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. §39 .
* Definition -and Examples

~

The term veotor' is familiar. to the reader from Physics Such physxcal )

magnitudes as displacement, “force, ‘torque, momentum elc. .are vectors..

Vectors can- be added (by the parallelogram law) and multlplled by real
numbers, which- are .called: scalars m this context. In this chapter, we

introduce systems of objects which can be added and multlplled by
' scalars.

39.1 Definition: Lét K be a field and let (V,4) be an (addiiively written)
abelian group.- Suppose. that, to each pair (a,v)in K x V, there corre-
sponds ‘a unique element of V, denoted by «. v, .such that the followmg
equatlons hold for all «,p € K, v;w € V: '
' o a(v+w)—av‘+_aw
(2 (a+B)v=av+pw
() BV =(aB)V -
4) lv=v (1 is the- 1dent1ty of K). )
In this case, the ordered quadruple (V.+.K, )1s called a vectar vpace over_a '

K, or a K-vector vpace The elements of K aré called vcalars and K is ‘

" called the field of scalars of th_e vector space (V,+, K -). The elements of V-



are called veczors The mappmg (a v) - a. v from KxV mto V w1ll be‘ .

called multtpllcatton by scalars.. '

" From now on, the:term vector will mean an element of ‘a vector space.

- We will see vectors which, do -not resemble the vectors of physws in any
way. ) '

At the cost' of some stylistic clumsiness .in the forinulation of many
statements,  we shall refer to the mapping ((1 v) — «.v. as multiplication by
scalars; not as scalar. mult1phcat1on This is what the mapping really is. It -

is multlplxcatxon of vectors by 'scalars, not a. multlpllcatlon ‘whose results
dre scalars We . wxll usually omlt - -and wnte av mstead of a.v. !

‘ Strlctly speakmg, a vector space is - an” ordered quadruple (V + K, )
However as in the’ case. of groups and rmgs, we shall usually refer to the
set V as a vector space over K. If the- field of scalars is fixed throughout
~ a discussion, we “shall speak of vector ' spaces without reference ‘to the

field of scalars. o B

2 i

It will be convement to thmk of a vector space as an abellan ‘group with '

.an - additional - structure" on ‘it supphed by the multlpllcatxon by scalars

The wordmg of: Defxmtxon 391 was chosen to emphasxze thxs point- of -

v1ew

\39 2 Examples (a) Let V=R @ R be the dxrect sum of two copies of 4’
R and let K = =R. We defme multlpllcatxon by -scalars in - the most natural .

way: © a(By) =(oBiay)  (forall a € R, B.y) € V)
It is easily seen that V isan R-vector space

(b) The same construction. can be carned out w1th n- tuples of e]ements
from any- field K. Let K be a field and let V =K@ K GB . & K. be the di- )
- rect sum-of n coples of K, which is.an’ abelian group under component-

wise addition. We defme mumphcatwn by scalars also componentwise:
By By esBy) = (@ByaBy 0B, - (ot all @ € K, (B8, .. B EV).

It is easily. verified that V'is ak. -Vectot .space.. It w1]l be desxgnaled by .‘ :

: -K , and wdl be called the K-vecror space of n—tup[esn RS

RN



R ' o ,
(c) Let V be the set of all real valued functrons defmed on-the 1nterval
- [0, l] -For any two funcuons f,g.in V; we define a new- funct1on f+gin 1%
by S () =flx) + g(x) - forall'x € [0,1].- }
V is an abelian group under this addrtlon (called the. poznthse addmon'
of functrons) Now let K =R and define a pomtwtse multlpltcanon byl"'f
scalars; . ; (af)(x)— af(x) - forall x € [01] aeR.
Then V is a vector space over R (cf Example 29.2(i)).

When we put . (af)(x) = cxf(x) P " for all x € [0, l] aeC,
‘then V would not-be a vector space over: C; because af would not belono"
to V for all « € (C ,feV, as the functron af is not real valued when a is a' .
complex number with A _nonzero- 1mag1nary part

' (d) Let K- be a f1eld and let K[x] be the ring of all polynomrals over K Let
us forget that we can .multiply two polynom1als and concentrate on the‘
fact that we can add them and multlply them by the “elements of K
7(wh1ch are polynomuls of degree zero, .ot the zero polynom1al) It is
‘easrly seen that Klx]isaK- vector space CURREPE : ’

(e) Let n be a f1xed natural number Let K be a f1eld and let V be. the set. ]
-of all polynomials over K which. havé degree n. IsV a vector space over.
.K? No, because the .sum of- two polynomlals of degrec n is not always a
polynomial - of - degree n (when the- leadrng ‘coefficients -are opposrtes of -
each other).. On the otherhand, .the set consrstmg of -the zero' polynomial -
- and of all polynomlals over K whose degrees are less than or equal to'n

[y

is a- vector space over K

(f) Lef V-bé a-vector space over a freld K, and let K be a freld contarned‘ ‘ “ ’

_in K (in this case, K, is called a subfteld of K). Then V is a vector space
over K, too, since the requrrements in Definition 39 1 are satlsfled by the
'elements of K 1f they are . satlsfled by the elements of K. '

(g) Let K be a fleld When we' defme the multrpllcatlon by scalars as the
multlpllcauon in the field K, then K becomes a vector space over K. The -
‘ :condmons in Defrnmon 39.1 " are srmply\ the dlstrlbutlvuy laws the
. associativity® of multlpllcauon and’ the very definition’ of the ldentlty ;

“element in K. - N T S SR '

_ (h) lt follows from Example 39.2(f) and Example 39, Z(g) that 1f K, and K
o arg fields such that K € K, then K is a vector space over K any fleld is a

s bt
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 the abelian; group .(V, +)

.ot

!
- B

‘Vector’ space over its subflelds For mstance Kok is a vector space over [F?.,"_ :

and R is d vector space over (U)

.
39'3 ‘ Remarks (1) A vector space ‘i§ an abellan group and has an lden—-
tity element which we call zero and denote by 0. The underlymg field K
“has a zero clement 100, which’ is | also denoted by 0. The reader should_r

- carefully drstmgursh between these ZEroes. One of them is a ‘vecior, the - .’
.other is.a ,scalar. ‘The vector zero is someumes denoted by_ﬁ.. R

(2) Multrplrcatlon by: scalars is a mappmg from K X V' mto Vv, hence it 1s,'-
not-a bmary oper'mon on v unless K =V. Fhrs feature d1st1ngu1shes_-'
vector spaces from groups and rlngs Multlphcatlon .and addmon are

binary operauons on groups and rmgs

.

Some b'lSlC facts are collected m the next lemma ?

§

39 4 Lemma‘ Let V. be a vector space over a ﬂeld K For all a,B € K and
-for all u,v,w € V the followmg hold. . SRR I ‘
- (MO0+v=w NP e
@=vy=0 <
(3) -0'= 0 ‘ "'(vector"z'ero) o | ‘ R ) L
(4)u+v—u+wrmplresv—w S \ D

(5) a0 ='0. : ‘ c '

6) Ov = 0. _ _ ,

(7) a(-v) = —(av) -( a)v; in partz(‘ular —1 v= -v.

@) (a-Bv=av- Bv .
(9) a(v=w)=ave ow.

(10) av=10. tmr)ltes o= =0 or V = ()
(11) avs= ﬁvrmpltes a=por V= 0
(12) oav= aw lmplles « —vO or V w.

Proof (1),(2), (3) (4) hold m any group (Lemma 7.3, Lemma 82), also in’

Yy

(5) We are to prove a0 =0 (vector zero).  We observe A
aO+0—a0—a(Q+0)—-maO : o
“hence aO 0 by ). co :



‘(6) We: are to prove Ov = 0 (on the left hand . side' we have the scalar
,zcro, on the r1ght hand . side, \the -vector zero) We observe
. T Ov+0= Ov (O+0)v 0V+Ov
hen‘(;e ov =0 by '(4). '
7y Wc -ha_\(é " 0=al= a(V+( V) = av+ al-v)
and  0=0v= (o + (- a)v=av+ (~a)v .
by (5) and (6) SO ( o)v and af(= v) are the opposite of av. Thus ’
a(~V)"-(aV)—(—a)V ' ' '

- (8) We' are t(; show (a.— ﬁ)v— av - Bv Here o - B is an abbreviation' for

o + (-B) in K, and- av Bv is an’ abbreviation for av+( (Bv)) in V7 We:

) ‘have indeed: -~ (o(—[S)V (a+( ﬁ))v av+( ﬁ)v av+( (6V))~av ﬁv
) a(v - w) —'a(v+( w))-—aV+a( W)-—av+( (o)) =av-oaw. -

(10) Assume av=0.1f a = 0, then b exists in ’K and ‘we get
v=ly=(a"a)v= al(av)—alo 0.

(11) This follows from.(8) and (10). = . ...

(12) This follows from (9) ahd (10). . g

39.5 Lemma: Let- V be a‘ve‘ctor space over a field. K.‘Thén,for all
[ PN 9 oin and»v,,vz, cV, vzn V, there hold

(q1+,q2 +o()V—(11V+ o(2V+ oV
and ' “(Vl +V, + ' + vn) = av]‘ tavy+o v,

Proof: This follows by induction on n. The details are left to the reader.o

“Just as there may be different group structures on a ‘set, there may also

be different vector space structures on a.set. ‘Here is an example.

39 6 Example Let V = C ) C We dcfme a mullnphcalmn o of lhc cle-
mcnls of V by complex numbcrs ‘by declaring c

) cr(abh)= (ca,ch) -~ for all c € C, (a h) € V.
This muluphcauon makes: the - abclmn group/ 1% mlo a C-vector sp.lu.
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(1) col(ab)+ (de)] =co(a+db+e)

‘ . " =(C(a +d)cb + e)):
= (Za +cdch ¥ Te)
= (ca,ch) + (¢d,Te)

c n/(a b) + co(d,e),
((2 + fa T———]jl))
= (Ca +fa, chb+Fbh)

- =(ca,cb) + (Fa,fb)
' / ' =co(ab) + fo(ab),
() . (c¢hHlab)  =(cfacfb)

]

Rl

@ rpo@b

= (CFa;cFh)
=ceo(fafb)
- ’ = o (fe (a,b)), _.
“(4) Cle@@p) = (Ta,Tby=(la,1b) = (a,b) [

" for all (a,b),d, e)'e V,efe C. Thus (V,+,C o) is a vector space, with the
_same set V, the same addition + on V, the same underlying field C as the
vector space- v,+,C, ) of anmple 39.2(b) (in case K = C,n = 2), bat
(V,+,€0) is dlSlmCt from (V,+,C,-) since the multlphcauon by sc‘lhrs in
these vector spaces are different.

Exercises -

"1. Determine whelher R X R is an R-vector space when
(ab)+(cd)—(a+cb+d) a(cd)_\cd) forallabcd R.

2 Determlne whether Q-x @ is a @ vector “space when - ‘
(ab)+(cd)—(a+CO) a(cd)—(acad) forallabcde@

3. Determine. whether Z X Z is 2 Z -vector space when :
' (ab)+(cd)_(a+cb+d) a(cd)'—(a‘c0) fopall abcd € Z



.4 Determine wt{e[her the set S of all seqﬁences- of real numbers is.a -
vector space over R if addition and multiplication by scalars are defmed
by O (ay+ () =(a,+b), a(b)=(ab)

for all (a,),(b,) € S ac€ R (here (a,) is the sequence a, ‘2,03, Seo)

.Ifq € N “and K 15 a flcld of q elements “how r_nany elements does K"
havc”

6. Construct a vector space with exactly four elements. -

e
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o g40 -
.+ o - Subspaces SR

"Jus_t‘ 'as we' «defined - subgroups and .subrings, we wrll defme sub(vector'
'space)s. ‘We contract th1s awkward expresslon into subspace

' 40.1 Definition: Let V be a vector space over a field K. A ‘nonempty
“subset W . of V is called a subspace of V if W itself is a K-vector space
(under the addition: and multiplication by scalars inherited from V).

A subspace W of V is an abehan group, thus a subgroup of (V +). Also
products by scalars of the element of W belong to W, so that aw € W
whenever- « € K and w € w. Conversely, any subgroup W of V such that
aw €. W forall « € K and w € W is easily seen to be a subspace of ’V»,‘for .
- the, conditions in Definition 39.1 are ziutomatically satisfied - for all

clements of W if they are’ sat1sf1ed for all elements of . V Thus W is a" o

subspace of V_ if and only if -

' (1) W is a subgroup of V under addition, , _
(i) if « € K and w' & W, then aw € W (e, W is closed under ‘

m‘ultipli(':ation by scalars).

Here (1) embraces two cond1t1ons (1) W.is ClOSCd under addmon (Il') for
any w-e W, the opposite’ ~w of w ‘also belongs to W. Thus W is-a subspace
if and-only if (i),(i) and (i) hold. "One checks easrly that (i) implies (ii): if
‘(11) holds and w € W, then (-1)w e W, hence -w € W by Lemma 39.4(7), .
5o (i) holds. Thus (i) - is superfluous We proved ‘the followmg lemma.

40.2 Lemma '(Subspace criterion): Let V be a vector "spa'ce 'over> a
field K and let W be a nonempty subset of V. Then W is a subspace of V-
zf and only if :

(1)w +w € W forall wl,w e W,

C(aweW  foralacKwew. -
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'-So a nonempty subset of a -vector space V is'a subspace of V if and on]y
if it s closed  under " addition and _multiplication by, ‘scalars. The ‘two
closure propertles of Lemma 402 ‘can- be combined to a single one. When
© (1) dnd (n) of: Lemmd 40.2 hold lhen : ' ‘

aw, + ﬁw 'é—: w " for all «,peK, WI,WZ €W *)

51nce awl, sz ew by (i) and aw + ﬁw e W by @i). Conversely, 1f (*)

holds, then, choosmg a=1,p=1, we see. that (1) holds and, choosmg B = 0
we see that (ii)” holds. Thus (i) ‘and (i) ~are together equtvalent to (*)
Then. we obtain another ‘version .of Lemma 402

.

o

'4()3 Lemma (Subspace crlterlon) Let V be .a vector vpace over a

~field Kand let W be a nmzempty subset  of V. Then W is a subspace of V'

Cif and only if

[

The expressron aw; + ﬁw e W is sdld to be a lmear comblnduon of the )

vectors wl,w More ;,encrdlly, we have the

~

-

4()4 Dcfmrtlon Let vl,v '~"’.Vn be -finitely many (not necessanly
dlsnnct) vectors of a vector space V over a field K. A vector of the form -

: ‘ L (xlv +at2 CE v, o .
whcre oy, &y, a, € K, is called d K ltuear combtnalwu of lhe vcctors'
Vas ooV (lf thc underlying field K is cledr from: the context ‘we use
the term 'lmedr combination”, without mentlomnz, K)

40.5 Lemma: Let 'V be a vector space over a fieltl K and ‘et W be a

subspace: of V. If w sw,, ..., w are vectors in ‘W, then every K-lincar
combination of these vectors belongs to W. . , o o
Proof: This. follows from Lemma 40.3 by induction on ‘ni. - - .0

aw, +Bw ew foralla,ﬂ € K’, w,w, e W, R




o . o
LA T . !

" 40. 6 Examples (a) Let V be any vector space “Theén. (0} and 'V ‘are
~ subspdces of V.- -’

~

(b) Consrder the vector space K3 over a ﬁeld K and put
: : [(J\pv)eK3v—O}cK3

If (Al,ul,O) and (Az,uz,O) are arbitrary vectors in ‘W and ifa;p. are arbi- B

trary " scalars, then a(?\l,ul,O) +ﬁ()\2 uz,O) = (aA + ﬁ>\2 aul + ﬁuz,O) belongs to

IW By Lemma 403 W is a subspace of. K3 ' :

(c) Consrder the vector space K3 over a f1eld K ‘and put -
, ={Gnyv) e Khv=1)ck®

‘Then (001) € U (101) € U, but (0,0,1) + (101) = (101+1) ¢ U (why") :
“and U is not closed under . addmon So U 1s not a subspace of. K3

) (d) Consrder R3 over R and let S R i

= {(pv) € R:v> 0} € R : ,

It (Al,ul,v ) and (Az,uz, 2) are in A, then v, > 0,v,> 0,50 v;:+v,> 0 and
: (Al,ul, Pt ey, 2)—(7< +7\2u1+u2,v +v)

_belongs to ‘A: Thus A is closed inder addmon However, A 1s not a sub-

space of R3, smce for 1nstance (0,0, 1) € A but (- 1)(00 1) ¢ U. Thrs exam- ° -

ple shows that- a ‘subset of .a vector space " can be closed under addmon
' w1thout berng closed under multrplrcatron by scalars

.(e) Cons1der the. vector space K2 over a’ fleld K and let
- M={0n) e K= Ooru-O}CKz : ,
If « €Kand(A,u) € M;thenaA=0o0rp=0, SOaA—Oorau =0, Soa(}\,u)_
(ch o) belongs to M. Thus A is closed under mult1pl1cat10n by scalars.
"However, M is not a subspace of K2, since, for. instance,. (1 0), (0,1) e M,
but (1,0) + (O 1) ¢ M. This example shows lhat a subset -of a‘vector space'
‘can be closed ‘under multlplrcatrop by scalars “without berng closed under
-addition. i

'(f) Consider the vector ‘space K2 over ‘a freld K and let vy, 8 be two -
arbltrary but fixed elements of K. Put »
s ={(\n) € KZ:yA +8u= 0) < K2 Then R is a subspace of K2 -
BN ORISR (7\2 n,) € R, then YA +6u1 =0= /7\2+8u2, s0.

(A, + 81) + (vA, +81) = 050 y(A, +2,) + 8(u, + uz) =0, 50 (Al,u )+ (}\z,uz) -
Sy, u1+u2)=R = :
] (n)lfaeKand(Ap)eRthenyA+8u_O SOY00\+8au—O 50.
’ a(A,u) (a?\ a;.) €R o ) -
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(g) Let V.be a vector space over.a field K and let {W iel) be a collec—

~tion of subspdces of V. Then their intersection W= ﬂ W- is a subspace, o

of V. First of all, [hlb lﬂlCl’SLClIOﬂ is not empty, since 0 € W forall'i € 1.
Also, if o,p € K and WL W, € W, then a,p € K and WLW, € W for all x €J,
-850 aw, +ﬁw veor.llltelsOuw +ﬂw2€W : -

r(h) Let V be lhe R'Jvect‘o'r spdce of ’all real valu’ed‘ functions defined on
(0,1} (See Exnmple 39.2(c)) -and let « be a fixed number in [0, 1. We put

R T, =1{f € V:fis continuous at- al.

It is known from- dn.llysxs -that, if f and g are- funcnons ‘continuous at a,

‘»Vthen f+gis also continuous: dl o. M fis continuous at « and p e R, then'
"Bf is continuous at a. Henu T is a subspdcc of V. o -

(1) Let V be thc B veclor space of all’ real valued functlons deflned on "
[O 1]. We put ,
: . K C(l() 1) = UE V fls continuous on [0,1]}.

We know from analysis that, if f‘lnd g are functlons ‘continuous. on [O IR
then f+g is also continuous on [0,1]. If fis continuous on [0,1} and peiR,
. then Bf is continuous on 10,1]. Hence C([O,,l]) is a subspace of V. This
conclusign can. be drawn .lllSO by qb;erving that C(10,1D =.u€f[]0,‘-} T, und‘
appealing to Exnmp]é 40.6(g) and” Example 40.6(h). ’

G) Lot €Y10,1) = (£ € C(I0,1D: [ exists and is continuous on [0,1]).
C'([0,1])"is a nonempty subset of C({0,1]). If o,p € R and f,g € c'o, 1, )
lhen as is -well known from annlysls ((xf+ Bg) exists,.is equal to 'af + Bg” o
and is continuous on [0,1}: lence uf+ Bg € C'([0,1]) and (herefo[c c! ([() ”)
is K subspdce of C(I() l]) P

Snm]drly, for L € N, we put ' '
"([() ) = {f € C(10,1}): j(") exists .md is continuous on [() Il}
Since the existence of (he k-th ‘derivative of f implies. the exmence and

continuity of the first k= 1 derivatives Fofo L ”, we sce C"([O,l‘l) is a
subsct of CkF ‘(|() 11).- From the formula ) ‘
' (af + )P =B pe® . (upem [ € CK0, )

it is easily seen that’ c‘(w 1]) is a subspdcc of C(]0,1D-and of ck ‘(|0 .-

/‘We write Cc® (I() i) = H ct (10,1]). From Exdmplc 40 6(g) we infer that,
C“’([() 1] is dlSO a subspacc of C(I() 1)) and of e.lch C"(l() 1D.

I
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(k) Letp(x) and q(x) be contmuous functtons deflned on [0 1]. We write
L = {f € CX[0,1]): £7(x) + p(x)F'(x) + g(O)f(x) = 0 for all x € [0,1]).

Lisa nonempty subset of C%([0,1]). If «,p € R and f.g €L, then

o  (af +B2) () + pO)(af + BE) () + G(X)(af + BE)(R)

af"(x) +Bg " (x) + p(x)af (x) + p(x)Bg” (x) + q(x)of(x) + q(X)ﬁg(X)

alf” (X) + pOf (x) + q(X)f(X)) + B(g"(X) + P(x)g (x) + Q(X)g(X))

a0 + [30 - 0

- for all X e 10, 1] so af + Bg € L. Thus Lisa subspace of Cz([O 1]) ‘

n'

) So far -we spoke of - subspaces thhout refemng to the underlying

field. Sometlmes it might be: ‘necessary -to mention the underlying field.
“Let V =C2 be the C -vector space of ordered pairs of ‘complex numbers
" Then V' 1s an R-vector space, toc (Example 39.2(f)). We put
o , {(AA)AeC]—{(Au)AeC p=2a), ;
where ~ denotes complex conjugatlon If (x,n), (v p) € W and er,B"e, R,
then u' =X and p. = v, s0 a(A,u) + B(v, p)' (ar + Bv, au + Bp) w1th ‘
= - GAFBY =@A+BY
i= aA +Bv .
= aA + Bv
' = ap + Bp, Co e
: and a(n, u) + B(v p) € W. Thus W is a _subspace of. the R-vector space V.
However,- W is not a subspace of the C-vector space V, for the critical ;

equatlon (c) need not be true ‘when a,B are complex . numbers (with - o

nonzero imaginary parts) We may say W is an R- subspace of v, “but not
aC- subspace of V :

- _ ' :
40 7. Theorem Let Vv be a vector. space- over a field K and let
' {vl,vz, waesVy } be a finite nonempty subset of V. Then the set.
: —{“11”“‘2"2 +°‘V] g
of all lznear combma!zons of the vectors. vl, 3 eaVyiS a subspace of V.-

J

Proof Since A is not empty, W= o. If a,B €K and u,w € W then

. u—alvl+a2V2 +aV, w= 61 +ﬁzv+ +5V
with suitable al,az, . BI,BZ, ...,8,'€ K and
au+[3w —a(a +oz2V2 +o<v)+[3((}lvl+[32v2 +Bv)

= (oa + ﬁﬁl)v + (aaz + ﬁﬁz)V - +(aa, + tiﬁ,,)V,1 ,
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'belongs to W. Hence W is a subspace of V(Lemma 40. 3) [Notice that
,v,. are not assumed to- be distinct.] f R : oo

ViV -
:We extend this theorem to infinite subsets of V.

,40 8 Theorem Let 174 be a vector - space over a feld K and det . .
={v;:i €1} be a (fnute or mfnule) nonempty subset of V. Then the. set

W\_=.{av +(xv+ +aV EVa],az,...,a €K, v ,...,v €A, neN]

()f aII fnute ltnear c()mbmunons of the vectors in A is a subspace of V..

7 Proof Smce A is not empty, W= tZ If 0,5 ek and u,w e W then

: ) u=a1v +a2V +- +av WT__-‘ﬁljlv”'_ﬁz'jz --_~+pml :
.wlth sunable a8y ...,an, ﬁ\?ﬁlf."'-’ﬁn 6!(\;"5"":'2' WV VLV, LY €A

(AAMAMA 'Yk
nm e N und\v . ’

-aa +Bw =a(alv +(12V +- +av)+ﬁ(ﬁ ﬁ2"jz+"' +5mvj-m‘) »
= aalvi + auzvi +oe-e + "‘.‘nVi + 561 fn 5ﬁzvjz+--- +'ﬁﬁmvjm

isa K linear combmauon of the vectors Vi Vi, ...,Vl ,VJ Wiy .o ,Vj in'A. So
n 1 2. m . X

au + 6w belongs to W and W is a subspace of V o =

- 40.9 Defmltlon. The 5ubspace W of Theorem 40.7 or Theorcm 40.8 i

~called the K- span of A, or the K-span of the vectors. in. A -or the subspace
spanned by tlxe (vectars m) A Te-will bc denoted by: Sk (A) In case A =

[Vl" (IR ] 13 a ‘finite set, we ‘wrile: sK(V sV mstead of
"K({VI'VZ’ Sy ]) ‘By. convcntlon ‘we put sK(Q) = {O} When there is -no

need to- refer to the field K of scalars we speak of the span of A, ‘and
' dcnole it by s(A) o . . :

The ncxt~‘lemma 'justjfic:s' the convention sK(Q) = {0].

N
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~ 40.10 Lemma ‘Let V be a vector space over a'field K and let A c V.
Then s (A) is- the smallest subspace of V which contazns A. More exactly,,~

if U is a subspace of V and Ac U tlzen s {A) € U

Proof IfA , then sK(A) = {0] c U for any subspace U of V and the
theorem is proved in. this case. Suppose now A = @.If A Q U and U is a

, subspace of V, then every linéar . combmatmn of the vectors. in A belongs
to U by Lemma 40 :5.-Hence s(A) cU. - : . El\

, 40.11 Leémma: Let V be a vector space over a field K and let AB be
’ subspaces of 1% such that A C s(B) and B € s(A). Then s(A) s(B).

- Proof: Since A ¢ s(B) and s(B) is a subspace of V,.we have s(A) c. s(B) by
Lemma 40.10. In like manner, since B € s(A) and s(A) is a subspace of V,
we get s(B) < s(A). Thus s(A) = s(B). , 7 o o

40.12 Examples (a) let-V be a vector space over. a field K and let A be
a subset of V havmg only one element say A = {V] Then ‘the span s(v) of
A 1s the set .
{aveV: «cK) o
of all scalar multiples of v. In case K =R and ¥V =2 or V ='R3, this span
is usually identified with ihe line through the oris?in determined by v,

(b) i.et V be a vectnr space ovel a ficld K and iet u,v be WG vectors m V.
‘The span s(u, V\ of these \cc‘ﬂvs 19 , : ' '
*cd*pvc Via,p FI&}

In case v is a scalar maitipie yw of u, we have

S{u,v) = {au+Bve V a,p e K} = [(a+ﬁr)a a,b €K} =({8u: 8(-’](}..5.(,,
We see it is possible that A < B and s(A) = s(B). In case K =R and ¥ = @ ? »
and v is not a scalar multiple of u, this span - is - usuaily ident; fied with
_ the plane. through the onom determlned by u and V. )

~ (c) In the vector space RZ over R cons1der the set o

= (@,0),2, 0) ,(1000063}



The span _s(A) is 'eusily' seen to be ‘{(Va O) EF'R'Z a € R}, which is also ‘the
span of {(1,0)) ¢ R? . Thus' the number of vectors in A may be large but
this~ does not imply llml s(A) 1s a b1g subspace - -

~(d) Lel 1% be a veclor spdce over: a fleld K and let A ,B be subsets of V
with A € B. Then A € B c s(B) and, since s(B) isa subspace of V, Lemma
40.10 yields s(A) c s(B) So AcB 1mplles s(A) c s(B). “We have seen in
-Example 40.12(b) and Example 40. 12(c) that A ¢ B does. not, necessarlly
1mply s(A) c s(B) -

Exerciscs -
1. Let V be a vector sp.xce over a field K. IfW'is a subSpace of 1 and U is '
a subspace of W, ‘prove llml U is a subspdce of V. :

2. Provc that the set of all sequences of real numbers convergmg to 0 is
a subspace -of the R -véctor - spdce S (sce §& 39 Ex. 5). What do- you say"
about the: set of ~all convergent sequences, all. bounded sequences, " alt
monolomc ‘sequences, and all ‘sequences w1th at most finitely many -
‘nonzero terms? o L C

3, Consider the R -vector space V of Exdmple 39.2(c).. Dclermine whether
lhe followmg are. subspdccs of V: the set of bounded funcnons the sé( of
even .funcnons the set ‘of integrable functions, the set - of . monotonic
functions, the set of functions with - at most fml'te'ly> ma.ny\poihls o'f"
dlscontmuny (all wnh donnuns 10,1]). ' . U

4 Dclermine whcther [(a B,y) €. R3 Sa -48.+ 2y = 0)
“{(aiBy) € R 5a - 4p + 2y > 0)
[(Gﬁ)’)({Z“ Sa -4 + 2y =0}

are subspaces of the vcctor spaces mdlcaled

ls (I 0,1) € 23 in lhc P “span ot ((54 1), (3 22)] < R3’7
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: - Factor Spaces'

In the preceding'naragraph, ‘we “discussed ‘subspaces which are the
analogues of  subgroups and subrings. We now wish ‘to. d1scuss the™ ana-
logues of factor groups and factor Tings. ' )

Let V be a vector space over a field 'K and let W _be a subspace' of V.
Then W is a subgroup of the. additive group V, ‘and we can build the
factor group V/W. The elements of V/W are cosets v + W, where v € V; '
the sum of two cosets v+ w and vy F W is. the coset (V +vy) + W. The

"o

" gperation ‘on V/W is denoted by + but T desrgnates in V/W an opera-
.tion drstmct from the addition in V. The questlon arises: is it possible to.

A define ‘on V/W a kind of multrpllcatlon by scalars so. that V/W becomes .

a vector space over K? The most natural multlpllcatlon o-is to put

‘ ao(v+W) av+'W : forallaeK V+W€V/W

 We prove that o 1s well defmed To this. end, we must show that the
implication : ‘, « T

CutW o= vEW = qu+tW=av+W  (oralla €K, vue V)

. ‘is valid. This inrplication is equiv‘alen\t‘to
/‘IU‘—VEW. = vau+'W=erv+’W>
hence to. | |
u—vt—:‘W = ou- a'vEW

Since W is a subspace of . V it is closed under multrphcatron by scalars
hence a(u -v)ye W whenever u-ve W. This proves that the above
multlpllcatron o-by scalars is well defined.

Tt 1s now: quite- strarghtfomard to show that(V/W + K ) is a vector space
For any a,ﬁ € 1” u,v eV, we have

' (.1) ao((u+W)+(v+W)) =ao((u+v)+ W)
l =a(u+v)+W .

-~ - . -
. N .

AQ0



, =(au+av)+W -
L = (au+ W)+ (av+ W)
o ) —-ao(u+W)+a°(v+W)
2 (a+ﬁ) (u+W) =(ax +Bu+W '
SIS o =(au+Bu)+ W
s = (au W)+ (Bu+ W)
R T mac(u+W) + B (u+W)
) 3 (aﬁ) (u+W) =(@Pu+w . |

= a(Bu) +'W o o o

C=ae(Bu+ W)

: o mao(pe (u+W)) .
4y, lo(u+W)—1u+W ‘
' ' -u+W
N S
‘ Thus (V/W + K ), 15 a vector space

won
o

We _employed, the symbol' k

elements. in V by scalars: For ease’ of ‘noiation, we shall drop"" and
write 51mply a(u +W) instead of a’e (u + W) Also, we ‘will write V/W for

’ (V/W + Ko) The followmg theorem summarlzes ‘this dlscussmn

41.1 Theorem Let V be a vector vpace over a feld K and let W be a

‘vubvpace of V. Then the abeltan group VIW is a vector spaca over K zf"

-multtpllcatlon by scalars -is defmed by

0

41,2 Defmmon Let V be a 'vector space over a fleld K: and let W be a

subspace of" V The K -vector space: V/W- of Theorem 411 is. called the‘ .

fact()r space of V by W or the facmr space V mod(ulo) W

s

We - know that faclor groups (ruu:s) are closely- rclatcd to- homomorph-‘ ‘

isms of groups (rmgs) The same is true for factor spaces
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chiefly to emphasnze ~that mulnphcanon of -
the elements in V/W by scalars is distinct from - the- muluphcanon of the - 3

a(u +W) = au+W | - for all O:.E'K,U c V [j'—.




' ,41 3 Defmltlon Let. V and u. ‘be vector spaces over the same field K. A

jmapplng e: VU is called a vector space homomorphlsm or a K-linear _

K

transformatlon ora K-lmear mappmg 1f L
(v + vz)qa = V1q’ + v2rp ‘ and (av)q; = a(th)

- for all vl,vz,v € V o € K When there is’ no need to, emphasrze the freld of' e

- scalars, we speak srmply of 11near transformatrons or lmear mappmgs

~.

More exactly, when’ (V + K ) and ,o, K ) are “vector spaces the mappmg E
(p V = U is a vector space homomorphrsm prov1ded ' a
T ERREN 4 ¢ +v2)rp vlqoéb v2<p and (av)q; ‘a (th)

P

for all vl,vz,v €V, x € K NO[ICC that the f1eld of scalars of both vector ©

Spaces - are. the:- same A lmear transformatlon “from V_ into. U cannot be. -
defmed 1f v and U are vector spaces over drfferent f1elds

4

A mapplng @ V—» U such that (v + vz)qo = Ve + v,e for all VpYa € V is sa1dj.
" to.be additive. So an add1t1ve mapplng is just a group homomorphlsm‘
-from the group v, +) 1nto U, +) A mappmg P VU such that (av)e =

“a(ve).for all v € V,a € K 1s sard to be }zomogeneous A homogeneous’ o

mapping is ‘one that preserves ‘the multlpllcatlon by scalars A mapping
may’ be add1t1ve wrthout being homogeneous and ‘it may be homogene—,
ous .'without being ‘additive.. In order to. be - a “linear transformatlon, a
mappmg shoud be both addltlve and homogeneous -

A vector space homomorphlsm ‘is therefore a homomorphrsm of additive

groups. whrch preserves multlpllcatron by .scalars "as well. This observa- - .

tion enables us ‘to usé the. properties of - - group homomorphrsms when-,
- ever we 1nvest1gate vector space homomorphrsms

1

’41 4 Lemma Let V and U be a vector spacer over a feld K A functton-,
VU is a K-lmear mappmg if .and only-. if : ‘
) ’ : ((lV'l + ﬁ )QD = (X(VI(P) + ﬁ(vz‘p)
_forallaﬁeK vl,vzeV ,



Proof: If ¢ is a K-linear mup‘ping' and‘ @B €K, v v, €:V, then
(avy+ Bv,y)o —(av ).+ (ﬁ D= a(v]@) + B(vy0)
since’ - is-additive and homogencous Convcrscly, if we’ have (av + ﬁV2)<p'
= a(vlcp) + ﬁ( <p) for all o,p €K, Vl,V € V, then, choosing «.= B = 1, we see
that ? is addmvc and. choosmg ﬁ = O we see’ lhat (p is homogeneous ..o

41 5 Lcmma Let V U be a vector spacer over a fleld K and let V> U .

