CMPE 350 - Spring 2019

PS 12-13.05.19

4.30 Let A be a Turing-recognizable language consisting of descriptions of Turing machines, $\left.\left\{\left\langle M_{1}\right), M_{2}\right\rangle, \ldots\right\}$, where every M_{i} is a decider. Prove that some decidable language D is not decided by any decider M_{i} whose description appears in A. (Hint: You may find it helpful to consider an enumerator for A.)

- Show that the set of undecidable languages are closed under complementation.
- Let L be the language of all Turing machine descriptions $\langle M\rangle$ such that there exists some input on which M makes at least 5 moves. Show that L is decidable.
- Disprove: Every countable language is decidable.
- Let M be a Turing machine which loops an all strings of the form wwr. Is M a decider? Is the language recognized by M decidable?

