
CMPE 300 ANALYSIS OF ALGORITHMS

MIDTERM ANSWERS

1.

a) This fragment contains just two operations, independent of the data size. So the time

complexity is constant, Θ(1).

b) The outer loop is executed a constant number of times (3 times) and the inner loop is

executed n times. So, the time complexity is 3nΘ(n).

c) The loop is executed n
2
 times, so the complexity is Θ(n

2
).

d) The outer loop is executed n times. Each execution consists of (n+n*log n) operations.

So, the complexity is n*(n+n*log n)Θ(n
2

log n).

e) The outer loop is executed n times. For each iteration i, the number of executions of the

inner loop depends on where the number i is placed in the array. Since the array

contains a permutation of the numbers from 1 to n, we know that each number i will

occur in the array once. That is, the inner loop will be executed 1 time for some value

of i, 2 times for some value of i, ..., and n times for some value of i. So, the total

number of operations will be
2

)1(

1






nn
i

n

i

Θ(n
2
).

f) Corresponding to the iterations of the outer loop, the number of operations inside the

loop is 1, n, 1, n, 1, n, ..., 1, n. Here, there are n/2 1’s and n/2 n’s. So, the complexity is

(n/2)*1+(n/2)*nΘ(n
2
).

2. (See the Assignment #1 answers.)

3.

a) ...
10

9

10

9

10

9

10

9

10

9

10

9
)(

2

2

3

3

2

2



























 nnnnTnnnTnnTnT

 
 

 nnnnT

nkk

i

i





























 





9/10log1

0 10

9
110

110/9

110/9

10

9
)1(,since 1

10

9 9/10log



n

b) According to Master Theorem in the lecture notes, a=2, b=4, d=0.5. Since a=b
d
,

   nnnnnT d loglog)(

c) inTnTnTnTnT
i

)(...3)(2)(1)()(222 32

We try to make)2()(2 TnT
i

 . That is, 22/1 
i

n . So,
i

n 22 . Thus, ni loglog .

So,  nnTnT loglogloglog)2()( .

4.

function BinarySearch (L[1:∞], X) // The representation of the array

 low=1 // (L[1:∞]) can be any representation.

 high=1

 while (L[high]<X) do

 low=high+1

 high=high*2

 endwhile

 // Now we have bounded X between L[low] and L[high]. We will execute the

 // original binary search routine.

 found=false

 while (not found) and (low≤high) do

 mid=floor((low+high)/2)

 if X=L[mid] then

 found=true

 else

 if X<L[mid] then

 high=mid-1

 else

 low=mid+1

 endif

 endif

 endwhile

 if found then

 return(mid)

 else

 return(0)

 endif

end

The explanation of the algorithm is as follows: Initially, we do not know the position n in

the array that holds X, nor do we know the size of the array (which can be arbitrarily larger

than n). What we do is to begin at the left side, and start searching for X. The secret is to

jump twice as far to the right at each iteration. Thus, we will initially search array positions

1, 2, 4, 8, 16, 32 and so on. Once we have found a value that is larger than or equal to what

we are searching for, we have bounded the subrange of the array from our last two

searches. Then we perform original binary search within this range.

The length of the subarray we determined is at most n units wide, and we have found this

subarray in at most log n+1 steps. The original binary search of the subarray will find the

position n in an additional log n operations at most, for a total cost in O(log n) operations.

