CMPE 160, Spring 2015

Project-1
Cagatay Yildiz, Can Tunca, Haluk O. Bingol

March 12, 2015

Due: 30.03.2015, 09.00 AM.
Submission: Will be announced later.

Contents

1 Description 1
2 Details of Given Code 2
3 Using GUI 2
4 Goals 3
5 Details of Given Code 4
6 Testing Your Code 4
7 Bonus 4
8 Hints for Implementation 4

1 Description

In this project, you have two different tasks:

e You are going to design and implement a Java library that will be used for drawing that is necessary
for a primary school level geometry book.

e Using the GUI provided by us, your objects are going to move in a plane.

In the .zip folder, you can see a number of packages and classes. Do not to get rid of these files although
some of them are empty. These classes supposed to give you some insight about what your library should
look like. More specifically, they exemplify the correct usage of interfaces and inheritance.

One thing to do in the project is to make this library richer. What kind of classes your library is going to
have is a part of your design but you are expected to add at least 3 different objects that do not have 4
edges (triangle, hexagon, etc). You are welcomed to add as many features as you want. But do not forget:
The main goal is not to draw some weird polygon with 25 edges but to learn how to use object oriented
programming.



In the second part of this project, you are going to use your library. In a main class (see bingol.test.Main ),
you will create objects and see their movement on a plane. In the next PS hours, your assistants are going
to show you a Java library, that you will be using for this purpose.

2 Details of Given Code

Warning. Do not change anything in the packages that starts with cmpe160.s20151.projectl. Consider
that they are given to you as a library of .class files or simply a . jar file, as in the case of java.awt.*. In
addition, the owner is nice enough to share with you its implementation in .java files. Hence you cannot
change the library. Note that when we do test your submissions, we will have your codes, that is, packages
starts with student.yourLastName. yourName.projectl.*, and include our cmpe160.s20151.projectl.* li-
brary. Therefore any changes you make in our library will be lost. So there is a possibility that your code
will not work if you make changes in our library.

These packages are like the backbone of your design. You can extend or implement those but cannot
change the source code itself. Check javadoc for documentation of this family of packages.

Your own package structure is student.yourLastName.yourName.projectl. Feel free add sub-packages to
your own package structure in which all packages start with student.yourLastName.yourName.projectl.
For instance, if I were you, I would add a class named MyTriangleInterface to the package with a name
student . yourLastName. yourName.projectl.interfaces. Later on you will be using the same structure for
your Project2 which will be in student.yourLastName.yourName.project?2.

A valid question would be what to do if the source code we gave is not enough for your purposes? For
example, Quadrilateral class is implemented in cmpel160.s20151.projectl.implementations but some
functionality you will later need are missing. In this case, what you should do is to create a new class
named MyQuadrilateral, which extends cmpe160.s20151.projectl.implementations.Quadrilateral and
to use MyQuadrilateral while creating instances. This way, you not only avoid changing the source code
that we provided, but you also implement what is needed.

3 Using GUI

Using GUI is pretty easy. An example is in cmpel160.s20151.projectl.implementations.Main, which is
also given in Listing 1.

Listing 1: Sample code

public static void Test(Stringl[] args) {
GUI gui = new GUIQ);
AnimationCanvas canvas = new AnimationCanvas();
gui.addCanvas (canvas);
/* YOUR CODE: START */
canvas.addObject (new Square(new Point (1, 13), new Point(4, 10)));
/* YOUR CODE: END x/
canvas.start ();

}

As you run this program, the following canvas will appear:



33

20,0

Here, each unit square is 1-by-1 and this canvas is 25-by-25.
In the second part of the project, you are going to override draw and move methods so that your objects
are going to move in this 2D grid. Here is a list of thing to do:

e Each object is going to start their movements at random position and move in random directions.

e As an object hits to an edge, it is going to reflect. So, your objects are basically billiard-balls and
this grid is a billiard table with no holes on edges.

e Another result of hitting a wall is the creation of another object of the same type (remember
instanceof ). For instance, if a MyQuadrilateral object hits an edge, another MyQuadrilateral
object will be created. If it is MySquare, a new MySquare will be created. The new object will
start its movement from the exact location of the parent when it hits the wall and move in random
directions.

e While creating new objects as a result of hits, you are expected to keep the number of objects below
a threshold. This threshold is equal to the number of edges for each and every class: For example at
the same time, there must be less than 5 objects with 4 edges, less than 7 objects with 6 edges, etc.

4 Goals

In this project we do not want you to implement an API of size megabytes. The main goal is to learn,
given you are a problem, how to make an appropriate design (in terms of functionality and usage of object
oriented programming) as well as improving your coding skills. More specifically, we are interested in the
following;:

Design. Usage of appropriate objects, fields, methods, public and private keywords etc.
Object Hierarchy. Usage of extends and implements keywords, etc.

Documentation. Usage of Javadoc

Implementation. A proper implementation of your design.

Testing. Write down some piece of code like the one in cmpe160.s20151.projectl.test and document
what it does. Use package student.yourlastname.yourname.projectl.test only for your test rou-
tines.



5 Details of Given Code

Do not change anything in the packages of cmpe160.s20151.projectl. Check javadoc for documentation
of this family of packages.

Your own package structure is student.yourLastName.yourName.projectl. Feel free add sub packages,
as in the case of cmpe160.s20151.projectl.test, to your own package structure. Note that you have to
change to your name. Later on you will be using the same structure for your Project2 which will be in
student. yourLastName. yourName.project2.

6 Testing Your Code

Every class you write should have the following method for its testing purposes. What we want in test
class is not each and every functionality of your code but some main functionalities:

public static void Test(String[] args) {
// TODO Your test should be here

}

There should be one more class that tests the entire project, that is, not the individual classes but their
interaction that makes the project itself. So basically, you are going to draw these objects to the canvas
and show how they move. See cmpe160.s20151.projectl.test.

7 Bonus
Additional features, fully tested, properly documented.

e Changing colors of objects as two objects collide. Here, collision occurs if one corner of an object is
within the other one. You may use any color you want.

e Implementing a blackhole. Without changing the code that we provide, can you create some kind of
a blackhole in the grid? If an object falls into the blackhole, it will get lost and immediately appears
at a random location and start moving at random directions. The size of the blackhole should not
be any greater than 2-by-2. (Hint:You may want to create MyCanvas object that extends Canvas ).

e You are welcomed to implement some additional features. If you think they are so cool, write a
separate test class and document its functionality.

8 Hints for Implementation

Your library should support the following functionalities, noting that this list is not exhaustive:

e Use your own package. It starts with student.yourLastName.yourName.projectl. Of course you
need to use your own name.

Initialization of many kinds of objects.

Changing features of objects.

Printing some information about objects.

Calculating areas, circumferences and some other features of geometric shapes.

4



Some cool ideas would be:

Moving objects,

Rotating objects,

Avoiding collisions between objects,

Fixing all collisions between objects,

Hiding or removing objects.



