cmpe 362- Signal Processing

Instructor: Fatih Alagöz

Assistant: Yekta Said Can

What is Signal?

- Signal is the variation of a physical phenomenon / quantity with respect to one or more independent variable
- A signal is a function.

Example 1: Voltage on a capacitor as a function of time.

RC circuit

What is Signal?

Example 2: Two different vocoder signals of "Otuz yedi derece" male/female, emotion, background noise, any aspects of vocoder functionallity. you had something spicy, salty, sour just before you say it; function of everything !!!

3

Have

What is Signal?

Example 3 : Closing value of the stock exchange index as a function of days

Example 4:Image as a function of x-y coordinates (e.g. 256 X 256 pixel image)

What is Signal Processing

Process signal(s) for solving many scientific/ engineering/ theoretical purposes.

 The process is includes calculus, Differential equations, Difference equations, Transform theory, Linear time-invariant system theory, System identification and classification, Time-frequency analysis, Spectral estimation, Vector spaces and Linear algebra, Functional analysis, statistical signals and stochastic processes, Detection theory, Estimation theory, Optimization, Numerical methods, Time series, Data mining, etc

"The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term "signal" includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals" REFERENCE: IEEE Transactions on Signal Processing Journal

Signal Processing everywhere

INPUT SIGNAL

x(n) or x(t)

- Audio, speech, image, video

OUTPUT SIGNAL

y(n) or

Ranging from nanoscale to deepspace communications

SYSTEM (PROCESS)

- Sonar, radar, geosensing
- Array processing,
- Control systems (all industry)
- Seismology,
- Meteorology,
- Finance,
- Health, etc..

IT IS GOOD TO KNOW THIS COURSE

I am currently working on gender classification problem for chicken hatchery eggs

The course in a single slide

ALL ABOUT THREE DOMAINS

Lets start from the beginning...

Signals...

Signal Processing First

LECTURE #1 Sinusoids

READING ASSIGNMENTS

- This Lecture:
 - Chapter 2, Sects. 2-1 to 2-5
- Appendix A: Complex Numbers
- Appendix B: MATLAB
- Chapter 1: Introduction

LECTURE OBJECTIVES

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a **signal**?
 - It's a function of time, x(t)
 - in the mathematical sense

TUNING FORK EXAMPLE

CD-ROM demo

- "A" is at 440 Hertz (Hz)
- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

$$A\cos(2\pi(440)t + \varphi)$$

SINUSOID AMPLITUDE EXAMPLES

1-)0.25*sin(2π*300t)
 2-)0.50*sin(2π*300t)
 3-)1.00*sin(2π*300t)

Different Amplitude Sound Examples Amplitude = $Asin(2\pi^*300t)$

Amplitude = 5^{*} Asin($2\pi^{*}300t$)

Amplitude =10*A sin(2π *300t) \checkmark

SINUSOID FREQUENCY EXAMPLES

1-)1.00sin(2π*300t)
 2-)1.00*sin(2π*600t)
 3-)1.00*sin(2π*1200t)

Different Amplitude Sound Examples Amplitude = $1.00\sin(2\pi^*300t)$

Amplitude = $1.00sin(2\pi*600t)$

Amplitude = $1.00 \sin(2\pi \times 1200t)$

SINUSOID PHASE EXAMPLES

-1

1-)1.00sin(2π*300t)
2-)1.00*sin(2π*300t+ π/2)
3-)1.00*sin(2π*300t+ π)

HUMAN VOICE WITH DIFFERENT SAMPLING FREQUENCIES

- >With the original sampling frequency Fs 🛛 🐗
- >When sampled with Fs/2
- >When sampled with 2*Fs
- When sampled with 5*Fs

TIME VS FREQUENCY REPRESENTATION OF ONE CLAP RECORD(SPECTROGRAM)

TIME VS FREQUENCY REPRESENTATION OF TWO CLAPS RECORD (SPECTROGRAM)

