Question 1

Let \(L = \{a_1, a_2, \ldots, a_n\} \) be a list of \(n \) integers.

a) Write an EREW algorithm for computing \(a_1 \cdot a_2 \cdot \cdots \cdot a_n \) using \(\frac{n}{2} \) processors. Analyze the complexity of your algorithm. Is your algorithm cost optimal?

Solution: The idea is to find the product of the numbers using binary approach.

```
Function: Multiplication EREW PRAM
    Model: EREW PRAM with \( \frac{n}{2} \) processors
    Input: \( L[1 : n] \)
    Output: \( \prod_{i}^{n} L[i] \)
    for \( i = 1 \) to \( \log_2 n \) do
        for \( j = 1 \) to \( \frac{n}{2^i} \) in parallel do
            \( L[j] = L[j] \cdot L[\frac{n}{2^i} + j] \)
        end for
    end for
    return \( L[1] \)
end
```

The first for loop runs for \(\log_2 n \) times. The for loop inside is run in parallel and has complexity \(O(1) \).

\[W(n) = \log_2 n \quad C(n) = \frac{3}{2} \cdot \log_2 n \]

The algorithm is not cost optimal since \(W^*(n) = \Theta(n) \)

b) Write an EREW algorithm for computing \(a_1 \cdot a_2 \cdot \cdots \cdot a_n \) using \(\frac{n}{\log n} \) processors (You may assume that \(\frac{n}{\log n} \) is an integer). Analyze the complexity of your algorithm. Is your algorithm cost optimal?

Solution:
Now each processor will compute the product of $\log_2 n$ numbers sequentially and $\frac{n}{\log_2 n}$ numbers will be obtained. Then the algorithm in part a) will be used to compute the product of $\frac{n}{\log_2 n}$ numbers.

\[W(n) = \log_2 n + \log\left(\frac{n}{\log_2 n}\right) = \log_2 n \quad C(n) = \frac{n}{\log_2 n} \cdot \log_2 n = n \]

The algorithm is cost optimal since $W^*(n) = C(n)$.

c) Write a CRCW algorithm for testing whether $a_1 \cdot a_2 \cdot \ldots \cdot a_n = 0$. Analyze the complexity of your algorithm. Is your algorithm cost optimal? You will get more or less points depending on the time complexity of your algorithm.

Solution:

The product is equal to 0 if one of the integers in the list is equal to 0. Now the model is CRCW and we can use concurrent reads and writes. We will use n processors. Processor i will check if a_i is equal to 0 and write 0 to location say a_1 if a 0 is detected. More than one processor may write 0 at the same time but since the model allows concurrent writes, this is not a problem. The problem can be also solved using p processors without specifying p.

\[W(n) = 1 \quad C(n) = n \]

The algorithm is cost optimal since $W^*(n) = C(n)$.

Question 2

Suppose that there are n students in a class where n is even. I want to find a student who scored better than half of the students in the class.

a) Determine the lower bound for the worst-case complexity of the problem.

Solution:

The problem is equivalent to finding an integer greater than the median given a list of n elements.

If an element is greater than the median, than it is greater than at least $\frac{n}{2}$ of the remaining elements. Assume that all elements in the list are distinct for simplicity. When a comparison based algorithm compares two distinct elements x and y, we say that x wins the comparison if $x > y$, otherwise x loses. An element that is greater than the median, say x must win at least $\frac{n}{2}$ comparisons. Let us prove that this is the lower bound for the number of comparisons needed. Suppose for a contradiction that x is the output of the algorithm and x wins $\frac{n}{2} - 1$ comparisons. Equivalently, there are $\frac{n}{2} - 1$ elements which are smaller than x. There might be an element y which is greater than x and which is not involved in any comparison. Then, the $\frac{n}{2} - 1$ elements and x are smaller than y, which means that x is not greater than the median. We obtain a contradiction.

Therefore, we conclude that the lower bound is equal to $\frac{n}{2}$. In fact this lower bound is optimal. Choosing two numbers and keeping the larger in hand, one can find a number greater than the median after $\frac{n}{2}$ comparisons.
b) Describe a Monte Carlo algorithm for solving the problem which gives a correct answer \(\frac{1}{2} \) of the time. What is the runtime of your algorithm?

Solution:

Select an element from the list. With probability \(\frac{1}{2} \), the selected number is greater than the median since

\[
\frac{|\text{numbers greater than the median}|}{|\text{number is the list}|} = \frac{1}{2}.
\]

The runtime of the algorithm is \(O(1) \).

c) Modify your algorithm in part b) to obtain an algorithm which gives a correct answer \(\frac{3}{4} \) of the time. What is the runtime of your algorithm?

Solution:

Select two numbers sequentially and choose the larger one. The answer is not correct if both of the selected numbers are smaller than the median, which has probability \(\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \). The correct answer is given with probability \(\frac{3}{4} \).

Only 1 comparison is needed and the runtime of the algorithm is \(O(1) \).

d) Now generalize the idea in part c) to describe an algorithm which gives a correct answer \(1 - \frac{1}{2^k} \) of the time for some constant \(k \). What is the runtime of your algorithm?

Solution:

Select \(k \) numbers sequentially and output the largest one. The answer is not correct if all of the selected \(k \) numbers are smaller than the median, which has probability \(\frac{1}{2^k} \). The correct answer is given with probability \(1 - \frac{1}{2^k} \).

The runtime of the algorithm is still \(O(1) \) since the total number of comparisons needed is \(k - 1 \), which is a constant independent of \(n \).