“be .a veLtor space lmmomorphmn S

(1) 0p = ’

2) (—V)cp == (ch) for all veV. _ DI o

3) (ayv, + Ve Y )cp =« (V P) + “2( VyP) + - -+ 'an(vncp)fr)r‘,'all
1,0(2, .. ,a € Kandfor all Vs V € V N

2,
'_'(4) (nV)cp = n(vzp) fnr all n € Z ‘

’Proof (1) (2) (4) follow rcspecllvely from (1)(2) (4) “of Lcmm.l ’7()3 .md k.
(3) follows. from Lcmma 20.3(3) by the homogenuly of @, OF lrom'

Lemm.l 41.4 by. mducllon on SR . o =

: 41 6 anmples (a) Lel K bc a hcld arid lct go K3 — K2 Then
: (A, V)—> ()

(u(A H, V)+ STEANTINY ))w —((aA ap,av) +(BA%Bu " Bv e }

, y = ((an BAL ol B v By )

A R '-"‘—(u7\+ﬁ7\ ap'+pp’) -

B o = (arap) +(BA7 ﬁu)

u(l BB W)

= u((k H, V))<p + ﬁ((l WY ))cp

B

s

sforall o b €K, (A 1), ()\ M ,v ) € K1 Iknco @ isa K Imc.lr lr.mslorm.mon

(b) Let K be a- flcld and let o: K¥—— K%' Then o v 3 '
c , () = (). L
’(u(?,u)+ﬁ(7\ W ))D—(((M uu)+(b7 B ))o‘((u7 + B2 o b B e
Vo —(uu+ﬁu (x>\+[$7)~(uu(x7\)+(ﬁp [SA)—(x(u/)fﬁ(u AR

S = Owe e

for all u.ﬁ_e K,,_()\,u),(x',u") e K2 tenee 9 is & vector: space homomorphism, =

493



‘ .(c) The mappmg p: C! ([0 1]) — R is R -linear, because ,

- S i M ,_
} (af+ ﬁg)qo = (af+ ﬁg)(z) = (af)( o (ﬁg)(z) = a(f( )) + ﬁ(g( )) = a(ﬁv) + B(gw)
-‘for all ap € R fg € C ([0,11). Likewise, for any y € [O 1] the mappmg L

S e clo - R
" romamerprion” T

is a vector space homomorphlsm

RS Let V U be vector spaces ‘over a f1e1d K and let W be-a- subspace of V '
If o: V- U \is"a vector” space homomorphlsm then 1ts restriction '
: : _ wW—=U :

to W is’ also a vector space homomorphlsm because

; (aW + Bw,)e = a(w,0) + B(w,0) _
for all a,ﬁ € K- W, e W, as this holds in fact for all «,p € K,'Wi,wz‘e V..

(Lemma414) : S

(e) Let V,U. be vector spaces over a field K and let K, be a f1eld contalned
;‘ in K. Then v ,U are vector spaces over K, too (Example 39. 2(f)) If
P! V- Uis a K-linear mapplng, then ¢ is also a K,-linear mapplng,
because - - L (awy + Bw,)p = G(quJ) + B(wy) , s
for all a,f € K, v V2 € V as thlS holds m fact for all & ﬁ € K \2) VZ- ev.
'(Lernrna' 41.4). ' ' : :
‘ (f) The mapplng T: C2([O 1]) — C([O 1]) is a vector space homomorphlsm
y=: y=5y’ +6y
because
(cxy1 + ﬁyz)T = (ayl +By,)" - S(ay, + ﬁyz) + 6(<xy1 + byz)
o= ay] + By, V- 5((1)’1 + ﬁyz 0+ 6(“)’1 + ﬁyz)
= cx(y1 -5y + 6y,) + fs(y2 - Sy2 + 6y2)
: = a(le) + B(,T) :
for any a,fp € R, y,.y, € CZ([O 1]) In the theory of ord1nary d1fferent1al

‘equations, this mapping is called a linear dlfferentzal operator and is
usually denoted by D?%- 5D +6.

In’ the rest of thls paragraph we establisht lhe counterparts of -certain
theorems discussed 1n §§ 20 21 o . :
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41. 77 Th’corcm “Let v.Uu.w be’a vector spacesover d_ﬁe‘ld K. Let}cp:ka» U

: and w:U — W be 'vector space Izomomor'phismsThén the composi’tion" '

mappmg pp: V = W is ‘a vector vpace Izomomq)rphzsm from v tnto w.

Proof oW 1s a group homomorphlsm (IS addmve) by Theorem 20.4. Also
aV)w ((av)@)w = (a(ve))w = a((ve)w) = a(v(ow))

. for all « € K,v eV, hence qaxp is homogeneous Thus PY 1s a vector spacev »

'homomorph1sm e e R o - o

41. 8 Theorem Let V, U be a vector spaces over ‘a fzeld K and let

TV o U be K- linear. Then Ime ={ve € Usv € V] is a subspace of. U and

Kercp = [V € V v = 0}isa subspace ofV

Prool‘ lm @ is-a subgroup of (U ++) by Theorem 20.6. Also 1f u € Im o ',

cand a € K lhen u = vy for some v € V, so au = a(vrp) = (aV)p, SO aui€ Img.

“Thus Im (p 1s closed under - mulupllcauon by scalars Therefore Im ¢ is a -

‘ ‘ subsp.lce of U.

‘ I\er p isa subgroup of (V +) by Theorem 206 Also, if v Ker P und a € K ,

tien vop =0, so (cxv)cp ; a(vcp) = a0 = 0 by Lemma 39. 4(6) SO aV € Ker ?.
Thus. Ker<p is - closed under mulupllcauon by scalars Therefore Kercp isa

subspuceofV E A ‘o

- N
e .
‘.

is one-to-onc and onto. If thére iy a vector space - 1somorph1sm from v

~onto U we say V. is. tmmorpluc to U, ‘and wnte v=U.

So a vector space’ 1somorplnsm is an addmve group lsomorplnsm which -

preserves. muluphcatlon by scylars.” We - use the same symbol "=" for

- isomorphic "vector ‘spaces as for 1somorphnc groups. This will not lead to

confusion. When there is -any danger of confusion, we wnll state explicitly
whether we mean’ vector space. isomorphism’ or group isomorphism.
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“41.9 Del'mltlon Let V U be a vector spaces over a field K. A vector '
spuce homomorph1sm Pt V.= U is called a vector space zsomorphmn ife



41.10 Lemma: Let V,U,W-be a vector spaces over a field K dand. let
9V —Uand o: U—» W be vector space lsomorphzsms ‘ S
_(1) The composztlon cp\p Vo Wisa -vector. space zsomorphlsm from V
onto W. S : ‘ : . ‘
) The inverse q:": U —»V‘ofcp is a_'Veeto'r space‘isdmorp"hism from U onto

- Proof: (1) oy is a vector space' homomorphism by Théorein 41.7, and °%
-is one -to-one and onto by Theorem 3.13. So oV is a vector space . iso-
morphlsm Ll fo

i (2) 9l U - Vv is an 1somorphlsm of addmve groups by Lemma 20 11(2)

We have only ‘to. show that <p preserves multiplication by scalars. Let »
‘u € U and « € K. Then u =.V(p for some uniquely determmed vevV,
‘ _namely v=uop! . Since (eV)p .= a(ch) =-oxu, we have (« u)tp = av. " Thus
(du-)qa'll=iav= alup” 1)..Soqa _preserves, multiplication’ by scalars. o

As in the case of 'gr__oups‘,"_we \éee'that
i o ) ‘ R 4~ V
o if Vo U, 'then U=V, o
- , . ‘ 1f.>V'_.Uand u=w, then Vw _
for all K-vector spaces V,U,W, where K is any field. Thus = is an
* equivalénce relatlon but me must refram from saying . on the set of K-
vector spaces S :

. In view of the symrr;et'ry propcrty’ of =, it is legmmate to say that Vv and
U are 1somorphlc when V. is isomorphic to U.. '

. 41.11 Theorem Let'V be a vector space over a fzeld K and let Wbe a
subspace-of V. Then the mapping )
vwV-Vw C
_ vov+W ; .
-is a vector space homomorphism. It is onto VIW. Also, Ker v = W. (This
’mappmg v is called the natural or canomcal homomorphzsm from 1% onto
V/W) o S -



H! . Al

Proof'rr is an add‘i‘tive ;,Toup h’omomorphism fr'om‘ V. on'lo.V/W such

that Ker v = W (Theorem 20.12). Since (av)v=av+W=oa(v+ W)= a(vv) for - -

all a € K Ve V we sce llldl viis a veclor space homomorphlsm . o’

41.12° Theorem. (I‘undamental theorem on hom'orn"orphisms)' Let ;
K be afeld Let VV be K-vector spaces and letop: V> V ‘be. a vector
space lzomomorplmm Let W Ker:¢ and let vi V> V/W be the assocr-/
ated :natural lzomomorplurm ,
Then there is a vector space Izomomorplusm\p V/W — V such tlzat

vy = Q.

Proof From Theorem 7() 15 ‘we l\now that \p VIW — V, is a well defined‘,
: o V+W—>V(p - o ‘

one- -to- one homomorphlsm of additive groups with vy '=¢. For all « €K,

v eV, we have (a(v + W)y = (av + Wy = (av)e = a(ve) = a((v + W), 0w - :

is homogeneous and _is’ theretore a- veclor _space homoniorphism. 0

-

41. 13 Theorem Let v, U be vector spaces over a fleld K and Iet ?: V = U

be a vector rpace Iz()m()m()rplusm Then

: V/K(.‘r(p Im P (ar vector rpaces)
. /

Proof: From Theorem 20. l() zmd its proof we know that . -

- ) ' \p"/Kerq;—»Imq) ‘ '

v+ Ker ¢ — v -

Y

(1% an 1somorph15m of  additive. groups,. thus V/Ker:p = Im @:. as’ groups
“and p “is ‘a vector space homomorphlsm by Theorem 41.12. Hence - ’
pi V/Kercp = Im o is a veclor sp.rce 1somorphrsm “and V/Ker cp = Ime-ds -

vector spaces ' : - - . S ' - oo

41 14 Theorem Let v, v, be vect()r spaces over a fteld K and let .

. /-
Voo V be a vector sp(ue lz(mmm()rpluwn fr()m V onto V

(1) Eaclz sul)spa(e W of V with- Kcrq) c W is mappéd to a .sul).sp(zce of V.
Cwhich will be denoted by W, L o T
@) If W U are. sul)spa(es ()f V mth Ke) ¢ < W < U, then W c U,..



!

: [
Xl

(3) If WU are. subspaces of V wrth Kerq: c W and Kerq: c U and tf
‘W, € U then WcU.

(4). If WU are subspaces of V wrth Kerq: c W and Kerq: c U and tf
W U then W.= U. o

(5) If S is any- subspace of V s then there is a subspace W of V such that
‘Kerqag W-and W = S.

(6) if U zs a subspace of V with Kerq; c U then V/U V /U

-

Proof (1) For each subspace w of v w1th Ker P s; W we put W, = Im ‘pw'i‘ .

- as in Theorem 21. 1 Then W, rs a subspace of V by Theorem 41. 8 and :

Examp]e 41 6(d)

(2) (3) 4 These follow from parts (2) (3) (4)  of Theorem 211 on':
regardrng the subspaces merely as addltlve subgroups g

(5) From Theorem 21. 1(5) and its: pl;oof we know that”

= {w € V we €S} isa subgroup of (V, +) with Ker ¢ <. w and W, ’—S
For any" o eKandw e W; we have wq: €S, SO(X(WQ))ES so(aw)qa €S so
aw €W and /4 1s in fact a subspace of V. " ‘

(6) Let v ,V — V /U be the natural homomorghlsm Then v’ and ,
V—» V - V /U are  vector space homomorphlsms (Theorem 41. 11
Theorem 41.7) w1th Ker evi=U andImov =V, /U (Theorem 21. 1(6), (7)) :

- Hence, by. Theorem. 41 13 we have the vector: space 1somorphrsm

LI V/Kerq:v' °‘1m¢>v : R coe

41 15 Theorem Let V be a vector space over a feld K and let W be a
subspace of V. The subspaces of V/W are given by UJIW, where. U runs

N through the subspaces of V' contatnrng W.. In other words, for ‘each
! subspace X of VIW, thére ts a unlque subspaceoU .of V such that W < U

and X =U|W. When X andX are subspaces of VIW, say wtth X U /W .
and X2 /W where U U are subspaces of Vv contammg w, then
X & X, tfand only tf = U Furthermore, there ‘holds-

V/W/U/W = V/U ) (vector space tsomorphtsm) '

: Proof The: natural homomorphlsm v:V > V/W is onto by Theorem

41 11 We may therefore apply Theorem 41 14 This- theorem states that :

L3
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".any subspace of V/W is. of the form 1m v for some. subspace U of V wuh ‘
Keér v U Now B '
: -"Imv -{uv(-:V/W u€U}
' {u+W€V/W ueU}—U/W -
“and. Ker v=W by Theorem 41 1. Thus the- subspaces of V/W- are given .

“ by U/W, where U's Jare subspaces of V. containing - W. By Theorem
41. 14(2) 3),(4), Uiiw. < U,IW if- and only if U, ey, and U /W ¢ U W

- whenever U= U Fmally, by Theorem 41. 14(6)

V/U = 1m v /1m v _—V/W / U/W as. veclor spaces . S I

I
v

41.16 Theorem Let V be a vector space . over a fleld K and let U W be '
3 .subs‘paces‘ of V. Then Un W. and U + W are subspaces of V and v
W /U n W U+ W/U (vector space ISOmOI‘[)/IlSm)

" Proof: U n W is a subspace of V by Example 40 6(g) Also U + w isa

subgroup of- (V +) by Lemma 19.4° and, for any a € K v € U + W ‘there: are
. u€Uandw€Ww1thv—u+w solhat S R
s e av= a(u+w)—au+aweU+W'
since au € U and. aW € W;.and so u + W is closed under mulupllcauon by
".scalars and U + w is'a subspace of V ' o =

We' -consrder .the restrlcnon . :
. W—» V/U

10 W of the natural homomorphrsm viV.=’ V/U By Theorem 41. ll viisa
- vector space homomorphlsm by Example 41 6(d) ' 1s a vector space:
‘homomorphlsm s0 ' ' S : :

. W/Ker Vi =Im. vw L (as vector spaces)

i_'accordmg to Theorem 41.13.. From ‘the proof of Theorem 21.3, we know

“that Kerw,, =U" ﬂ W dﬂd Imvy, =U+ W /U as may also- be cslabllshcd
dlreclly Hence , ) IR O j: ,
Cwwdwe=uswp o
J ‘Excrcises

1. Let V. be 4 vector space ovcr a ﬁcld K and let W bc a subproup ot lhc -
addmve group (V +). For, all ‘w-in K and for all - v + W in :the Iaclor group
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L VW, ‘we write Qo (v+ W)— av+W Prove that (a v W)—»-a o(v+W) 1s_‘ -
a ‘well defmed mappmg from K x (V/W) mto VIW if and only if W 1s a
: subspace of V

2. (cf §20 Ex 14) Let P: V—» Vi be a vector ‘space homomorphlsm let W
be a subspace of V ‘such that’ W Ker (p, and let v V — V/W be the -
assoc1ated natural homomorphlsm ‘Show that ‘there is'a vector space
homomorphlsm v V/W — V such that vy =¢ and Ker Y = (Ker q>)/W
What happens when we- drop the condmon .W < Ker <p" o ,

s00 L



R §42 0
Dependence and Bases

[

The. span s(A) -of a subset A ’in vector space V is a subspace of V. This* -
span may be the whole vector space V. (we say tben A spans V). In this
“pdragraph, we study subsets A of V_which spai V' and- ‘which are mosf
economical in . the sense thut .any proper subset of A .spans. a proper
‘.subspace of V. o : ' ' o

We - begin- with a defmluon thdt wrll be 1'nportant for everything 'in the
sequel. o S . '

42, 1 Defmmon Let V -be a vector sprlce over a field K. A frmte number

of vectors. v,,v,, ...V, in V are cuHed linearly dependent over K if there
are scalars ‘11"’2’ e in K, not d“ of them being zero, such that
oV + ayvy + s ot"V" *‘0

(here 0 is the zero vector) If V1sVys -.w, Vo are not lmeurly dependent over
K, then v V2, ce,Vv, are said to; be lmearly lndependent over K.

q

-

A finite subset 'A of V-is called" linearly dependent (resp. lmearly inde-
pendent) over K if the fmllely many .vectors in A are lmeurly dependenl .
(resp. Ilnearly mdependcnl) over K~ . :

An infinite subset A of V is. culled linearly clehendent over K.if llrere is a
finite s_ubset-of A which is Iinearly dependent over K. An infinile_sub_sel
A of V s called linecarly independent' over K if A is. not ‘lineurly‘
dependent over K,ie., A is called’ hneurly mdependent over K rf every"
frmte subset of A rs lmeurly mdependent over K. ' N

In pluce-o'f the ph_ruse "linearly (in)dependent over K", we s"hull':rlso use’
the expression "K-lincarly (in)dependenl" When the- field of sculdrs is
,clear from the conlext we drop the phmse ‘over K™ of- lhe prehx "K "

According to -our defmmon the vectors v, v, .,.'.,V’l of a _veclo_rsp:rcc o\"er

K are Imeurly m(lependent over K provrded

- . . > . N . . . . - o
. . T
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. are lmearly dependenl over K-(m < r;) then there are scalars

L&y, e ,a EKall+a22 +aV 0 = =ay= v--—a'=0 .
" That'is to say, v 13V SV are K 11nearly 1ndependent if the -vector Zzero -
" can be written,’ as a l1near combmauon of Vl,v2, ,f.,V only 1n the trrvral
- way where lhe scalars. are zero. g B ' :

./"’

L . _ c ‘
42 2 Examples (a): Let V be a vector ‘space over a f1eld K .and let vbea
Nonzero vector in V. Then av = 0 1mp11es a=0 (Lemma 39.4(10)). Hence'
v (and {V}) is linearly - 1ndependent over K. On the other hand, - {0} 1s .

hnearly dependent over K because 10 0 and l = 0

"(b) Cons1der the vector space @3 over @ The veclors u'=(1 00), v —1"
- (0,1,0), w = (0 0, l) of @3 '1re linearly 1ndependent over O, for 1f a,ﬁ Y € K
., “and au+ v+ yw. = 0, then o c
a(100)+ B(0,1,0) + ¥(0,0,1) = (000)
(on 00) + (060) + (OO,y) = (000)
(@Byy) = (0,0,0) .

, a= 13(- y=0. e
'(c) More generally, the veclors ul = (l 0 0) u2 = (01 0), : .u =
‘(00 l) in the vector space K" over a ﬁeld K are l1near1y 1ndependenl
"over K if al,az,.' .0, € K and. au, + Qg+ 7k @ u =0, then -

(1,0, ...0) + ay(01, .. 0)+ L+a 00, . 1_)‘_(00 Ln0)
(00, .,0) + (0, - 0)+ «+ (0,0, .,..,a") = (0,0, ...,0)

R (@6 :, 5%,) =00, :..,0)
al—az—' =a, =0. v\v”

. The reader is . probably acqua1nled with lhe veclors ul, u2, u3 in the

B veclor space rR3 over R under the names 1 _[ ?

(d) "The vectors (1 0) and (—1 0) in lhe [R -vector - space R? are Tlinearly -
dependenl over R because 1 = 0in [R and 1(1 0) + 1(~ 10) =-(0, 0) = Zero :
vector-in ‘R2, = B Lo, - 7
“(e) Let V be a vector space: over a f1eld K- and let. VI,VZ, ...,V .be. vectors . '
in'V which are lmearly mdependent over K. Then any nonempty subset.

" of {V,V2,. ,V} 1s 11near1y 1ndependent over K ‘In fact if, say, 1,v2, cen Vo
: '.“1’“2’ :; ,a .in K, not all equal to zero such that - .
S 1V+a2V2+ +av—0
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‘hence when we put (m case m. < n)a, nTE o =0, we obtam o

11+0(22+ +0(V“+am+1 me +av—0
. where not, all of . SECPIRS a_'" n+1’l" S, are equal 'to* Zero, contradlctmg
the . assumpuon that vl, gy i,V are lmearly independent over K. Thus

any nonemply “subset of - a linearly. 1ndependent finite .set -of vectors .is’

lingarly . independent.- But this’ statement is lrue “also for 1nf1n1te linearly
1ndependent sels lndeed let- A “be an mfrmte linearly- 1ndependenl

subset of V.and let B be a, nonempty subsel of A.If B is finite, lhen B is -
. linearly 1ndependenl by -definition. If B. is mfmne then. any. finife “subset

" of B, bemg a finite subset of ‘A, is- lmearly 1ndependenl over K -and. hence

B itself is hnearly mdependenl over K. Thus we have shown that every‘

nonempty - subset of a ltnearly uzdependent set -of vectors -is lznearly
lndependent - Equrvalenlly, any ‘set of vectors‘ contaznzng a lmearly
dependent rubs“et zs lznearly dependent ‘ B o L

(f) Let V. be a vector. space over a f1eld K" and'lel A‘ be ‘a subset:of V'
_containing 0 eV, Then A is linearly dependent over K by Example o

42, 2(a) and Example 42. 2(e) Allernanvely, just choose a frmle number of
: vectors v Vs i3V, from A including 0, say v, = O and observe lhal

' \ . T 1y, +Ov2 +Ov-—0
.kso thdt vl,vz, ...',V,l are hnearly dependenl over K dnd consequemly A,
too, is hnedrly dependent over K.

®

b.(g) Let V. be lhe veclor bpdCC CZ over C The veclors ¢ O), ( zO) in V are

~

"llnearly dependenl over C, because . .
B A z(lO)+l( zO)—(OO)-zero veclormV S
However, ‘when V is regdrded as an R -vector space, lhese two veciors
are not linearly dependenl if a,p € R and a(l ()) + B(- 10) = (0, 0) then
(a - Bi,0y = (0, O) hence the: complex number o - Bi isequal to 0, so (x» B

0. Thus (1, O), (~i,0) “are” lmedrly dependenl over C, ~but linearly
1ndependenl over 'R This example shows that the field of scalars” must
be specmed (unless it is. clear from the conlexl) whenever one discusses
lmedr (m)dependence of veclors ’ ' '

(h) Lel vV be a vector spdce over a fleld K and let v Vs, .. obe i.lrt"ilritely

I _
* many vectors in. V. The linear dependence of v,,v,, .. docs not necan .
that there arc- scalars (x],'(x'Z; ..., not all equ.ll to zero, such llml

z(x V<—0



This equatron “is meanrngless for its left hand s1de 1s not def1ned What

is def1ned (Deflmtron 84) is a’ sum 20‘ v, of aftmte number n of" o
: . © k=1 ‘ v . ‘

vectors Vl,vz, - ,V 1n V The defrmtlon of 2 o Vk would 1nvolve some"
- : . : : i k 1 " . Lo .
'lrmrtrng process and th1s is not. poss1ble in an arbrtrary vector space

'(1) Consrder the . vector space . c! ([0 1]) over R (Example 40 6(])) ‘The, -
‘-functrons f [0 1] — R ‘and-, g: [0,1] = R, where f(x) ='e¢* and g(x) = e2“ for -
“all'x in 0, 1], are vectors in Cl([O 1]) We claim that f and g-are lrnearly )

'1ndependent over R. To. prove this, let us assume a,ﬁ € R and of + ﬁg =

0 zero vector in C ([O 1]). The Zero vector in C (fo, 1]) is the functlon
oz [0 1I1-R such that z(x) =0 for all X .in [0, 1] Hence.

(af +Bg)x)'=0 - forall x € [0, 1],
af(x) + ﬁg(x) =0 " ‘forallx € [0;1];
. . ot + pe* —0. ;for all'x"'e [0;1].\
1 D1fferent1at1ng, we obtain o
: ' ae* + 2ﬁe2‘—0 ‘ forallx€[01]

-We have thus ﬁez“ =- ae* = 2[Se2x for- all x € [0,1],.hence B — - 0,50 « = 0
B Therefore f and g are lmearly 1ndependent ‘over .Rﬁ T ‘

, (J) Let V be a vector. space over a fleld K and let vy be vectors in V

"whlch are linearly dependent over K Then there are scalars a,B € K, not'
_both ZET0, such -that onvl + BVZ =0, If, say, a = 0, then a ‘has an 1nverse o 1"

inK and we. obtam v, + (a l[S)V = a'l(av + [sz)— 10 = O so o

. '_yvz . N ) ‘ ‘
1f we put y= - lﬁ So v 1s a scalar multlple of vy Conversely, if. v and v, ‘, '
are vectors in V and 'if one of them is a ‘scalar- multrple of the other forv

‘instance if vl =YV, w1th some y € K, then lv1 + (- y)v =0 and vy v2 .are

o 11nearly\ dependent over K. Thus the ' linear dependence of two vectors‘

L means that ‘one of them is a scalar multrple of the other DR
We generalize the last exampl'e ‘ ST

'42.3 Lemma Let V be a vector space over a feld K and. Iet vl,vz, RS ,v o

- be n vectors in v, ‘where n > 2. These vectors are. Ilnearly dependent:
over K if and only zf one of them is a K—Imear comblnatzon of ‘the other o
' vvectors R - .o : ‘ '



ot

‘Prool' "We firs\t assume that Vl"’z’ ,V, are lmearly dependent over’ K
Then there are scalars “1’“2' PPN S not all of them zero, such that

J

: . . ) all+a2v +av—-0 - o
To fix the 1deas let us suppose o, ¢ 0 Then “1 has an 1nverse qll K
and ‘we obtam ay (arlvl + a2v2 “+o v)— a; <10 = =0, ' ‘
. - - ‘_’ !
+or1 a2v2 +QI av AO .
' = y2v2 c+y, v 7 . )
where we put y =-or1 a € K(] 2,. n) So v, is aK lmear combrnatton of .
- the’ vectors Vo ...,vn. R U ;.‘ ¢, '

. Conversely, let us suppose that one - of the vectors for example vy, isa
* linear combmatlon of the rest so that there are scalars Agy ey, € K suc_h'vv"

that . T R —a2v2+ Cto, v - )
Then we get oot “1"1 + @y + +a v, =0 ‘ , ‘
when we wr1te “1 :-1 Since al-:-l # 0 we see that VisVas wen, Vv, aTe
! v . . - K : )
- lmearly dependent over K. L B - 1

e /

i

A vectovr‘ space over “a field K can’ be 'spanned by many"subsets of V.

Among the subsets of V “which -span . 'V, we want tofind the ones. with the s

-least number ‘of -elements.. The next two theorems which . are converses“
. vof each other tell ys. that lmearly dependent subsets are not useful for‘ '

this purpese. - B :

\

42 4 Theorem Let Vv be a ‘vector. space over a fteld K and let A be a
nonempty subset of V. If A is linearly dependent over- K, then there 1s a.
proper subset B of A such that sp(A) = sK(B) G Sl

. N
,

Proof Suppose A tsK ltnearly dependent If - A is infimte then, 'by“
definition, ‘there  is -a finite: linearly dependent subset A of A If A s

finite, let. us put Ay=4. Hence, in both cases, A, is a finite lincarly .~
dependent subset of A LetA -[v,vl,vz,_, v] el T

We frrst dlSpOSe of the trwtal case A —l V=4 In thrs case we have n. '
= O and Ay = [vo] SO vO = 0 by Example 42, 2(a) ) A= = {0}. Thus
. [0]—A CAc sK(A)QV A, —[0]
and sK(A) is equal to the K span of: the proper subset B 1% ofA
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‘ _ ‘ _ : , .
,j.Suppose now |4, | LorlA, I = 1 but V¢ Ap- Then ‘we may and do join
' NONZero' Vectors v ,Vi, . . . ,V, to Ao‘ w1thout dlsturbmg ‘the - linear
dependence and finiteness of A One of the vectors’ Vm"x"’z’ SV which
we may assume to be Vo w1thout loss of generaltty,»rs a K-linear . combi-
“npation’ of the others (Lemma 42. 3) So- there are scalars “1'“2’ L..,a such )
that R T U . |

- Q'QWc wrll show - that VO 1s reduntant We put B A\{v }. Then B is a proper
subset of A and sK(B) c sK(A) We prove SK(A) c sK(B)

,-Let Ve sK(A) Then there are vectors wl, 2 .’..,W,;z in A and scalars .
61,52,. .»B,, inK such that , S
~ V= BW G Bywy ke B Wi . :
Here we may suppose that WHWo, oW, are palrwrse dlstmct (1f W= W
we, wr1te ([31 + ﬁz)w 1nstead of ﬁlwl + 52W2v etc)

JIf none of the vectors- W‘,WZ, .. wm‘ is equal to v, y then v is aK 11'1ear '

combmatlon of . the vectors Wp“’z’ ciW 1n B so ves (B)

- If one of the vectors WI'WZ’ .._.,w 1s equal to VO, for 1nstance 1f W, =

07
then we. have v= Blwl +[32W2 +[3 W ’
v— Bl(a [+ v, fa v)+ﬁuzw2 -+'[3.mw”l ‘
=ByoyVy T B0V, + -+ By, Vat Byt 4B, Wy

$0-Viis a K linear combmatlon of -the vectors Vips Vs <2 - ,wz, cee W 1n B

.A\{v } (some v; mlght equal a w but this does not matter) sove sK(B)

In both cases; Ve sK(B). rThus Sg(A) < (B) and s (A) = sK(B) as was to be‘ o
_proved. . - L » R D'

3

425 Theorem Let V be a. vector space over a fteld XK and let A be ‘a
nonempty subset of V.If there is a proper subset B of A such that Ny (B)

= 5(A), then Ais lmearly depen ent over K.

Proof We first dlspose of the tr1v1a1 case B=@.If B “(3,- then
» o B=AC sK(A) = sK(B) = s5x(2) = {0} )
gives A= [0} and A is K- lmearly dependent by Example 42, 2(a)

. _Suppose;now,, B = QJ._ Since B A, there 1vs.a vector v in' A\B. From’

-
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Ve Acs (A) = sK(B) we conclude that there are vectors wl,wz, oW, in
B and scalars ﬁl,ﬁz,. ,ﬁ 1n K w1th ) ‘

; T V\= ﬁ] + 62 2 + ﬁ W : .
So the vector vinAis a K- lrnear combination of the vectors. w w2, Cea W,
-~and the subset {v,w, w2, .- w }of A: 1s K- llnearly dependent by Lemma:

423 From Example 42. 2(e) it follows that A is K lmearly dependent o

The last two ‘theorems. lead us- to conSJder lmearly mdependent ‘subsets "
of V spanmng V. Whether an arbltrary vector: space does have such a .

subset w1ll be dlscussed later We give a-name to the subsets ‘in questlon

.42.6 Deflmtlon Let V be vector -space over a fleld K. A nonempty
subset B of V is. called a’ basis of V over K, or.a K-basis of V,if B is
) llnearly mdependent over K:and spans Vv over K. (1e Sg(B).= V) By con-

R -vention, the empty set ) wtll be called ak- bas1s of the vector space {0]..

i

- .42.7 Exanlples (a)‘ Cons'ider,the vector space K" over a fleld K. The

vectors’ uy = (1,0, ...,0),-u, = (0,1, 0) = (OO ..;1) are linedrly

. 1ndependent over /4 (Example 42. 2(c)) Moreover {ul,uz, ..

_over K because any vector (“1'“2" ,a ) in K®is a K- lrnear combinati,on
L - 11+°‘2"2 L Fou,

of the vectors u u2, SN g Hence {ul,uz,. ,u } is.a basrs of K" over K.

(b) Let V= {h € C2([0 1]) lt"(x) - 3h “(x) + 2h(x) =0 for all x € [O 11}. Then
V is an R - subspace of C2([01]) as “can be: -verified directly and also
follows from Example 40.6(k). ‘From -the "theory of ordmary dlfferentlal
. equations, it is known that every functron in V (that-is, €very solution of
'y" - 3y” + 2= 0) can be ‘written in the form ¢ f+ c2g, where ¢,,c, € R and
f(x) =e* g(x) = (32" for all x € [0, l] Thus {f.g} spans 1% over R. ‘Also, [fg]
is lrnearly 1ndependent over R by Example 42, 2(1) Hence [)'g] is an- R-
basrs of V

428 Theorem: Let. V.be a vcctor s.pacef over a field Kr('i‘nd let' B

.
N
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= [v,v2, eV} be a nonemply subsel of V. Then B is a K- basts of V lf and
only if every -element -of V. can be wrtllen zn Ihe form Co - R
’ 'x‘av +a2V ---+aV o (al,az,.‘..,dn'E K) ", >

m a umque way (l €., wzlh unzque scalars “1’“2" NS )‘

|

. Prq\of Assume f1rst that B is a K basrs “of V Then V = K(B) and every o

.'element of V can be wrrtten as

G]V +(12V2 -t-(xV . : ‘\‘

‘ w1th su1table scalars al,’az,.. “n We Lare. to show the umqueness of thrs
~representat10n In. other words we must ‘prove. that L
e ) atv +a2V2 +avv—ﬁ“+ﬁ2v2+-~ +ﬁv R (1)"
‘ then a, = 51, az Byyeen . a = ﬁ Thrs is easy if (1) holds ‘then o
S (a-B)V * oy - ﬁz)Vz \*(a-ﬁ)V—O -
- -and we obtam smce B = (Vi Vy, vV, E is K -linearly. mdependent “that .
_ﬁl —'0{2 -ﬁz— e 5 L= O Thrs proves umqueness AU T

i Conversely} let us suppose that every vector in V can be wrrtten in the

form . . 7 L “1V1+°‘2V2 oV, 3
with unrque scalars al,az, . .v.,,a". Then V = sK(v LGV ) = sK(B)
Moreover Bis lrnearly mdependent over K, for if al,az, Sy € K are -

; scalars such that o R G T ol ’

L oV +a22 AV, "-.O,‘-_ e I

then ' alv +a2V2+ +a v, —()V +0v, + +OV .

‘ and the unlquencss of the scalars in the’ representatron of 0 ¢ V as a K—

- linear: comblnatlon of v VZ, o "V, 1mphes that o= (xz = =.0. Thus j

B 1s K- hnearly 1ndependent and consequently B is aK basrs of V a

~We prove next that any finitely spanned; vet:tor; space has ‘a-basis. :

v
.

