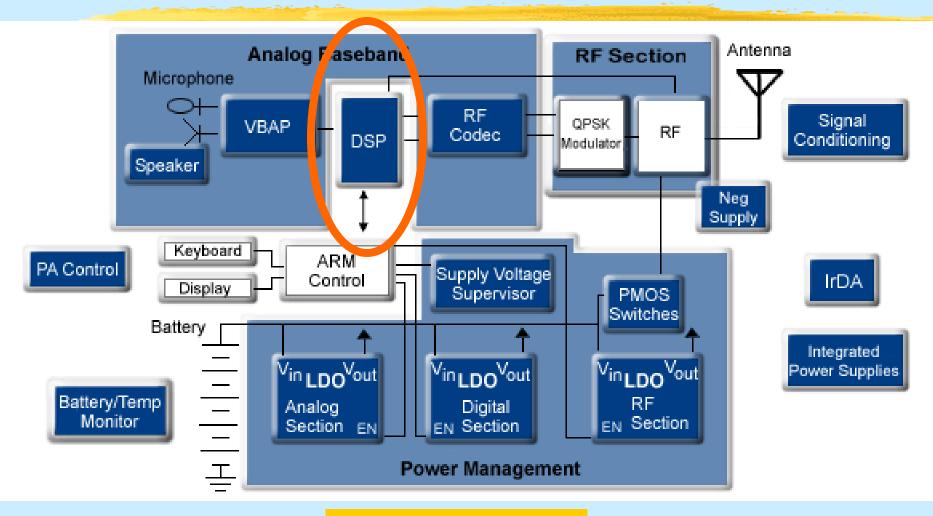


First PC plug-in board from Atlanta Signal Processors Inc.

Rockland Digital Filter, 1971

For the price of a small house, you could have one of these.

Digital Cell Phone (ca. 2000)



DISCRETE-TIME SYSTEM

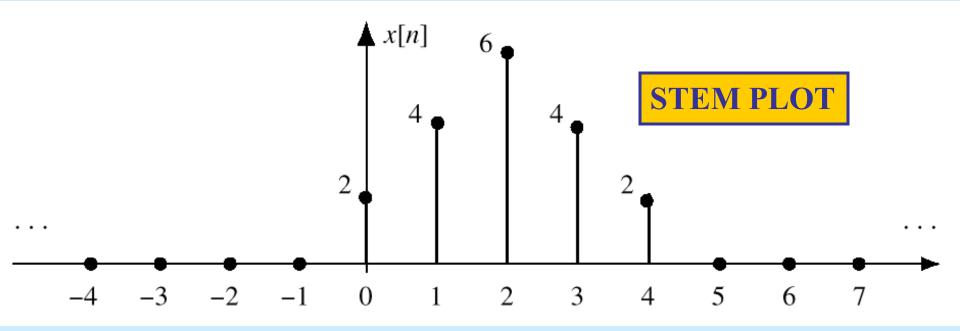
- OPERATE on x[n] to get y[n]
- WANT a GENERAL CLASS of SYSTEMS
 - ANALYZE the SYSTEM
 - TOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN
 - SYNTHESIZE the SYSTEM

D-T SYSTEM EXAMPLES

- EXAMPLES:
 - POINTWISE OPERATORS
 - SQUARING: $y[n] = (x[n])^2$
 - RUNNING AVERAGE
 - RULE: "the output at time n is the average of three consecutive input values"

DISCRETE-TIME SIGNAL

- x[n] is a LIST of NUMBERS
 - INDEXED by "n"



3-PT AVERAGE SYSTEM

- ADD 3 CONSECUTIVE NUMBERS
 - Do this for each "n"

the following input-output equation

Make a TABLE

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	<i>n</i> > 5
x[n]	0	0	0	2	4	6	4	2	0	0
y[n]	0	$\frac{2}{3}$	2	4	<u>14</u> 3	4	2	<u>2</u> 3	0	0

$$n=0$$
 $y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$

$$n=1$$
 $y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$

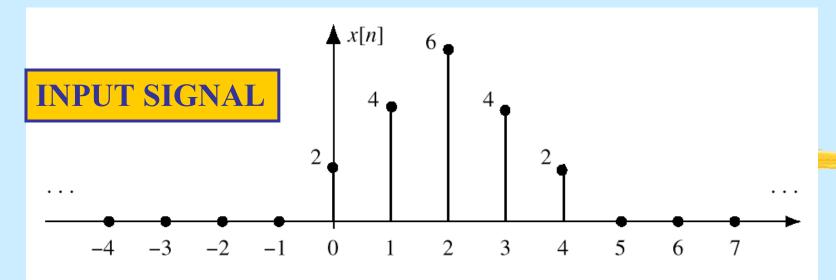


Figure 5.2 Finite-length input signal, x[n].