TIME VS FREQUENCY REPRESENTATION OF CLAP + SNAP RECORD (SPECTROGRAM) (FIRST CLAP THEN FINGER SNAP)

TUNING FORK A-440 Waveform

SPEECH EXAMPLE

More complicated signal (BAT.WAV)

- Waveform x(t) is NOT a Sinusoid
- Theory will tell us
 - x(t) is approximately a sum of sinusoids
 - FOURIER ANALYSIS
 - Break x(t) into its sinusoidal components
 - Called the FREQUENCY SPECTRUM

Speech Signal: BAT

Nearly <u>Periodic</u> in Vowel Region

Period is (Approximately) T = 0.0065 sec

DIGITIZE the WAVEFORM

• **x[n]** is a SAMPLED SINUSOID

- A list of numbers stored in memory
- Sample at 11,025 samples per second
 - Called the SAMPLING RATE of the A/D
 - Time between samples is
 - 1/11025 = 90.7 microsec
- Output via D/A hardware (at F_{samp})

STORING DIGITAL SOUND

• **x**[*n*] is a SAMPLED SINUSOID

- A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

SINUSOIDAL SIGNAL

Acos(Wt+j)

- AMPLITUDE

PHASE

Magnitude

- FREQUENCY

- Radians/sec
- Hertz (cycles/sec) $\mathcal{W} = (2\rho) f$
- PERIOD (in sec)

 $T = \frac{1}{f} = \frac{2\rho}{r}$

EXAMPLE of SINUSOID

Given the Formula $5\cos(0.3\pi t + 1.2\pi)$ Make a plot

PLOT COSINE SIGNAL

5 $cos(0.3\rho t + 1.2\rho)$ Formula defines A, ω , and ϕ

$$A = 5$$
$$W = 0.3p$$
$$j = 1.2p$$

PLOTTING COSINE SIGNAL from the FORMULA

$$5\cos(0.3\pi t + 1.2\pi)$$

Determine period:

$$T = 2\pi / \omega = 2\pi / 0.3\pi = 20/3$$

Determine a <u>peak</u> location by solving

$$(\omega t + \varphi) = 0 \implies (0.3\pi t + 1.2\pi) = 0$$

- Zero crossing is T/4 before or after
- Positive & Negative peaks spaced by T/2

PLOT the SINUSOID

$$5\cos(0.3\pi t + 1.2\pi)$$

Use T=20/3 and the peak location at t=-4

PLOTTING COSINE SIGNAL from the FORMULA

$$5\cos(0.3\pi t + 1.2\pi)$$

Determine period:

$$T = 2\pi / \omega = 2\pi / 0.3\pi = 20/3$$

Determine a peak location by solving

$$(\omega t + \varphi) = 0$$

Peak at t=-4

ANSWER for the PLOT

 $5\cos(0.3\pi t + 1.2\pi)$

Use T=20/3 and the peak location at t=-4

TIME-SHIFT

In a mathematical formula we can replace t with t-t_m

$$x(t-t_m) = A\cos(\omega(t-t_m))$$

Then the t=0 point moves to t=t_m

Peak value of cos(ω(t-t_m)) is now at t=t_m

TIME-SHIFTED SINUSOID

$x(t+4) = 5\cos(0.3\pi(t+4)) = 5\cos(0.3\pi(t-(-4)))$

PHASE <--> TIME-SHIFT

- Equate the formulas: $A\cos(\omega(t-t_m)) = A\cos(\omega t + \varphi)$ - and we obtain: $-\omega t_m = \varphi$

SINUSOID from a **PLOT**

- Measure the period, T
 - Between peaks or zero crossings
 - Compute frequency: $\omega = 2\pi/T$
- Measure time of a peak: t_m
 - Compute phase: $\phi = -\omega t_m$
- Measure height of positive peak: A'

3 steps

(A, ω , ϕ) from a PLOT

SINE DRILL (MATLAB GUI)