42, 9 Thcorcm Let V be a vector .pace over.a feld K and assume T isa
__flmle sabsel of V spanmng V, so Ihal S (T)‘— V. Then V has a fmle K—
,bam In fact a slulable‘subsel of T is: a K- bam of V ‘

‘Proof IfV happcns lo ‘be the- vector spdce [()}, then V has a K- bdsrs
'ndmely the unpty sct & (Deﬁnmon 42 ()) tmd @ < 7. Having drsp‘osecjtof



this degenerale case, lel us. assume V¢ 0. Now sK(T) = V Smce V# 0 we '
ha_ve T=g0. If T is Imedrly independent. over K, then T'is a K ‘basis of V.
" Otherwise, there.is 1 proper subset T of T with 5 (T ) = sK(T) =V
"(Theorem 42, 4) Here T, = @&, because’ s (T )= Vo= {0).If T, is lrnearly“

1ndependent over. K, lhen T is JK -basis’ of V. Otherwrse, there is a
- proper subset T, of T, with sK(T) =5 (T) = V. Here T, % @, becduse
5(T) = V# [0),. If T is. linearly mdependent over K, then T2 isakK- basis
~of V. Otherwise, lhere is.a proper subset Tyof T, wrth 5(T3) = 5,(T,) = 4

Here T, = @, because 5¢(Ty) = V= {0})./We contmue in this way. Each time,

.we get .a: nonemply subsel T of T, stch " that sK(T )= 1% and 7, has

less elements than T,. Since T is a frmle set,’ lhlS process cannot - go on

' -vrndefrmlely Sooner or later, we wrll meel a K-lincarly rndependent

subset T, of T with sK(T )— V. Thrs T, is therefore akK basrs of V, and of
course T ‘is fmlte . . N ‘ el a]

!

llavrng convrnced oursclves of lhe existence of bases in some vector“
spaces, we turn - our atlcnuon to the number of . vectors in a frmle basis. "
We show that the number of lrnedrly mdependenl vectors in a subspace‘
cannotAexcce'd» the numbeér of vectors “spanning the ‘subspace. This theo-
~-rem due to E. Stcini&‘(lS?l 1928), -is' the source of* many. deep results
concerning the dimension of a vector - space. The idea is to replace some
vectors .in the spanning set by the vectors in the hnedrly mdependent
‘set. without changmg the span. ’ ' :

42.10 Theorem (Steinitz' .replacement “theorem): Let V be a vector
space over a field K and w,w, W, be firiit'elyvmany ‘vectors in V, Let
Vi,vz,.; v, be n lznearly mdependent vectors in the Kspun o

'sK(w'l,wz, ceW,) ofw],wz. ...,wm. : ' o .
Then n < m. Moreover, !Ilew are n vectors. am(mg W wz,"..l.»,_wm',f which
we mdy. as‘sumev to be 'w . 2, W .s_u_clr that : '

sK(vl‘,vz, VR AT ...:,wm) = "'K,(lew?_'{ .‘.,‘wm). . -
“Proof: For I h , let A, be the assertion -

,

Jthere are h vectors among wl,w,, LWL Sy W, L such that =

Q‘V A
: h
rK(vl, e VWi 1""7m)f Selwy, W W w0

)
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_"‘We show that (l)A is true

(2) f2<h<n and A 1s-true, then‘ Ay is e,
“This will establish A A ‘ ...-,A

A The second cla1m A in ‘the.lthe(f)rem
w111 be proved in lhlS way ' ‘ ;

n—l’
: (1) A is true! We have Vl € sK(wl,wz, .‘.«._,wm'),‘rso, = Lo ‘. .

- 31‘ ) . ,_ﬁl +ﬁ2W2\'+...+ﬁw-}’ . -
with “some scalars ﬁl,ﬁz, <iesB € K. Since ViV - )V, are lmearly mde—

'pendent over K,vi=0 (Example 42. 2(f)) hence not all of BBy ...,ﬁm '
equal to 0 e K. So one of them is dlstlnct from 0. Renaming W) w2, l,w'

o

if necessary, we’ may suppose Bl¢ 0 Then ﬁl hasan: 1nverse Bl in K and
‘we. get UL e ‘_--lill(vl Byw, — ot ﬁ w )

' . , Wle.s'K(vl,wz,. ,w) _ ‘ e
RS {wl,wz, LW ] (o SK(V Wos o 0sW, ) ) 3 - ()
Smce . o v.1 € sK(prz" oW, ~) e SR
we' also have [Vl,Wz, ,w }.cs (wl,wz,...,w ) , T ()

.Usmg (i) “and (i) and applylng Lemma 40 11 with A= {wl, s ,':.;W;n] and'
= {VI,WZ, A ], we obtain i A R ’\»‘ ) '
: : SK(VI,WZ, . W )— sK(Wl,wz, ...,wm); ] '

Thi's proves A ; Lo LT T R ,.":
'(2) Suppose 2 h‘.\ n and A,l ) s true. Then A is true The truth of A
“means, .. SK(V,.. Vi1 Wpo - W)= K(WI,WZ,- W)

: prov1ded the w; 's are. indexed su1tably We have 3 L 'f’
v, € Se(W s CaWy_ 1,wh, W) .
R \ esK(Vl,.. V- 1’Wh"~' W ),,’, ‘ R ;

SO o ="h,=°‘1,"1"' et O Vi 1"'“1:“’;; G W
for some appropriate..a,,..., &,_; &,..-,&, € K. Here not ‘all of ah, sy - are

- equal to 0 € K for then V,l would be ‘a K-linear combmauon Co-

al vyt +°‘h th 1 “of the vectors . Vl, .A..,Vh i and the vectors vy ...,v,l 1 h
would not be 'lmearly mdependent over K- (Lemma 42 3), so YV e vn‘
‘would not’ be linearly 1ndependent over K (Example 42 2(e)) contrary ‘to
- the hypothesrs So one of ah, . is distinct from 0. Renaming wh, ...,Wm

if necessary, we may suppose _a_,, 0-‘_.Then>q,. has, an lnverse o, in K and

,we get. E . ; : L

N : . N \ . ' N . .

'“hWh =0Vt “"h th 1 Vh+ “h+1“’;.n ¥ tta W,,‘,', R

o k = _1

‘ Wy =% (“1"1 R Vit F °‘;.+1 ;,+1 Lt % W)

-1
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w (V --,W )

! Va1V Au"r
Now each one of the vectors wl, I Vi1

‘K(Wl’iwz’ ey m) =S (Vis ooV oWy o W, ) can be wrmen in lhe form

bemg an element of the span

: oyt +thhl+yh h+yh+1 Whey 75 3, W
-with scalars Y

...,yh_],yh,th, .._.,y € K. Thus each one of ".’..,wh_] can
be written ds R A
. Wt BN Ve Lo
. . ‘ ol Yo 4 8 . W)
T sy v V- Vb Wy e W)
I' ‘+Yh+1wh+1' oot Y W‘.m’ - . -
. - C N B
and so .{w], Wy }e sK(v sV Vi h+‘1’ ...,wm). o ) ,
Therefore {yyl wh l,wh, I1+1"."‘Wm]'g 5 (v, ...,Vh_],Vh, IR ""’“’m‘)’ (1)
Sincé - . ‘ Vi oV 1' .K(w ..,vvh_l,wh?wh+l,...,W,n),
~we also have S f B :
v 1"' Wh+l’ e W ] _“K(W W10V h+1’ . "‘Vm.)' (it)

' "_Usmg Ga" and - (u') and dpplylng Lemma 40 i1 wnh '

—{w w,w W), B —[V,..

Wy W W4 Vh-10 h’wh+_1’""wni]" .
Twe obtain : o R B o .
W) = Sp(w,w W)

Se(vys VeV Wi o o e

Thus A '15 tru'c."'

,As remarked earher (this™ establishes - lhe truth of A A ...,An_l‘,An.~‘lh«
‘partlcuiarr, A, - is true, and the second stalemenl in' lhe enunciation. is

preved. Ndw it remu‘ihs 10 cstth.sh n< m.

If we had n <'n, then A : would be' true and we would get

. R . ] K(Vl’ 2 ¢ ‘, Vm) K(Wl,w . .‘.,Wm).»
. Then : e g »Vn .G’SK(W‘IZWZ’ ...,wm).
‘would give .+ 7 . ' v, € k(vl,vz,...,ym),

contrdry to the hypolhcsm that V Voo ...,Vm,.'.‘.,Vn are linearly' indepcn-
dcm over K. So m.<-n 1s lmposslble and necessarlly n < m. This com-

pletes the proof C ' R L ‘ ' - o
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If n= 0 then B=0 and V= {0} Thus @ and {0} are the only subsets of v

pendent by defmmon Let Vl,Vz, S V WV

)

42, 11 Theorem Let V be a vector space over a fzeld K and assume that ,' ;
v has a fntte K- bas;s Then any two K- bases af V have the same numberi '
. of elements _‘ ‘ : ’

Proof There is:a f1n1te K- baSIS of 1% by hypothes1s say. B Assume that B L

; has exactly n vectors (n > 0). We prove that any K- bas1s B of V. has also
n vectors 1n 1t R ‘

- and B = @ is.the only K ba51s of V. Then any K ba51s of V has ekactly 0

- elements

‘Suppose now n= 1 and let B be any K ba51s of V FlI‘Sl .we show that B,

cannot be. 1nf1n1te Otherw1se B ‘would be an infinite K- lmearly 1nde-,
-pendent subset of V Every fmxte subset of B, “would be K- lmearly mde—
wrl’ be n+1l1K- llnearly 1ndepen-;
,'dent 'vectors in B,. These n'+ 1 vectors lie in the K- “span s x(B) of B and B

_has n elements. Ste1n1tz replacement theorem glves n+ 1 < n, wh1ch is.

v'absurd Thus B cannot be 1nf1n1te

We put IB I = n1 }lere n, ;: O because n = 0 w0uld 1mply B =@ and

Z@=Bcs (B) -—_ = SK(B )= SK(E) ={0},s0 B = {0} and-B would be lmearly ‘

,:lndependent over K, contrary to'-the hypothesrs that B is aK ba31s of V :

SonleN

By isak- linearly‘ Vinde'penden't ‘subset of V in sk(B) ‘therefore n1 < n by -
- -Steinitz’ - replacement theorem L1Lew1se, B is'a K- lmearly mdependent' ' :
; subset “of V in’ sK(B ) son < n1 Therefore n= nl, as was- to be: proved o

’

42 12 Deftnltton. Let V.be a vector space over a f1eld K If V has a' :

"f1n1te K.-basis, the number- of elements in any :K -basis of v, wh1ch is ‘the

same for all K- bases of V by Theorem 42 11,.is’ called the- dtmensmn of V.

over ' K, or the K-dimension of V. Itis denoted as dtm V oorasdimV. Ifv
~has no f1n1te K bas1s then the K- dlmensmn of V is defmed to. be" 1nf1n1ty,
~ and we ‘write in th1s case dtm V=o..

512 -
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Thus dim K" = n (Example  42. '7(a))'a‘nd dimyV = 2, where V is the R -
. vector space of Example 42.7(b). : '

We frequently say that V is n- drmen51onal when dlmV =n. A veclor

space is said -to be finite d1mensrona] it dimV is a_ nonnegative integer

and 1nf1mle dlmenslonal if dimV'=o. Nouce that the dlmen51on of thef
vector space {0} is. zero . - :

42 13 Lemma Let V. be a vector rpace over a ﬁeld K, Iet dtm =ne€ N'
and let’ VisVas - ,v be n vectorr m V. L :
(1)lf,vl, s =e5V, Are linearly zndependent overK then s( ..,vn) =V

(2) Ifs,"((vl, Yy ...,vn)— V, then- V V2, .. Vn are Imearly mdependent overK

Proof'A (1) "We .rre given cltm =n¢€ N Let {w LW ] be a ba51s of v
over K. If v;,v,, ...,v, are K- lmearly mdependem veclors in V= o ,
K(wl,wz, Dol W ) then we obl.nn 9K(V1, ORRER ) = sK(wl,wz, .. ..,w_n) by

'~Sleinitz"_replacemenl theorem. T T S

Voo -+ ,V, are nol lmear]y

() Suppose sp(vy, vy Lv,) = Vo IfY,
-mdependent over K then’ lhcre is a proper subset T c {v,,v, -.,V } of
(v ViV ee V] with_ s (T)— K( LoV ) = V (Theorem 42 4); and there, is

a K-basis B of V such that B c T (Theorem 42, 9) Usmg Theorem 42 11,

“obtain the conlmdrcuon : _ :
- N—dtm IBl ITI<n | s

: Hence V V2, sV, have to be lmearl/y mdependent over K. o

Any finite set sp.mmng a vector space can be stripped. off to-a basis of
that vector space” (Theorem 42.9). Slmliariy, any lmearly mdependem
: Vs_ubset of a vector spacé can be extended to a.basis, as we show now.

-

42,14 Theorem: Let 1% be an m- dnnenwonal vector space over a fl(_’ltl K,

with - mz l.Let n=> 1 andlet vi,v,, ... v, be n quearly mdepcndent »

vectors in V. Then there is a K- I)asm B of V such that {v Voo ! V,,], c B.

SJ 3. .



st

‘Proof"Let\{W VV'Z, , W, be a K ba51s of V.. Then ViV -

.1ndependent vectors’ in V —sK(w 2,...,wm) and Stermtz replacemem,

,theorem glves - 3

K(V,Vz,.. v, Wn+1,.. W)=V ,' and- n\inz .

on 1ndexmg w's su1tably Then the m = dzm V. vectors.

',W . o ‘

Vs i V W W
A n+l o, 'm
are lmearly 1ndependent over-K by Lemma 42, ]3(2) Hence _
= {V VW e W } 1 o
- isa K bas1s of V contammg the: vectors Vl,Vz_, ..v;,Vn.» : e a]

v N~

42 15 - Lemma Let V be a fmte dzmenszonal vector space over a feld K
and let W.be a subspace of V: , T '
, (1) W is finite dzmensmnal, in fact dim' ’ d'imKV
2). dzm W dim,V zfand only zf W= V

’Proof Let n = dth

(1) The assertron is trrvral when W= {O}': 50 letvus assume W = {O}" Then
there is a nonzero vector w.in W5 and {w} is a K 11near1y 1ndependent

'subset w1th one element On: the other hand, any n + 1 vectors in W (m '
fact in V). ‘are lrnearly dependent over :*K by~ Stelnrtz replacement{'v

theorem Therefore there ex1sts a. natural number m such that
oy o) 1<m <n _ : : o

, (b) there are m lmearly mdependent vectors in W,

(c) any m + I vectors in W are 11ne'1r1y dependent

" This m is clearly unique in view of (b) and. (c). The natural number m.

having. been defined in. this. way,~let WWo, ... ,w, be m K-linearly
1ndependent vectors 1n W We clalm that {Wl,Wz, W } is a. K' basis of W;

To show- t111s, we must prove - only that these: vectors span i%4 over K.. Let’

- w be an arb1trary vector in "W. Then w Wl,Wz, cee W, are llrnearl_y ‘
.depcndent over K by (c). Hence . o S
. ‘ Bw + Blw + Bzwz -+ [5 w =0’ .
_ w1th some scahrs SN N ¢ 1n K. Here ﬁ = 0, for otherwrse the

.equatron above would’ 1mply that W W, o ,Wm are K- lr_nearly dependent. .

‘H fence {5 has, an inverse. B in K t\nd we get ' . "‘ SN
CwE (- ﬁ )W +( B BZ)W '-il+(',l3?.tp:ﬁ)wm’ :
. WE $ 1 (Wysw 2,.'- W ) R R

,v,, are linearly-




This. »gives WS si(w,wy, ...,w ) But w,ws, .. ,w belong to. W

K(wl,wz, .

drmens1onal and m; fact’ dlm W=m < n —dtm

‘ (2) lf W V, then of course dim W = dzm V. Suppose conversely \dtm v
= dme ~='n" and let' A be a K- bams of W. Then ‘there is a K -basis B of v o

with A'c B: this follows from Theorem 42 14 when A z and is obvrous

when ‘A = @ Then - .
' n=dimW IAI 1Bl =dim, V. = n

 implies that A = B. ThusW— K(A)— (B =V. o

42 16 Lemma Let VU he vector spaces over a feld K. Suppose Vv
.:fmtte dzmenszonal and. let 9. V.~ U'be a vector space homomorphzsm
‘Ler vy V2, v, -be. vectors in V. T ‘

(1) lfcp is one- -to-one and {vl,vz, ol V ] is Imearly mdependent over K
then { V9, VP,V qa] is. Imearly mdependent over K. o cy )

n

() Ife is onto U and_ {(v,¥y ..wv, ) spans V° over K, then {vlqa, vzqa, Love)

- spans U over K.

3)Ifo is a ‘Vector space lsomorplusm and {v, Vs eV, ) is.a K'bosis of v,

then [chp, 2q>, GV, (p] is a Kbaws of U In ‘parttcular dzm U dtm V

Proof: (l) Suppose a],az, ...1,an are scalurs such lvhu_tl
' 4 (V9)+ 6(Vy9) + . + 0, (V,0) = 0

: Then o o (g vy ey 2 -+ ’orn\‘fn)cp;‘io

S0 A R ACE --l-(x v, € Ker o,

" dnd : . . ,a,v 4(12V2 +(xV -—O ’ ‘ .
since Ker <p = 0 as @ 1s one- lo -one. Since VisVa oo,V are K-linearly inde-
) pendent -we get Oy T oy T = qn\_— 0. Hence rvlcp, V2<p:, SLV,e are lincurl)‘{
’.lndcpendenl over K. » R o S -

(2) We. must show lhdl any. elcmcnt of U cun be written as. a K- llllL,dr
comblnullon of the vcclors Vi®, Vo0,V 0. Let uel. Then. there is av. in
‘V with v = u und v= vy gV, F e + oV, where “1’“2' :-..,an are’ sunl—
able scalars in- K. Tlns yields | l

u = Vq) —((xlv TV, et V)(p v
U ‘11("1‘?) + uz(Vch)'+ Tt (v <p) €s (v Py Vo, ooV, @)

[N

AN
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W )C w (Lemmu 40 5) "The vectors WisWa .‘..,w therefore_ :
span- W over K so {vaz’ coaw Jisca K- bas1s of w. Thus W is. flmle_'




Furthermore V=«

.as wais to be proved SR S R

(3) ThlS follows 1mmed1ately from (1) and (2) T = & '

From Lemma 42 16 1t follows that dlm U —“n»j‘\vhenever\'Uﬁ K". The con-

verse of th1s statement 1s also true R : ) . —

a2, 17 Theorem Let 4 be a vector: space over a field K. Then o
L d‘rm V=ne N 1fand only if V = K" (as vector spaces) s

Proo.f" IfV K" bthen dlm V dlm K" —-n by Lemma 42.16(3). Suppose

conversely -that dlm =n and let [V V2, .Y, } be ak- basrs of V.. Every
element vof V can be wrmen 1n a unique way as 0‘1 1+ (12 y e + v,

where al’az' S, € K We cons1der the mapprng
S <PV Knooe
alvl + a2'V27+ S v, ———> (al,az, @),

/o T

~Thisg is aK-llnear transformanon ‘since, for any a ﬁ €K and ‘f \
. v' oy vy F a2V2 +- -+ anvn, W= ﬁlvl + pzvz “+B,v,in v, we have R
((IV+ ﬁW)Q —((Z((Zl 1+(12V +av)+ﬁ(ﬁlvl+ﬁ2 2 +ﬁ V))qJ’

SRR “((acx + BBV, +(aa2+ﬁﬁ2)v '“+(aa +ﬁﬁ)v)rp
e (aa1+ﬂﬁl,aa2+[3[32,. - aa, +ﬁ[3) - ;

a(ayaz.- ,a)+f3(5p52,- B

a(vrp)+B(Wq>) '

1V +a2 ,+ +ocv v belongs to Kercp if. and only if
(&0, ... ,a)—(OO 50), thus 1fand only 1fV Ov +0V ceig Ov =0.
1232 Ve =

n
-

So Ker:p = {0} and ¢ is one-to-one. "

' Srnce any n- tuple (al,az,. e ) in K" is the 1mage under P, of the vector
L o v, +a2V +e +a v, in V we. see that o is onto.

[ : ' . . R

" Hence ¢ is'a vector Space isomorphism’and'v.é K. o o im



R X fact

42 18 Thcorem Let V and U be finite dtmenszonal vector spaces over a
feld K Then V lf(l)ld only if dnnKV dlm

Proof: The case when dthV = O or dimsU .= O is lr1v1al Lel us suppose
Jdim,V > -1 and dunKU =2 1.IfV = U, lhen dmeV dim U’ by Lemma
42. 16(3) I dim .V = (Ilm U then V = K‘“’"K" Kd""KU = U by Theorem

'A4217 hcncc\_/ =y, o : ; D'.

A' 42, 19 Theorcm' Let V be a vector. space overﬂ ﬂeld K and let W be a-
suhspace of V. If V.is finite (Imzenwonal tlzen V/W is. ftmte dunenvmnal

' ‘[i"'l(“/"z _(IimKW ’+ (IiinK V/W'.

Proof: Wé’elinﬁfmlt the lriv'al cases. We' know that W is. finite¢ dimen-
sional (Lemma _ 42: 15(])) If dim W =0, then-W = {0}, s0.V = V/{0]) =""
VIW, so dzm VIW = (lnnK\’ and (lzm V=0+ dzm V= dmzKW + (lnnKV/W
-If dmeW = dmeV then W =V (Lemnm 42 15(2)), so V/W {0} dnd
(lzm V= (lnnKV +0=dim W + din VW, ThUS! the theorein is' proved in .
case (lzm W = 0 0r (Inn W dzm V. (m parncular in case (11"11 V= 0)

Let us dssum(, now 0 < (lzm W < (Izm V Lcl (lnnKW = m Jnd lcl

{w,w W } be .a K- b.lsls of w. ']hcrc Jrc vcclors usu, in V:such .~

2 ie 1 ey
that ‘['Wl, g be e Wl Uy, U } is a K basls of V (Thcorcm 42.14).- llcrc
k= 1Vand m + k dnnKV Wc cLum that {u, +W,u, + W, Lt Whisa

K -basis of V/W .- Thls w1l| nnply A = (lznsz/W hcnce d“"KV = m +hk = ’
) (llm W+ (lzm‘ V/W ) o
- N . . EEEI "

“To csmbhsh our (.Lum wn, mm. first: thal uI + W uy o+ W ‘“.L»‘ +W are
K- lmearly mdcpcndcnl veetors in V/W Indeed, if al,az,...,uk are scalars
. such that . o ' ’ - L

: a,(u; + W)+ a,y(uy + W) etalu FW)=0+ W,

lh;n ay, +agu, + togu € Wo=s(wwy, ... ,wm),

au + <12u2' “tau = [5 w + ﬁzw + .-+ ﬁm:wm

. where N P are upproprmlc sulars in K. Then
V alul to u” +oet u/« ko ﬁ W ﬁZW - ﬁmwm':: 0 .

’ - - 4 .
and lmcarly mdgpcmlcnu ol Wi W, WU LU u,, _lmplvlcsv that

Go i
o= Ay = = “1--:.‘“- Thus u, + Wiou, + W, coesup W.in V/W are lincarly

- independent over K.
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Secondly, these vectors Spaﬂ V/W To see thxs let us’ take an arbrtrary
' vector v+ W inV/W, where veV.Then .. . = . R
o V = o Uy F Uy e ak P BwW+ B2w2 o ﬁM'Wm ’
_ where al,az,. 15%B1B2; + - ,B are scalars, and thus - L

v+ W =( Uy + a2u2 +ehe O‘kuk + B,w +'52W2 bl 4 mewmr),*'w‘ S
S = ey, +W)+a2(u2+W>+ ala e W)

. +5l(w1+W)+52(w + W)+t +|5 (v, +W)'
f—al(u +W)+a2(u +W)+ +ak(uk+ W)

J Si(u,. +W u2+W +W) S ’, o
LS VIW, : - ' o
hence VIW = K(u + W Uy + ] W . uk + W) Thrs proves that - X
. [u1 +W, uy + W et W} is a basis of V/W over K As we remarked
o above, thls g1ves dtm V dzm W + dzm V/W L r::

. 'We ‘deduce- important corollaries’ from Theorem 42.19.

42, 20 ',']Theorem' Let V be. a vector space loyver a ﬁ'eldb K. Let W,U be iy
- finite dlmenszonal subspaces of V Then W+U is a ﬁmte dlmenstonal“

: subspace of V and in fact - '
: © T dimg (W + U) dzm W +d1m U - dlmK(W n U)

“ Proof;. It [WI,WZ, . ,,w V-is a K ba31s of W and ["1’"2’ L.,uk} is a K- basis’ _
of U, then W+ U = [w YueV:iwe W u€ U} is clearly spanned by the
'frmte set [WI’WZ’ ,.,w ’"1’u2’ . u,,] hence W + U is. finite d1mensronal o

(Theorem 42.9). From W + U/U "W /W:n U (Theorem 41.16), we obtam' ‘

- then =y dlm (W + U) dlmKU dme(W + U/U)
R = dme(W /W U) : v
o =dimW s dim WU o n

Ay

42 21 Theorem Let v be a vector space over a fzeld K and let © be a K-
Imear transformatmn from. V. ]f V- 1s flmte dzmenszonal then ‘

. / ‘,f".k S dmeKerq: + dme]m P = dlnkV



Proof Theorem 41.13 tells us’ V/Ker qa‘ = Im qJ and Theorem 42 19 grves
- dthV dzm Kerqa'—dtm Imqa S ‘_ S s | ,‘ '

42, 22 Theorem Let VU be vector spaces over. a feld K and let
@ V—» U be a-K- linear mapping. Suppose that. v and U have the same
fmtte dlmenslon Then the followmg statements are equzvalent
M, eis one to-onie. . - ‘ ‘
(2) @ is onto.
(3) qa is a vector space 1somorph1sm

Proof' (1) = ‘(2) If o is one ~-to-one, then Ker<p [0] SO, dtm Ker P = 0\,

, and dlm Imqa -dzm Kercp +dtm Imqa —dtm V= dtm U. Thus Imq) is a
subspace of U wrth dzm Im o —dtm U ‘and Lemma 42 ]5(2) glves then
Im o =U. Hence @ is onto., )

» (2) = (1) Ifq> is onto then Im(p “U,.s0 dtm Imo —dtm U and dtm Ker<p »
.= dzm V -dim, lm ? —dtm U dtm U=0. Thus Kero = {0} and ¢ is one- -
to- -one. ‘ ' IR R

. - . ) '
! . PN e e

Hence any.one of (1)(2) 1mpl1es the other, and these together 1mply (3).
' Conversely, 1f . is an’ 1somorphrsm then of course ® is one- -to- -one: and
- onto. Thus (3) 1mplres both (l) and (2) ST , oo

[ . : -

- We close this- paragraph 'with 'a brief discussion. of “infinite dimensional -

' vector spaces ' Do, infinite dimensional .vector. spaces -have- bases? From

Theorem 42.9, we l\now (hd( such a vector space cannot be spanned by a .-

finite set. But if B is a spannmg set, necessarily infinite, the -argument of
Theorem 42'9 does not work To prove the existence of bases of mflnrte'
1drmensronal vector spaces we have to" ‘resort to more soPhlstlcated'

‘means

lt is in fact ‘true that every vector space has a basrs and a proof is- glven

Cin the appendrx The proof of this “statement for infinite drmensronal

, YECtOr ‘spaces’.Tequires a fundamental “tool known as Zorn's lemma. Thrs !

lemma ‘can be used in a varlety ‘of srtuauons to establlsh the existence of

certam ob)ects - } :
N

v




‘The “existencé of bases having been assured by' Zorn's lemma,. we might
ask whether any -two- bases have *the - same cardmahty The "answer
turned out to be "yes” “in.- the finite drmensronal case (Theorem 42, 11) and -
'th1s ‘was proved. by . using Ste1n1tz replacement theorem.. The proof of
Ste1n1tz replacement theorem does not extend ‘to the infinite” dimen- -
slonal case. Nevertheless .theorems of set theory can be employed to
show - that "two bases ~of a vector space have the same “cardinal number ’

. Thus renders it possible to define ‘the ‘dimension of a vector space as the -

card1na11ty of a' basis. Hence it is possible’ to drstmgursh between various,
types of .infinities. Th1s 1s much finer than - Definition 42.12, by- which in--
f1mte d1mensrona11ty is merely a crude negatron of frmte d1mensrona11ty '

i

Theorem 42 14, which‘ states that any linearly 1ndependent subset can be-
' extended to a bas1s, is ‘trué -in the - infinite drmenswnal case, too. The :
proof makes use of Zorn's lemma / ’ '

o

Lemma_ 42. 15(1) ‘remains- valid also in the infinite dimensional - case, in the
- sense that-a basrs of a subspace has a card1na1 number less than or equal

to .the cardinality. of 4. basis of the whole space.. Lemma 42.15(2), however,

is not necessarily true for infinite~ dimensional vector spaces: ‘a proper
" .subspace may have the same drmensmn as the whole space (thmk of R
and C as Q-vector spaces) : '

Lemma 42.16 "and its. proof works 'in  the infinite - dimensional "case. "

Lemma 42.19 ‘and its proof works_ in the infinite .dimensional case, pro- -
* vided - we refer to, the generalrzauon of Theorem 42.14 at the approprrate :
place I ' ‘
Generally"speaking, infinite dimensional vector spaces are wild objects.
To render them more manageable,_one equips them with some add1-";
tional structure, perhaps with a- topolog1cal or analytrc one.

Exerci‘ses’ 3

1. Let V be a vector space’over.a fleld K and let W be a subspace of V.
Show that there 1s a subspace UofV such that V W+ U and

i



W n U { ). U is called a dtrect complemenl of W mV We Awrite:then )
V=We. U_ and call V. the dlrect sum of w and U) S Lo

20 {(1 1), (1 10) ( 00)} an R-basrs of R3'>

\3 Is {(126) (001) (ZTD)aZ ba51s of 239 :

| 4. Fmdaanasm of ’ T e
- {fe C2([Ol]) f’(x) 7f(x)+ 12f(x)—0for allxe [O l]]., ‘

5. Fmd all R- lmear mappmgs from R“ onto RS

6. Fmd, all -'Z ,-bases’ of Z and . Z bases of Zz

. 7 Show that the vectors (1,2 1) (020) (l 2 l) and also the vectors (1 1 O)
' (l 0 l) (l,l,l) in. Q3 are lme.lrly mdependem over Q. ’

8. Lel f}((x) = sin kx forx € [0,1]) (/\~- 12 3, ) Prove ‘that the functrons
B [f1J2J3, ...} in C“’([O 1) are linearly mdependent over. R. ' o
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: S §43 :
‘Linear Transformatrons and Matrlces

In thrs paragraph we learn to construct ‘a new vector space from two;
-given vector spaces- V,W, namely the - vector space “of . linear transforma- '
tions from- V into W.. -We introduce matrices and study the relatlonshrp
,-between lmear transformatrons and matrlces . -

: ;Suppose V.and W are vector spaces over- a field K. We denote by
C LV, W) the set of all K -linear »mappmgs from V' into W This set .

L (V.W) is not empty, for at least the mappmg V- W isak- llnear -
v—0. ‘
_transformatron .in LK(V W) We - want 1o define an addition and a multr—: ’
plrcatron by scalars on LK(V W) and make LK(V W) into a K- vector space ’

- Let TS € LK(V W) How shall we define T.+ S? Well the only natural way

“to define. T + S .isto put V(T + S) —1VT + vS for all v €V (pointwise addi- i .

' tron) What about multrphcatlon by ‘scalars?- Given « € Kand T € L(V,W),
: the mapplng oT had better mean: first multlply by «, then apply-T, so
that: v(aT) = (a T (or first apply T, then mulnply by o, 50 that v(aT)
a(VT) but thls is the same definition - as before). -

;43 1 Theorem' Let V,W be vector spaces over a ﬂeld Kand let LK(V W)
. be the set of all K-linear transformattons from 'V -into W. For .any T, in
K(V W) and for any- o in K\ we write : ’

T+ S) VTS, Wal)=(@9T = (ve v,

.Under thlS addition and multzplzcatzon by scalars LK(V W) is a vector

‘space over K. . fA ST
'Proof:v »We'show first that-L ’(V W)' is an. abelian group under addition:

N

(1) Let TS € LK(V W) Then (atv1 + sz)(T +8)
=(av, + BV, )T+ (aV +pv,)S -
= a(v;T)+ B(v,T) + a(v;$) + B(v,S)
= a(v;T) + a(v;S) + B(v,T) +B(v,S)
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S =eqTHv BT
: o 1;; ~_a(V(T+S))+ﬁ(V(T+S))
~for all (x,ﬁ € K and v v2 evV. Thus T+S 1sK lmear and T+S € LK(V W)
'Therefore LK(V W) is closed under addmon : ‘

K (n) Lel TS R be urbllrary elements of LK(V W) Then o ‘
. v((T+S)+R) _v(T+S)+vR (vT+vS)+vR : )
-_vT+(vS+vR) VT+ WS +R)= v(T+(S+R))

for. ull ve V hence (T+S) +R T +(S +R) Thué addmon m L (V W) s

assocratlve ‘ » o _ , _ ’
(ur) Lét 0%: Vo w.i'.’ _' 'Then_"(tx’v‘ ¥ byz-)o* =0=00+ 50‘ o
; _V—»'O" e \"‘-. S
= (x(v 0*) + ﬁ(v O*) for all “a,B € K; v v € V dnd O* IS in LK(V W) From o
v(T+0*)—vT+v0*—vT+0 VT (Ve V)

we obtum T+ 0* = T for any T € LK(V W) Thus 0* is a rlghx 1dent1ty

(iv) Any T € LK(V W) hus an opposne 1n LK(V W) namely lhel

‘mupplng S:V . W. lndeed
, v— —(VT) : Ll o S
L V(.T+ S) VT+VS VT+( (VT)) O VO*

LN P A

) for dll Ve V S0 T + S ="0*. Are: we done” Nol We should check: thut S is 1n' "

‘ fuct in L(V W) but thrs €asy: e
: ' ((xv +ﬁv2)S ((uv +ﬁ )T)

’—( (av, + BV. ))T : (Lemma 41 5(2))“

'—((— av)) + (- ﬁVZ))T e
o :‘f o ((X('V ) +B(- Vz))7
= oGV )T +((- vz))T
CEal- () + B(- (V»T))
) '— (x(v S)+ ﬁ(v NE
ofT
(v) qully, T + S S + T lor any T, Se LK(V W), beeduse -

» ; v(T+S)—vT+vS~vS+vT v(S+T)
i lor ull v.e V Hence L (V W) lS a commuxunve group under uddmon

_for'dll a,ﬁ ek und vl,v2€l lhus S is in LK(V W) und S is a nbht anCrSe

'Now the properucs of mulnplrcauon by scalars. Flrst we nole lh.n (xl is

“in L(V W) whenever « € K and T € L (V W), becuuse N




,‘ ( + vz)(aT) ((x(v + Vz))T = (av +av. )T . :
B - - = (av, )T+(av2)T v(aT)+ v(aT)
o for all v V5 € V, so that aT is .additive’ ‘and K

(Bv)(aT) = (a(BW)T = («B)V)T = ((ﬁa)V)T ((ﬂ(aV))T ﬁ((aV)T) ﬁ(V(aT)) |
forall p e XK, v € v, -s0 that’ aT is. homogeneous So oT belongs to LK(V w)..

