SOME USEFUL FORMULAS

\[\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta) \]
\[\cos \alpha + \cos \beta = 2 \cos \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2}(\alpha - \beta) \]
\[X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} \, dt \quad \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} \, d\omega \]

\[x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k) \]
\[f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \]

\[H(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1 - az^{-1}} \quad |a| < 1 \]

\[y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k A e^{j\phi} e^{j\omega(n-k)} \]

\[e^x = 1 + \frac{x}{1} + \frac{x^2}{2.1} + \frac{x^3}{3.2.1} + \frac{x^4}{4.3.2.1} + \ldots \]
\[1 + x + x^2 + x^3 + x^4 + \ldots x^n = \frac{1-x^{n+1}}{1-x}, \quad x < 1 \]

<table>
<thead>
<tr>
<th>Time-Domain: (x(t))</th>
<th>Frequency-Domain: (X(j\omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^{-\alpha t} u(t) \ (\alpha > 0))</td>
<td>(\frac{1}{a+j\omega})</td>
</tr>
<tr>
<td>(e^{b t} u(-t) \ (b > 0))</td>
<td>(\frac{1}{b-j\omega})</td>
</tr>
<tr>
<td>(u(t + \frac{1}{2}T) - u(t - \frac{1}{2}T))</td>
<td>(\frac{\sin(\omega T/2)}{\omega/2})</td>
</tr>
<tr>
<td>(\frac{\sin(\omega_b t)}{\pi t})</td>
<td>([u(\omega + \omega_b) - u(\omega - \omega_b)])</td>
</tr>
<tr>
<td>(\delta(t))</td>
<td>(1)</td>
</tr>
<tr>
<td>(\delta(t - \tau))</td>
<td>(e^{-j\omega \tau})</td>
</tr>
<tr>
<td>(u(t))</td>
<td>(\pi \delta(\omega) + \frac{1}{j\omega})</td>
</tr>
<tr>
<td>(1)</td>
<td>(2\pi \delta(\omega))</td>
</tr>
<tr>
<td>(e^{j\omega t})</td>
<td>(2\pi \delta(\omega - \omega_0))</td>
</tr>
<tr>
<td>(A \cos(\omega_0 t + \phi))</td>
<td>(\pi A e^{j\phi} \delta(\omega - \omega_0) + \pi A e^{-j\phi} \delta(\omega + \omega_0))</td>
</tr>
<tr>
<td>(\cos(\omega_0 t))</td>
<td>(\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0))</td>
</tr>
<tr>
<td>(\sin(\omega_0 t))</td>
<td>(-j\pi \delta(\omega - \omega_0) + j\pi \delta(\omega + \omega_0))</td>
</tr>
</tbody>
</table>