- The cosine signal is periodic
 - Period is 2π

 $A\cos(\omega t + \varphi + 2\pi) = A\cos(\omega t + \varphi)$

Thus adding any multiple of 2π leaves x(t) unchanged

COMPLEX NUMBERS

- To solve: z² = -1
 - z = **j**
 - Math and Physics use z = i
- Complex number: z = x + jy

PLOT COMPLEX NUMBERS

COMPLEX ADDITION = VECTOR Addition

*** POLAR FORM ***

because the PHASE is AMBIGUOUS

POLAR <--> RECTANGULAR

Need a notation for POLAR FORM

Euler's FORMULA

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

COMPLEX EXPONENTIAL

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $\theta = \omega t$
 - Angle changes vs. time
 - ex: ω=20π rad/s
 - Rotates 0.2π in 0.01 secs

 $e^{j\theta} = \cos(\theta) + j\sin(\theta)$

cos = REAL PART

Real Part of Euler's

$$\cos(\omega t) = \Re e\{e^{j\omega t}\}$$

General Sinusoid $x(t) = A\cos(\omega t + \varphi)$

So, $A\cos(\omega t + \varphi) = \Re e\{Ae^{j(\omega t + \varphi)}\}$ $= \Re e\{Ae^{j\varphi}e^{j\omega t}\}$

REAL PART EXAMPLE

 $A\cos(\omega t + \varphi) = \Re e^{j\varphi} A e^{j\varphi} e^{j\omega t}$

Evaluate: $x(t) = \Re e \left\{ -3je^{j\omega t} \right\}$

Answer:

 $x(t) = \Re e^{\left\{(-3j)e^{j\omega t}\right\}}$ $= \Re e^{\left\{3e^{-j0.5\pi}e^{j\omega t}\right\}} = 3\cos(\omega t - 0.5\pi)$

COMPLEX AMPLITUDE

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi) = \Re e^{\left\{Ae^{j\varphi}e^{j\omega t}\right\}}$$

<u>Complex AMPLITUDE = X</u> $z(t) = Xe^{j\omega t}$ $X = Ae^{j\varphi}$

Then, any Sinusoid = REAL PART of $Xe^{j\omega t}$

$$x(t) = \Re e \left\{ X e^{j \omega t} \right\} = \Re e \left\{ A e^{j \varphi} e^{j \omega t} \right\}$$

Z DRILL (Complex Arith)

AVOID Trigonometry

- Algebra, even complex, is EASIER !!!
- Can you recall $cos(\theta_1 + \theta_2)$?
- Use: real part of $e^{j(\theta_1 + \theta_2)} = \cos(\theta_1 + \theta_2)$

$$e^{j(\theta_1+\theta_2)}=e^{j\theta_1}e^{j\theta_2}$$

 $=(\cos\theta_1 + j\sin\theta_1)(\cos\theta_2 + j\sin\theta_2)$

$$= \left(\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2\right) + j(...)$$

Euler's FORMULA

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

 $e^{j\theta} = \cos(\theta) + j\sin(\theta)$

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

Real & Imaginary Part Plots

COMPLEX EXPONENTIAL

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $\theta = \omega t$
 - Angle changes vs. time
 - ex: ω=20π rad/s
 - Rotates 0.2π in 0.01 secs

 $\boldsymbol{e}^{j\boldsymbol{q}} = \cos(\boldsymbol{q}) + j\sin(\boldsymbol{q})$

Rotating Phasor

See Demo on CD-ROM Chapter 2

Cos = REAL PART

Real Part of Euler's

$$\cos(Wt) = \widehat{A}e\{e^{jWt}\}$$

General Sinusoid

$$X(t) = A\cos(Wt + j)$$

So,

$$A\cos(Wt + j') = \widehat{A}e\{Ae^{j(Wt + j')}\}\$$
$$= \widehat{A}e\{Ae^{jj}e^{jWt}\}\$$

© 2003, JH McClellan & RW Schafer

COMPLEX AMPLITUDE

General Sinusoid

$$\mathbf{X}(t) = \mathbf{A}\cos(Wt + j') = \widehat{\mathbf{A}}\mathbf{e}\left(\mathbf{A}\mathbf{e}^{j}\right)\mathbf{e}^{jWt}\right\}$$

