
CMPE 300  ANALYSIS OF ALGORITHMS 

MIDTERM ANSWERS 
 

1.  

a) This fragment contains just two operations, independent of the data size. So the time 

complexity is constant, Θ(1). 

b) The outer loop is executed a constant number of times (3 times) and the inner loop is 

executed n times. So, the time complexity is 3nΘ(n). 

c) The loop is executed n
2
 times, so the complexity is Θ(n

2
). 

d) The outer loop is executed n times. Each execution consists of (n+n*log n) operations. 

So, the complexity is n*(n+n*log n)Θ(n
2 

log n). 

e) The outer loop is executed n times. For each iteration i, the number of executions of the 

inner loop depends on where the number i is placed in the array. Since the array 

contains a permutation of the numbers from 1 to n, we know that each number i will 

occur in the array once. That is, the inner loop will be executed 1 time for some value 

of i, 2 times for some value of i, ..., and n times for some value of i. So, the total 

number of operations will be 
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f) Corresponding to the iterations of the outer loop, the number of operations inside the 

loop is 1, n, 1, n, 1, n, ..., 1, n. Here, there are n/2 1’s and n/2 n’s. So, the complexity is 

(n/2)*1+(n/2)*nΘ(n
2
). 

 

2. (See the Assignment #1 answers.) 

 

3.  
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b) According to Master Theorem in the lecture notes, a=2, b=4, d=0.5. Since a=b
d
, 
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4.  

function BinarySearch (L[1:∞], X) // The representation of the array 

 low=1    // (L[1:∞]) can be any representation. 

 high=1 

 while (L[high]<X) do 

     low=high+1 

     high=high*2 

 endwhile 

 // Now we have bounded X between L[low] and L[high]. We will execute the 

 // original binary search routine. 

 found=false     



 while (not found) and (low≤high) do 

     mid=floor((low+high)/2) 

     if X=L[mid] then 

         found=true 

     else 

         if X<L[mid] then 

             high=mid-1 

         else 

             low=mid+1 

         endif 

     endif 

 endwhile 

 if found then 

     return(mid) 

 else 

     return(0) 

 endif 

end 

 

The explanation of the algorithm is as follows: Initially, we do not know the position n in 

the array that holds X, nor do we know the size of the array (which can be arbitrarily larger 

than n). What we do is to begin at the left side, and start searching for X. The secret is to 

jump twice as far to the right at each iteration. Thus, we will initially search array positions 

1, 2, 4, 8, 16, 32 and so on. Once we have found a value that is larger than or equal to what 

we are searching for, we have bounded the subrange of the array from our last two 

searches. Then we perform original binary search within this range. 

 

The length of the subarray we determined is at most n units wide, and we have found this 

subarray in at most log n+1 steps. The original binary search of the subarray will find the 

position n in an additional log n operations at most, for a total cost in O(log n) operations. 

 


