Cmpe 300 - Analysis of Algorithms
Fall 2010
Assignment 1 Answers

Question 1

Part a

There are 4 loops in the function with indexes i, j, k, and 1, let’s call these loops I, J, K and L
respectively. Clearly loop I executes n times. Let’s make a table for the number of executions
of the loops for all values of index i, (ignoring the conditional statement):

i | 1] K] L] /I K]

0 | n |[ogm)|+1]| n n([log(n)] +1)

1 |n—=1]log(n)]+1|n—-1]|(n—1)(log(n)]+1)

2 |n—=2|log(n)]+1|n—-2](n—2)(log(n)] +1)
n;1 1 llog(n)] +1 1 Uog(ﬂ)J +1

Whenever the z; = 1, loops J and K are executed, otherwise loop L is executed. It can be
seen that whenever the x; = 1, the algorithm executes more operations. Therefore for the best
case analysis the input X is a stream of all zeros, whereas for the worst case, X is a stream of
all ones.

Best Case:
Input X is:
X =11 1]
The number of executions:
n—1 n—1 n(n . 1)
(n) Z(n i)=mn Z i=n 5
1=0 i=0
_ nin+1) _ 1n2+1n
2 2 2
e 0(n?

Worst Case:

Input X is:
X =100 0]
The number of executions:
n-l n—1
W(n) = Y (n—i)([log(n)] +1) = (log(n) + 1) Y (n —i) = n(n + 1)(L12og(n)J +1)
=0 =0

= Sn*(llog(m)] + 1) + gn((log(n)] +1)

e O(n?log(n))

Average Case:

We assume that the input is uniform. Which means p(z; = 0) = % and p(x; = 1) = % Then,

the average number of executions per step becomes:
1 N1 .
S i)+ 3 (n—i)(Llog(n)] + 1)

Therefore,

i
L

((n =) + (n = 1)([log(n) | + 1))

nn+1) n(n+1)({log(n)] +1)
2 2)

N

7=

/N @

(n? +n)(|log(n)] +2)

1
2
1
4
O(n” log(n))

Question 2

We use Stirling’s approximation to simplify the term log(2n!).

n n
nl =~ 27m(—>
e

The function becomes:
f(n) ~ n?log (2\/ 21n (ﬁ)n) +3n3 +/n
e
1
= n? <log2 +3 log(2mn) + nlog(n) — nlog(e)> +3n% + vn
1
= n’log(n) + 3n* + n®log(e) + 5712 log(2mn) +n? + vn

The function has 6 terms, all positive and monotonically increasing.

a) f(n) € O(n®) : False
We can directly show that there is no ¢ and ng such that f(n) < cn3. Let’s look at the term

n3log(n).

n3log(n) en® ¥n > ng

<
log(n) <

C

log(n) is a monotonically increasing function and ¢ is constant. For all {c,ng} pairs, there is
an n value, which is greater than ng, which makes log(n) > ¢. We don’t need to look at other
terms.

b) f(n) € o(n*log(n)) : False
We use the definition of little-oh:

- f(n)
f(n)€eolgin)) — lim —==0
(n) < olgl)) — fim T
f(n) — lm n3log(n) i 3n3 m n3log(e)
n—oo n3log(n) n—oo n3log(n) n—oon3log(n) n—oo n3log(n)
L tn?log(2mn) n? Vn
n—oo n3log(n) n—oo n3log(n) = n—oo n3log(n)
n3log(n)

therefore, f(n) ¢ o(n3log(n)).
c) f(n) € ©(n®log(n)): True
We can find ¢q, ¢o and ng such that
c1 (n3 log(n)) < f(n) < cQ(n3 log(n)) ¥Vn > ng

The function f(n) has 6 terms and with n3log(n) as the greatest order. Let ng = 8. Then,

3n3 < ndlog(n)
n3log(e) < n3log(n)

1
§n2 log(2rn) < n2log(n)
n? < n3log(n)
vn < n’log(n)

for all n > ng. Therefore, we can let ¢co = 6. An obvious choice for ¢; is 1. It is clear that for
all n > ng = 8 the condition holds. Therefore f(n) € ©(n3log(n)).

d) f(n) € Q(n?): True

It is very easy to show directly. If we can find ¢ and ng such that cg(n) < f(n) for all n > ny,
then f(n) € Q(n3). Consider the term n3log(n):

en® < n?log(n)
¢ < n3log(n)

Let ¢ = 1. log(n) > 1 for all values of n > 2 (ng = 2). This also implies that cg(n) < f(n) since
the remaining terms of f(n) are positive. The proof is completed.

Remark 1: You cannot just give numbers to c1,cy and ng. You have to justify why you
choose them.

Remark 2: You can not prove that the necessary condition holds for a single assignment of
constants. You have show that for all n > ng the condition holds.

