
Cmpe 300 - Analysis of Algorithms

Fall 2010

Assignment 1 Answers

Question 1

Part a

There are 4 loops in the function with indexes i, j, k, and l, let’s call these loops I, J, K and L
respectively. Clearly loop I executes n times. Let’s make a table for the number of executions
of the loops for all values of index i, (ignoring the conditional statement):

i |J | |K| |L| |J ||K|
0 n blog(n)c+ 1 n n(blog(n)c+ 1)
1 n− 1 blog(n)c+ 1 n− 1 (n− 1)(blog(n)c+ 1)
2 n− 2 blog(n)c+ 1 n− 2 (n− 2)(blog(n)c+ 1)
...

...
...

...
...

n-1 1 blog(n)c+ 1 1 blog(n)c+ 1

Whenever the xi = 1, loops J and K are executed, otherwise loop L is executed. It can be
seen that whenever the xi = 1, the algorithm executes more operations. Therefore for the best
case analysis the input X is a stream of all zeros, whereas for the worst case, X is a stream of
all ones.

Best Case:

Input X is:

X = [ 1 1 . . . 1 ]

The number of executions:

B(n) =
n−1∑
i=0

(n− i) = n2 −
n−1∑
i=0

i = n2 − n(n− 1)
2

=
n(n + 1)

2
=

1
2
n2 +

1
2
n

∈ Θ(n2)

1



Worst Case:

Input X is:

X = [ 0 0 . . . 0 ]

The number of executions:

W (n) =
n−1∑
i=0

(n− i)(blog(n)c+ 1) = (log(n) + 1)
n−1∑
i=0

(n− i) =
n(n + 1)(blog(n)c+ 1)

2

=
1
2
n2(blog(n)c+ 1) +

1
2
n(blog(n)c+ 1)

∈ Θ(n2 log(n))

Average Case:

We assume that the input is uniform. Which means p(xi = 0) = 1
2 and p(xi = 1) = 1

2 . Then,
the average number of executions per step becomes:

1
2
(n− i) +

1
2
(n− i)(blog(n)c+ 1)

Therefore,

A(n) =
n−1∑
i=0

1
2
((n− i) + (n− i)(blog(n)c+ 1))

=
1
2

(
n(n + 1)

2
+

n(n + 1)(blog(n)c+ 1)
2

)
=

1
4
(n2 + n)(blog(n)c+ 2)

∈ Θ(n2 log(n))

Question 2

We use Stirling’s approximation to simplify the term log(2n!).

n! ≈
√

2πn
(n

e

)n

The function becomes:

f(n) ≈ n2 log
(
2
√

2πn
(n

e

)n)
+ 3n3 +

√
n

= n2

(
log 2 +

1
2

log(2πn) + n log(n)− n log(e)
)

+ 3n3 +
√

n

= n3 log(n) + 3n3 + n3 log(e) +
1
2
n2 log(2πn) + n2 +

√
n

The function has 6 terms, all positive and monotonically increasing.
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a) f(n) ∈ O(n3) : False

We can directly show that there is no c and n0 such that f(n) ≤ cn3. Let’s look at the term
n3 log(n).

n3 log(n) ≤ cn3 ,∀n ≥ n0

log(n) ≤ c

log(n) is a monotonically increasing function and c is constant. For all {c, n0} pairs, there is
an n value, which is greater than n0, which makes log(n) > c. We don’t need to look at other
terms.

b) f(n) ∈ o(n3 log(n)) : False

We use the definition of little-oh:

f(n) ∈ o(g(n)) → lim
n→∞

f(n)
g(n)

= 0

lim
n→∞

f(n)
n3 log(n)

= lim
n→∞

n3 log(n)
n3 log(n)

+ lim
n→∞

3n3

n3 log(n)
+ lim

n→∞

n3 log(e)
n3 log(n)

+ lim
n→∞

1
2n2 log(2πn)

n3 log(n)
+ lim

n→∞

n2

n3 log(n)
+ lim

n→∞

√
n

n3 log(n)

= lim
n→∞

n3 log(n)
n3 log(n)

= 1

therefore, f(n) /∈ o(n3 log(n)).

c) f(n) ∈ Θ(n3 log(n)): True

We can find c1, c2 and n0 such that

c1(n3 log(n)) ≤ f(n) ≤ c2(n3 log(n)) ∀n ≥ n0

The function f(n) has 6 terms and with n3 log(n) as the greatest order. Let n0 = 8. Then,

3n3 ≤ n3 log(n)
n3 log(e) ≤ n3 log(n)

1
2
n2 log(2πn) ≤ n3 log(n)

n2 ≤ n3 log(n)
√

n ≤ n3 log(n)

for all n ≥ n0. Therefore, we can let c2 = 6. An obvious choice for c1 is 1. It is clear that for
all n ≥ n0 = 8 the condition holds. Therefore f(n) ∈ Θ(n3 log(n)).

3



d) f(n) ∈ Ω(n3): True

It is very easy to show directly. If we can find c and n0 such that cg(n) ≤ f(n) for all n ≥ n0,
then f(n) ∈ Ω(n3). Consider the term n3 log(n):

cn3 ≤ n3 log(n)
c ≤ n3 log(n)

Let c = 1. log(n) ≥ 1 for all values of n ≥ 2 (n0 = 2). This also implies that cg(n) ≤ f(n) since
the remaining terms of f(n) are positive. The proof is completed.

Remark 1: You cannot just give numbers to c1, c2 and n0. You have to justify why you
choose them.

Remark 2: You can not prove that the necessary condition holds for a single assignment of
constants. You have show that for all n > n0 the condition holds.
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