
1

I. CMPE 300 HOMEWORK I ANSWERS

A. Question I

f(n) is given as:
f(n) = n3log(n!) (1)

and Stirling’s approximation is as follows:

n! ≈
√

2πn
nn

en
(2)

Using Stirling’s approximation, we can find an approximate value for f(n).

f(n) ≈ n4log(n)− n4log(e) +
1
2
n3log(n) +

1
2
n3log(2π) (3)

Once this term is found, it is easy to verify the statements given in the question.
1) False.

The reason is that the term loglog(n) grows exponentially slower than log(n). Hence, the term n4loglog(n) cannot be
an upper bound for the fastest growing term of f(n), which is n4log(n). So, formally, we cannot find constants c and
n0, such that f(n) ≤ cn4loglog(n) for all n ≥ n0.

2) True.
The term n4log2(n) grows log(n) times faster than the fastest growing term of f(n), which is n4log(n). Therefore,
n4log2(n) is an upper bound for f(n). Note that this bound does not necessarily have to be tight.

3) True.
n4log(n) is a tight bound on f(n), and we should be able to find two constants c and n0, such that f(n) ≥ cn4log(n)
for all n ≥ n0. Note that c should be smaller than 1, as the second fastest term of f(n) is negative and the coefficient of
the fastest term in f(n) is 1. So, we choose c as 0.5, and n0 as 3, as f(3) for log base 2 is 68.72, whereas cn4log(n)
is 64.19. The relationship holds for larger values of n.

4) True.
This is simple to check, since o(n5) grows much faster than n4log(n). Therefore:

lim︸︷︷︸
n→∞

f(n)
n5

= 0 (4)

5) False.
O(n4) is not an upper bound for f(n), as the fastest growing term of f(n), namely n4log(n) grows faster than n4.
Therefore, it is not possible to find constants c and n0 such that f(n) ≤ cn4 for all n ≥ n0.

B. Question II

The code given in the question consists of five different for loops with indices i, k, l, j and m. The corresponding loops
are referred here as I , K, L, J and M loops.

Let |X| be the cardinality of the set of possible values the index of loop X can have. Thus, for instance, |I| = n. According
to this definition, the following holds:

|I| = n (5)

|K| = |L| = |M | =
3n− i

3
(6)

|J | = 3n− i (7)

So, as i increases from 0 to 3n, k, l and m cover the rest of the values from i to 3n with equal proportions. Also note that
the value of j is independent from l, the index if its parent loop. The following summation rules will be useful in determining
the time complexity:

N∑
t=1

1 = N (8)

N∑
t=1

t =
N(N + 1)

2
(9)

N∑
t=1

t2 =
N(N + 1)(2N + 1)

6
(10)

2

i |K| |L| |M | |J |
0 n n n 3n
3 n-1 n-1 n-1 3n-3
6 n-2 n-2 n-2 3n-6
...

...
...

...
...

3n-3 1 1 1 3

The following table shows the number of executions of loops for specific values of i:
The number of times K and M loops are executed can be found simply, by using the rule given in Equation 5, to be n(n+1)

2 .
Moreover the effects of loops K and M on f(n) eliminate each other. The number of times L is executed is of no interest
for this question, since we are allowed to ignore the index updates. The number of executions of J equals |L||J | for each i.

i |L||J |
0 3n2

3 (n-1)(3n-3)
6 (n-2)(3n-6)
...

...
3n-3 3

So, the number of executions of loop J can be found via formula:

n−1∑
t=0

(n− t)(3n− 3t) = (11)

3
n−1∑
t=0

(n− t)2 = (12)

3
n∑

t=1

t2 =
n(n+ 1)(2n+ 1)

2
(13)

The total time complexity is the summation of execution times of |K|, |J | and |M |, which is:

n(n+ 1)
2

+
n(n+ 1)

2
+
n(n+ 1)(2n+ 1)

2
=

n(n+ 1)(2n+ 3)
2

(14)

= = Θ(n3) (15)

The only effect on f(n) comes from the J loop. Therefore:

f(n) =
n(n+ 1)(2n+ 1)

2
(16)