(1) a(T + S) = aT +aS for a11 a €K and TS € LK(V W) since ',
» v(a(T+ S)) (av)(T+ S)= (av)T + (aV)S v(aT) + v(aS) = v(aT+ (xS)
_’foranyVGV L o s , .
"',‘ @) (« + B)T < aT+ BT for all «peKandT € LK(V W) since
- Ao +B)T) = (a+ BT = (av+ BAT
R ‘—(aV)T“F(ﬂV)T V’aT)+V(ﬁT) V(aT+I5T)
- for any V€ V I ‘
| E) (aﬂ)T L asD) forall 6,6 € K and T € LK(V W). since
V((aﬂ)T) ((aﬂ)V)T ((ﬂa)V)T (ﬂ(aV))T (aV)(ﬂT) V(a(ﬂT))
for. any veV.
(4) lT T for- all T € L £V, W) since 3
. v(_m - ()T = (WT =T

for any ve. V.

Thus LK(VW) is a K-vector space : Do R »i S " o

L Let us assume now that. V. is an n- d1mens1onal K- vector space and W is -
‘ an m- d1mens10na1 K=vector space (n,m € N) Let B = [V Vs o5V, } be a K- ;
basis of \4 andB = {wl,wz, s W ] be a K- basls of w- Then for: any 11near '

_'transformatlon T in LK(V W) ‘we have- ‘

7

’VlT ‘=;°‘r1 Wy F @ Wyt o W

T = o *
T =W+ oWyt oWy, oM

.........................

where &%y - .., a, are scalars in K. “The. arrangement. of the scalars in

*) Vdeserves, a name.
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43. 2 Defmltlon Let K be a fleld and n,m € N. An n by m matrix over K
is an array .- _

R % %12 %im.
B &g s Gy | : S )
anl &2 anm

of nm elements &, 1+0y3 --+» &, Of K, arranged in n rows and m columns,
and ‘enclosed within parentheses. The set of all n by m matrices over. K
will be denoleq by Mat, (K). : ' '
‘Sometimes we write “nxm" instead of "n by m". The horizontal lines

v . : L G K / ' (2
of 'a matrix over K are called the rows of that matrix. More specifically,
(2) is the i-th row of ‘the matrix (1). The . vertical lines

Q 2

N E)
anj
of a matrix ~over K are called the columns - of that matrix.. More
specifically, (3) is the j-th column of the matrix (1). The element a;; is at
the place where. the i-th row and the j- th' column meet. The first index i
refers to the Tow, the sccond index j refers to the column. Also, in the .
expression "n by m"; the first number n spec1f1es the number_ of .rows.
the second number m specifics the. number of columns of the matrix.
‘The elements @ are called the entries of the mamx (1) When n =m, the
matrix (1) is said to be a square matrix. The set of all square maltrices
with n rows (or n columns) over K will be. denoled by Mat (K) (1nslcad

of Mat (K))
We will usually abbrevmtc the nutnx (l) as (a/)

Two matrices (al) € Mat (K) and (ﬁ,) € Mat . (K) .1re dcclarcd 1o be ‘
equalifn=n",m=m and ®; = ﬂ foralli=1,2,...,nj=12,...,m. Thus "

two matrices  are equal if and only if -they have the same  number of

rows and columns, and -have the. same elements at correspondmg places.
We write - then (a})—(ﬂ) Othcrwnse we put (u,)¢ (ﬁ,)

- We now make Mat, o(K) into_a vector-space over K.



. 43 3 Defmmon. Let K be a field a €K and let A B € Mat n(K), say A=
(a,) B = (ﬁ) We - write o
) A +B=C, C belng the matrix (y,) in Mat (K) ‘where y = o+ Bij,
“and aA = E - E -being ‘the matrix (e,) in Mat (KD where e TP
. In Other words ((x,) +- (ﬁ,) (au+ ﬁ,) and (x((x,) ((xa,) S

L

43.4_ Theorem: Let‘Kv'be'. a ﬁeld. Under the addition. and rttttltiplication
= by scalars of Defi nition 43.3, the set Mat,  (K) is a vector space over K..

Proof' F1rst we check that Mat (K) is an ahelian grbup under additicn.'

i (1) For any A = ((x,) B —(t},) in Mat, . (K), we have A + B
—((x +t3,) and -each. @ L+ ﬁ is an. element of K because K is closed under -
add1t10n (i=12 n _]-- 1,2,..-..,m). Hence A+B e Mat (K) and,
- Mat (K) is closed under addrtlon S

(u) For anyA—(al)B—(ﬁ,)C (y,) in Mat, (K) there holds
(A+B)+C—((a,)+(s,>)+(v,> o+ B + () = ((a,,+s,>+v,) |
(a,,+(BU+v)) (a)+(ﬁu+v) (a)+((s,)+(y,>) A+E+O)

and addltlon in Mat, (K) is associative.

‘ '._\ . (m)Letﬁ be the n by m - matrix whose entries are all equal to
the zero element of K. Thus 0= (Cl,) ‘where ’ C =0 € K for all i. Then -
= CA+D=(ep+ (@)= (au+§l}) (au+0)"(aj) A ‘
for any A= (a,) € Mat (K) So0 € Mat (K) and 0 is a nght 1denuty of
w0 . R

(1v) For any A = (al) € Mat . (K) letB —(-al) €. Mat m(K).‘_‘ ‘

"~ Then A +B = (a) +(- cx) —((x +( a)) =0. Hence every element A =. (a) in
,M ey has an mverse (— a,) in- Mat K).

s

= (v)ForallA—(a)B (ﬁ,)eMat KD wehave“ T
.A+B—(a)+(ﬁ) (o + B) = (B +a) (ﬁ,)+((x,) B+A

and addition on Mat (K) is commutatlve .
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SN R . i o
This proves that Mar,  (K) is an abelian igroup under addition. Now the
, properues of multlphcmon by scaldrs ‘For any «,p €K and A = (“,) B
(ﬁ}) € Mal (K) we have f' . . -

M ol +B) = (o) + (B)) = alay+ B) = (alo, +5))
—.(aau+ aﬁf)*(aa,)+(aﬁ,)
-cx((x,)+<x(ﬁ,)—(xA+aB

(2) - (a+5)A "(a+ﬁ)(a,)-((a+ﬁ)a,)—(aa +5a,)

. ) : —(GG/)+(5al)—a(a,)+6(a])—aA+6A
e ,' | (eB)A = (aB)(ay) = ((aB)xy) = (a(Bor) = x(Ber) -
: = a(B(o)= a(B4); T
@ lA—l(a,) (la,)—(a]) A.
Tl{us Mat, (K)isa vecnor space over K. S o

. \ : : : .
A convenient. K-basis of Mat_ (K) is described in the next lemma.

- -

43.5 Lemma Let E be the matrix in Mat (K) all of whose entties ure
0, except for the wngle entry in the i-th row J-th column, which entry is
“the identity element of K. Thcn the nm matrices E (where i'=12, ....n5
Jj=12,....m) form a K-basis of Mal oK) In parucular, dme(Maln_m(K))
is equal to nm. T ’ ’ '

Proof: The matrices E ‘span Mat (K) over K becausc dny A = ((x ) m.
Ma (K) can be wnttcn as a K- lmedr combmduon R

A=(‘(x) Zaqu
of them. Moreover mdlrlces E are. Ilnearly lndependenl over K, for- ll @

’dr(‘t scalars such that

Z (XUEU = 0
i, :

lhen_‘ T ’ _.‘.(aij)=U



and a;;= 0 for all iy. There'fore/{E ti=12,...,mj=12,...,m} is a K-basis
of Mawt eeox In pamcu]ar dim (Mat (K)) =nm. o .o

We relate L(V,W) to Mat,, (K). /"rh'is relation is implicit-in (*). We state
this relation as a defmmon and prove that LK(V W) and Mat LK) are
1somorph1c K-vector” spaces S

43.6 Deflmtron LetV be an n- d1mensrona1 and W be an m- d1menslon-_ :

al vector: space over a field K, where n, m € N. Let B = {v Vo oo o3V } be a-’
K- basis of V and-B” = {w,w,, ...,w_} be a K-basis of w.: - -
. Let T be aK- linear transformatron in LK(V W) and let N
SR vT Zauw O <(i=1,_2,.}..,n')~, E ™

_— =1 ' PR
_where oy e K. o . - e , V
The n xm matrix (a) over K wrll be called the ‘matrix assoc:ated wzth T

'(relauve to the bases B and B ) “and will be. wmten MB (T)

. In ‘the followrng ’drseussion, "lhe'bases will be- ﬁf:i)‘(ed and. we' simply - write '
M(T) instead of MB (T) The Tole of the bases w111 be dlscussed at the end"j
of this paragraph '

43,7 Theorem "Let V be an n- dtmenswnal and W be an m- d:menswnal
- vector space over a feld K, where n,m € N. Then for any T8 € L (V, W)
and « € K, we have ~

(T+S)—’M(T)+M(S) : an}i, - M(aT)—aM(T)

~(all associated -matrices are taken relative to the same pair of K bases).

In other words, M: LK(V W)—» Mat (K) is a K-linear transformatlon.

‘ , Proof LetB = {v .+.,v,}:be the K- basis of V and B” = {wl,wz, _...,w }
" be the K-basis of W relatlve to Wthh the assoc1ated matrlces are taken ‘
s0 that M(T) (aI) and M(S) = (ﬂI) where ‘ - :
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v‘.T=§:aiju"j; : and vS= ZﬁUuu
_ , S S S
" Then v(T+S)-vT+vS Zcxuw +Zﬁu ;= 2(0{ + ﬁl)w

=1 - 1 L
- and therefore M(T + §) = (ojzu+ ﬁ,) (ja) + (ﬁI) M(T) + M(S) Also B

) v(ch)—(av)T—cx(vT)—aZa W= Zcx
s = o
" and therefore M(aT) = (cx a/) = cx(a,) = an(T) d _ : o

43.8 Theorem: LetV be an n- -dimensional and W ‘be an m-dimensional
“vector space over a field K, where nym € N. Then L (V.W)is tromorphzc
to Mat (K (as K vector spacev) In parttcular drmK PSS W) =nm.

’ Proof‘ We know that M: L (V W) — Mat (K) (in the, notauon of Theo-»b :
rem 43.7) is a vector space homomorphrsm We wrll prove that M is in

fact an isomorphism. -

We prove that M is one-to-ome and onto. Let (Y/) be any - matrix. in.
Mat, (K) We want to find a T in L, (V,W) such that M(T) = (yl) Such a -
K- hnear transformation’ T -should satisfy

VT 2 yuw
j_

’ A ' . B
. n m n.
- and - (2“ )T Z(X (VT) - 2“ zyu J z,( zaiyij Wj
- =1 =1 - i=1 =1 J=1 =1
for any vector v = (xl Vit oV, + - +a v oin V. Thus there is at-most onc T

in L (VW) with M(T) = (3)- Hence M. is one-to-one.

With the hin_dsighr gained from' the chain of equations above, given any
'.’(Yij) inMat, _(K), we define a funclion T:V— W by '

(%, )r~§<;ay.,)w

Then, for any o,pB € K and v = Zu‘
i=1

(av+ 5‘,)7' ("2“ Vi + ﬁZﬁ v)T = (2.(0{;0‘. +p ﬁ,-)v'i)T
el :

‘v

ZBV € v, we have

1-1
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Z(Z(aa+ss) 2( zagaiqyg’.w

o3 ($an, )w - az (S pa)w;= a'(v,n +B('T)
o ‘ =1 i=1 S L S =) | - Lo )
"~ and T is K-linear. Thus T € L”K(V,W). When we put o; = Iand @, = O for
i i()‘ “}g-ob[ain\ o N v; T z Y'dwj o ‘(io: 12,....n)

- - e . - ) L ,]_~,,

- so M(T) = (y/) Thus every (y/) € Mat (K) is the 1mage under M, of:v at i
least-one T € LK(V W) and so M is onlo Consequently M is:a vector space

1somorphlsm L.V, Wy =, Mat, (K) From Theorem 42.18 and Lemma‘ -

©43.5, we.get dimy K(V W) = dlm Mat (K) =nm. . =

T e ",

. ‘Now Tet U be a vector space over the ﬁeld K wrth dlm U -k € N, and let
B” = {u,u,,.. ,uk} be a basrs of U: over K. If T: VoW and S W — U are K-

" linear - transformations, ‘whose - associated matrices [relatrve to the K-

bases B = {V Vi, . ,V} B = {wl,wz, R } of V and w, and relatrve to the
K- bases B* B” of w and U] are. (a/) € Mat (K) and(ﬁl)e Mat (K) S0,
that - S . .
VT Zauw o wT Zﬁ}lul,
Lo j=l :
then TS V—» U is aK -linear transformatron (Theorem 41. 7) and

,v(TS) —(vns (zau J)S za (wS)

- Zlam 251“1 Z(Z uﬁﬂ)“l

- 80 that the matrix assocrated w1th TS [relatrve to the K bases B B ]‘is the

n xk matrix whose i- th oW, lth column entry is Za . This leads us to
. N B - TRz o j‘ ' ) ‘
the following definition. ' -



439 Definition: Let A = («;) be an n.xm matrix and let B = (8,) be an
m, xk matrix, with entries from a field K. Then the product -of A and B,

. ) , m
denoted by AB, is 1he n xk matrix (yil.) over K, where. Vi = zaijﬁjl.‘Slaled .

otherwise = (a,)(p) (Zauﬁﬂ)

-

Before studymg the propemes of this matrix multiplication, we summa-
rize -the discussion preceding Definition 43.9. Although matrix multipli-
catlon is defined in such a way as to make it true, the followmg theorem
is by no means obvious (cf. Remark 43 18)

-43.10 - Theorem Let V.W U be vector spaces over a ﬁeldK of nonzero

finite dimensions n,m .k, revpecttvely ‘Let B,B” , B* be fixed K-bases of
vV.w,U, revpecttvely If relative to thesé. bases T e L (V,W) has the

" .associated matrix A, and S € LK(W U) has the avvoczated matrtx C, then ’
TS € L (V U) hav the avmuated matrix AC. Equivalently,

M(TS)_M(T)M(S) , .

The product of an n x m matrix by an m X k matrix is an n x kK matrix.
Notlce that the number of columns in A has to be equal to the number of
rows in B in order AB to make sense. The product ‘of an n x m matrix by
an m’~ x k matrix is not defined unless m = m’.

. Matrix multiplication is associalive whenever it is "possiblé( That is to.
~ say, (AB)C A(BC) for any matrices  A,B,C with entries from a field K ‘
_pl'OV‘ldCd the sizes of A,B,C are such that the products AB and BC arc
defined : (then (AB)C and A(BC) are defined, too) More precmely, if A s
an'n x m -matrix, B is an m x k matrix and C is ank x § matrix, then- lhe :
two n x s. matrices (AB)C A(BC) are_equal. To prove this, let us put A=
(a) B = [)C (yl,) wheret—,IZ nj—]2 L r=12, 8. Tllcn

AB ?~E=(Ei’)’ where ¢, : Eau 11‘
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-

,< R . PO * ~ ) & . B 'k
BC = F = (d)'r)’. ‘ wherc d),r = 2 511Y1r .
‘ =R

and - from (AB)C~—EC (Eelly”) ,.

1_

| _(2( 2 ,5,1))’0) (Z E(szﬁﬂ)ylf)

A(BC) AF »(zau,) (E a,,(E ﬂ,mr))
"—(2 ):a ﬂ,m») (,21 121 “‘ﬂv)
=( ):, ,-):i (a,,a,,)v,,)

" we conclude that (AB)C A(BC)

However there. is no: hope for commutat1v1ty For on° thrng, the product

BA need not be defined even if the product ‘AB happcns to be defmed T

For 1nstance, if A 1s a2x 3 and B isa3x 4. matrix, then AB 1s a2 x. 4

matrix, but BA is not even defined,. et alone is equal to 4B. But. also in " =
cases where both products AB ‘and BA are defmed they will, generally_-
-speaking, have dlferent sizes, so they will fa11 to be equal on dimension .
grounds. For instance, if A is a 2 x 3" matrix and B is a 3 x 2 matrix, then .

AB is a 2 x 2 matrix and BA 1sa3x 3matr1x and AB#BA smcea2x2

matnx cannot be equal . to a3 x 3 matrix. Even if both- AB and BA are
defmed and have the - same size - (this occurs only in case A ‘and B are

square matrices with the same number of rows), it .usually. happens - that

AB#BA Forexample( )( ) ( )( )

Let I be ‘the ‘Squ’are matrix' over K with m. Tows, whose‘ entries' are” all.
equal to 0. € K, except for those ‘on the main d1agona1 which are all -equal :
tol' e K (the main d1agona1 in any nxm matrix consists - of the places‘

where the i-th row: and the ‘i-th column intersect, (z = 1,2, ... min{n,m})).

‘It is easily ‘verified that Al —A for any A € Mat, (K). Likewise I.A = A

for any A € Mat (K) :

checks easﬂy that AO_ , -0 s and 0 A 0, for anyA € Mat m(K)-
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Let 0 be the m._x k matrrx over K~ “all of. whOSe entrres are 0 € K. Onc.'




Multlpllcanon of . mamces is distributive over addition. Indeed, for all A
= ((x,) € Mat (K) and B = (ﬁl) C=(y 1) € Mar, «(K), we have :

A(B * C) - (a)(ﬁ/[+’jl) - (zau J * yl)) (E(GU J + ayyﬂ))

) _(zaljjl+zalj)}l) (Zau‘aﬂ) (ZGJ}III)=AB+AC"
In like manher one pfoves (B + C)A BA + CA for all‘'A € Mal k(K) andv‘
B.C € Ma: m'(/(); B : :

One checks easily that, for all « € K, A € Mat, (K), B¢ Mat k(K)
' ' (¢A)B = o(AB) = A(aB). - e

On writing A = ((1..), ‘-—(ﬁl) we gct mdeed

@A = (aa)(B) = (Z(aa,) ) = (za(auaﬂ))

= (‘%Z“uﬁﬂ) = “(Z aijﬁjl) = “.(AB)_
j=1 . j=1 .
‘and _ ’ ' ‘

AGB) = (e = '<2 o fa8) = <za<a,,ﬂ,,>)
B =»("‘ZI afy) = “(Zl“uﬁ,z) = «(48).
J= T o I

P

Let us now consider the set Mal LK) of square matrices over a field K>‘
From Theorem 43.3, we know tlmt Mat (K) is an abelian group under
addition. The product of- any two. n x n matrices is an n xn malnx Since
the mamx mulnpllc.mon is associative and distributive over addition,
VMal (K) is a ring. Wc also know that Al = =1A=A for any n xn m.tmx .
A. Thus we proved -

- . ~

43.11 Theorem: Let K be « field and n € N. Then, under matrix "addition
and matrix multiplication, Mat (K) is a ring with identity . n

»
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" The connterpart ‘of Theorem 43>.11, for ‘linear transformationsr"i's also valid.
L . : . L . . ) - ° . . EE 2 :

43.12- Theorem Let 1% be a vector space over a feld K and let L (V V)

be the set of all K~lmear mappmgs Jrom V- into V. Then under the point-"

wise addition and composition. of K-linear transformatzons LK(V V)is.a
ring: with ldentzty The' za'entzty mappmgz V-» Viis -the Jdennty element.
-of thts ring LK(V V) [Notlce that there is no hypothesns about dthV]

Proof: We must check the ring axioms. From Theorem ‘43.1, we know'
that LK(V V) is - an abellan group. under ‘addition. . Also, (1) Le(V,V)is |
closed under the composmon of mappmgs (Theorem 41.7), and (2)
-composmon ‘of ‘mappings (whether K-linear or. not) is associative. '

h (Theorem 3. 10) and (D) composition is distributive over addition: when
T,S,R are arbltrary elements of L (V V) then :

V(T(S +R)) = (vVI)(S +R) ((VT)S) + ((VT)R) (V(TS)) + (V(TR)) V(TS + TR) '

‘and v((s +R)T) = (v(s + R))T (vs + VR)T = (VS)T + (vR)T V(ST) +- VRT)

= v(ST+RT)

for all Ve V hence (S + R) = TS + TR and S + R)T = ST +RT So LK(V V) :
"'is a.ring. Flnally, the identity mapplng 1 1is clearly a K-linear *transforma- - ‘
tion, so 1 € LK(V V) and as T1 = =T for all T e LK(V V) we, conclude .

‘that L (V V) is a rmg w1th 1dent1ty 1 - L , : o

43, 13 Theorem Let V be a vector space over a feld K w1th dth = n,t

where n € N, Then LK(V V) Mat (K) (rmg 1somorphzsm)

Proof We ﬁx a K ba51s of V and use the mapping M "LK(V V) Mat (K)
.- of Theorem 43, 7, so that M(T) is the assomated matrlx ‘of the K-linear

' transformatlon T e L (V V). By Theorem 43, 8, M is an 1somorphxsm of

abelian groups (in fact of K -vector spaces, but -we do not: -need  this. now)
- and by Theorem ‘43, 10 M preserves multlpllcatlon as well Hence M is a -

ring. 1somorph15m B R g . o )




Let us recall-that a unit in a- ring with identity is anA element of that ring
possessing a (umque) rlght inverse ‘which is, also a left inverse. ‘What are
the units of L V., V)" The units in L v, V) are, by deflnmon, those K—
linear lransformanons T with the inverse TVin LV, V). The inverse of
Tin L},(V V), whenever it exists, is in L (V,V) by Lemma 41.10(2). Thus

\'the umls of L (V, V) are the K- lmear transformauons in L, (V,V) which
are one-to-one and onto: the units of L. (V, V) are the vector space
1somorphlsms from V onto V. The set of all isomorphisms from V onto V -
will be .denoted by GL(V). This is a_ group under the composition of
mappings, called the general Izrzqaf\ group of V. Thus L (V,V)"'= GL(V).

The unil‘s in Mat (K) are “the: invertible matrices, - that is .to say, rnalrices
"Ain Mat (K) for which an A™' € Mar (K) exists such that AA™1 =1 =A"lA.
" These are the matrices associated wnh isomorphisms from V onto V. In
the next paragraph we will gwe a necessary. and sufficient” condition for
a .matrix to be mverllble (Thcorem 44.20). The set of all invertible
‘matrices in Mat (K) will be denoted by GL(n,K). This is a group under the
mulnpllcanon of matrices, ‘called ‘the general linear group of degree n
over K. Thus Matn(K)" =GL(n,K). When V- is an n-dime_nsional vectpr,
space over K, the group GL(V) is isomorphic to the group GL(n,K).:

" We return to the more general case of LK(V W) and Mat,  (K). Supposc
- again that V and W are K- veclor spaces of K- dlmenslons ‘noand m,
respectively, where n ,m € N. Lel B = (visvy --uv,) and B* = {v* VE, SV
be K- bases of V and let B” = [w “"Wm*] and. B™* = _{w‘}‘,w}‘, ""W:.] be K=
bases of W. With each K- llnear transformation T:V — W, there is
' dssocmled a ~matrix MB (T) relative to the bases B and B’ and a matrix
'Mg*.,,(T)/re]auve to the bases B* and B7*, We want to study the
r_elalionship between Mg.(T) and ME(T). , o

We recall that MB(T)~(a P and ME .(7) (8), where

v,T = 2 aw; and viT= 2 B, (=12, ....m)
. Jj=1 . j=1-
We 1nlroduce transmon malrlces Wthh descnbe lhe change of bases.

e

Wrmng
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C k=1

we obtain a mamx (y k) in Mat (K) called the - transmon matrix from the,
K-basis B to the Kbaszs B* of V. Of course, (v;) —l B.(t) where_z is the

, 1dent1ty mappmg on V We have the schema _

S b 'e o E mappings
V.=V .V . . vector spaces
B* - e ‘B ME (0 B* .. bases

M () Mp.() - . matrices

Now thre‘c()m'p'osition 1 is ,the identity mapping 1. Relative to the bases B* A
and B*; the matrix associated with .1-is the 'identity‘matrix 1. This matrix

is also’ equal to M8 (x) ,(z) by Theorem 43. 10 M (1)M1§’.(x) 1. Thus thev

transmon matrix from* B to B* is the mverse of the transmon matrix

»from B* toB. :
S~y =y R v —. -V
. B B B*’ » R ’ K B*"B. . B~ -

4.3.,14' Theorem: With the foregoing notation, let va‘e_the‘transitioh '

- matrix from B to B*, and let Q be the transition matrix from B to B*. If.
- T: V- Wis any. K-lmear mapping, then the matrtces MB (T) andM .(T)
- are connected by .(T) P"IMB(T)Q

"Proof We have the followmg schcma

T o .
V. = W -
- B 5 B - -
- M)

" The K-linear trzinsforrhatiop T can be desribed also as follows." N

oo o T Sy
v s SR SRE g
S .. B* B - B B

MB‘( 1) M"m M7 .(,w>

V"zy‘k ' - : ‘ (1—12" | ')'



Now M (1) = IMEGIT = P and Mg..(1) = Q. By Theorem 43.10, ‘the-
‘matrix " associated - with T relative 'to the bases B* and B™*.is P~ lMB(T)Q
Hence ME(T) = P"M (DQ. ‘ : :
1y, - T 1
V-V = W W
B* B - B° - B*

ploMLT) @

43.15 Theorem: Let V IJe an--n- dunensmnal vector space over a field K
B and B* be K-bases of V, and let P be the transition matrix fromB to B¥,
Suppose T is any K-linear mapping. from V into V. IfM(T) is the matrix
associated with T relative to the bases B and B, and if M*(T) is the
matrix a\s()uated w lth T relative to the bases B* and B*, then

M*(T) P'lM(T)P

Proof ’Ihls is a specml case of Fheorem 43.14.- Usmg the dmgram )

- T 1
vV 2V 5 V- v
B* B B -B*
l)—l M(T) P

,ille proof'follows~immcdi:itcly from Theorem-43.10. . . -~ - O

43. 16 Definition: Lcl K be a field and let A = ((xl) be an n x m nmlrn

' with entries from’ K. Then lhc m x n-matrix whose j-th row, i-th column
entry. is equal to @ is called the transpose of A, and is written A':

Hence A' is obtained from A’ by chunging rows to columns and columns

' . 0 1

to rows. For lnsmncc _the _transpose of (l ) is 3 It follows from
_ 7 s) :

the definition that (AY)' = A for any matrix A.
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| 4317 Lemma: Lef K be a feld and let AB € Mat (K)', Ce Matm;k(K),"‘.
aeKThen@‘—' :
(A +B)'= A‘+Bl . (o:A)l a(A‘)

(AC)‘ C'Al.

Proof LetA—(a/)B—(ﬁ/)andC—(yl) where1—12 ..,n_/—12
and =12, ...k ThenA‘—(a)B‘—(ﬁ)C (yl)andaA—(aa) So’

((a ) (ﬁ ))‘—(a ﬁ )l

(A +B) c
R matrlx whose _/ th row i-th column entry is «; +B

(matrrx ‘whose Jj-th Tow, z -th column entry is a )
— (matrrx whose J-th- “row, i- th column entry is B )
—(a )‘+(ﬁ )l A‘+Bl - - L

matrrx whose J- th row, i- th column entry is aay

(@AY= (@)’ .
C a(matrrx whose j-th row, i-th column entry is. a )

a(a = otAl I

B ; (AC) = ma’trix whose ITth}row i-th column entry is the i-th
S - row, I-th column entry in AC -

matrlx whose I-th row, i-th column entry is Ea
: =l

matriX whose {-th’ row, i-th column»e"n'try is zyli c
. ]__1
(matrrx whose lth Tow, _/ -th column entry is y,)tlmes
- (matrix- whose j-th row, Zi-th column entry is a; )

_(Y)((X )l lAl i \ ‘ E ~_ . ~E]i'

43.18 Rémark: The results in this paragraph are .very, natural. ~All -
operations- discussed” here “are natural, and the vector spaces and rings of .
cthis paragraph arise naturally Another natural item is the 1somorph1sm :
in Theorem 43. 10 Lo '

There is, however "a ‘subtle” point h,ere.‘ Theorem 43.10 ‘is" true .only
because we write -the- functions. on the right of the elements on which



. they act! If we had wntten them on. the left Theorem 43 10 would read
- M(TS) = M(S)M(T) Of course this is: not as good as M(TS) = M(T)M(S) For:
this reason,’ people who wnte functrons on the left defme the - assocrated

matnces dlfferently If T e LK(V W) and vT Za Wi as in Deflmtron .
. e :

- 43.6, they defme the ‘matrix associated” with T (relatlve to the fixed K- .

baSes {(vivy oouvy ) of V;md» _{wl,wz, ...,w }‘ of W) to be. (a'i)' _Thus thelr
M(T) is-our M(T)!, a

their M(TS) = lherr M(first S then T) = our: M(frrst S, then T)t = our -

- M(ST)l = our (M(S)M(T))" = our M(T) M(S)t = their M(T)M(S) ' ‘

$0 that Theorem 43 10 is true in the1r notauon too 1In some books the -

forming of- the transpose is included  in the notation for the assocmted

Vmatnx More clearly, some- people wnte L ’ '

_ » vT Za W
T Tl ' L j=1 .
and - define “the matnx assocmlcd w1th T to be (tx ) Then M(TS) =
M(T)M(S) as before,’ but: the equauons dbove are not very sensnble for a;

P

depends prlmrmly on -i and secondarlly on J, so the indices occupy wrong .

places. In" our notation, ‘there is no “need for the artificial tr.msposmons.
nor do we wme the indices in the wrong order

"Exerci‘Ses‘ -
ComputeA+B and AB when
(0134 ' 171 -3 , i
2421 o lto3 -4,
A=l1 o030 |- B=|l202 1|inMa,@®)
61-1.2, No-210 Ce
and when.. o )
(33123 251 |
337271 0338, -
A=11 23TY)] B=l5 31T 2 in Mat4(27),
Uasr 0330 T

yy
L
e

;




2. Let Kbe-a ﬁeld and A ,B ‘€ Mat (K) w1th AB = BA Prove that (A +B)2

A? + 2AB +B? and (4 "'B)(A B) _A2 - B2, Show that these equations
need not hold if AB = BA. - - S ,

3, Evaluate AA ,A_3; LW where A is- given by "
001 ]and by A=|g 00 1 | GCeneralize to square matrices of n.
oo 0000 | L

rows _ -

4, Evaluate A AZ,A3 vy where A is grven by
1.10 3(1)}(1)8 B
{0 1 IJ and byA'=| 5 1 | |- Generalize to square matrices of.n
001 0001) - | ‘

© TOWS.

4. The trace of a matnx A= (a!) € Mat (K) is defmed to be the sum of h

the entrles on. the main dlagonal of A, denoted by’ tr(A) so that tr(A) = -

Syt o, F - Prove that tr(A) = tr(A‘) “that tr(AB) =tr(BA) and that
tH(CAC) = tr(A) for any AB € Mat (K) Ce GL(n K):

6. Let VW~ be vector spaces over a fleld K, let {v i€l} bea K bas1s of V.
: and let TS € LV, W) Prove that T S if and only if VT VS for alliel.

7. Let Vv be a vector space over- a ﬁeld K, with dth =ne N, Prove that
CGL(V) is xsomorphlc to GL(n K)o - '

- 8. Let o: R3 » R3 be'the R llnear mappxng for whrch u,e = (1 02) u,9 =
(01 1), U@ = (1 ,0,1), where, as usual, u =(1,0,0), u, = (010) u3'— (0,0,1).
We put v; =(-1,1,0), v, = (1,2,3), v, —(012) Let B —{u Uy,Us)s and B* =
(v},7,:v3). Show that B* is an 'n'basis of R3 and find the matrix of the R-

'lmear transformatxon @ relative to the bases (a) B and B; (b) B and B* (c)
-B* and B; (d) B* and B*
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R D S
S Determmants S . .

‘With each (sq'u‘ar"e)‘ :matrix over a field K, we associate an element of K, - -
cilled the determinant of the matrix. In “this paragraph, we study. the
properties of .determinants. ‘ o

Detcrmmams arise in many comexts For example 1f gl,az,bl;bz- elements
of a field K and if the. cquanons ‘ e

: sax+ay = 0
R . - bx+b2y—0- S : .
hold, then (a"b azb )x = (alb2 ‘ayb)y = 0. In §17 ‘we called a b b

the- determmant of the matrix ([ b)

Now [et'a3,b3,c1,c2, be furlhcr elemcnts of K. If R
' ' : lx+ay+a3 z. =0 ‘ o ,
bx+b2y+bz_0’ *
SOX + Gy + 62 =0, : B

then, muluplymg the flrst equation- by b2c3 b3 5o the’ second by a,c,
03, the -third by a,b, - azb, and addmg them, we -get Dx =0 whcre

: D albc‘ abc +a1b ¢y bc +abc a3l)2c

Onc obmms also Dy = 0 and Dz = 0. Here D rs a sum of 6 = 3! terms 7q; hr :

1\

where {IJ k] = {1 2 3] and the srgn of al)c is + or - accordmg as ( A) is g

an even or odd pcrm'utauvon in S-.

’Srmrlarly, when ‘we Iry to elrmm.ne X y z,u - from the equations -
: - ax +ay +az+au =0
_ I),x+l),) +byz+ b =0
- cx+c2y+(1z+c w =20
dix +d,y + dyz +dyu = 0,



xa,.bjckdl', where {i,j,k,l] {1,2,3,4} .and the sign of '_a'ibjr;kdl is + or -

C 12345 s PR Lt
according as ( ijk l) is an even or odd permutation in §,.

This pattern continues. The expressions we get in -this way are called

determinants. On changing a to o b to a2, c to oy, etc., the formal

defmmon reads as follows

44.1 Defmmon. Let K be a f1eld and

be an n x'n square matrix with entries from. K. Then the element

) 2 8(0)(11 lca22¢1"’a ,na . ) . to Ky
. ceS . .
- of K is called the determmant of the matrix A. It will be denoted as.
‘ ‘ , &y &gy +7s Gy, ;
o o : (o R & .
dei A, or der(A), or [ %2 21, or log.
| <a n2 a nn .

" Hence det A isa sum of n! terms These summands are obtained from the

'product 11090+ Oy of the entries m the main diagonal by permuting the
second indices in. all the n! ways’ ‘and attachmg a "+" or "-" sign according
as the permutauon is even or odd. Each summand, aside from its sign, is
the product of n entries of the matrix, the entries being from distinct
- rows‘and dlstmct.columns. The d,etermmant"-.ean ‘also be written

z a,, 1a°‘2 2" Cpng ” 2« 1,160%2,20" " % pg*
o€A; S geS M, e

542

we get D’x =D ‘y=D"z=Du =0, where D is a sum of 24 = 4! terms



44.2° Remarks: (1) ‘Determinants are defined for square matrices only.
Nonsquare matrlces do .not have -a- determmant Note that the determi-
nant of thel x 1 matnx (a) is equal to & € K. o o

2)- Def1n1tlon 441 makes sense ‘when' K is- merely a commutatlve ring.
. The theory in- this . paragraph extends 1mmed1ately ‘to the case where K is
a commutative ring with identity, We will not need thls general theory.

‘We observe only when R is a subring of K, and all entr1es of A € Mat (K)

are in R, then det A rs in fact an element of, R

‘Some fundamental propertles of detenmnants are collected -in the next.f

lemmas. A R L

44. 3 Lemma Let K be a ﬂeld and A € Mat (K) ‘Then det A det Al

- (The determmant does not change ‘when rows are - changed to columns)

k Proof LetA —(a!) and A‘—(BJ) 50 that o —[5 for all ij. Then

det A = Ze(o)al 162300+ %, o -

.na,
c€S, R

-As 6 Tuns through S so does c” .»Hence,.

de‘ A= 28(" )ay 1, lo* 1“220 15 &y el
_ - cES, .