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

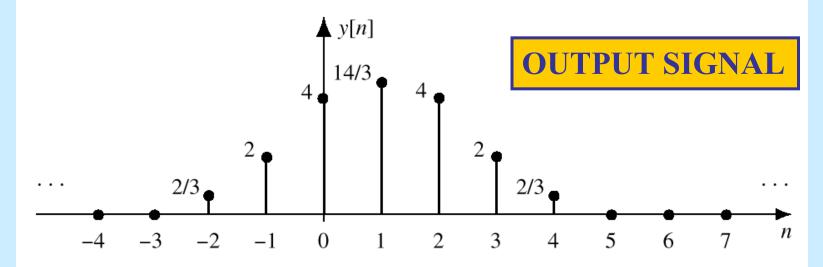


Figure 5.3 Output of running average, y[n].

PAST, PRESENT, FUTURE

Sec. 5.2 The Running Average Filter

123

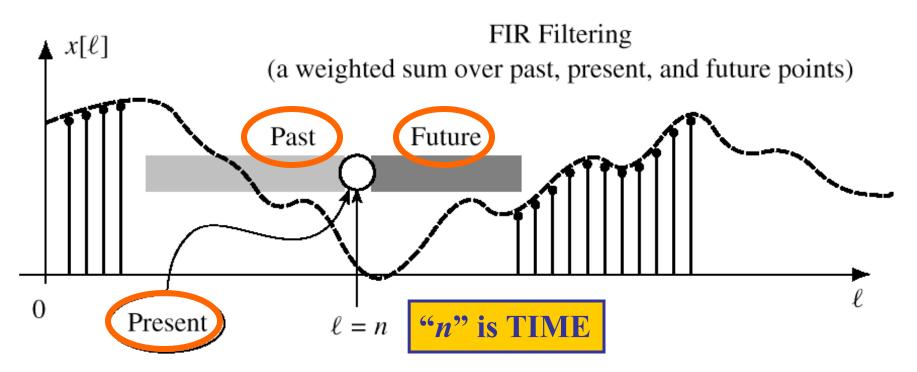


Figure 5.4 The running-average filter calculation at time index n uses values within a sliding window (shaded). Dark shading indicates the future $(\ell > n)$; light shading, the past $(\ell < n)$.

ANOTHER 3-pt AVERAGER

- Uses "PAST" VALUES of x[n]
 - IMPORTANT IF "n" represents REAL TIME
 - WHEN x[n] & y[n] ARE STREAMS

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	6	7	<i>n</i> > 7
x[n]	0	0	0	2		6	4	2	0	0	0	0
y[n]	0	0	0	<u>2</u> 3	2	4	$\frac{14}{3}$	4	2	<u>2</u> 3	0	0

GENERAL FIR FILTER

- FILTER COEFFICIENTS {b_k}
 - DEFINE THE FILTER

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

• For example, $b_k = \{3, -1, 2, 1\}$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

GENERAL FIR FILTER

FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- FILTER <u>ORDER</u> is M
- FILTER <u>LENGTH</u> is L = M+1
 - NUMBER of FILTER COEFFS is L

GENERAL FIR FILTER

SLIDE a WINDOW across x[n]

x[n-M]

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Running onto the Data $\ell = n - M$ $\ell = n$ ℓ

