CMPE 350 - Spring 2016

PS 11-11.05.16 \& 13.03.16

4.20 Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \bar{C}$. Show that any two disjoint co-Turing-recognizable languages are separable by some decidable language.
4.30 Let A be a Turing-recognizable language consisting of descriptions of Turing machines, $\left.\left\{\left\langle M_{1}\right), M_{2}\right\rangle, \ldots\right\}$, where every M_{i} is a decider. Prove that some decidable language D is not decided by any decider M_{i} whose description appears in A. (Hint: You may find it helpful to consider an enumerator for A.)

- Given an example of a language L such that L is co-Turing recognizable but its complement is not.
- Prove that the language $\{<M, w, q>\mid M$ is a Turing machine which visits state q during its execution when started with input string $w\}$ is undecidable.
- Show that the set of undecidable languages are closed under complementation.
- Prove: A language is Turing recognizable iff there exists an enumerator which enumerates it such that every string in the language appears only once in the listing.
- Disprove: Every countable language is decidable.