Sinusoid = REAL PART of $(Ae^{j\phi})e^{j\omega t}$

$$\mathbf{X}(t) = \widehat{A} \mathbf{e} \{ \mathbf{X} \mathbf{e}^{j w t} \} = \widehat{A} \mathbf{e} \{ \mathbf{Z}(t) \}$$

<u>Complex AMPLITUDE = X</u>

$$\mathbf{Z}(t) = \mathbf{X} \mathbf{e}^{j \mathbf{W} t}$$
 $\mathbf{X} = \mathbf{A} \mathbf{e}^{j \mathbf{W} t}$

POP QUIZ: Complex Amp

Find the COMPLEX AMPLITUDE for:

$$x(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

Use EULER's FORMULA:

$$\begin{aligned} x(t) &= \Re e \left\{ \sqrt{3} e^{j(77\pi t + 0.5\pi)} \right\} \\ &= \Re e \left\{ \sqrt{3} e^{j0.5\pi} e^{j77\pi t} \right\} \end{aligned}$$

$$X = \sqrt{3}e^{j0.5\pi}$$

WANT to ADD SINUSOIDS

- ALL SINUSOIDS have SAME FREQUENCY
 HOW to GET {Amp,Phase} of RESULT ?
 - $x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$
 - $x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$

 $x_3(t) = x_1(t) + x_2(t)$

 $= 1.532 \cos(2\pi(10)t + 141.79\pi/180)$

ADD SINUSOIDS

Sum Sinusoid has <u>SAME</u> Frequency

PHASOR ADDITION RULE

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k)$$
$$= A \cos(\omega_0 t + \phi)$$
Get the new complex amplitude by complex addition
$$\sum_{k=1}^{N} A_k e^{j\phi_k} = A e^{j\phi}$$

Phasor Addition Proof

$$\sum_{k=1}^{N} A_k \cos(\omega_0 t + \phi_k) = \sum_{k=1}^{N} \Re e \left\{ A_k e^{j(\omega_0 t + \phi_k)} \right\}$$
$$= \Re e \left\{ \sum_{k=1}^{N} A_k e^{j\phi_k} e^{j\omega_0 t} \right\}$$
$$= \Re e \left\{ \left(\sum_{k=1}^{N} A_k e^{j\phi_k} \right) e^{j\omega_0 t} \right\}$$
$$= \Re e \left\{ \left(A e^{j\phi} \right) e^{j\omega_0 t} \right\} = A \cos(\omega_0 t + \phi)$$

POP QUIZ: Add Sinusoids

• ADD THESE 2 SINUSOIDS:

$$x_{1}(t) = \cos(77\pi t)$$

$$x_{2}(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$
COMPLEX ADDITION:
$$1e^{j0} + \sqrt{3}e^{j0.5\pi}$$

POP QUIZ (answer)

ADD SINUSOIDS EXAMPLE

Convert Time-Shift to Phase

Measure peak times:

- t_{m1} =-0.0194, t_{m2} =-0.0556, t_{m3} =-0.0394
- Convert to phase (T=0.1)
 - $\phi_1 = -\omega t_{m1} = -2\pi (t_{m1}/T) = 70\pi/180$,
 - φ₂= 200π/180
- Amplitudes

Phasor Add: Numerical

Convert Polar to Cartesian Phasor Vectors X₁ = 0.5814 + 1.597 1.5 X₂ = -1.785 - j0.6498 0.5 sum = 0 $X_3 = -1.204 + 0.9476$ -0.5 Convert back to Polar 0 • $X_3 = 1.532$ at angle $141.79\pi/180$ This is the sum

ADD SINUSOIDS

$$x_1(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

 $x_2(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$

 $x_3(t) = x_1(t) + x_2(t)$

 $= 1.532 \cos(2\pi (10)t + 141.79\pi/180)$