2/15/2017

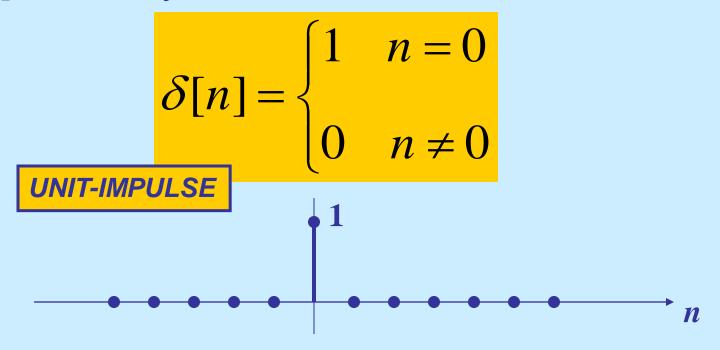
FILTERED STOCK SIGNAL

SPECIAL INPUT SIGNALS

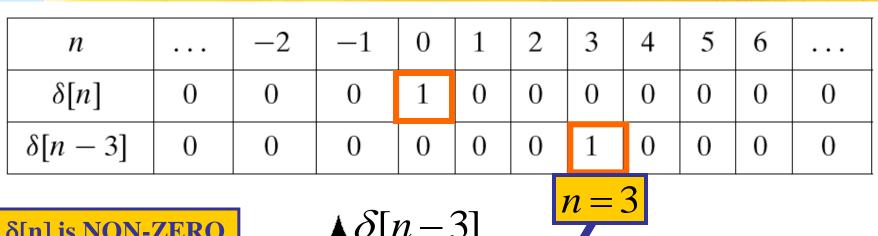
x[n] = SINUSOID

FREQUENCY RESPONSE (LATER)

x[n] has only one NON-ZERO VALUE



UNIT IMPULSE SIGNAL $\delta[n]$



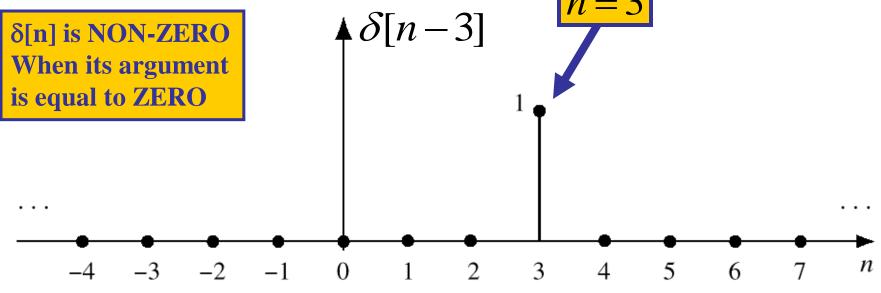
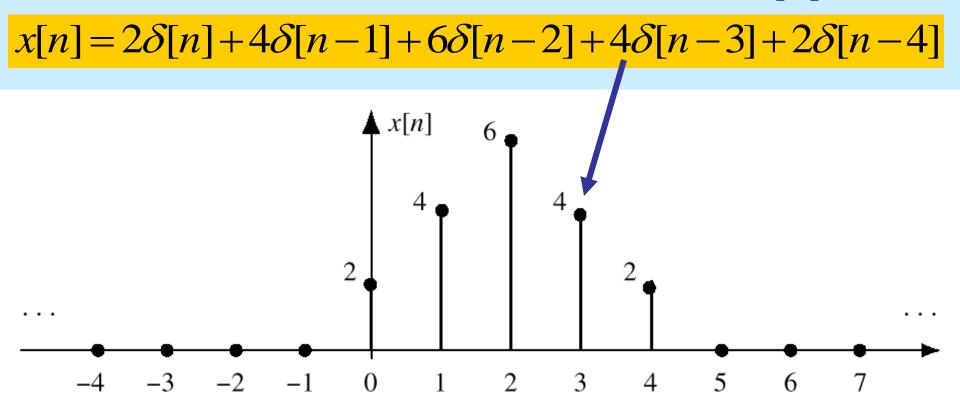


Figure 5.7 Shifted impulse sequence, $\delta[n-3]$.

MATH FORMULA for x[n]

Use SHIFTED IMPULSES to write x[n]



SUM of SHIFTED IMPULSES

n		-2	-1	0	1	2	3	4	5	6	
$2\delta[n]$	0	0	0	2	0	0	0	0	0	0	0
$4\delta[n-1]$	0	0	0	0	4	0	0	0	0	0	0
$6\delta[n-2]$	0	0	0	0	0	6	0	0	0	0	0
$4\delta[n-3]$	0	0	0	0	0	0	4	0	0	0	0
$2\delta[n-4]$	0	0	0	0	0	0	0	2	0	0	0
x[n]	0	0	0	2	4	6	4	2	0	0	0

$$x[n] = \sum_{k} x[k]\delta[n-k]$$
 This formu

This formula ALWAYS works

$$= \dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$
 (5.3.6)