- Usmg commutatrvrty of multlphcatron in K; we: reorder the factors in
~each’ summand with regard to their 'second 1ndrces ‘and _get )

det_ A= Ze(o )alol

1%26,2°* %o
o€S,

Slnce e(o h= e(o) forall o € S (1n case n > 2; ifn =1, there .is'nothing ;to‘

,prove for then A =AY,

’

det A= Ze(c)cxl "‘z.,‘z'--'-"ln';,n .
: oeS, e
=X 8(°)ﬁl.'loﬁz.’2°" -8

— - n,no. -
) F T o€S, i

T =dacAt o g
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744 4 Lcmma. Let K I)e afzeld and A€ Mat (K) lf each eltment in a

particular. row (column) of A s multtplted by y € K, then the' dctermt-
nant of the new matrix thus obtamed ‘is equal- to y-det A

- Proof In view of Lemma 443 it sufficés to ‘prove the statement about
TOWS: ‘only. Let A’ —(a!). Assume that the elements. of the k-th row are
mulnplled by Y. "The new mdlnx is (ﬁj) where ﬁ =aj for i=k *.r}d ﬁkj:
Yo, Thus L .

v

— . ‘

i 1By 2 E(G)Bl,lc""ﬁk,l.:c'".Bn,nc
oES,“ .

M

1§

T ) o oo e
€S, — . )

Y ZE(G)alla ck,/éa"'an,na.
g€s;, . : ’

C=vlel IR L oo

¥

'44.5 Lemma Let K be a field and A e Mar (K). Assume that each
element ak in the k th row ofA is a suin f}kj Lykj (each element a,jm ‘the
_k-th column of . A is.a sum ﬁzk + y‘k) 711en det A - is a sum. of two

determmams
S det A =det B +det C,

~where ‘B resp. C is zderttcal wzth A, except for the Akv-'th, row (column), in
‘which &y are replaced by f}kj resp. ij (o, are repluced by Bie resp. Vi)
Symboltcally _ : - : ' S

L n N 5
JPutta Bia - P | /
(.1".}. anz o am | )
%1 %2 % 1n %1 %2 %1n
i .pi.l. .ﬂ.k;. Ce ,t;k.n . ,Yl;l. Ykz ...... Y.k;.‘ |




: and

Oy -es Pt vy ey,

. anl . nn
apy e By ®1n & Y1k E1n
Z % B ok Coan | o %2 Yo *2n
%n ﬁnlc Cnn| o [ %m Ynk & nn

Proof: The proof- is shortermthz;n' the wording of the lemma. It will be
sufficient to prove the assertlon 1nvolv1ng TOWS only, and this follows
~ from - summing .- [ : ’
5(",)“1‘,10 "‘kkc “%na
=e(0)ay ), _.(ﬁk,ka * Veko)  Fnno
o . ?e(c)‘i_l,lq"'ﬁk,ka'",dn,nafe(c')all,lq‘"?k,ko'»"'an,nq ‘
overall o.€ §. - P P T = |

The last two lemmas mean that 5he determmant of a mamx is a lmaar
function of any one ~of its rows -or columns .

2

44.6 Lemma- Let K bea feld Ae Mat (K) and y € K. Then det, (yA)
y? det A

Proof This- follows from n successive appl1cat10ns "of Lemma- 44.4.
Altenatively, observe that,” when we .put A (a) each  summand

() (vay  Jr oy ). {va, ) of det (vA) is v times a summand .

,e(")“l,lo“z,za %y ng ofdel A, and conversely T =

44.7 Lemma:'Lét K be a fieldand AB ¢ Mat (K). If B.is obtained from

A by interchanging two~ rows (columns) of A, then det B = - det A (the

determinant changes sign when two rows (columns) are interchanged.)
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_Proof: We prove the statement about rows only. Assume A = (ay) and
—(ﬁ) and assume that B is obtained from A by interchanging the k-th
and m-th rows ofA so that ﬁ = for all u with 1¢k 1¢m and B‘ =

J
ij— akj for all j. Then \ 8
. r S N
det B = 2 E(q)ﬁl 10'»"ﬁk,ke’ ﬁm,mc"'ﬁn,nc'
] : S €S, i L ’ .
As o ranges over S SO does (km)o Hence we have
. det B %E((km)o)ﬁl,l(kni)c"'Bk,k(k;n)c"'ﬁr;z,m(km)c""Bn,n(km)c
g€ . . X -
E C S )
=T 2 E(()‘)ﬁl o7 Bk,ma"r"Bm,ka' " ﬁn,nc:
oe§, ) . )
== Z e(o)al’.la'...’am,mo..;ak'ko._..an’,'m - T
ages, - . . ) o
.= - det A. SR R =

44 8 Lemma' Let K be a feld andA B € Mat K) n=> 2 lf B is obtamed
from A by a permutation t of the rows (columns) of A, then det B
e(t)det - A . o : )

Proof: LetA = (“f) and B —(B/) We give a proof of the assertion about
TOws only. The hypothe51s is. that ﬁ for some tin S, . We write t as ~

T a product ‘of transpositions:

T=T,... T (rl,rz,...,r

, are transposmons in § )

SO that e(t) = (—1)" by definition, We introduce matrices oo
A= AAA A, A =B, )

Awhere each A is obtamed from A -1 (r = 12, ...,s) by mterchangmg two .
' rows ‘ - , .
Ag = (o), A "(“tw) A, —(a"x‘zn') Asy =('“"ﬁ5-,--f,.1J)’ A:=(°‘iw?--a4f;-f)'
,Then using Lemma 44.7 repeatedly, : ’ 3
det B=det A, =-det A_; =(- l)zdet A (—I)Sdet A,
' ' ' o= = (-1 )‘det A = e(r)det A. .. O
- 44.9 Lemma: Let K be a fieldand A € Mat (K), n > 2. If two rows.
(columns) of A are identical, then det A = 0. T ‘
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Proof:- One usually- érgues as f"ollow’s Interchangmg the two 1dent1cal
TOWS' (columns), the det A does not change., But it becomes'— det A by
Lemma 44.7. Hence det A =~ det A Thus 2det A 0. One concludes. from ,
thlsthatdetA 0. . S o -

ThlS conclu51on is justified when ‘we can d1v1de by 2 in K that is to say,»y’
if the multlphcatrve inverse of -2 “exists in K. Let us recall that 2 is-an
abbrevmtlon of - 1, + 1., where 1 is the 1dent1ty of K. . Since any - NoAzZéro

_element of K has an inverse in K “the conclusron is valld when K is a field
‘in which_ 1 +1 = 0. If, however 1 +1 -O(as in Zz), thls argument does'
not work. :

We g1ve an argument which works 1rrespect1ve of ‘whether 1 +1 =0 or
not. We prove the statement about” rows only. Reordermg the rows of A
“by a suitable permutatlon in S, we obtaln a matrix B in which the first

two . rows are .identical. and det B = 8(r)det A. Since det B =0 if and only if
_det A =0, we may assume, w1thout loss of generality, that the first and. .
second rows of A are 1dent1cal We.prove de_t, A 0 under this’ assump-"

tion. ‘

= @y &gy |

Let A ((x,) w1th ;= for all Jjolfn = 2 then det A= = z

1 %12 - |

0‘11“12 12“11 =0. Let us suppose now n > 3_ ;Then ; ]
detA— zalloa220a33a .ho - 2&11002200330 ,na'(i) \

- ceA, : EXTAE -

As o rums through A the permutzmon- (12)c runs through S \A e Ifence

the subtrahend - P ]aanoa”a'..an,;oin (i)'is equal to e
. : K ’ c€S\A C c . : - :

{

2« 1,1012)0 %2,2(12)0 %3,3012)0 " ** %nn(12)0 .
a€A, ) R o ‘

= Z %, 2002 loq3 30 “un,na oo . .
: o€A : o ) Lo
= Z oy 1o°‘1 2003 30°+ %, M(commutatwrty of multiplication) -
S0€A, i : S

= ) 0,0 20(13 30",- @y no - (first two rows are identical),
cEA, . Cos o



which is the minuend in (i). Hence det A = 0. o : o

It will be convement to 1dent1fy the i- th row .

ll G - %in
of a matr1x A= (a) € Mat (K) where K is a f1eld w1th the vector

o ) (all Gy et am)
in K" =Mat (K) S1m11arly, the j-th column

. alj'

. . . %y
of A will be identified with the -vector (matrix)
b (le : A . .
Goj : -
: A _ Cnj
“in Mat, [(K). 'Thus it is meaningful to speak of K-linear (in)dependence of

rows ‘and columns of a matrix. Likewise, we ¢an add two rows (columns) o

and multiply . them by~ scalars

44. 10 Lemma: Let K be a ﬁeld and AB € Mat (K) n= 2, Suppose that

B is obtained from A by multiplying  a parttcular row (column) of A by

-some y € K and adding it to a different row,(column) of A. Then -det B =
det A. (The determinant does -not change when we add a multiple of a
- TOW (column) to another) ’ :

Proof: We prove the assertlon about rows only. Suppose .that the k th

row in A is multiplied by y € K and added to the m-th row. Writing A =
’ (al,), = (611)’ we have b yak}-k x, and ﬁ = (x] for i=m. Lémma 44.5

gives det B.=det C + det- A where C € Mat LK) is 1dent1cal with A except

for the m-th row, which. is y times the k th row of A By Lemma 44.4,
d(gt C =ydet D, where D ¢ Matn(K) is identical wrth A except that “the -

m-th row of D = the k-th row of A = the k-th row of D. Then det D = 0 by
‘Lemma 44.9 and det B =y-det D +det A=det A. "~ - -~ o
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i 44.11. Lemma Let K be a field and A € Mat (K) If every. entry in a
- 'parttcular row (column) ofA is equal o 0 €K, then det A =0.

. Proof LetA —(a/) Under the hypothesrs of the lemma “each summand ’
(9D 1% 900Gy o (o€ S ) of det A is- zero, for- one of the factors is zero

Hence»detA}-O R, =

44 12. Lemma Let K be a feId and A € Mat KD If the rows (columns)'
of A dre ltnearly dependent over K, then det A= 0

Proof: ‘When 7 = 1, A must be the matrix (0)(see Example 42. 2(a)) and 7:

' det A = 0. Assume now n =>. 2.-We prove: the assertion about rows only.
" If the rows of A are K lmearly dependent then there are B,B,, ....B, in K

. such that ,
, B, (lst row) + 52(2nd row) + . ¥ B, (n th row) (0 0, )
and not all of 51,62, B, are. equal to’ 0 € K. Suppose ﬁk S 0 Then B, has _
an inverse ﬁk in K. We multlply the i-th row “by ﬁﬁk ,and add the ‘

.product to the kth' row; we do this for. each i = k. Then we obtain a
matrix B whose determinant is equal to der A by Lemma 44.10.. On - the
other hand, th the k-th row of B conmsts entlrely of zeroes and det B=0
by Lemma44]1 Hence det A=0. . - - '~ : R o’

. Now we want to discuss the _calculation of determinants. In practice,
Adeterminants.'are -almost’ never computed from the definition . s
| ’ (Erg E(")"‘1 1a°‘220 .,na

- -Rather, a- determmant of an n x.n matrix - is. expressed in terms of the
determinants -of certain’ (n-1) x (n~- 1) matrices, . these in turn in terms of
the determlnants of certaln (n-2) x (n-2) matnces and so on; untll we -
come to 2 x 2. matrices, whose determmants are evaluated readily. 'llns
reduction process is known ‘as the expansion of.a determinant along (or
by) a row (column).- To describe this process, - we introduce a de_fmltlon.

~




44.13 - Definition: Let K be a- field Aand'A (rx!) € Mat. LK), with n =

Let M ‘be the (n-1) x (n-1) matrix obtamed from A~ by deletmg the i- th'.

TOW and the j-th column of A, which intersect at the entry «; .of A. Then

(- 1)'+1detM is called the cofactor of o in A. We write A for the cofactor
of & in A,

“The .follqwing_" lemma justifies the terminology.

44. 14 Lemma: Let K be afeld and A = (a!) € Mat LK), where n > S2. Let‘

k,m be fxed elements. of {1,2,-...,n). Collecting together all terms contain-
ing X S ‘

det A= z E(""")_(Xl,h-;aZ,Zo'"q'l,no :

. 0€S,
we write - : : _ )
: det A= (xk Cim + terms not contammg ®pe
' The Com hawng been defmed umquely in thzs way, cIatm.

(1) Co = = cofactor of X, = AM,

(2)~ cnm =4, foranym=12, .. .,n,
3) = Akm'for any kym = 1,2, ...,n
" Proof: (1) We have

det A'=ZE(O)(111(1220 N - v, , -

€S,

)Y e(0)ay 1,9 95 %t (n-1)s Fnne T LE(O)O{II "‘22« <Gy o
gES, ’ ) <. o€S,
no=n e - : no=n

o z E(c)al 1a°‘2 20+ n_l (n;i); + terms not involving o,
OES, B ’ ‘

: no=n o o

Any o€ S with no =n can be regarded as a permutatron in S ,» and any

_permutation in S, can_be regarded as a permutauon in S wrth ne =mn.

Here €(o) is mdependent of whether we regard o as an element of S, or

of S,- Hence B



L i

(2) We prove Con

s
LR

Con = 2 E(")"‘1 10%2,20° *: %n- ,(n-l)a . Z e(")“l 1o°‘2 2" _“n-1,(n-l)a
- a€S, g€ ) ) e
‘na=n . L Lo o
' pp %pz - ’“1,,.-.1' -
of %21 %22 -0 C2m | 40 .
T . ’ln.
) f
\. n—l 1 n—1,2 an—l n-1

A for all m = 12 .. "The'.case m =n havmg been

settled in part (1) abovc we assume m < n. Cons1der the matnx B

‘{"i,mq Xy

1 ® Lmel & 151 °‘1_m’
a1 Com-1%m % 2mn % 20-1 %2m
a-131 * 0 X pimel “)i—i,n Cplmtl %11 %n-1.m
anl :'_';, anm-—l Cpn a>n,m+l an,n ] am -
obtamed from A by 1nterchang1ng the ‘m-th and n- th columns Then we
have det A =-detB by. Lemma 44.7 and, by part (1), ‘
det B = a det M + tcrms not mvolvmg F

@)

where M 1is the (n 1) X (n 1) matrix we obtam from B by deletmg its n- th
row and n-th column A glance at B reveals that M is obtalned from

-l/ .

%1 LT “\1,’n+1‘-‘ R 1;.-‘1 Xn
. i Lo
o ®2 “2;,. 1 %omy - €& 2,;-1.“2,:
M,,= S
%11 0 Fpimcl Cnelmi Epe1p-1.%0-1,n

by n-1- m interchanges of columns. Hence det«AM = (-1)"Lmggy M=

- . :
~ (et M,

4 ‘Het A=-det B=qa,

;4A Substltutmg this in (ii), we get

(- des M) - tcrms not mvolvmg &
= A -
L nm nm

nm'

4 terms not involving «

-as was to be shown. o <

(3) We now prove Ckm = A

for all k m. The case k=

. "‘settled 1n part (2), we assume k < n We consrder the matrlx C obtamed

L% S IS P T S et e e P T T I B
MATARY: [ BT e Slerlo s NI U st Thdiy oAt AT

LSS :

n havmg been B



A from B by 1nterchang1ng the k-th and n- th rows. Then det C=- det B =
- det A by Lemma 447 and, by part ), ‘

det C— ak det N + terms not mvolvrng “k

where N is the (n 1) x (n 15 matr1x we obtam from c by deletmg its n-th -
_Tow and n-th column. The matrrx N is obtained from M, by n -m - 1
interchanges of co]umns and n k-1 mterchanges -of rows "Hence

det N = (-1)<"7"'1>*<"*">dez M, = (-1)ndet M, = 4,

end . .det A =. det C = “kmA,k;n + terms_not 1nvolv1ng K

This completes: the proof. S S \ e o

44, 15 Theorem Let K be a fteld A= (a!) € Mat (K), where n > 2 Let _
A, ; be the cofactor of ain A.Then : '
detA-—aA +°‘12A12 o A

il il in""in

det A= aUAU+ azﬂzl " "'“n/Anj

for allij.
Proof: We have det A = 28(0)(11 1a°‘22a e
ag€S, '
= 2 €(0)0y 1,020+ Cp g '+ Z e(0)ay 1,0, 20" Oppg 00
€S, . 1 ~
jo=1' T . o . lo=2 o
* 2 8(0')“1 la (12 20 ,na
. o€S,
io=n
11611 o 2 12 ~t atncm
- azlAtl * 012A12 -+ amAm

'for any i. Thrs proves the first formula Applymg it with A‘ j in place of
A, i, we obtain the second formula. . B s |

"The ﬁrst formula in Theorem 44, 15 is known a& the. expanswn of det A..
“ along the- i-tit row, the: ‘second. as; the expdnsion. of det A along the j- _th
 column. Each element-in. the i-th row (j-th" colymn) contributes a term,
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more specrfrcally al contrlbutes aJA,, where A, is ‘the determrnant of the
/(n 1) % (n- 1) matrix obtamed from A by ‘deleting the: row and column of
, times 1or 1, determmed by the chessboard pattern

+_ +_ . -
- +-... + et ) o {' : ST
v'+_‘+_ e '
~,+»;~+'

The expansron along a TOwW .Or column is sometimes grven ‘as a recursive
,deflnrtron of determmants in terms of determlnants of smaller size.

A s'pecific ~determinant is computed as follows. -If a row ‘or. column

consists of zeroes, the determinant is 0. Otherwise, we choose and fix a

row ‘or column. It will be convement to. choose the row (or . column)
which Has the largest ‘number of zeroes.. At least one of the entries on
- 'the fixed rtow: (column), say B, is dlStlnCt from 0. If a column (row)

" intersects our fixed row (column) at -the entry Y, We ‘add -yB~! times’ the

column (row) of B to that column (row) We do this for each column
(row) “This does not change the determmant but our f1xed Tow (column)
‘will consist entlrely of zeroes, except for the entry B. Expandmg the
determinant’ along the flxed row (column) we . see that the_ determinant
is equal to pD, where D is the new ‘cofactor of B. We, repeat - the .same
'procedure with the determmant D, and obtain D = ﬁD’ say. Then ‘we
repeat the same’ process with D”, etc.; until we’ come to a 2-x 2.0r 3 x 3
determrnant wh1ch can be computed easrly o » -

44.16 - Examples. (a) Let K be a fleld and x ,xz,. X, elements in K. We

\ .
. 11 1 -
. : ) n - .
i L2 2.7 2
“evaluate det (x/ h=|x" . . x°.
x n-1 xzn—ll x n-1
\ n:

'Thrs rs known as the Vandermonde determmant Let us. denote it by D

We add —x t1mes the i-th row to the (l + 1)- st Tow (= 12 - 1) ’lhe
" only nonzero entry in the new last column will be the entry l in the -Ist
row, n-th’ ‘column.‘ Expandmg D’1 along the last column, and taking the




~ factor X - x in the i-th column of  the cofactor“ outside the determinant
51gn by Lemma 44.4 (i = 1,2;...,n-1), we obtain .

- R ,\ —( 1™ (x, —x)(x %oy =)D,y :
’ Thxs holds for any n: Thus D ‘ | L
'—( DG, —x)(x2 PORNCAREED FE
=D 2(x Xpe )X = X, ) (X g =X, D, 5
= (_1)(n-1)+(n—2)+ 4—1‘_(xI - _’xn)(xz -x) . (x 4 xn)(xn S X )( - x)

. . ’ (xl - xn-;ll)(xZ B _xn-l) ';'(xn43 n-l)(

-2 x -1)
(xl,"'.'x,,_z)(xz -X,5) (X, 5 - .

n-z)

(x - xz)

Changlng the 51gn of the (2) factors on the rlght hand side and noung
that (n - _1') (=2 4+ 1= (2), we finally get

D=1l G;-%, -. L
i ) . ‘ -

. the product bemg over all (2) pairs (1,]) where ij=1 2 ..,mand i> j.

Vs

(b) Let K be a field. The determinant of v'a' matrix (aij) € Mat;(K) where .

a.. = 0 whenever { > j, which may be written symbolically

' 308 %3 ces Ay,

Qg Ggg vee Oy
&3 O3,

0 -
. . a;m
! -

~can be evaluated bvy‘expi‘mding suocesswely along - the first columns. One
finds 1mmed1ate1y that fa, Jl—-a“azzcx% L1kew1se, the determmant
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‘“11; S . . SRR
T | % %2 O o T
o ‘ 03y 033 O3~ oo T
T , - % anZ 3 Gy

is evaluated to’ be (1“(122(133 a - In  particular,. the determm‘apt‘oif a-

nn. .. . -
. . . : !
dlagonal matrix . - 7 B
. a B
11 .
) %22 -_‘O
. R < -
..a -
nn
N N )
180410030+ By ’

' What happens if -we use the cofactors of  the elements in a different row

(column) in the ‘expansion along a particular row (column)? We get zero:

44 17 Theorem Let K be a feld A= (ai) € Mat (K),n > 2.Then -~
“A 1ttt =00

T : 1/‘|m+02/42 " +an/(‘r.|pn~=‘0

whenever i = k andj Z=m.

’ Proof: Th.e first (second) sum - is fthe expansion, along the i-th row (j-Th
column), of -det” B, where B is the ‘matrix obmi’n_edl from A . by replacing :
“the k-th row (m-th column) of A by its i- lh Tow (j-th ‘column). Since 1wo
rows (columns) of B are identicali-det A = 0 by Lemma 44.9. The fesult. '
_follows o . _ : T. L . . ‘o

- R - o e AN

-Using Kronecker's- delta, which is defined by

— . .
555 :




. _ lif‘r=§
- s L 0 ifr =5,

so that (6,) is the 1dent1ty -matrix 1 in Mat (K) Theorem 44.15 and
Theorem 44.17 can be - written : :
a,lA“+a2Ak2+.'.. +ainAkn=61lkdet A
< 1/41,'”+a2f12m+.., +an/4nm:6ﬁ"det A_.‘

"To express these equations more- succintly, ‘we introduce a definition.

44.18 Definition: Let K be a° field and A= (a,) € Mat (K) where n> 2.

The n xn matrlx obtained from A by replacing the entry oy by the

cofactor A of L m A is called the adjoint of A. Hence
the - adjomt of (a,) = (A,)

Using this tcrmmology, the equatlons above can be written as matrix .
equatlons ) ] ’ ‘

: A (adjoint of A)l = (det Al S
A'-(adjoint of A) = (det A)I. ,
Takmg the transposes of both 51des in’ the second equatlon we obtam

| 44.19 Theorem: Let K be a field and A € Mat (K), where n> 2. Then
A-(adjoint™ of A)' = (det A)I = (adjoint of A)“A. : o

<

44.20 Theorem Let K be a field and ‘A € Mat (K) Then A is invertiblé
Cif and only if det A € K*. If this is the case, the "inverse A~ Lof Ais gzven
" by the formula :

KA'1 I A(adjomt ofA)l

where m denote; _the mv’erse of det A .n; AK.' _

556



Proof: If det A = O then (det A)1 =0 € Mat (K) hence, by Theorem
44.19, A is a left zero divisor and a nghl zero lelSOl‘ in the rmg Mat (K)

From-Lemma 29.10, we deduce that A cannot have-a left or right inverse.
Otherwise, det A = 0 and det A has an inverse Eﬁ; inK Hn=1, tbeb

A= (det A) and ( ‘Y is the mverse of A.lf n > 2, we muluply the»

1
det A’

members of lhe equauons m lheorem 44, 19 by Tl_— and  obtain

1 l = 1 l

| A- Tei A (adjoml of A) I= ToT A (adjomt of AY-A
This sliows that Te 1: 7 € (ad_)omt of A)l is an inverse of A. So A ¢ GL(n K)

-and, sin'ee GL(n,K) is a group, A has a unique inverse. Hence
1 . - ’ ‘ -
Tet A(ad_]omt of A) is thc inverse A™! ofA SR a

The next theorem is another testimony for the use of determinants.

' 44.21 Theorem: Let K be a field and A € Matn(K,). Then ‘det A =0 if and
only if the rows (colitmns) of A are lincarly dependent over K.

. P’roof If thc rows (columns) of A are hncarly dependenl over K, then
. det A =0 by Lemmu 44.12. : :

j'Assumc convcrsely that det A =0. Let A = (a; ) Let V be an n- dimen- :
sional K-vector space and let [Vi"'z' sV } bea K basis of V. Then the K-
lmcar lrdnsformuuon T € LK(i V), given by

VT za
has - lhe associated matrix ((xj) = A Wthh is not invertible since det A =
0. So A is not ‘a unit in Mat (K) and T is not a unit in L (V V). Thus T is

not dan isomorphism. From Theorem 42.22,-we conclude that T is_not onc-
to-one. Fhus Kcr Tz [0). Let ve KerT, vz 0.. Wc thC v

V= ﬁl 1 + 62"'2 -+ ﬁ V
. for some sulldblc ‘scalars B; € K ~Hlere not all of B; are cqual to 0, becilusei

v (0 and [v Vi oaV, } lSdK basis of V. Then -
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. o n§.~ . v - n . n no- - l
0=vT= (2 ﬁivi).T 2 A (VT) 2 ﬁt 2 a =(2 ( 2 ﬁtalj)v
SRS S B : T =l 'j=l i=1

so E o Zﬁ,au—Q fOI‘j—12

since {v,vi SV, ] isa kK- basrs of V Thus _

: ﬂl(lst row) + 52(2nd row) +o0n B, (n th row) = (0, 0 0) |

w1th scalars 51,ﬁ2,. ,ﬁ € K -which -are not all equ'11 to 0. So the rows of A : “

are K- lmearly dependent Repeatrng ‘the same argument ‘with A‘ we see.
that the columns of A too are K- hnearly dependent FE T =

”We now estabhsh ‘the multrphcatlon rule” for determlnants

- 44, 21 Theorem Let K be a feld ne N : o IR

{1) det (AB) = (det’ A)(det- B) for, all AB € Mat (K) e -
(2) det I'=1. B
3). det Al = (det A)"l for all A € GL(n K).

e

~Proof: (2) That det I 1 s a specral case of the formula for "the
'determmant of a dlagonal matrix discused - in Example 44.16(b). And 3
follows from (1) and (2) (det A'I)(det A) det (A'IA) = det 1,— 1.

We prove (1) Let A = (a) B = (s, , AB -(y,) so that y, = 2 « kﬂk for all

R T Y12 Yln
Ry S ' Yoy Yop o« s ¥ R -
‘i;j. Then det (AB) = 21 722 R
o ARCRENS Y
n T
2 lkﬁkl 2‘_‘1/&2&/:2 2 B,
k= =1
nooo~ n -, n
= 2o By 2 %o B2 DL oV
' kl= . k2=’l ] ~ 'kﬁ=l
n - R " - ‘:A' "
DI 2 @B kDY ki Bi n
k1= . 2= P k;‘=]

558



14,81 1/<25/< 2 OBy

| = i i i | azk‘ﬁk?.lv'az"zﬁ"—zz o ‘ 24, Pt n (Lemma 44..5)

P e S S . S .
' %o Py nkzﬁk 2o Oy Bl 0
, i °‘1k 1k 1, ‘
n o n : oy "Xgp™ v e @ ) R
: 2% 2%
2 2 .. 2 B k, lﬁk 2t B ! 2 - » (Lemma 44.4).
k=1 k,=1 k= L 5 . .
’ ‘ Ok, Fnk, E ok, '

In this n-fold -‘sum, kykys .,_k,; Tun independemly over 1,2, ...,n.If,
however, any two of k .k, ...,k are equal, then the determinant b oy, I in
the n- fold sum has two identical columns and therefore vanishes (Lemma
ﬁ_44.9). So we may dlsrega_rd those combinations of the indices kvkz’ ...,kn
which contain two equal values, and revstri'ct' the n-fold summation to

those combmanons oFkl,kz, ...,kn'such thatfkl,ki, ...;kn .are all distinct:

"Then the n-fold* sum becomes

T, Fgy v 1k
2 B ﬁ‘ B GZleZkz PN (sz
k1Y k2° " Fkon

(k kz )cS o o ankv1 ankz ank,|
P . : . . %115 1,20 1,n0
. ’ o ) aZ,lc a220 ctt a2,na ' )
- 2 E(c)ﬁlc,lﬁZa;Z;"ﬁnc,n' e(o) e -
ocS, o e e e e s
’ an,l o an.Za < nna
. e S D RRab VIR R P e ,
: Byy Kgya'e 'y Ay .
_ J21 P22 2
- 2 e(c)ﬁla lﬁZO 2 ﬁ a.n 1 ) . nt- e (Lcmma 44.8)
P e R o ‘
’ ) ) Cnp Cpp v o0 Epp

Y e(a)8,, ABoazre-Pro,n (et A) = (det A)(det B) (Lemma 44.3).

a€S,
.

I{ence det AB*(det A)(det B). - . T e o
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‘ The equanon det AB = (det A)(det B). may also be" wr1tten 1n the’ forms

det AB. = (det A)(det BY, ‘ - L
det AB = (det A‘)(det B), ST
det AB = (det A‘)(det B‘) ' E

So ‘there * are four' versions. of the multlpllcatlon rule for determmants,’
known ‘as- the rows. by columns multlpllcatlon TOWS by rows multiplica-
tion, columns by . columns multlpllcanon ‘column’ by TOWS multlpllcatlon, .

Wthh are respectlvely descrlbed below:’

I K s a field, (a,), (B, (v) € Mat,; (K) and if

-

_The kernel

L - S0 T
Y= k§ aby for all 1,1, - or
s - n . B . —
"Yij=kz kﬁﬁ for .all i,j, i ~or.
= » “kzﬁ/q - for all. i,  .or.
T k=1 Co o
" )’i.i:,glakiﬁﬁ oo foralldy

Restrlctlng the mapplng det: Mat (K)—~ K to
: GL(n, K) = (A € Mat, (K): det A € K*)

(Theorem 44 20) “we- obtain a group homomorphrsm
det: GL(nK)—» ’

[AeMat(K) detA—l} R

of this determlnant homomorphlsm s a- normal subgroup of GL(n K),

known as the speczal lmear group of degree n over K, and denoted as

SL(n K).

Exercises

L,

1. Venfy that the determlnant of a 3 x 3 matrlx (a,) can be computed as

follows We wrlte the first column of the ‘matrix to the right of the
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matrix and the second column to the right of  the last wrmen copy of the
- first column : :
pa | Oy O3 By By

g1 Fgp Fa3 %91 %o

: 0y O3y By3 B3y Oyp . : .
'We take the products of -the upper-left, lower-right' diagonals (full lines)
unchanged, the producls of ‘the lower-right, upper-left dmgonals (broken
lines) with ‘a minus sign. The sum of these six- producls is the determi-
~nant _of (“z,) (This rule cannot be ex_lenled to-n x n- matrices if n is

grealer' than 3).

2. Compute the determinants of the followmg matrices over Q:"

135y "~ (145 © (125 1L.01
@0 1 6f; (b)[IIO)-,' (c){134], (,d)(1 21&):
{002 122 102 342
1 00 7-3
211y (1);_;“5' 4 4010
|3 10f (B 110 10 (@ {2 -82:-1 4
-0 32 010 4 2.1 52 -1
: 1010 2

ud

3. Find der A if A is the matrix F?

T
0jin Mat . (Z.).
g ZJ R

4. Expand along the third ‘column:

1 05 40
3-2-13 1
0-3 12490
1 2.0 2 4}
6 1 21 -1
- 123 Ol 124130
5. Find the adjoints of [ 01 l) and | 5 5 01
_ -2.0 4 :
. 5162

6. Find the inverses of the following matrices: .

. (I A (0‘1 3 : T,
(0 -2 3 1 over®; (b){5 4 -2 |over Q: (c) 7
SRR G {2—1 1 0

(RS RCC S |

D .

0| over Vi
2 S
‘4
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| over .Z'”

.¥©

B

Nduidd
ol od
Ul N R
‘Nﬁadu

7. Let K be a f1e1d and n= 2 Prove that ,
“adjoint of (adjomt of A) = (det A)"'ZA '
\for any Ae Mat (K)

8. LetKbea fleldand n> 2. Letx,y € K and put

Express d, 1n terms of d o and d,_,, and evaluate it in closed form R

o, ‘Fjvaluate. the’determlnant 7 B
(\",'+g';l) (c+1m) (c+,;+1) ‘1 o (c+m;m'1)‘
(cBm) ‘ (c+m+1) (c+m+2) L (c+r'r:l+m)

| (“*,""J ey omemy (@il (“*‘"*Z,’""*’S |

‘10. Let ¢ € N and"assume that K is a field of ¢ elements. Using 'I‘Heorem '
© 44.21, find the orders of the groups GL(n,K) and SL(n,K) (cf.-§17, Ex.17).
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§45
Linear Equations'

et K be a field and o, 8; € K (i=1,2,...,m; j = 1,2, ...;n). We ask_if there -
are elements Xy Xos ...,x'; in K ‘such _that ) :

o X +°‘1"2x2+"'+°‘1x =B .
o‘21”‘ oty t +°‘2nxn—52 . ) (1)

‘_(1) is “said to be a system of linear equatlons We w111 not treat the
general problem here. Our objective is this paragraph is to derive
_necessary. and sufficient conditions for the solvability ‘of (1) in the special
_case m =n. Concernin'g t»_hef:ase_ m#n, w¢ will prove only the following
consequence of Theorem )42.21. . ‘

|45.1 Theorem: Let K. be’ afeldandcx eK(1_12 ~j;12' n). If -

n > m, that'is to say, if there are more unknowns than equattons ln the
system ' . S o T

) Oy Xy e g X =0 ‘ .
Gyt Oyt t g X, =0 ' @

" then there are elements XXy o X, in K, not all of them being zero,
which satisfy the system (2). o
Proof: Of course x’1; ='x2~= seee o= xn- =0is a sblution of (2), called “the

trivial solution We - ask whether nontrivial solutlons of (2)  exit: The’
claim 1s that there. does exist nontnvral solutlons of (2) when n> m.

e
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f*

. Let A ={a € Mat,(K). Setting X = | 2 € Mar_ (K) and~

L n
0
0= [eMat . (K) we may write (2) as. a ‘matrix equation:

'Thc problem is . thus: .given A é'M‘d’t (K) is theré a nonzero X in
l(K) such: that AX = =0 € Mat 1(K)') E ~ B

Since A(N + M) = AN +AM and A(aN) = a(AN) for any N M e Mat’l l(K) C
and « € K the mapping

- . P Mat’l 1(K) Mat (K). _
. "N -— AN. '
s a vector space homomorphlsm From Theorem 42.21, we obtam
' ‘n= dthMat’l l(K) = dimgKer ¢ +dim, Im o

: < dimKer g +dlmKMat l(K)
; ) ) = dlmKercp+m, .
$0 R o ’dimKKer¢p>n m > 0,
' ... Kerp= {0} < Mat_ (K), )

and there does exist an X = 0 in Ker @. So there is a nonzero X € Mat" 1(K)
~with AX =0, as was to be shown AEER - . a

-

i

45.2 Theorem: Let K be a feld (o ) € Mat (K) and let 51,52, . ..,s"-;b e
’elements of K.If det (a; ,9 = 0, then the system '

. auxl-i-alzxz ---+¢x1n"—§l.\ . -
xlf’""_‘zz"z'*v“'f"'uxn:ﬁz T R O

.....................

has a umque solutton in K gtven by . o - o
o det B; :

“der(op. - UFLRem
: where B is the matrtx obtamed from (a ) by replacmg its j-th column by
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Yo B

Proof: Let A = (x), X =|.

n

x2 . . . 52
“leMat, (K) qnd B.=| " |e Mat,_ (K). Then

- (3) can be written as a matrix equation:

:Mulllplylng both ‘sides of (4) on the left by A7!

we oblam ‘

AX=B. o R @y

| S ‘\1
det A«(ad].o‘mt‘ of 'A),

(ad_]omt of A)‘B ()

: 1
thA

Also,. multlplymg both sides of (5) on the left by A, and using Theorem
44.12; we obtain (4). Thus (4) and (5) are equivalent. So the system (3)
or (4) . has a umque solution given by (5). In more detail, when we write
A for the: cofactor of ; _in A so that (ad_]omt of A) (A})’ the solution is

glven by

%

- X

x

n

-4 -

SO X = __I._(ﬁ

7 det A

) (Au Ay a (P
_1 1ApAn. w2 || P2
det A|  .... 0000 :
KAln A2n Ann ﬁn
C [Anb Ay + + A8,
L [Aph + Apb, + + A8,
det A A - :
Alnﬁl + AZr'iﬁZ + +,Annpn‘
A, it ﬁZA‘Zj +-0- 4B, A ) forj = 1,2, ...,n. Comparing the

. exprcssxon in paremheses with lhe expansion

lﬂl/+a2ﬂ2/ ” nj nj: e .

