Cmpe 300 - Analysis of Algorithms
Spring 2013
Assignment 1

Due Date: 01/04/2018 17:00

Question 1 (20 Points)

Consider the function f(n) = 1+ k + k? + k3 + ... + k™ where k is a positive real number.
Calculate the tightest bound on the growth of this function (f(n) = ©(...)) for the following
cases:

(a) k<1
(b) k=1
(c) k>1

Answer:

The sum of geometric series is written as (when k # 1):

1— n+1
f(n):1+k+k2+k3+...+k":%
(a) For k < 1,
1_k.n+1< 1
1-k 1-k

since k is positive. We can see that (f(n) € ©(1). We can find constants ¢, co and ng such that
cig(n) < f(n) < cag(n)
where g(n) =1, ¢1 =1, cg = flk, and ng = 1.
(b) For k =1, f(n) € ©(n)
fr)=1+1+124+13+. .. +1"=n+1

It is clear that f(n) € ©(n). We can use the following constants ¢; = 1,¢co = 2,n9 = 1 for
g(n) = n.

(c) For k > 1,
f)=14+k+k+E3+.. . + k"

The series grows with k. Hence f(n) € ©(k™). We can use the constants ¢; = 1,co = k,ng =1
for g(n) = k™.



Question 2 (40 Points)

Given a list L[1 : 8] and a search element K, calculate the number of comparisons for the
best, wost and average cases of searching K in the list with Linear Search with the following
assumption: The probability of finding K at the position z is given by p(z) = 2279, and the
probability that K is not in the list is given by p(0) = 275.

Answer:

If the search element K is at the position z, we need to make x comparisons to find it. If
the search element is not in the list, we need to make maximum number of comparisons. The
average number of comparisons according to the assumed probability distribution is

=827 +12 %) +227)+32% +... +8(2Y
= 7.0352

The best and worst cases do not depend on this probability distribution. In the best case the
search element is the first element, there will be 1 comparison for it. In the worst case the
search element is either the last element or not in the list. In both cases we have to make 8
comparions.

Question 3 (40 Points)

Consider the given function f(n) and determine whether the following case are true or false.
Justify your answers formally. (Hint: Use Stirling’s Approzimation)

f(n) =n?+ nlog(n!)

2)
b)
c)
)

Answer:

We use Stirling’s approximation to simplify the term log(n!).

n n
n! ~V2mn (f)
e

The function becomes:

f(n) =~ n?+nlog (\/ 27n (g)n)
1
=n’+n <+2 log(2mn) 4+ nlog(n) — nlog(e)>
_2 1 2 2
=n"+ §nlog(27m) + n”log(n) + n”log(e)

1
= n?log(n) + 2n* + 5n10g(27rn) +loge

The function has 4 terms, all positive and monotonically increasing.



a) f(n) € O(n?) : False
We can directly show that there is no ¢ and ng such that f(n) < cn?. Let’s look at the term
n?log(n).

n?log(n) en®  ,¥n > ng

<
log(n) <

C

log(n) is a monotonically increasing function and ¢ is constant. For all {c,ng} pairs, there is
an n value, which is greater than ng, which makes log(n) > ¢. We don’t need to look at other
terms.

b) f(n) € o(n*log(n)) : False
We use the definition of little-oh:

_ f(n)
f(n)€eo(g(n)) — Ilim —= =0
(n) € olgl)) — tim 1)
f(n) logn) | o Lnlog@rn) | loge
———— = lim —————~+ lim ——— 2 - —_—
n—o0 n?log(n) n—oo n?log(n) n—oon2log(n) n—oo n2log(n) n—o0 n?log(n)
2
_ i 08
n—o0 n?log(n)

therefore, f(n) ¢ o(n®log(n)).

c) f(n) € Q(n?): True

It is very easy to show directly. If we can find ¢ and ng such that cg(n) < f(n) for all n > ny,
then f(n) € Q(n?). Consider the term n?log(n):

en? < n?log(n)
¢ <log(n)

Let ¢ = 1. log(n) > 1 for all values of n > 2 (ng = 2). This also implies that cg(n) < f(n) since
the remaining terms of f(n) are positive. The proof is completed.

d) f(n) € ©(n*log(n)): True
We can find ¢y, co and ng such that
c1(n?log(n)) < f(n) < ca(n?log(n)) Vn > ng
The function f(n) has 4 terms and with n?log(n) as the greatest order. Let ng = 4. Then,
2n% < n?log(n)
%n log(2rn) < n?log(n)
loge < n?log(n)

for all n > ng. Therefore, we can let ¢co = 6. An obvious choice for ¢; is 1. It is clear that for
all n > ng = 4 the condition holds. Therefore f(n) € ©(n?log(n)).