4-pt AVERAGER

CAUSAL SYSTEM: USE PAST VALUES

$$y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$$

• INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$

$$x[n] = \delta[n]$$

$$y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

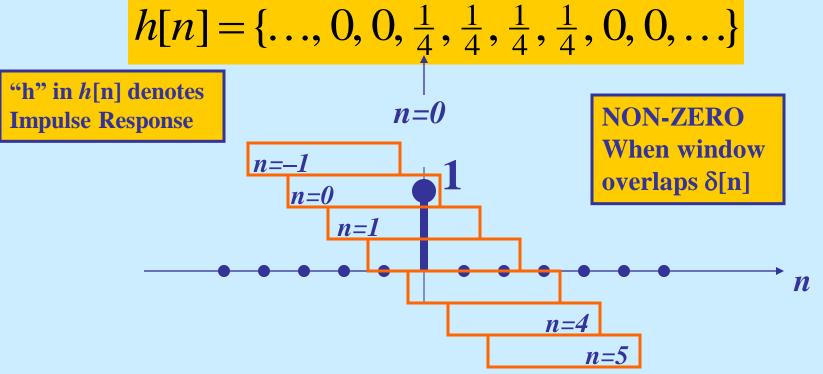
OUTPUT is called "IMPULSE RESPONSE"

$$h[n] = \{..., 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, ...\}$$

4-pt Avg Impulse Response

$$y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$$

 $\delta[n]$ "READS OUT" the FILTER COEFFICIENTS



FIR IMPULSE RESPONSE

- Convolution = Filter Definition
 - Filter Coeffs = Impulse Response

n	n < 0	0	1	2	3		M	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$
 $y[n] = \sum_{k=0}^{M} h[k]x[n-k]$

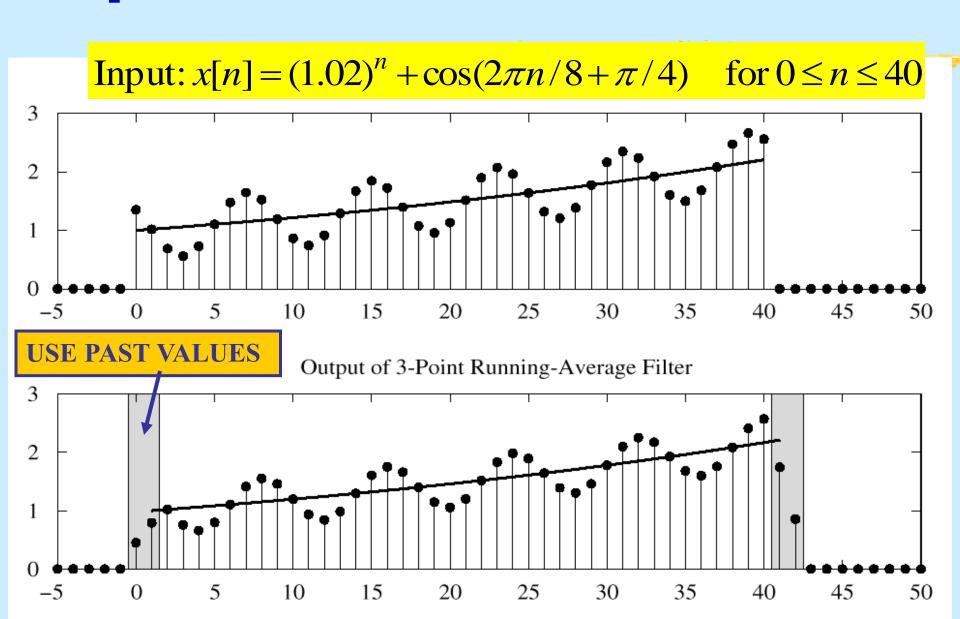
FILTERING EXAMPLE

$$y_7[n] = \sum_{k=0}^{6} \left(\frac{1}{7}\right) x[n-k]$$

- 7-point AVERAGER
 - Smooth compared to 3-point Averager
 - By making its amplitude (A) smaller
 - 3-point AVERAGER
 - Changes A slightly

$$y_3[n] = \sum_{k=0}^{2} (\frac{1}{3})x[n-k]$$

3-pt AVG EXAMPLE



7-pt FIR EXAMPLE (AVG)