(Thcorem 44, 15) of del (a) along the j-th. column we sce that the paren-

thetical

v

expression

is the expansion, along the j -th- column of the de-
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.termmant of the matr1x Bj that is ‘obtained from (a ) by replacmg its j- th
5column by B. Thus ’ : .

Cdet L
e Y TGy 0 UFReem
as’ claimed. CREEET D T
: det B; : - . = ]
’ The formula x; —; is known as.Cramer's rule after .G. Cramer -
J det( )' . BRI S C T , »
"'(71704-17_52). : L e =

145.3 Theorem: Let K be a field, (a,) € Mat (K). The system -
. ""11*;.*,“'12"2»""V'.'_"'“lnxn‘: o o

f’zl".1+°‘22’f2'_+_'f'+,f?2nxn=,9» BT ©

*-has. a*nontrivial solution in K (i.e., a solution distinct from the obvzous
one x =x2= . =X, =0), zfandonly tfdet (a) 0. . ~

. G

Proof: If det (o, ) = 0, \then the system ‘has’ a unique solutlon by Theorem

452, Whlch ‘must- be X =x, ==X, = 0, as follows also from Cramer's

rule for the ‘numerator determmants having ‘a column’ con51st1ng “of

. zeroes only, are all equal to 0. Thus, 1f the system has a.nontrivial solu-
tion in K, then det (a ) must be zero.

Suppose conversely that det (a})‘— 0. Then the columns Of (a) are lmear-f
~ly dependent over K (Theorem 44. 21): There. are elements 51,52, e esB,
K, not a11 of them bemg zero such that _1 '

“i; (e T () (0

)| %0 %n | |0
Bl o TP N
(an' f'. anz ’ \ q’ln / 0 E s
Thus x, =y, X, = By, .-, %, = B, is a nontrivial solution of (6)- = = o
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- 45.4 Remark: The theorems in ‘this paragraph are. chi_efly-of theoreti_céi‘
interest. Finding solutions of specific systems by the methods. described
“in this paragraph’ would be very tedious. . ' ’

Exercises .
1. Find all solﬁtions of -the following systems of-linear equations:

(a) | T .0 3x +4y-5z

=-1
2x-3y+z =3
2x + y+62=0;
(b) C 4x+ y-5z- u=1

6x +2y -3z +3u =8
-4x+ Sy-2z+ u = ,
2x  -T7z-3u=0. . g ) i

2. Using Cramer's rule, find the solutions in Z,, of the follrowi'ng‘ systems
~ of lincar equations, where "~ denotes residue classes modulo 13;
(ay -~ . - Zx+1ly +4z =T

s Bx+By +3z =
U+ 12y +3z =7,

(by o Zx+ My +3z2+3u =3

o : B +TOy+6z+7u =2 -
o Tx +9y +2z2 +Bu =

3x+Ty +0z+35u =3




§46
- Algebras

N 5 S e o e L N ‘
In this last paragraph of-Chapter 4, we consider multiplication of vectors.

If, on a vector space, there is an -associative multiplication. which is dis-
tributive- over addition ‘and' compatible with multiplication by scalars,
the vector space is said to be: an algebra The - formal is deflnmon is-as

follows.” e oo

. 46.1 Defmltlon. Let K be a f1eld and (V +) an abehan group A
. quintuple (V,+,,K,) is called an algebra over K, ora K~algebra provided

(). (V+o)1sar1ng, co
(n) (V,+,K, )1savector space, e .
() (aa) b—-a(a°b)=a°(ab)f0ralla€K abeV

It is implicit in this definition that © is. a binary operation-on V, called-

- multiplication, and s a mapoing' from K X V into V, called'multiplication
by scalars As usual, we drop these symbols and write aa for.oa, and ab -
for a>b. Then (i) becomes a kind of assoc1at1v1ty law (aa)b a(ab) =
-a(ab). As usual, we shall call V rather lhan the qulntuple (V +,0 K,-), ak--

algebra . . . ‘/‘_

s

A

Examples (a) Let K, be a f1eld and L a field contalmng K. Then L is a

‘algebra over. K.

(b) Let K be a f1eld Then Mat (K) isa K -véctor space (Theorem 43. 4)
and also a ring (Theorem 43.11). Since (aA)B = a(AB) A(aB) for all « in

K and A,B in Mat (K) ‘(see (e) 1n §43, p: 533 ) we conclude that Mat (K);

is'a K- algebra

(c) Let X be a field and Va veclor space over- K Then LK(V V) isa K-
,vector space (Theorem 43 1).and also a ring (Theorem 43. 12). Moreover
- whenever « € K and T,S € Lg(V,V), there hold
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V((aT)S) (V(aT))S ((aV)T)S—(aV)(TS)—V(a(TS))

V'and

U W(T(aS)) = (vT)(aS) = (a(vT))s = a((vDS) = a(ATS)) = (av)(TS) = v(a(TS)) .
~forall veV, thus (aT)S = a(TS) = T(aS). Thus LK(V,V) isa K- algebra. '

(d) Tet K be a field and x an mdetermmate over K. Then K[x] is a vector
space over K (Example 39. 2(d)) and also.a ring. We have (af(x))g(x) =
a(f(x)g(x)) = fix)(ag(x)) for all @ € K ‘and f(x),g(x) € K[x]. Thus K[x] is. an
algebra over.K. Likewise the ting K[x 150 oo oX, 1 of polynomla]s in n inde-
terminates is-an algebra over K. - . G

46.3 Lemma: Let K be a field and V a finite dimensional vector space
over K. Suppose. there is a multiplication on V whzch is distributive: over
addition, and suppose that - . .
(aa)c = a(ac) —a(ac) for all a €K and aceV
(thus all condzttons for V. to be an algebra over K are satzsﬂed except'
that aﬂoczallvzty of . multlplzcatzon is open). . :
Let B be a K-basis of V. Then multzplzcatton on V is associative and V is a '
K- algebra if and only if
. (bb )b —b(b’b”) ‘ ‘for aub'b‘b""

Prodf If muluphc.mon on V. is-associative, then (bb)b™" = b(b b’ ) holds
for all elemems bbb ofV in particular, for al] bbb mB -

) ‘Ass’ume conversely that (bb )18 "9 b(b b’ ) for a]l b’ b b in B We put B i
=7[b],b2 . b ). If x,y z are arbitrary elements of V we write them as .

- n

L e ! . no.
x:za.b.,A , y—zﬁb ' Z=ZY
i=1 - . . . k=

‘with suitable scalars . ﬁ yk Usmg dlSlrlbullV][y and (m) we fmd

Wﬁ:(E% i) ka k= z(“.bz)(ﬁb) Evk”k'

j= Hig=1 .- AN
= ;zla- (b(ﬁb)) 2‘1 b ';iéali(aj(bibj)) .gy‘kb’f. ‘
E(as)(hh) S b, = E((aa)(bb))(ykbk)
ij=1 - k=1 ijk=1
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an

= Z(as)((bb)(ykb D 2 )[yk (bb)bk)]
tJ.kl , Lo =1,
= 3 (o )yk)((bb)b).
k=1 S
"~ and likewise x(yz) =S apb,- (2 B b i‘,'y"kbk) =3 ab, - 2 (ﬁ Yk)(bb )
=1 <l kel sl ke 7
= (a (ﬁ Yk))(b (bbk))
11k—

_Now (aﬁ)yk =« B yk) since "the multlphcatlon on’ K ‘is ‘associative and
: (bb )b, = b(bbk) by hypothe51s, so (xy)z —x(yz) Hence ‘the mult1p11cat10n
on V is also assoclatlve : S - ’ .o

: -46 4 Examples (a) Let K be a field and G a’ flmte multiplicative group.
Let KG denote the K-vector space that has G as a K -basis. Thus the

elements of KG are* suyrns 2 o g, where G = [gl,gz, .- ’gIGI] It w1ll be

1—1 :

convement to mod1fy th1s notatlon as 2 « g ‘Two elements 2 o g and
e s ' - geG 8¢€G.

,' 2 ﬁ 8 of KG are. equal 1f and only if &, = ﬁ for each g €G. The sum. of

geG g . Ko i g . . .
—zagand Zﬁng‘-Z((x +ﬂ)g,and theproductofyeKby Zag
. 8€G . - ch e ‘ . - P 8€G

Cis Zya g We now defme a multlpllcat1on on KG by extendmg the
g Eo-

mult1p11cat10n on. G us1ng dlstr1but1v1ty ‘More preclsely, we deflne -the

‘.,product of Za g by Zﬁg-—zah to be . Zag Zﬁh =

ch ;‘; T g€G’ . : 2¢G . - heG.
2“ ﬁhgh =2 ( 2“ rsh)k SN R AT y
‘g.heG kG | gheG © - T , :

ghk ' S e B
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' For’-an‘y‘a = Zagg;b Zﬁ g in KG' and y € K, we have (ya)b
- 8¢eG . 8eG

(YZG g)Zﬁ g = Yva,g= ’ZB_g"g 2( Zya ﬁh)k
g€G : geG‘ - -geG geG . © keG - g.heG
Co S SO .- ghek - -

y( 2 a ﬁh)k =y 2 ( 2 « ﬁh)k = y(ab) and srmrlarly a(yb) = y(ab)
T keG . gheG . keG gheG
’ " gh=k ) ' gh=k - .

The reader will  verify that distributivity laws are valld

’ Each element g0 of G can be regarded as . an element 2 .8 in KG where
geG

®, = 0 1fg # 8 and *g, = 1L Thus we regard G as'a subset of KG. Ttis -

checked easily ‘that, for any g,h € G, the product of gh in KG is the

product ghinG. Smce multiplication on. G is ‘associative, and since G is-a

K-basis of KG, we -learn from Lemma 46.3 that KG is an algebra over K. It

_is called the group algebra of G over K

(b) Let -—R4 be the four drmensronal R vector space of ordered
quadruples and let e= (1 000) i =(0,1,0,0), j = (0,0,1,0), £ = (0,0,0,1).".
Thus {e,i,j;k} is a basis of H over R. We give a multrplrcatron table for
lhese basrs elemenls S

e li|j|k
g e e | i j k|
Plif-elk [T

Jljl-kl-eli

k{k|j|-i}]-e

Thus ea = ae = a for any a€ {i,j,k)} and the products of isjk are like the
cross product of the: vectors i;j,k in R3. The product of two distinct’
elements from {ijk) is equal to ¥ the third, the sign being "+" for
products taken in the order indicated in the accompanymg diagram, and

=" in the reverse order. ot

{ ’\

]\_2

By distributivity, we huve' the “product formula:




A

(ae + i +yj + Bk)(oe +B7i +yj +8K) = (o’ = BB = yy" - 887)e .-
- ’ s .+(aB +B¢x Ty - 8y)i.
. +(¢xy —58 +y¢x “+ 6B

4 (ab +By - yp’ +8a)k

,whlch may be taken as the defmmon of multrpllcatlon on H. One checks -
‘that th1s mu]upllcauon is- distributivite over: addition, .and that e ‘is an_
1dent1ty element. To prove the assocratrvrty of muluplrcauon we ~must -

- only. verify the” 43 = 64 equauons (ab)c =a(bc), where ab,c € {e, i.J, k)

(Lemma 46. 3) ‘This verification is-left. to the reader. The muluplrcauon is

thus seen to. be assocratwe One’ also finds 1mmedlately (ona)b a(ab) =

- a(ab) for any & € R'and a,be N Thus H-is an algebra over R-. This alge-
bra was d1scovered by the . Trish ‘mathematician W. R.. Hamilton (1805- .

~1865) The elements of W are called quatermons, and W is known as the

Hamilonian- algebra of quatermons It is not’ commutatlve since ij = € #-e

=ji, for example ‘

Since e is the 1dentity' of H, we.will write 1 instead of e and « .instead of\y

ae (here o« € R). Then- any real number ‘g can_ be thought of as a

" quaternion ol = o« + 0i + 0j + 0k. In 11ke manner, ‘any complex number -

o + Bi (where «,p € R) can be considered as a quaternion « + Bi + ‘0j + Ok.
I th1s way, we: may suppose that R and C are subrlngs of H. '

~ For any a € lHI say «. + ﬁl +yj + 8k wrth «,B,v,8 3 R we say « is the\real,

part of a and Bi+yj+8ki is the 1magmary part of a. We also put a

= —Bi-y) - 8k and call @ a the conjugate of a. Tt is easily . seen that ab =

5 a for any a, b € l}l (note the reversal ‘of the conjugates). We define the

norm of a, denoted as ‘N(a), to be -aa. Thus N(a.+ Bi +yj + 8k) is equal to -

»a + ﬁ +y2+ 82 Note that N(a) € R. Clearly N(a) = 0 if and only ifa=0.

N There holds N(ab) = ab ‘ab = ab 5 a =aN(b)a = N(b)a a= N(b)N(a) N(ab) :

, for any quatermons a,b e H. This is equlvalent to the 1dent1ty

(a2 +ﬁ2+y +82)(<x’2+ﬁ'2+)’ +82)—(aa - BB -y - 6672
+(aB + Ba’+y8 = 8y’)? .

+(ay - B8 +ya’ +5[«})2
+ (a8 +ﬁy—yﬁ +80{)2

which holds in fact in any commutatlve rlng Thus the product of two )

numbers, each of wh1ch is a sum of four squares, is- also a.sum of four
squares - S :
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Just like we- divide-a cornplex number a = o + Bi by.a' nonzero complex
number b =y + 8i by multlplymg the numerator and denominator of a/b -
by the conjugate. B =y - 8i of b:- : : '

‘a _a+Bi_ « +Biy- 8i _‘qy-i;BS —ab+ By,

R R YR T T I P L L i

we can divide any q'uaterni'on a by any nonzero quaternjoh- b by multi-
. plying the "numerator” and "denominator” of a/b by ‘the conjugate b:
v av _a?i _.ab_ ab A
b?i N@®) -
More e){actly, any ‘nonzero quatermon b has a multiplicative “inverse
(1/N(b))B Thus W is a division ring. An algebra which is a division ring is -
called a divisjon algebra So M is a division algebra o

An mterestmg theorem of F. G. Frobenius (1849 1917) states that R (E and
W are the only finite dimensional division algebras over R.

-(c) The last example can be generallzed ‘Let K be a f1eld in which 1 +.1 is
distinct from 0.. Let @ = K4 be the four- dlmensronal K- vector space of i
ordered quadruples, and leti. e = (1,0,0,0), i = (0,1,0,0), j = (0,0,1,0), k =

(0,0,0,1). Thus [_e,iJ,k}'iS a basis of Q0 over K. We define a multiplication on .

@by a
(ae+ﬁt+w+8k)(ae+ﬁl+v1+8k)—(aa - BB” -vv—88)e’
. » . : + (aB” +Ba”+yd =8y )
i » l '+((xy—ﬁ8 + ya +8ﬁ)j
+ (b + By - yB~ +8(x)k

v .

This multiplication is associative, distributivite over addition and e is.an
identity element. One checks ea>1ly (aa)p = a(a[)) a(ab) for any « € K
and a,b € Q. Thus Q is a K- al;,cbra Q is called the algebra- of quaternmns
over K. ’llus ume it w1ll be convenicent not to 1denufy « € K with~ ac € Q.

The conjugate a nfa =ac + Bi + v/ + 8k € Qis dcfmcd to be ue - ﬁl - yj iy
and the norm N(a) of a t() be aa. Thus N(ac +Bi+yj + SA) =a 2482492478
If ¥ is a field such lhal o+ ﬁ2+ Y+ 82 = 0 implies « = ﬁ =y=086=0, then
any nonzecro a € 0 has a mulUphcalwe mvcrsc (l/N(a))a and Q is
_division algebra Otherwise, @ has zero divisors: lhcrc is 2 nonzero « € Q
such that aa =0, ‘ ' ‘
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P . Exercises

1. Multiply 2 + 3(12) +(13) = 12(23) + (123) - 3(132) by 1 + 2(12) + 4(13) -
3(28) + 2123) +-(132) in 08,

2. Let G be -a f1mte group, K a freld Put e = Zg € KG Show that e = IGle -
: ) : geG ) o

’ 3. Let K be a f1eld and A an- algebra over K Prove that the center Z(A) of"r
‘A (see §32, Ex. l)isa subspace of A ‘

: 4 Let G be a f1n1te group Show that dszZ(@G) is’ equal to the number

'of con]ugacy classes Ain- G

-5, For-any a‘e lH] show ‘that ‘there are real numbers tn such that o
‘ o a—ta+n—0'
2;

6. Prove that a 2iai + za ia - tata2

'—aza 1—0foranya€ IHI
7. Let a,b € IHl Show that ab ba if and only 1f 1 A, b are 11nearly depen-' '
‘dent over IR'. L S 4

-8. Prove that [:;1 i, ¥, :k} ch is a group 1somorph1c to O (see §17 Ex. 15) )

1 k
and that S—-{’Fl FI, *J”Fk i *21’111.}

c IlHlls a group-ls_omorphrc tol
s SL(2 Z,). Show that {1} < SandS/{*I}“‘ o |

9. Prove that the quaternlon algebra over C is isomorphic (as ring and' :
-C~vector Space) to the. C-algebra, Mat,(C). - SR : ‘

: 10, LetK be a ﬁeld_in ‘which 1 + 1 0 and a,pﬁ, nonzero elements in" K. Let A
be the. four dimensional K-vector space with K-basis e;isj,k. On A, we
- define a multiplication by the- multiplication table ‘on the  basis elements:

G k| k - B -ape
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~ (a) Prove that this multlpllcatlon makes A into'a K- algebra (IH] is a
specral caseK R, a—ﬁ——_ ).» o

-(b) Show that the center of A is [ke € A ke K] and that A has no
1deals aside from 0 and A. - SR

“(c) Define the‘cbnjugate E’of-a = e+ Bi + yj '+v6k €.A tobe ]
. ae-PBi-yj- 8k and the norm N(a) ofa to beaa. Verlfy FE =b E and
N(ab) = N(a)N(b) for any a, b € A e o

(d) Prove’ that A is'a d1v1510n algebra if and only if N(a) =0 for any
nonzero a € A-and this holds if" and only if y2 =« y2+ B y2 1mplles Y = yl
—Oforany yo,yl,yzeK R S (.f .
. (e) If K is finite, say lKI =gq, show that there are . q +1 elements in
'[aYz €K:y € K] and {1 - ﬂy2 € K ¥, € K] and conclude that A is not a
division algebra (This is a special case of an 1mportant theorem due to H.
AJ. ‘M. Wedderburn (1882- 1948) wh1ch states that any finite d1v1sron
algebra is a f1eld) R & : : - :

C1LLIf1%+1=0ina field K and A is as in Ex. 10 show that the mappmg

x— x2 is a r1ng homomorphlsm from A into A.



© be the study of roots of polynommls

CHAPTER 5

- i S Pu@ll@ls

§47
Historical Introductron

For a long time in the hlstory of mathemaucs, algebra was understood to

',Thls must, be clearly dlstmgurshed from -numerical computatron of the
roots of a given spec1f1c polynomral The -Newton- Horner method is the .
_ best known procedure to evaluate roots of polynomials. The -actual
calculation of roots was (and: is) a minor point.- The principal object of
algebra was understanding the structure of the roots: how they depend
- on the coeffrcrems, whether they ‘can be grven in a formula, eic..

There is, of course, the related questlon concermng the existence of roots
- of. polynomials. Does. every polynomral have a root? Here the coefficient
. of polynomials were 1mplrcltly understood to be real nambers. A. Girard
© (1595- 1632) expressed that any polynomral has a root in ‘some ‘realm of
~ numbers (not neccessarily in the realm of complex numbers) without
“indicating -any method of proof R. Descartes (1596-1650) noted that x - ¢
_is a divisor of a polynomial 1f cis a root of that polynom1al and .gave a
rule for determmmg the number of real roots in a specified interval. He
makes an obscure remark -about -the existence of roots. Euler stated that
any polynomial has a root in complex numbers. This result -came 'to be -
.called the  fundamental theorem of algebra, a very 1nappropr1'1te name.

576



Euler proved it rlgorously for polynomlals of degree 6. J R. D'Alembert
(1717-1783), Lagrange, P. S. Laplace (1749- 1827) made attempts to prove
" this statement. As Gauss criticized, their- proof actually assumes the

exrstence of a root in somc realm of numbers, and shows that the root 1s'

in fact 1n C. Gauss himself gave ‘several proofs, some of which cannot be

: accepted as’ rigorous by modern standards. Nevertheless, Gauss has - the-

credit for having given the first valid demonstration - of the 1 so-called

- fundamental theorem of algebra. After Kronecker established in 1882"

that any polynomlal has a root is some realm of "numbers" (see §51),
earlier attempts became ' rigorous proofs The really. fundamental the—

orem is Kroneckers theorem

This  assures the  eXistence of roots, but- does not bring insight to: the
problem of understanding the nature of roots any more than _existence
theorems about differential equations. give solutions of differential

cquations or information about their - analytic - bahavior, singularities, -

asymptotic -expansions, ‘etc. .-

 The solution of quadratic. ‘equations’ were - known to many ancient
civilizations. The "cubic and biquadratic' polynomials (that is,” polynomials

~of degree four) were' treated by Italian mathematicians. Scipione del

3

~ Ferro (1465-1526) succeeded- in solving “the: cubic equation x3 +ax = b

- (1515) "in terms of radical cxpresions.” In '1535, T»artaglizvl (1499/1500-
+ax?=b. G. Cardan

" 1557) solved the cubic polynomial of the form ;3

(150‘1 1576) substituted x - (b/3) for x* -and transformed the . t;cneral
, ‘cubic x3 + bx2 + cx +d to a form in which the x? term is absent. Thus
assuming, with no loss of gencrallty, the equatron to be x> + px + q=0, a
formula for the roots is found to be -

FEAET A TAT

This is known as-Cardan's formula, but it is actually Tartaglia who found

it and divulged it to Cardan under pledge of secrecy, who later broke his

promise and published it in his book Ars Magna (1545).”Curdun's Jorig-
inality ‘lay in reducing the general cubic to one of the form x +'px +q,
discussing the so called 1rreduc1ble case, noting tlmt a cubic ‘can have at

most three roots and making an mtroductron to the theory of symmcmc -

polynomlals
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Cardans book contams a method for fmdrng roots of brquadratrc poly- 4
. nomials (that is,. polynomrals of. degree four) dlscovered by .his pupil L.
Ferrari (1522- 1565) round 1540. This book made 2 great impact on the -
developement of algebra "Cardan even calculated with _complex numbers
f»whlch manifested themselves to be - indispensable. Contrary to what. one
may be at first inclined to belleve, thete was no need for complex
numbers as far as quadratlc equatrons are concerned: mathematicians
‘had declared such’ equations” as x2 = -1 simply unsolvable. However, in.’
Cardan's formula; one- has to take square roots .of negative numbers. even
- if ‘all the roots are real (the 1rredu01ble case). In fact, “the-roots of a cubic
polynomlal whose ‘three .roots are real, cannot “be expressed by a fonnula "
imvolvmg real radlcals only (Lemma 59. 30) :

- Fhus. the “first half of 16th ‘century wrtnessed‘ remarkable achievementsu

- in algebra. As late as 1494, Fra Luca Pacioli had'ex_p‘ressed that a cubic

equation . cannot  be solved by radicals, and by- 1540 both the cubic "and
the blquadratlc equation> was solved by radlcals The next step would be
’-Ito find a formula for the roots of a qumtlc polynomral (that is, poly-
nomlals of - degree flVC) and better Stlll of a polynomxal of n-th degree'
11n general i S : : ‘

Other solutrons|.0f polynomial - equations -of the degree < 4 are later - :

“given by Descartes, Walter von Tschirnhausen (ca‘*1690) and Euler.

'Noted mathematlcmns tried in vein to find a formula for: the roots: of  a.
R qu1nt1c polynomial.. Mathematlcrans began to. suspect that a qumtlc
E polynomial equatron cannot be solved by radicals. -

Lagrange publlshed in 1770-1771 a long paper "Reflex1ons sur la resolu—

. tion algébrique des equatlons in “which he ‘studied extenswely all'

known methods “of solutions " of polynomlal equations. His - aim was to -
“derive a general procedure ' from the known methods for finding roots of
fpolynomlals He treated quadrauc cubic and blquadratlc polynomrals in’
“detail, and succeeded in-'subsuming the various methods .under one
- general pr1ncrple The roots” of a polynomial are - expressed in terms of a
quantity ¢; called the resolvent, and. the resolvent f itself is the. root of an -
auxiliary polynomlal called the resolvent polynomial. When the degree
. of the given polynomial -is ‘/f, the’ resolvent polynomlal is of degree (n-1)!
~ in x". For n < 4, ‘the auxiliary™ equation has therefore-a smallrer degree
_ than “the polynomral given, and can be- solved algebraically (by



induction), but for n > 5, ‘solving the auxrlxary equauon is not easier
“than to solvmg the orngmal equatron ’ '

The resolvent is a function of the roots which is invariant 'nnder some
but not all of the permutation of the roots. For example, when the
degree is four, rlrz + 31, does not change Aif the -roots r,!,r2 and r. Ty are
interchanged. Lagrnnge is "thus’ led‘ to the permutation.-of the roots, ie
he  investigated, without appropriate .terminology and" notation, -the
symmetric group on n letters. .(Incidentally, the degree of the resolvent

polynomial is a divisor- of n' the order -of - the symmetrlc group Thrs 1s_‘

- how Lagrange came to Theorem 10.9.)

-. Lagrange - noted that “in’ the successful cases n < 4, the resolvent has_the

form r, + ar, + .- + avlr T where r; are the roots of the polynomlal and' «

1
is a root of x" - 1. This type of a resolvent does not work in case n = =5,

but it is concievable. that expressions of some other’ krnd ‘could work as

resolvents. Lagrange ‘studied . which type of expressions -could be .

resolvents: o o - e -

In 1799, -P. Ruffini (1765-1822) claimed a proof. of " the ihposéibility of
solving the general quintic equation algebraically, but whether his . proof
was rigorous- remained controversial. In 1826, Abel gave the . first

Tcomplete proof of this' impossibility theorem.: His proof consists of ‘two -

Cparts.” In the~first part he found the general form of resolvents must be
-as in Lagrange's description for the cubic and biquadratic cases; in the

second part, he demonstrated that it can never be a rcot of a polynomial’

of . fifth degree "He added, ‘without proof, that “the general equation-
cannot be solved - algebralcally if the degree is greater than 5. In addition
to the. general equation, - Abel also 1nvest1gated which special equatlons
can be solved by radicals. He .proved a theorem which reads, .in modern

terminology, that an equation is solvable by radicals if " thé assoolnted'

‘Galois group is commutative. It is in this connection that commutative
groups. are called .abelian. o

Abel thus 'finallyA demonSIrated that the'genéral equation cannot be_

solved by radlcals ' "General polynomral" means that the coeffrcrents are
mdependent variables or, more in the sp1r1t of algebra, - indeterminates.
Abel's theorem. does not say anything. about' polynomials whose

cocfficients are fixed complex numbers. But. some polynomlal equations °

with" constant - coeffrcrents of degrec - five or greater are solvable by
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radicals. What is the criterion for a'po]ynom'i‘al equation to be solvable
by radicals? This question. is resolved by the . French mathematrcran
Evarlste Galois. (1811 1832). With Galors ‘the - prmcrple subject matter of
algebra def1n1tely ceased to be polynomial equations. Galois marks the
beginning of ‘modern, algebra,” which means the study of algebraic struc-
tures (groups, rings, vector spaces, fields, and many others).

.

Galois had a short and dramatic life. He began publishing articles when.
he was. a pupll in ‘Lycée (1828). He was a ‘remarkable talent,and a
difficult student.” He wanted _to ‘enter- the Ecole Polytechnique, but farled
v,tw1ce in: the entrance exammatlons The reason, he says later, ‘was that
the questions were so simple that he refused to answer them: He later
entered the Ecole Normale (1829) but -expelled- from it due to a letter in
the student newspaper.  His unbearable pride was notorious. , He became -
politicized, wa“s ‘sent to jail for some months, then began a »has‘on ‘with
"une coquette ‘de bas étage” and died in-an’ obscure duel (1830).

- Galois™ achievements‘ have not been appreciated by his contemporaries.
" He submitted' "several papers to the French Academy, but these were
rejected as unmtelhglble It -was not until J. Liouville (1809- 1882)
publlshed his memoirs. in 1846 that the world came to know Galois andr
reahze h1m to be the one of the greatest mathematrcrans of all t1me

‘Galois  associated, ~with ‘each resolvent equatlon, a. freld intermediate
‘between the field 'of the coefficients of the polynomial and the field of
the roots. His ingenious idea is to ass001ate with the grven polynomial -
" and intermediate fields, a . series of groups and to translate assertions
about fields into group- theoretrcal statements. This _involved- the

" clarification of the field and Agrdup concepts. The. theory of groups is
- founded by Galois. He proved that a polynomial equation is solvable by '
'radicals if and only if, in the series of groups, each group is normal and
of prlme index in the next one, i.e., if and only if the group of the
polynomlal is solvable in. the sense of Deﬁnmon 27.19- (Theorem 27. 25).

It should be noted that this’ crlterlon is not an effectlve procedure to
- determine - actually whether - a polynomial equation is. solvable by
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radicals. His contemporaries expected that "the condrtron of solvabrlrty, if.

Lt eXist's ought to have an external “character ~which can_ be verified by'
‘1nspect1ng the coefflcrcnts of a glven equatron cor, all the “better, by

usolvmg other equations of degrees lower  than that of . ke equatron to. be

solved."! “His is-not a workable test ‘that.- effectlvely -decides if an“’,

equation is solvable by radlcn}s. Galois "himself writes: "If ‘now’ you give

me an equation that you have chosen “at pleasure “and if you want to

‘know if it is or if it is not solvable by radicals, T need do’ nothrng more

than 1ndrcdte to you the means of- answerrng your questron without
wanting to grvc myself or anyone else the task of. doing it. -In a word; the . )

’calculatlons are’ “impractical. "2 But this is the whole. point. Who cares

- about solvability of polynomral equatrons What Galois - achreved and-

what" his contemporarres failed to apprecrate, is a fascrnatrng parallel

. between  the group “and field structures.. The  group-theoretical 1‘;_

solvnbrlrty condition is at best a trrvral apphcatlon “of the theory

~This” was too big a chnnoe in algebra 'md in mathematlcs and heralded"

the end ‘of. an era when mathemalrcs ‘was the science of numbers  and
figures. Ever since the “time of Gauss ‘and- Galors, mathematics s the

science -of. structures Galois theory is - the flrst mathematical theory that -
compares two different structures: ficlds and groups It- was ‘not -easy “to
“follow _ this developement -Even mathematrcrans of later gencrations‘

concieved Galois theory as a tool for answering certaln -questions’ in_the
~ theory of equ.ttrons The  first: wrlter .on Galors theory ‘who clearly
“differentiated between “the theory and its appllcatrons is Helnrlch Weber
(1842- 1913) In his, famous text-book on algebra (1894), -the cxpoqmon of
the theory occuples one chapter, its dpplrcatrons dnother :

Flle first- writer on’ Galoxs theory is E. Betti (1823 1892) He pubquhed a
paper. "Sulla risoluzione delle equazioni: algebriche"” in 1852, in- which he:

" closely follows Galois’ line. Thrs is more of a ‘commentary than an original
exposition. Here the concept of conjugacy - and -of factor groups made a
appeared- drmly Another commentator on GlelS theory is J. A Serret
(1819 1885) ‘

C.tmrle Jordttn (1838- 1922) gave the flrst exposmon of Gd‘OlS theory llldl -
does not follow Galois’ own line. With Jordan, - emphasrs shifted from
- polynomials to- groups: He made many important ongmdl contribuiions..
Among‘\ other things, ‘he ‘clarified . the relatronshlp between 1rreduc1hle '

’
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Apolynomlals and transrtlve groups developed the the'ory of transitive

~ - groups, . defined  factor groups as -the group of the auxiliary - equation,

introduced composition series, proved v_that, the composition factors -in
any two composition series of a solvable group "-are isomorphic. - The
group concept became cen‘tral,n but solving polynomial. equations- still
.remained as the qmajor ‘concern. o .

At the same time, Two -German mathematicians, L. Kronecker and R.
Dedekind - (1831- 1916), were makrng very’ srgmflcant contrlbutlons to. freld,
‘theory

, Deédekind lectured on Galois theory as early as 1856 He seems to be.the
- first mathematrcran who_ realized that the Galois group _should . be
regarded as an- automorphrsm group of a field rather than a group of
permutations. In fact, he uses the term permutatron for what we now
call a field automorphrsm This means, of course, he very rrghtly recog-
nized the theory as a theory on fields, not as a theory on polynomials. He
.introduced the not‘lon of . dependence/independence of elements in an’
extension field over the base field. . '

- Kronecker discussed adjunction in _detail. He noted that it is possible fo -
adjoin transcendental elements as  well as algebraic ones to a field and
proved the 1mportant theorem that any polynomral sp11ts mto lmear

factors in. some extension freld

Weber carried Kroneckers and Dedekmds idéas further. His exposmon,
the first modern treatment of the subject, is not restricted to @, but.
rather deals with .an arbitrary field. He clearly states ‘that the theory is
about field extensions and automorphi'sm groups' of these. extensions.

