4.30 Let A be a Turing-recognizable language consisting of descriptions of Turing machines, \{$(M_1, M_2), \ldots$\}, where every M_i is a decider. Prove that some decidable language D is not decided by any decider M_i whose description appears in A. (Hint: You may find it helpful to consider an enumerator for A.)

- Given an example of a language L such that L is co-Turing recognizable but its complement is not.
- Prove that the language \{$< M, w, q > \mid M$ is a Turing machine which visits state q during its execution when started with input string w\} is undecidable.
- Show that the set of undecidable languages are closed under complementation.

5.9 Let $T = \{(M) \mid M$ is a TM that accepts w^R whenever it accepts w\}. Show that T is undecidable.