- .Weber was far ahead of his time. Many mathematrcrans of his time

found his - treatment abstract and difficult.

Then came Em11 Artin (1898-1962). He combm,ed technlques of linear
algebra and f1eld “theory. Extensions are sometimes regarded .as fields,
sometimes as vector spaces, whichever may be convenient.” Hé studied
automorphisms of fields, proved that the degree of an extension is equal
to the order of" the autOmorphism_ group, introduced the notion of a
Galois extension, and- abolished the role of the resolvént - (primitive
element). -Th_is' latter was an ugly aspect of -the theory about field
extensions, remnant. of earlier times when' the 'the\ory has been regarded-
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‘as one about polynomlals Artln then .set up the correspondence betweent
1ntermed1ate fields and- subgroups of the automorphlsm group. All
computations - are eliminated . from ‘the’ theory. Where an earlier writer
Would spend . many pages for. the step-by-step adjunction' of resolvents
to construct a spllttmg field, we see Artin. merely- write: "Let E bea
'splrttlng freld of f(x)." With Artin, Galois theory “lost all its connections
with its past It is 1nterest1ng to note ‘that. Artin does to appllcatlons of
the theory to polynomlal equations.’ In his book Galois Theory, appllca-
tions are harshly separated from the main text: they can be no’ more

* than ;an -appendix;- but Artm does not - even condescend to -write - the -

appendix himself: 'lhlS task is relegated ‘to one of his students

' Poisson, >quoted from .Kiernan's article (see- References), page 76.- -
2 Galois, quoted from Edwards' book Galois Theory; page 81. -
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§48 |
‘Field Extensions

We recall a’ te_chnicat tetnt from Example 39.2(f).

48.1 " Definition: Let E be a field and let K be a nonempty subset of E. If
K itself is a field under. the operations defined on E, then K -is called a .
}subfteld of E. In this case, E is called an extension field of K, or s1mply an”
“extension of K. ' ‘ :

\

‘We write E/K to denote that E is an-extension of K, and speak of ‘the field

extension E/K. Confusion with-a factor group or a factor space is not

. likely. ‘We will frequently employ Hasse, dlagrams (see §21) for field ex-

tensions. For example, the - plcture :
- E

. K
. w1ll mean that K 1s a subfleld of E.

”As in the case of subgroups subrmgs and subspaces we have a -subfield
crlterlon

48.2 Lemma (Subfleld cntenon) Let E be a. fteld and K a nonempty

“subset of E. Then K is a subf eld of E if and only if

’ (a+b ek,
(i) -b € K, . B ‘
(m)abeK o - ' R
C(@v)ble K(m case b = 0) s

for alla b € f’ : :

Proof A f1eld is a ring .in whlch the nonzero elements form:a commuta-
" tive group- under multlpllcatlon (see the remarks after Def1mt10n 29.13). .
Thus E is a rmg of this. type, and K 1s a subfleld of E 1f and only if Kisa
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' subrmg of E such that the nonzero elements in- K form a commutatlve
'group ‘under multlphcatlon Certalnly, every subgroup of E* = E\{0}-is:
commutative. - ~Thus, K is a subfield of E if and only if K is a subring of” E
" and K\[O} is a subgroup ‘of E*. Now K is a subring of E if and onl)l if .
(i),(1), (i) hold and K\[O} is a subgroup of E" if and: onl)l if :

Gy ab e K\[O} for- all abe K\[O}

. and (lV) hold Slnce K c E and the fleld ‘E has no zero d1v1sors @) i

weaker than (i), and we conclude that K- is a subﬁeld of E if and only 1f' '

. (l)(n)(m)(rv) hold. e o e e

From now on; we will‘wr'ite —1- (or l/b) for the ,inverseib“1 ‘of a nonzero el-

ement in a field.. L1kewrse ‘we w111 write ——or (a/b) for the product ab 1=

b
" bla of two elements a;b'in-a fleld (assummg b 3 0).- It follows from
Lemma 48 2 that, whenever K is a subfleld of E and a, b €K, then

, ‘ a+ba babb
belong to K, it bemg assumcd b = 0 in the last case. A subfleld of E is _
‘therefore ‘a-nonempty subset of E that ‘is closed under addition, subtrac-

tion,- muluphcatlon and lelSlon (by nonzero elements)

— : —

48.3 . Examples (a) R is a extensron of Q, and C is an extensnon of @

Also R is a subfield of C. ~ s : f , .

(b) If K is any field and x an- indeterminate over K., then K is a ‘subfield
5of K (x) (provided we .identify, -as usual, an elemfcnt a of K with the ~

; o a . S o : ]
rational functlon 1° . where the numcrator and --denominator ‘are elements

of K ¢ Kix}]). Slmllarly K i’ a subfield of K(x,y), where y is another
1ndeterm1nate over. K. Co

(c) Let @(z) [x+yieC: x,y € @} c C For anyabm @(1), saya =x +y1 .

and b-—z+uz with x,y,z,u € @ we' have
T3) a+ b=Gx+2)+(y+ u):_c O,
() b = (=2) + (-w)i € QG),
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(m) ab = (xz - yu) + (xu + yz)l € @(1) v
a z ~u
4 (1v) b == T 22 m “2 i€ @(1) provxded I) =z+uiz -
_O+Ot O d : R :
So @(i) is-a subfield of C. It is in factthe fiéld of frac;ions;of‘Z[i]; and is -
called the gaussian field. ' ‘

(d) @(\/5) x+y\/§ € R: x,y € Q) is a subfield of R. Indeed for any a, b ‘

- in @(\/2) saya—x+y\/2 andb—z+u\/2w1th xy.zu € 0, we have

C@ya+b=@E++(+uN2e @(\12)
(i) -b = (-2) + CupV2 € O(2), -
(i) ab = (xz +‘2yu) + (i + yz)V2e 0(2), - ‘
| (iv) b7 = 2u T+ “2 - \/Ee 0(2), prov1ded b =
z+u\/_;: 0+ O\/Z = 0 ‘Here we use the fact that \/2 € R is an 1rrat10na1
number (Example 35.11) so that z2 - 2u% % 0 if z and u are nonzero -

RN

© rational numbers.

(e) Let L = {x+y\/2 € R:x,y € @) < R. Then L is not a subfield of R’
since, for example \/2 €L but \/2\/_ 2¢ L (why?) On the other. hand,
@(\/2) [x+y\/§+z\’_€ R: X.y.z e 0} = [x+y\f§+z(\/—)2€ R: x,y,z e @]

is a subfield of R. The proof of b € @(\l 2)\{0} . b e @(\12) is. left to,.‘"
the reader.

(f) Let K be a field and’ let K (1 el be a famlly of subflelds ‘of K. Then~‘
ﬂ K, \is a Subfleld of K, for the closure. propemes in Lemma 48.2 hold
for ﬂ K, if they hold for each of the K

_ From the last example we 1nfer that the mtersectlon of. all subflelds of a
field K is'a subfleld of K. Note that the intersection is taken over a.
. monémpty’ set, since at least K isa subfleld of K :

: '48 4 Defmmon Let K be a f1e1d The mtersectlon of all subflelds of K is
* called the prime subfeld of K. . '
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Thus every subfield of K contams (1s an extension of) the prlme subfield-
of K. We want to descr1be the elements in the prime subfield of K. Let P‘_
-denote the’ prime "subfield of K. In. order to dlstlngmsh cleatly between

the integer 1 € Z and the identity element of K, we will denote in-this
‘dlscussmn the identity element of K as e. We-know 0 €P,ec P and 0 e-
because P is a field. Now P- is a group under addition, so e + e =2¢,2¢ +e

=3e, 3e +e= 4e, ... are elements qf P, and_also -e, 2e —3e, 4e,

- H'e_nce : —}tle,‘,—B\e,l—-Ze, —:e', O,V'e, ”2'e', 3e, 48,

all beleng to P: we have {‘nle ¢ K: m‘ €Z}c P. Moreee{/er; P is closed

under -division (by nonzero elements) and so P, :={me/ne € K:mineZ)

"is a subset of P It is natural to expect that P 1s a subﬂeld of X (and thus

P) for any me/ne refse € Py with m,n,r,s € Z we presumably -have
(ms+rn)e c P - . ]

'-()W ;Z (ns)e O

e re_(=ne N
G Tse  se &Py
S oome-re (mr)e
_(m) ne se (ns)e Lo
(iv)-—1—=§—e— € P prov1ded —;é 0 1e re = 0
' re re ’

L se -~ B -
‘These are in fact true but care must be exerc1sed in Justlfylng (1) (u) (in)

(IV) ThlS is done in the next theorem which- states that P is lsomorphlc .

-either to @ or. to Z for some prime- number p-

48. 5 "Theorem: The prime subfzeld of any ﬁeld K zs zsomorphzc to @ or-\

o Z for Some przme number P (rzng isomorphism).

Proof: Let e be- the 1dent1ty of K znd let P be the prlme subfleld of K.
Then le = e = 0,—:' e = -le. We distinguish two cases, accordmg as there -

does or does not’ exist an integer ne Z\{0} ;sati‘sfyi'ng ne =0.

Case 1. Assume there is -a_nonzero integer n such that ne = 0. Then there

are natural numbcrs k with ke = 0. Let p be the smallest natural number -

such that pe 0. We clalm that the mapping
o @ Z- P
; . ..on —-ne. :
is' a ring. homomorphism, that p is a prime number and that P = Z
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For any m,n € Z, we have (m +n)p = (m + n)e = me + ne (thlS is not
_drstrrbutrvrty') and (mn)q) = (mn)e = (me)(ne) = mo-ne (here {mn)e =
c ,(me)(ne) is dlstrrbutivrty'), s0 @ is a ring homomorphrsm

If p. were composite, say p=rs wrth r,s € N, 1l<r< p,] <s< p, then 0
= pe = (rs)e = (re)(se) would yield, since the field K has no ‘zero divisors,
that" re = 0 or se = 0, contradrctrng the deflmtron of p as the smallest
natural number satlsfyrng pe = O Sop is a.prrme number.

To prove P = Z we wrll find Ker cp From pe = O we have pE Ker ®, SO

pn € Ker o for all ne Z (because. Ker§ o is an 1deal of Z) and pZ < Ker P.
On the other hand, if m € Ker ¢, we divide m by p to get m =gp +r, with
q,r € Z andO< r < p. ‘This grvesO—me—(qp+r)e—(qp)e+re—0+re
As 0 < r < p, this forces r = 0, which means m = gp and m € pZ. So we .
get Kerq> < pZ. Therefore Ker ¢ =pZ. [A more conceptual argument: Kere
is an ideal of Z and Z is a principal 1deal domain, so. Ker ¢ =dZ for some
'd € Z. We have d¢ 0 in Case 1. Frompe =0 wegetp € Kerp= dZ sod|p.
But p is a prime number, so d =*I ord = .. “The- possrbrhty d=-=xl1 1s
‘ excluded because xle =3¢ 0 Hence d= :p and Ker = dz = :pZ pZ.]

" Thus Z = Z/pZ Z/Kercp Im ® € P and Im 9, being a nng ‘isomorphic

t0Z > 1s a freld So Im ¢ is. a subfield. of K, therefore P < Im o. This y1elds
P = Im P and Z = P, as clarmed 2

I

Case 2 Assume there is no nonzero 1nteger n Such that ne = 0 We élaim -
that the mapping :
~p: Q- P

_ , .m/n — mejne
is a ring homomorphism and that P = (.

* First we show. that o is well defined. If T;n—e 0 with m,n,m”,n" ¢ Z

_(n¢0¢n) then mn —man so (mn )e—(m ‘n)e in P, thus (me)(n ‘e)
1

= (m e)(ne) in P, Mulnplylng both sides of thls equation by —-n—,e- € P,
we ' obtain 4_;£=, . So 1p is well defined. j I -
S ne n’e

v is a ring homomorphism: for all iy —¢ O with m,n,r,s € Z,n=0zs,

we have (%+ r;}u= (ms u rn}» = (-ms e (ms)e + (rn)e

-ns (ns)e ne.se

!
N
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(me)(se) + (re)(ne) _me’ . re..m .
‘H”nese‘ ne .5€  n-- S .

L (mr) _mr . (me_(me)re) _mere_m rl
. s ——nT - (ns)e (ne)(se) “ne se 'n(‘,ps‘pv

,'Smce we assume that me = 20 for m € Z\{O] in Case 2, we obtaln Ker p.=

me

'f[— 0: 220 K]—{-——e@me—OeK]—{—e@m OeZ]—[O]\so‘

‘@ @/[0} = @/Ker v=Imy <P ‘and Im v, being. a ring 1somorphrc to' O,
lS a freld So Imy is-a subfield of K therefore P € Im vy. This yields. P =

Imcp and@“’P as clarmed . T i o o

’ 48.6 - Definition: Let K be a field and let e -be ‘the identity. element of K. .. L
If there are nonzero mtegers n such that ne =0, and if p is the smallest_ Vs
‘natural number such. that ‘pe = 0, then K is said to be a field ofcharac- '
“teristic p-and p is called the characterlsuc of K. If :there is no nonzero.

-integer ‘'n such that ne = 0, then K- is said to be a field of characterl.s'tlc 0,
’ and 0.is called the characterlstlc of K.~

: Equwalently, K is of characterrstlc p orVO accordmg as 1ts prime subﬁeld

is 1somorphrc to’ Z or.to @. We write char K = p* and’ char K = 0:in thesea

respectrve ‘cases. For example “char Z =p “and char QW) = char @(\l 2) =
char R = char € =0.We wrll usually 1dentrfy Z or ".D wrth the . prime

subfreld of K as ‘the ‘case may be. In- partlcular we will ‘write 1 1nstead of

e for. the identity. - element of K Thus K w1|l be consrdered to be an
- extension of Z or@ R

We remark that 1f K is ‘a freld of charactenstrc p, then pa _‘_'O'for"any

,_element aof K. Thrs follows from N .
‘pa=a+a+---+a=la+la+---+la= (1'+1+ +l)a (pl)a—Oa 0

"the sums havrng P terms.  This result wrll be used in the sequel wrthout‘*'

3 explrcrt mentron

.We make WO’ conventrons Henceforward ‘we wrll wnte IF in place of Z
This will always remind us that P is a field X2 ‘prime). Secondly, we shall

“drop the oars in the elemcnts of IF as we have already done on several ~

oosse

’
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: We proceed toj\di}scﬁssl”field_.ho_momorphisms"_;/v S

t

: context however whrch meamng is accorded to "2 The ambrgurty 1s
" therefore harmless . T

487 Lemma IfK is afeld then Kand {O] a’re the only zdeals of K

Proof' IfA is ‘an 1deal of K and A = {O] there is an a € A, a= 0. Then a

‘ occasrons For example we w1ll ‘write 2 1nstead of 2 €. IF A not'_mon such' ‘
"2" is therefore ambrguous it stands for the 1nteger 2 € Z, as well as:
2 € IF as well as 2 € Fy, as well as Z €. F, etc. It will be clear from the

I

“has an’ mverse al in K and ala =1-€ A because A is an 1deal Then we get

b= bleAforallbeK soKCAandA K. o e

!

48.8 - Lemma If K and K2 are ﬁelds and P K -~ K2 lS a rmg homo-';

S morphtsm then etther acp = Ofor all ae K or P zs one-to-one.

Proof' Ker qJ is an 1deal of K1’ SO erther Ker o —K or Ker q) {O] by -
- Lemma’ 487 In these respectrve cases, gither an = O for all a €K, or'p is-

el

When we deal wrth f1elds and ring homomorphlsms from -a f1eld to_.

- one-to-one. - T S « I

another, we naturally ‘want" to dlsregard the umnterestrng rmg homo-'

morphrsm that ‘maps every element of its, ‘domain 'to ‘the zero’ element of

-the other f1eld Any other rrng homomorphlsm is one- -to- one by Lemma'

)

48 8. Th1s leads us to the’ followmg defmmon

RPN

48 9 . Defmrtlon IfK and K are f1elds and qJ K > K ds a one- to -one -
rrng homomorph1sm then ? w1ll be’ called afteld homomorphzsm Iqu is

-a- field" homomorphrsm onto K then @ will be called a fteld tsomorphtsm

SA f1eld 1somorphrsm from K- onto .the same fleld K will be- called a (fteld)'" -

automorplusm of K..



vatp K — K is' a “field 1somorphrsm then ¢ is-a homomorphrsm of add1~ "
tive groups so 0 qo = 0 X and also Kerq> = [0 } where OK and OK are

the zero elements of the f1elds K K,, respecuvely Thus (pK \(0] is a one-
to-one mapping. from’ K \[0} onto K\0}. In “addition, (ab):p = a<p btp for all
a,bin Kl, so (ab)p = aep- b(p for all a,b € K\{O} and therefore q)K K — K *

s a one: :to-one homomorphlsm of groups onto- K T we have K * K In
partrcular (I, )(p —-_IK , where 1, and: 1 k, are the 1dent1t1es of the f1elds K, '
l . .

K, respectlvely

48. 10 Lemma Let K],K2 K be ﬁelds D R S

(D Ife: K —-K and’y: K K are fzeld homomorphtsms then PP K —+K ‘

s a fzeld homomorphlsm

(2) If ¢: K - K, andlp K, —+K are fteld tsomorphtsms then Py: K —+K is

a field tsomorphtsm

(3) Ifo: K — K is a. fleld tsomorphtsm then (p LK, K,is a field iso-~ -
morphzsm o o MR : - - -

’P”)Of (1) oy is ‘a ring homomorphlsm by Lemma 30. 16(1) and one- to-4
" -one by Theorem 3. 11(2) ‘ - ‘

(2) qup is-a ﬁeld homomorphlsm by part (1) and onto by Theorem 3. 11(1)

@ elisa ring homomorphtsm by Lemma 30 16(2) and one- to- -one’ by
~ Theorem 3. 17(1) R . ; SRR o I

-
v

A frcld homomorphlsm P: K —+K can be charactenzed as a one-to- ane

functlon such that .

a _agp
RS I)(p .
for all abe K, (b = () in the dtvmon) Let us consrdcr some’ ex: nnplcs

(a + b)q; = aq) +'I)<p, ~ (a- f))rpv— ae -‘Ifq"), ) (ab)cp = acp b(p
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- 48. 11 Examplcs (a) l"he con_;ug‘mon nmppm;, 9 € = (E is an auto-
morphlsm of C, bccause _’ S - LN X X -

IFy=X+y, X -y =%-3 —7 =53, ¥ =x/y
foranyxye(E ‘ e R ’

B (b) The mdppmg ®: @(\/2) (U)(\/Z) is an Au[omorphxsm of @(\/2) because'
‘ Ma+b\f_——>a b\/2 ! » : 3 :

_'((a +b\[_)+(c+d\/—))cp—((a+c)+(b+d)\/2)cp-—(a +¢)- (b+d)\/2
. = (a- b\/~)+(c d\/2) (a+b\/2)cp+(c+(l\/—)cp,,

. : :.((a +1 b\[_)(c + d\/—))cp = ((ac + Zbd) + (ad + bc)\/2)qp ‘ :
S T = (ac+ 2bd) - (ad + b2 = (ac + 2(- b)(-d)) + (a( d) + (- IJ)C)\/Z -
f—(a b\/—)(c—d\/2)—(a+l)\f_)cp(c+d\/—)q> : o

~ o

k'.for all a +b\/2 ¢ +(1\/2 € @(\’2) wherc a, b, c, de (U), $0. lhdl e is-a rmg .
‘homomorphlsm and, becausc of lcp = (1 + O\/Z)cp =1.- ()\12 =1 = O, the |
) 'Lernel of @ is nol K and @ is lhereforc one- lo one. e

"'(c) Let K be a field dnd x an 1nde[erm1ndle over K 'lhen the - mappmn ;
: o : K(x) — K(r)
px) | p(x?)
q(r) ;1_(7_)_
g l‘1s a fleld homomorplnsm Note that 1m ¢ c K(x). Thus K(x) is . 1somorplnc' )
‘10 a proper subset of nsplf (n‘\mtly to, Im Lp) ' N

Let E/K be a fleld extcnslon Then E is: dn dddmve group and
' Talx +y) =ax+ay
(a + ’”-‘;5 ax +.bhx

' (a b)x ‘='_'¢'1'(hx').

. Ix =x : -

. 'for alt x,y € E ‘lnd for all a, b.e K (in mct for all a b e E but we do not
need. thls now). }Ien(_e E is a vector space’ ‘over K as’ we have l]ft.(ld) _
noted in Exampk ‘)7(11) gtudylnu bolh the fleld and' the vector SpdCb”
. structure of E will be \u) ‘uscful: I.n.pd/rmiul ar; the dmu,ns;on of £ over
K. wnll phy an nnportanl role.. e



48.12 Defmmon Let E/K be a field extension. The d1mensnon of E over

K is called the- degree of E. over K, or the degree of the extenszon E/K

.-
SN

Tt w111 prov& convemcnt to write IE: Kl mst&ad of dlm E for thc dcgrce of .

E over K. The: ficld 'E is said to be afmzte dimensional extension or an

v mfzmte dimensional extension of K accordmg as |E:K|"is finite-or infinite.

Most aulhors use the term “finite extension" for a finite dimensional
extension. ' ’

~An . imporlant fact “in the theory of fields.is that a finite dimensional * -
extension of “a - finite dlmen51onal extension is ‘a finite dlmensmnal exten-:
sion, and- that .the dcgrces bchavc multiplicatively. More exactly, we

have the

i
-

48.13 Theorem: Let 'FIE and EIK. be' field extensions of finite degrees.

|F:E| and IE t’l Then FIK is_a ﬂmte dimensional extension. In fact
|rl<1 =|FE IE KI '

and fu‘rtlzeg'mo're if {f]‘f2 o J} is'an E bas;s of F and te, ‘. e} a Koo

basis of E, then {'fiej si=12,...nj=12,... s} is a K-basis ofl'.

" Proof: IFK is a subficld of E and E is'd subficld of F, lhc‘n‘,'ccr(‘ainly K isa
subficld of F Tnus F s an cxlcnsn(m of K. o . o

Now lhc cl.un) al)out the: dc&rcc Pu( IF:El = r and E: KI =5 for brevny WC
are to ‘prove. that the dimension - of F-over K‘ is- equal to rs. Let [fl‘flf ...,f]w
be an E-basis of F.and {e¢,¢,....,¢,} a K-basis of E. We ire to find a K-basis -
‘\/'»of F having exactly rs clements. The most natural (hmg lo do is to consl-'

‘der the rs products fe Wc conlcnd that [fe 1— l AN S = W .s,} is
.deJSISOfF - . o . - .

A ’
4
s

First we show llmt Uie;) spdns F over K. Indeed, let [ be un =arbitrary
" element of F, Thcn . . S

f= b fy+byfy 4 +,h"fr

for some b .b,, ....b, € E; because {f:i=1.2, ..o} spans Foover £ and for

cach i, - hy=a e+ apey +-0 +ae

e

for some TN SRR S K., because: {-L‘j (J= 12, 008) spans F over K. Hencee.
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i._'then . . .. 2 (\ u j)f 0

f thfl Z(Zauej)f Za e/f)‘ 5
Coa =l j=1 '
is a 11near comb1nat1on of e/f fe over K. Thus {fe] spans, F over K

Furthermorb [fe] “is 11near1y '1ndependent over K. Indeed 1f b

elements of K such that

belej = ) "J

R

where 2 b i € ‘E for each l S1nce {f 2 ._,.\,r]—‘is linearly' independ- ..
ent over E, we have 2 b e = 0 for each 1. Since [e 'j: 12 st is
, .

11near1y 1ndependent over E we obta1n b = 0 for each l_/ Hence {fe} is

11nearly 1ndependent over K.

’ Thus {fe]1srsaKbasrsofFanleKI—rs—IFEIIEKl -

It follows from Theorem 48 13 by 'inducti.on that , S
‘ ;o U ‘-
, —‘IK.KI lK.K IIK :K IKZ.KI ’
"vv'heneverer"/K /K,l 2w 2/K are f1n1te d1men510nal field exten-

~sions. . In fact Theorem 48.13" and its generallzatlon is' true for 1nf1n1te

d1mensronal extensmns too but . we w111 not need this. . -

s L 1 .

48 14 Lemma Let F/E and E/K be fzeld extens:ons 1f|F Kl is fmte -then

‘ IF El and 1E:K}| are both ftmte In fact both of them are dtvzsors of IF Kl

and[FKI IFEIIEKl

Proof Let n= IF Kl and let {f = 12 . ,n} be a basis ofF over K. Then o
t;: i= 1,2,. ,n} spans F over E and so |F: El < n:by Ste1n1tz replacement

theorem Thus IF E| is. f1n1te

N
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Now the frmteness of IE KI IfE ‘were 1nf1n1te dtmenslonal over K, there,,“'
would be n+1K- 11nearly 1ndependent elements “of E, so there would be - ‘
S § K lrnearly mdependent elements of F, contradlctmg 1F: KI = n. Thus S

IE K| is finite.

We now obtz}in' i éblF;Kl_,.: VIF:EI-IE:‘KI’:front Theorem. 48.13. In par’ti’c',ular‘,’ lFrEl‘
and 1E:K) divide 7. - e T oL g

L

- Exercises .-

~

1 Let E be a freld and K CE. Show that K.is a,subfreld of E 1F and only 1f‘K
1s a subgroup of E and K\{O} 1s a subgroup of E\{O} : ,

2 Let p be prlme Is Z )2 an extensron of Z ? Is YA 3 an’ extensron of Z 2

AN

subfrelds of (D N

S

4 Let K be a freld and lct Aut(K) be the set of all’ fleld automorphlsms of
K Show that Aut(K) 1s a group under composmon

5. Fmd all '1utomorphlsms of @ ['F @(t) @(w), @(\/51) @(\/2) (see Ex 3)

~6 Fmd threc nomsomorphtc mfmrtc »frelds of charactcrrstrc.p = 0.

7 Fmd the, dc;,recs ot the followrng extcnsrons C/R:,C/@(i), @(f)/@_.;

R /@ FOIF .

8. Show that @(\/2 ’) {a +b‘15+ ci + d\/2t a,b.c, de @]_ is an extenslon

vfreld of both Qi) ttnd @(\/2) 'Find I@(\/2 1)‘®| by two dlffcrent methods

9. Prove or dlsprovc If E/K and EIK, are f1n1te dlmensronal frcld cxten-’

slons thcn E/(K ﬂ K2) ls flnlte dlmcnstonal
10 Let- K be a fleld and e thc 1dcntlty element of K: Show that lear K = ()

Z .
T

or p accordmg as thc subrmg of K gcncmted by is 1somorphlc to Z or to L

“3. Prove that; @(w)— (,x +yw X,y € @} and @(\/51)— (x+y\/—t x,y € @} are B



Y
%

11 Find the prlme subflelds of the flelds in- §29 Ex 8.
T2 Let K be/a fleld of charactensuo p ¢ 0 Prove lhdl 0: K-> K is a field

S a-»a"
'homomorph’ism_, ETRO s T

IR ‘Si;(\“



. §49 D ,- ’- o 1
Fleld Extensmns (contmued) ' '

; - ) . N
r‘ ! . : . . gt

‘ 49 1 Defmltlon Let E be an extension: fleld of K. IfF is-a fleld such lhat
B KcSFcE, then F is’ sald to be an zntermedzate fzeld of the extenszon E/K

;49 2. Dehmt:on Lel E/K be a fxeld extensxon “and lel S bé a subset of E <

The mlersecuon of all subfields of E comammg Ku S “which is .a subfleld
‘ of E by Example 48. 3(f) 1s called lhe subﬁeld of Egenerated by S over K;
. and 1sdenoled by K(S) e ‘ o

_‘It follows 1mmed1alely from llus defmluon lhal K c K(S) c E SO’ lhal K(S)

s an- mlermedmte field of E/K. When Sisa fmlte subset of E, say when = ©

[al, s - el }; we wme K(a . a) mslead of K([al,az, S }) “In ‘
K parucular 1f a. . E then- K(a) is, by defmmon the. smallesl subfleld of E -~
'com‘umng both K. and a. Nouce that K(a R | ) = K(a TR ) fop
[ . . 2,/ L T
‘ ‘dny permutatlon (1 iy _9_ ) ,-n) m_ Sn.' =

}49 3 Defnntwn Lcl E/K be d fleld exlension and lel S be a subset of E
-The mterscctlon “of all_ subrmgs of E comammg Kus, Wthh is'a subrmg
of E by Example 302 (©), 1s called lhc s‘ubrmg of E generated by S over
‘K and 1s denolcd by K[Sl ARSI :

'

Smce every subfleld of E con(ammg K U S is also'a subring of E comam-
ing Ku'S, we clearly have K ¢ K|[S}tc K(S) CE.- IfS is.a finite subsel of E

¢ say §'={a,,a,, ....4,}, we. write K[al,a ...»a ] instead of. Ki{apay .- a, 1]. In
. particular, if a € E thén K[a] is, by deflmuon the smallest subrlng of E
comalmng both K. and a. We have K[a oo ] = K[a‘ ,a ....a; ] for -any
n N\ B

permutallon (1 iz' G ) in S :
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' One verlftes easrly that F = {

494 Example ln the extension C/Q, let us find the subfield of C .gene-. .
rated by i ‘over @ . Any ‘subfield of C' containing both Q- and i contains..

:;,Iwhereabcd€®andc+dz¢0

complex numbers of the form
c

a+bi.
Lo dl _
:-‘,-subfreld of C. contamlng both @ and i Hence F is the subfreld of C_
generaled by ‘i over C :

C abcde@ c+d1¢0} is a

vl

) Lel us, nole lhal any element of F can be wrmen in lhe form x + yz with
x,y € Q. Thus {x +yi e Crxy e @):'="F and F is equal to the field Qi) de- o
fined in. Example 48 3(c) So the notatlon of Example 48.3(c) is consrslent
w1lh that of Deflnmon 492 '

‘ “bThe descrlptron of the elements 'in -a fleld generaled by a subsel over a 1
subfreld resembles the precedmg example : !

49 5 Lemma Let E/K be a ﬁeld extenszon and al, e € E Then

i (1)Klq .. an]:— [f(al,az,.. a)EEfe K[x (K5 e ,x]}
(2) K(al,\az‘, s L _ «
) f(aly 7 . V' "7a)

) : - eE, EKx,x, 5 5 ,‘.-;;;1 AO_..

' Proof (1) Lel A be lhe set on lhe rlght hand side of the equauon in (1).
Any subring of. E containing K - and {al,a2 -»a,} will contain the elements
2

' tive integers, hence also the clements of -the form

my mz‘m”' ’ o .A* :
PR o _Zk mymm 81 (1;,'....(1’l " S (*) .

of the form kal”'la m2, .".an”'", where kekK and my,my, .. ,m, are nonnega-i

where k’ ' € K and m ,my, .. L

i " " are nonnegauve mtegers Of»

. course, (*) is nothmg but lhe value of the polynomlal

f(xl,xz,. ,x) 2 k,,, 2 1”"x2 xS E Kx,%, LX)
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at (al;az, o ) So e\ery element of A'is in any subrmg of E contarmng K .

and {a ay, - } This gives-A g K[a az,‘ - ,a ] To prove - the reverse' -
1nclu§1on it sufflces in view of K u [a ceasd, JeAc E, to. show that A
o8 a ﬂsubrlncy of E. But this is lmmedmte .given’ any f(a - ,a;)"and' h
-g(a,z,..a)eA wherefgerr .i.x |, we have T
fajay, ..a) +g@.a,...a ) =(f+ g)(al,az, )
- 8(a,ay, .0 ) =(; g)(al,a,, @) €~_A

fa.ay e )ga.a,, ....a ) = (fg)(al,az, ool Y €A o

since f+g. -8 fg belong to [x,,x,, ....x'] whenever fg do Thus A s a ,

subnng of E by lhe subnng cmenon (Lemma 30. 2) ‘This proves

’K[a s i =4 :

(2) The re‘&onrng is blmlldl’ Let B be lhe set on the rlght hand. srde ofi
the equauon in (2). Cledr}y A € B. Note that B = (b/c eEzbceAd c= O}
(bl € E: b €A, c= 0). Any subfrcld of E containing K. and (G }‘_
will contain K[a 2, .. a | =A And since. a subfleld 1s closed- under‘

- division, it will conmm nlso the clemenls b/c, where b c:€ A and ¢ = 0-

 This mcans that" B is contnrned in any subfreld of E conlarmng K and -

{a Ay ... a] ‘Hence B < K(a .. a) To :prove ‘the reverse- 1qclu510n, l[‘
- suffices; in" view of Ku ["r”z' ...,van} f;' B_ c E; to show that B is a subfreld

“of E. Indeed _given any.b/c, dle € B, where b <, dye € A;c.e = 0, we lmvc '_

T i : ‘- I) d : .I)e+(1c B

c ‘ 4 e
e -
o bd.
pobd =f).—d'€B.
: . ce ce oo , ) _
oo ; .———:c— € B (provided dfe = 0, ie..d= 0y

S ¢ . .
_since be +dc;ce, -d, bd, ce belong to A whcnever b.c, d ¢ do. rmd ce= 0
whenevcr c=z{ = e (A is-a. subrm;b “of thc flcld E ,and has therelore no

Zero dwrsors) Thus- B is n subfield of E by the subficld cmenon (L cmma
48.2). This proves. K(a u)—B o , , N =

,\,

The proof of Lemmd 49, ). an bc somewh.xt smlphhed by referring 10

K

“"Theorem 3!.‘%. . . ’
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Let us "take a new. look at, Example 494 under the l1ght of Lemma 495

The field F -in Example 49.4 is exactly the the field desribed in Lemma .

. 49. 5 w1th K - O, n= 1,0, =i¢€ C.On. the’ other hand ‘the field-

o {x +yz e C: x,y € @} s, exactly the subrmg of C- described in Lemma‘
’ 495 w1th K= -0, n —1 a =i € C. Thus we have Qi) =Q[i]. The reader‘,v

' :fw1ll eas1ly verrfy that @(\12) @[\/_L] also (cf Theorem 50 6)

‘ "49 6 Lemma Let EIK be -a feId extensron and d, b a 02", .’.'.,a,l €E
() K(a) K ifand only'ifae K. .- s AR

(2 K(aya ( 1, 1,3, ) = (K(al, S l))(a ) and K[a a2, . ._.,an_l,

', '[K(al,az, l]][a] S / .

v '(3) K(a b)'(K(a))(b) (K(b))(a) and K[a b] [K[a]][b]—[K[b]][a]

.Proof (1) a € K(a) by the defmmon of K(a) and 1f K(a) =K, we: obtam}' U

a€ kK’ Conversely, ifae K, then K = K v {a) and K is the 1ntersectron of all"

.‘subflelds of E conta1n1ng both K and a; thus K(a)
y . .
? (2) Let us write L. = - K(a,.a ...,a,l 1) Then L. contalns K and a

LA TIAREE LS L
- Now L(a ) is a subfleld of E conta1n1ng both L and ‘a: . s0 L(a ) is a sub-
-field of E contalnlng K and al,az, .ea, and a Then K(al,az, ...,a,I 1,a ),

be1ng the 1ntersectlon of all ‘subfield of E contammg K and a8y 54, 1,4, .
is a subfield of L(a,). This. gives K(al,az, ...,a,l pd,) € L(a, ) On the other .
.v‘hand K(a,.a,, .. n_l,an) is a subfleld of E conta1n1ng K, a
“also’ a.SolLg K(al,az, eey ‘n_l,a ) by the defmmon of L = K(a
~and a € K(al,az, Cea, 5a). ‘Hence " K(a wsa 1,a) is a subf1eld of E-.
contalnlng both ‘L' and a, Then L(;z ) c K(al, s - v.,a 2,154, ) by the’ def1n1—; -

'tlon of L(a ).-We obtaln K(a s oo, ,a) = La, ) ‘as: was- to be proved

','The second assert1on is proved in exactly the’ same way (read "subrmg
Jin. place of "subf1e1d" in the foregomg argument) ' '

2, ..,an_l and

n=1""n

(3) Usmg part (2) tw1ce we get (K(a))(b) = K(a b) = K(b,a) = (K(b))(a) and'-‘ o
51m11arly [K[a]][b] K[a b] K{b,a) = [K[b]][a] o : -

/ SN N

~We introduce a very" ‘import'ant classmcatnon of - f1eld extens1ons -
algebraic "vs transcendental extensmns They behave very drfferently
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s 49 7 Defmltlon Let E/K be a f1eld extensmn An element a ofE is sald .

to be algebralc over K if there is a nonzero polynomral f1n K[x] such’ that

a is a root of f; 1e f(a) = 0 An element a of E ‘is ‘said to be transcendentalf'.
over K if'a s _not algebralc that is to say, 1f there 1s no nonzero poly- o

nomral fin K[x] wrth f(a) =

K

lf every element of E is algebrarc over K, then E is called an algebratc»" :

extension: ofK and E/K is called an algebratc extenszon In tl’llS case E is.

said :to be algebrazc over K. If E"is not an algebra1c extens1on of X, “then Ef g
- is called a transcendental extenszon ofK ‘and E/K is called a transcenden-

"tal extension. If so, that 1s to say, 1f E cont’uns at least. one ! ‘element wh1ch
is_not algebra1c over K then E is sard to be transcendental over. K.

;

v49 8 Examples (a) Let K be any f1eld Then for any element a € K the

' polynomlal f(x) =x-a is in K[x], and a is a root fo Thus any element
. cof K is algebrmc over K and K. 1s an algebrarc extens1on of- K L

«' . OIS

. i(b) i€ C s a root of -the - polynomml x2 l € @[x] Hence i is algebrarc

over @ Also, any element a + bi of @(t) where ab ¢ @ is a root of R

[x - (a+bt)][x (a-bi)] = x--2ax+(a +b2)eo[x]

. and is therefore algebrznc over@ Hence @(1)/@ is an algebrarc extensron

v(c) \/2 e R is a root, of the polynomral x2-2%€ @[x] Hence \12 1s

‘ al;,ebrarc over @ Also any element a + b\/2 of @(\/—) where a, b € @ is.a |

root of

[Jt (d+b\/—)][x (a b\/—)l =x2 - 2ax + (a - 2b2) € @[x]

and is therefore algebrarc over @ Hence @(\/2)/@ is an algebralc exten-

- sion. ,
) N

(d) Tt is a fact that.x € R and ¢ € R are transcendentnl' over ©. We
. borrow thrs fact - from number theory without - proof Thus. R /Q -is a.
- . transcendental “extension. @(nr) and- @(e) are also transcendentdl exten-'

“sions of @. . . - B P

\

'(c) Let K be a fleld and X an 1ndeterm1nate over K Then K(x) is an .

extensmn f1eld of K and x € K(x) Af fis any nonzero polynomlal 1n K[x]
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then f(x) =f=0 (Example 35 2(d)) Thus x is transcendental over K and.
K(x)/K is a: transcendental extension. o 4 ,
Likewise - f(xz) =0 for any nonzero polynomral fm K[x] and x? is

o transcendental over’ K. On the other hand “if y rs another indeterminate

“over K, then x. is ‘the. root of the. polynomlal y2-x%¢ (K(xz))[y] so'x is-
~ algebraic - over K(xz) Thus an” element may be transcendental over a -
* field and algebrarc over another field. . - . . L SR

49.9 Defrmtron Let E/K be a freld extensron If there is an element a
in E such. that’ E =K(a); then E is called a, simple extension . of K. In this
case, ‘any element .a.of E satrsfyrng E= K(a) is called a primitive . element
of the. extension E/K. If there are frmtely many . elements a,,a,, .eay in £
such that E =K(a‘l,a2,‘-.. ,a ), then E is said to be ftmtely generated. aver K

\

"The reader should clearly drstrngursh between finite d1mensronal exten- '
srons and finitely generated extensions.. = )

We close this - paragraph w1th a theorem that descrrbes all srmple tran- ,
scendental extensions up to 1somorphrsm Srmple algebrarc extensrons
-/ will be. treated 1n the next paragraph B ' '
: e S \

49, l0 Theorem: LetkE[K bé a field extension and let a € E be tran}cen-. -
. dental over K. Then K(a) = K(x) where x is an mdetermmate over K.

Proof We wrsh ‘to fmd an rsomorphrsm from K(x) onto K(a) What rs

"more .natural than the extension »

‘ o: K(X)-*K(a)

£ _ fa)

« : g gla

- . of the substrtutron homomorphrsm" In any case, Lemma 49, 5(2)

suggests that we try this ‘mapping. Now o -is meanlngful for grven any.

f/g € K(x) with f,g. € K[x],.g = 0,-we have g(a) = 0 (a is transcendental
~over K) and so (f/g)qo f(a)/g(a) is a perfectly defrmte element of K(a).

We claim that @ is well defrned Indeed, if. f/;: = f/g, in K(x) where
fg,fl,gl € Kix].and g = 0¢ g, .then fg, = f,g i i ... by Lemma 35 3,

I



f(a)g (a) = fl(a)g(a) in E, with g](a) = 0 = g(a) mulnplymg thlS equauon o
by 1/g (a)g(a) we' obmm v : .
: £ (a) fl(a) iy R
( ) g(a) g (a) ( )(Pv . - _ - ‘-,\ -
e which shows that o s well defined. ..~ o

e is a _rlng,homomo_rphlsm becausc, from Lemma 35.3, we have

- ‘(j;;g)a: fo+pg.  _ (g+pe)a)_fla)ga)+ p(a)g(a)
Rt

~ 89 ',‘P‘_—-f( (fq)(a)( »):"-f_‘ , g(a)q(a)
o a pla 4
g@ " gla) Qe+ @ o -

rp fp . Ral@) - fla) pla) N
_ e “ga? T g@ala)” gl@)-q@@ () Uq’ S
. for zmy f/g p/q € K(x), where f.8:r.q. € K[x] and g ¢ 0= q, the last ’
vcondmon ensunng g(a) = () = q(a) :

“Land . :
4 B

Vo

Smce ‘. Kereo = [f/g € K(x): fg € K[x],g¢ 0in K[x], f(a)/g(a) =0} - ,

S —UMGMﬂfgeﬂmg¢0ﬂm-m s

= (flg e K(x): fgeK[x]g¢0f 0] ' e e

=), . - RIS

cp JS one to one Hence ® s, a. fleld homomorph:sm Lemma 49, 5(2) states’
' th'n <p is onto K(a) ‘So P K(x) K(a) isa fleld lS()mOI'phISm K(x) = K(a) :a

Ve

T »"'EXCrcises
1. Let E/K be a fleld exlenxxon and ScE, S = @ Show that . | s .. S
o KIS'= [f(sl,vz, S )e E:m €N fe K[xl,xz,_ x ] and q], s €S
c.and K(S) " - o , o ’ e

. . « L 8 . . ; e \ ,
f(sl,sz,. S a8 : T B
—— ¢ E:neN ’€K \ 8. ;

{ﬂﬁy.;”w ” ke ‘%%’JJMQM%%~wW*9L;

~ I

2. Let E/K be a ﬁeld extenslon and S c E, ‘S ;.: o, Usmg (he defmmon of .
" UKIS) and K(S) only’ (1n particular,- w1thout usmg Ex l), .provg:.that K(S) is’

NN

the fleld of fmcuons of KIS] o o Lo N

3 Let E/K be a ﬁeld extension and s <E. Show, lhdl K(S) =K if dnd only i

Ce03 L



4, Let E/K be a fleld extensron and a;.a,, .. ,a € E Prove that

: (K(a .‘,.,ak))(ahl, .a,) for any k =1 2 -1, '
‘5 Let ab ‘are ztrbltrary ratronal numberé Fmd a polynomlal in @[x] R
- which. admrts a+bV5 as a root. Conclude that @(\j 5)/@ is -an algebralc;--
exten51on R L Lo .

”A.6 Show that */2 + z,\JZ +3, \JZ + \/3 + i -are algebrarc over @ by ~
'exhrbmng polynomrals m @[x] having' these: numbers among thelr Toots.

B 7. Let K be a f1e1d Prove that every element 1n K(x)\K is transcendental

&
over K

,8 Let E/K be a 51mple f1e1d extensmn and let a-be a pr1m1t1ve element of -
this. extension. Let kk” € K, with k = 0 Show that ka + £~ is also a primi-

* tive element. of E/K

9. Fmd a finitely- generated fleld extension Wthh 1s not f1n1te dimension- . -
al. Prove that every f1n1te d1mensronal extensmn is f1mtely generated

|l

"10 Prove or dxsprove if EIK is a- f1e1d extensxon and a,b € E are tran-
scendental over K then K(a b) = K(x,y) where X,y are - 1ndeterm1nates d
;. over K. ' : ‘
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S sse
Algebralc Extensions -

" Let E/K be a ﬁeld extenswn and let a € E be algebralc over K Then there ‘

- -is a ‘nonzero polynom1a1 fm K[x] such that f(a) = 0. Hence the subset A =
,f E K[x] fla) = 0} of K[x] does not- consist only of 0. We observe that A is

-, an ideal of K [x], because A is the kernel of lhe substltutlon homomorph-
1sm7_' K[x]—»E . : . . :

Thus A is an ideal of K[x] and A = [0} .Since K[x] is a prmcrpal 1deal.
) domain, A = K[Jc]f0 1) for some nonzero polynomlal fo in K{x]. For any-, :
_ ‘polynomlal g € K[x], the relauon (g) A= (fy) holds if ‘and only. if g and Ly
- .are..associate in“ K[x], that 1s to’ say, if and only 1f g(x) = cfyx) for some <.
in K*. There is. a unique co eK” such that ‘the, leading coefficient of Cofo(x) .
is equal to 1. With this Coo .we put go(x) = Cofo(x) Then 8o is'‘the -unique .
monic polynomial in K [x] sausfymg ) =A= {f € K[x): f(a) = 0j, and f(a) -
“'=.0 for a polynomlal fin K [x] if and only if- glfi inK [x] In partlcular, we '

have deg & < deg ffor anyf € K[x] havmg a as a root R

In thls way, we. assocrate wnh ae E a umque momc polynom1a1 go in K[x].
; Thrs & 1s t,he monic polynom1a1 in K [x] of least degree havmg a as a root.

\' & is 1rreduc1ble over K 1f there are polynomxals p(x) q(x) in K [x] wrth‘

‘ go(x) = p(x)q(x) 1< deg p(x) < deg go(x) and 1 < deg q(x) < deg . go(x)

then 0 =gy(a) = p(a)q(a) would 1mp1y p(x) €A or q(x) €A, hence gglp or - »

N :‘- &g in K [x], which- 1s 1mpossrble in view of the condmons on deg p(x) and C

| deg q(x).

We proved the following theorem. = .

"x

' - 50, 1 Theorem Let E/K be a feld extenswn and a € E. Lf a is algebratc
over K then there isa umque nonzero momc polynomtal g(x) in K[x],

such that : : . ' .
' for all f(x) € K[x], , f(x) =0 ,-fand,.gnzy if.g@ff@ 'in K[x].
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In particular, a is a root of g(x) and g(x) has tlze smallest degree among
the nonzero polynomzals zn K[x], admztttng ‘a as a root Moreover g(x) is
~irreducible over K. ' e R P

© - 502 Del‘initiorl :Let E/K be a field’extension'and let a € E be algeb‘raic

" over K. The’ umque polynomlal g(x) of Theorem 501 is called the mtntmalf

‘polynomzal of a over K.

!

'_The mmlmal polynomlal of a over. K is also called the zrreduczble poly-~
'nomtal ‘of a over K. Given an element ‘a ofE algebraic “over K, and-a

o polynomlal h(x) m K[x], in order to find out whether h(x) is the m1n1mal o

polynomial of a over K, it seems we had to check whether. h(x)lf(x) for all

the polynom1als f(x) € K[x] havmg a as a root. Fortunately, there is
another character1zat10n of minimal polynomlals ‘ .

50.3° Theorem Let E/K be a feld extenston and a € E. Assume that a is

algebratc over K. Let h(x) be a nonzero polynomtal in K[x] If .
(i) h(x) is monic, :
(i) a is a root of h(x),
(i) h(x) is irreducible over K, -

then h(x) is the mtntmal polynomzal of a over - K.

' Proof We must show only that’ h(x) d1v1des any polynomlal “f(x). € K[x]
" having a as a Toot. Let f(x) be a polynomlal in K[x] and assume. that a is a-
root of f(x). We d1v1de f(x) by h(x) and get _ '
X)) =qx)h(x) + r(x),  r(x) =0 or deg r(x) <-deg h(x)

~ with’ su1table q(x),r(x) € K[x]. Substituting a for x, we obtain

_ 0 = fla) = q(a)h(a) + r(a) = g(a)0 + r(a) = r(a).. .
It r(x) were d1st1nct from the zero polynomlal in K[x], then the irre-
ducible - polynomlal "h(x) would- have a common root a with the polyno-
- mial.-r(x) ‘whose  degree is_‘ smaller than the degree of h(x)‘ This" is impos-
sible by Theorem 35.18(4). Hence' r(x) = 0 and f(x) = (x)h(x) Therefore
."h(x)lf(x) for any polynomml f(x) € K[x] havmg @ as a root, as s was to be -
proved S . R L L . ]
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50 4 Examples (a) Let us. fmd the mrmmal polynomml of ieC over
R. Since { is a -To0t of the polynomml x2 4+ 1€ R[x], which is: momc and -
1rreduc1b1e over R, Theorem 50.3 tells us that x2°+ 1 1s the minimal poly-
nomial - of i over R ‘In ‘the sate- “way, we see that- x +1e O [x] .is- the 8
minimal polynomral of i over Q. On the other hand x2+1¢ (@(1))[x] is
not - 1rreduc1b1e over Q(i), bccause x2+1=(x- r)(x +4) in (@(1))[x] Now
X -0 is a momc 1rreduc1b1e polynomral m (@(1))[x] having - 1 as a root and:
N thUS x - i7is the mrmmal polynomral of i€ (C over @(r)

» '(b) Let us fmd the mrmmal polynomral of u. —\/2+\/‘ € R over @ The

calculatrons S Ch f'\/i+‘\/§‘
a ' u-v2 —\/_'- U L o
wew2ue2=3 0 @)

o wt-1=22u

: w2 1= 82
: o : W= 1002 +1=0 , ‘
‘show - that \]2+\/§ is.a root of the monic, polynomral f(x) =x*- 10x2 + 1in.

.

»@[x] We will prove lhdl f(x) is irreducible over Q. Theorem 50.3. will'" :

- then yreld that f(x) is the- minimal polynomral of \]2+\/§ over Q.

\

VAIn view of Lcmma 34.11 _1t __wrll be suffrcrent ‘to show that f(x) is.

irreducible over Z.-Since the numbers #1/¥1 = =1 are not roots of f(x), we )

learn from Thcorem "35.10 (rational. root theorem) that f(x) has no poly-
- nomral factor m Z[x] of degree one. If there were a factorrzatron in Z[x]
=oof f(x) mto two polynomrals of degree two, which we may assume to be

10+ 1 = (2 +ax+b)(x +ex+d) r (e)’*
. wrthout loss of generality, thcn the integers a, b,c,d.. would s*msfy '
'a+c—-0, d+ac+h——10 ‘ad+bc-—0’ bd =1
and this would force b=d=x1 and the first two equatrons would grve
: a+c—Oac—-12 ,or. a+c—0 .ac =:-8
=12 o or | ¢ =8, )

'whereas no integer has a square equal to 8 or 12 Thus flx) . is 1rreduc1ble '
~in Z[x] and, as remarked. earller f(x) is. therefore ‘the mrmmal poly-
nomial of \/2+\f§ over. @. ‘

4
RS

.- The - 1rreduc1br|1ty of f(x) of dez,ree four over @ could . be proved by

- showing the 1rreducrbrlrty of " another polynomml of degrce less th.m_'.
four, . over a field Iarger th.m 0. As this gives a deeper msrght to the _
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'problem at hand we w1ll d1scuss thrs method The equatlon (u) states
that- \/2+\/§ is a ‘root of the polynomlal fz(x) x% - 2\/2x— le (@(VZ))[X}, .
- lLet g(x) € (@(\/2))[x] be. the minimal polynomlal of \/2+\/§ over onW?2). .
- Then g(x)lfz(x) 1n (@(\12))[x] and, if g(x) #fz(x), then deg g(x): would be ‘

vfone and: g(x) would be x - (\/2+\/_) -since, the latter is - the umque momc o

“_polynomlal of degree one having \12 +\/§ as a root, But g(x) € (@(\/2))[x]y
and this would imply \lz+«/§ € @(xlz), soV3 € @(«Iz), so 3=m+nmV2
with surtable m n €0, where certamly m=Z0=n, so 3 =m? + 2\/2mn + n2
2=03- ‘~ 2n2)/2mn would be a rational. number, a contradiction. .
o '-Thus fz(x) = g(x) 1s the’ mrnlmal polynomral of \/2+\]§ "over’ @(\/2) -
Now the 1rreduc1b111ty of- f(x) over. @ follows very easﬂy f(x) has no -
factor of degree ‘one ‘in ([D[x] If fix) had a factorrzatlon (e) in @[x] where»_.

~:ab,c,d are rational numbers -(not necessarlly 1ntegers) then \12 A3

would be-a root of one of ‘the. factors on the rrght hand side of (e), say of :
2,

2443 as a root would. be d1v1s1b1e, in (@(\IZ))[X], by the minimal poly-
‘nomial fz(x) x - 2\/ 2x 1 of \/2 + \/3 over @(\/ 2). Comparlng degrees' ;

' and leadmg coeff1c1ents, we would obtam x - 2V2x=- 1=x% +ax + b, so
2\/_ =-a €, a-. contradlctlon 'Hence f(x) is 1rreduc1b1e over @

2 !

'

The next lemma crystalizes_th'e' argument employed .in the last example.
. / - ' : ’ !

‘50 5 Lemma Let K cK,CE be felds and a.€ E If ais algebrazc over
then a is algebrazc over K Moreover xffl,f2 are, respectzvely, the'

7/

1’
mmxmal polynomzals of a over K and then lef1 in Kz[x]

B Proof Ifa is algebralc over K and fl(x) is’ the minimal polynomlal of ‘a
over. K “then fl(a) = 0. Since fl(x) € K, [x] c Kz[x], we conclude ‘that a 1s:
algebralc over K. Then from f(a) = 0.4nd f (x) € K2[x], we obtain
LGN (x) in. Kz[x] by the very definition of the minimal * polynomlal fz(x)\
ofaoverK B P R R T M.
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-x%+ ax '+ b. But then x? + ax.+ b, belng a. polynom1a1 in (@(\/2))[x] having :
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We proceed to. descrlbe slmple algebrdrc extensmns Let \us recall thal we
~. found 'Q[i] = - Qi) Thls snumon obtains.’ whenever we consrder a srmple :
exlensron generated by an Algebralc element ‘

Lot

G

‘ 50 6 Theorem Let E/K be a feld extension and ae E Assume that a is = .
‘,algebraxc over'K and et f be - its minimal polynom:al over K. We denote C
d'by K[xlf (f) the prmczpal tdeal generated byf in K[x]. Then , VR )
S K(a)~K[a]~K[x]/(f) SRR S .

"/»PI‘OO'f' C.onsider“the subsmutlon homomorphr.ém T KLf] E Here‘K'e‘r_T;J : N
= {h e K(x]: h{a)'= 0} = (f) by Theorem 50.1 and Im T,=Kf{a] by Lemma . -
49, 5(1) Hence K[x]/(/) K[x]/KerT = Im T =Klal. - T

It remains to show K(a) = K[a] Smce K[a] K(a) we must prove only

K(a)c Klal]. To thls end, we need only prove that 1/g(a) € K[a] for any

‘ .g(x) €. K[x] with g(a) = 0 (Lemma 49.5). lndeed if g(x) € K[x] and- g(a) ¢ 0,
“then ﬂg and," since f is irreducible in K[x] the' polynomlals flx) and g(x)

-are relatively prrme in K[x] (Theorem . 35 18(3)) .Thus- lhere are - poly-
nomials’ r(x) r(x) in K[x] such that ’

| CHR) + gx)sx) = T

h Subsmulrng a for x. and using f(a) =0, ‘we obtaln g(a)s(a) . Hence '
lgla)y= 9((1) € Kla). This proves Kla] = K{(a). (Another proof. Smce K[x] is a, .
prlnclpal ldeal domdm and f is irreducible in. K[xl; the factor rmg K[x]/(f)

A ls, a field by Theorem 32.25; thus 'Kla], being a rmg rsomorphrc to the

field Kix)/(H,is a subfleld of E,- and K[a] contalns K and a. So K(a) c K[a]

and K(a)—K[a]) . S e - . _ R =

1

50,7 Theorem: Let E/K be a field, extensi‘on and a € E. Suppo\e that a is ,
algebrazc over K an(l let f be its. mznzmal polynomtal over K: Then

4 '.'. IK((J)KI—(le'f“ » _
(the degree of the ' field K (a): over K 15 the degree of - the mlnmml poly-

-nomml fin K{xD). In faci, if deg f_ ", then {1,a,a%, ... ,a") 'is a K-basis of -
'K(a) and every element in K(a) can-be written in the f()rnz T
’ R ‘ k, +La+La+ +L . (/\0‘ ”_,-‘,\nll K)
g umqua'uu\f e T \ o

e
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,Proof We prove that {1 a az ”asls of K(a) Let us, show
that it spans K(a) over K We kn v K(a) K[a] from Th.eorem 50 6 and -
’K[a] = (g(a) € E: g€ K[x]} from Lemma 49 5(1) Thus’ any element u of
‘K(a) can be written ‘as g(a), where g(x) is a-suitable- polynomial in K[x]

D1v1dmg this polynomlal g(x) by f(x) whrch has degree n, we get

)_!' L s

\

g(x) = q(x)f(x) + r(x) r(x) =0. or deg r(x) P
w1th some polynomlals q(x), r(x) 1n K[x] Substltutmg a forx we obtaln '

;_.u— sla)= (a)f(a)+r(a)— (a)0+.r(a)=.r(a)...v-~“

If say, r(x)—k +kx+k2x + -

- +k x" 1,- where k k k ...l,k,;_sl“_e K,
" then = "'Vu-k +ka+k2a+ +k e T
K and thus {1 aa ] pans K(a) overK 5
Now let us: show that {1aa yien @t 1} is 11nearly 1ndepender1t ‘over: K. If‘
k k k ...kn1 are elements of K- such that ' L
k +ka+k2a +- +k =0,.\‘;.,--;

“:then a 1s a oot ‘of the polynomial h(x) = k + k X + k2x ey k 1x" -1 in R
~ K[x], s0 f(x)lh(x) by Theorem 501 "Here h(x) = 0 would yield the contra-
- diction n = deg [ < deg h< n- 1. Therefore h(x) = ‘0, which means that
Cky =k —k = = kn_lvﬁ-_O..Hence {l,aa Llaavhy s lmearly 1ndependent o

: over K.

This prove‘s’ {'1;4,'(12! ...,a"’i}'is -a‘:'K..-h‘asi.s_ of K(a). It follows that -

o IK(@):KI = dimK(@) =1 {1a,a% ...a" )| = n = deg fix) -

and, by Theorem 428 every element of K (a) can be wrltten umquely in
the form '

' = “.‘". ' n-1
Ak0+k1a-+>k2rzp + - 'f*kn-l‘* co l F.

50. 8 Defmltlon Let E/K be a field exten51on and ae E. Suppose a 1s', »
algebraic over K. Then the degree of 1ts minimal~ polynomlal over K,

whlqh 1s’ also the degree of .K(a). over K, is “called the degrge of a over K.

‘
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"'_509 Examples (a)\The mlmmal polynomlal of l€ C over @ 1sfthe"

_polynomtal xZ +1 in Olx] (Example 50. 4(a)) -and x + 1 has degree 2: Thus

. ieC is- (algebnuc -and) has degree 2 over Q. Ltkewrse the mtmmal poly-_‘_ '

e nomml of i€ C over R is x2 + 1 € R[x] and { has degree 2 over R

T (b) The mrmm'tl polynomml of \’2+\/— € R over @ was found to be P
x- 10x +16€ @[x] (Exttmple 50. 4(b)) Thus ﬁ+\/— 3 has degree 4 over @ _
This follows also from- Theorem 50.7. In facl the : numbers 1, \/2 form a .

o Q ba51s of the fxeld @(\/ 2) hence l@(‘fZ) Q1 = - 2. Observe that

S FCy NS R :

| L ~-degree 2 -~ -

T IRD ) R

degree 4 | | 0(¥2) T

. 1l - dégree 2

' . ,:' -/‘: /‘ . _ K

' ‘Lgo_' b
B \/_2_ == —(‘J2+‘J3) + 5 (‘JZ+ ‘13)3, so ‘JZ € @(‘J2 +\/3) and -therefore » A

@(42) c @(\/—5+ \/_) Thus @(‘J2) is-an 1ntermed1ate field -of the extensronin, :

@(«J2+\/—)/@ From Theorem 48. 13 ‘we infer. that:

\=‘|@‘(«J;z+3/,_).ot |@<x/2+«/—) P l@(\f_) @l = t@(xliml") @(\f_)lz :

Lo e l@(@+\/—)®(\/2)l
and- \]2+7\/_ lms degree 2 over @(\/2)

(c) Since x2+1 € R[x] is the mlmmal polynomlal of i e (E over lR Theo— -

rem 50.6 states that lR[x]/(Jt2 +.1).= R(t) In the.ring R[x]/(x + 1), we

have the equtthty x + Rl\fl(x +1)=-1+ R[x](x + 1), and calculatlons are ;

carrled out just as in the ring R [x]; but we replace’ [x + R[x](x +. 1)]2

x? + RIX](X +.1) b)’"l + Rlxl(x + 1). ln the same way, calculallons are ‘-
carried out in R (i) = -—\ just as though I were an: 1ndeterm|nate .over' R,
cand we write -1 for z wherever we'.'see 1 Thls is thl .the tsomorphtsm

. R[x]/(x + 1)’” R(t)—ll: means. .

:



, (d) Likewise, 1f E/K is a field exlenswn .and a € E and 1f a is algebralc

' 'over K wuh the mlmmal polynomm] x"+c . x" R CpoX x"2 4 el tOox +,c0
over K so that _ : CRE ' -
v n__ . nl-f’ n—2_{'___' _ v C .

‘ Sa=-c,a o Cppa - 6a-¢cp .

; —‘then K(a) con51sts of the elemems : . : SN
o kg + kja+ 4k "‘2+kn1a -1 . (kg ".;.,knz,k € K)
~and. computanons are carrled out in K(a) just as though a were an inde-

terminate over K and then replacmg a” by -C _laf’ L. - Cpt n2 = C1‘,1 ¢

WhCI'CVCI' ll OCCUI'S

. For mstance wrmng afor \/2+\/§€ R, we have a* = IOa —1 .in @(a) If‘
‘-t—2+a—a +3a €®(a)andu—'a+a +2a €@(a), then ’

t+u'= 2+2a+5a €@(a) . '

‘and_,. tu—(2+a a +3a3)(a+a +2a%). .
=20 + 24 + 4a® + @’ + a3 +2a4-a3-a -24° +3a +3a? +6a
-2a+3a +4a +4a +a® 4+ 6ab :
. =2a + 3a*+ 443 +4(10a -.1) + a(10a? —1)+6a2(10a - 1)

= 2a +3a2 + 44 +.40a% - 4 + 104> —a+60(10a —1) 6a
=—64+a+637a + 1443 e@(a)

‘Let us fmd the inverse of a2 + a + 1 According to Theorem 50. 6 ‘we must
fmd polynomlals r(x), s(x) in @[x] such that . T
A @*-110x% + Dr(x) + (62 +x + l)s(x)—l ‘ o
Cand lhlS we do by the Euchdean algorlthm

x - 10x +1—(x -x—lO)(x +x+1)+(11x+11)
% +x-| 1’—‘(—x)(11x+11)+1

5o thai 1-(x +x+1) (—x)(11x+11) R
' =(x +x+1) (_x)[(x - 1022+ 1) ~ (% - x - 10062 +x + 1]
=@ +x+1)(1+(-—x>(x -x-10) - OG- 102+ 1),

11

T =(x +x+1)( x —-l-xz—'l?x+1) (ﬁx)(x —10x2+1) f’
-.and, subsmutmg a. forx we -get S S et
1 —(a +d+ 1)( ,ll—la_z,— -:—-?-af+ 1)

: ____3_v1_2 10
.1/A(a<+a+_l)-‘”a Ta ”a+1
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Noticew\‘that' a s’ treated here me'rely'a’s”a symbol - that satisfiesi‘the tela-
t10n a* - 10a® + 1= 0 . The numerical value of a = \12 + \/_ 3.14626337. .. -
“as a real number is totaly- 1gnored This. s algebra the: calculus of’

symbols Tl’llS allows ‘enormous flex1b111ty ‘we can rcgard a as an element
in any extension f1eld E of @ in which the polynomlal x* - 10x% + 1 has a
”-,root Thls 1dea w1ll be pursued in ‘the ncxt paragraph

N

50.10 Theorem Let E/K be a ftmte dtmenszonal extenswn Then E is

"algebrazc over. K and also fzmtely generated over K

Proof Let IE K| = n €N, To prove that E ‘is algebralc over K we must
_ show " that, every element of a.is a root of a _nonzero polynomlal in Kx]. If

- u is an arbitrary’ element of E, then the n +1 elements’ 1,u, u2 TR of .
E" cannot . be lmearly mdependent .over K, by Steinitz'- replacemcnt theo- :

‘rem. Thus there are ky,ki,ky, ...k k, in K, not all of. thcm zero, with"
R o k+ku+ku+ fkﬁ;lu"‘+ku'—0
Theng(x)—k +kx+kx+ -+k

W 1|
1

. in Klx), in fact of degree < n,anduis a root of g(x) Thus u is algebralc
over K. Slnce u . . was’ arb1trary, E is algebralc over K. '

+k, X" is a nonzero polynomlal

: Secondly, if: {b bn'} c E is aK basis. ofE then . R R ‘

'V—K(bl,b; b)—{kb +hpby kb)Y B
‘ ‘ ‘.;[f(bl,bz,. b)eEfeK[x,xz,..,xjn]}_f =

= K(b 24 .1 bn) : K . 3 LR
‘thus E = K(b,,b,, .. b) is f1n1tely gcnerated over K. - SRR =

|
, -

AN

As a separate lemma, we. record the fact that the polynomlal g(x) in the
-preccdmg proof has degrec < n. : -

e
l

50. 11 Lemma Let E/K bea feld extensron of degree IE Kl =n € N, Then
"every element of E is algebrazc over K and has degree over K at most

“t
v

equalom .o e
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- Next we show that an. extensron generated by. algebralc elements is- al- 3y
gebraic. ‘ ' '

50. 12 Theorem Let E/K be a ﬁeld extenszon and let al,az, .,a. .,a be‘ )

finitely’ many elements. in E. Suppose that a,ay, .- a

n-1>"n
a, are’ algebratc

n-1
over K. Then K(al,az, e an_l,a) is an_algebraic extensmn of K. In fact
'K(al,az,_.'..,an_l,a )is a ftntte dtmensmnal extension of K and
IK(al,aZ, wind w139 )KI < IK(al)KI IK(az) KI lK(a ).KI
. Proof Let ry- IK(a ) KI For each i=2,...,n- 1,n, the element a is alge- |
braic over K, hence also algebraic over K(a . l) by Lermnma. 505 ‘This~

lemma y1e1ds, in - addition,. that the m1n1mal polynomlal of a over thé ,

field K(a sy 1) is ‘a divisor of the minimal polynomlal of a over K; so,

comparing the degrées of these mmrmal polynomrals and using Theorem
50.7, we get r; -—l(K(a _1))(a)K(al, cen @ NS [K(a‘) KT, this for all-

~'t—-2‘ ,rt ln From

KcK, ) < K(a ,a2) cile - K@, ..-.4,.) S K@, .4, ) »
and K(a ll,a)-—(K(al,..; i_l'))(ai) fori=2,..n-1n -

(Lemma 49, 6(2)) we: obtam :

?IK(al,az,... “,a)KI rroerg  (Theorem. 4813):

IK(a VKl |K(a )'KI IK((IZ) Kl |K(a )K1.

"Thus K(al,azi, a pa,) is.a fxmte dlmensxonal extension of K and by -

Theorem 50. 10 an algebralc extensron of K. » R - o

A}

'50. 13 Lemma. Let E/K bé a feld extension and a,b. E. lf a and b are |
‘algebratc over K, then a + b a- b, ab and ’a/b (in case b = 0) are alge-
braic overK o o o : e S

s

Proof: Ifa and b are algebrarc over K then K(a, b) is an algebralc exten-
~ sion. of K by Theorem' 50.12: every element of K(a, b) is algebralc over K.
Since a- + b a-b, ab and a/b are in- K(a b) they are. algebralc over,K g

o614
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50 14 Theorem Let E/K be a feld extenston and let A'be the set of all’

'elements of E which are algebrazc over: K. Then A lS a subf ield of E (and
an: mtermedzate fleld of the extension E/K)

R

"‘Proof Ifa b €A, then a and b ‘are’ algebrarc over K, then a+b, b ab SRR
and 1/b (the last in:case bz 0) are algebraic. over K by’ Lemma 50.13 and
.so A-is a subfield of E by Lemma 482 -Since any elemeént of K is a]ge~
brarc over K (Example 49 8(a)) we have Kc A Thus A is an 1ntermed1~;"-.“‘ i
"atefreldofE/K e R T ;-D”] L

- 50 15 Defmltlon Let E/K be a f1eld extensron and let A be the subfleld‘ LT
of E in Theorem 50.14 consrstmg exactly of the elements of E- whrch are’ -

‘ :algebralc over K. Then A is: called the algebratc closure of K tn E .

S -
L

-

.~'A is of course an algebraxc extension of K. In xfact iface E then ais alge- o
~braic over K if ‘and only ifa: € A and if F is “an 1ntermed1ate freld of E/K :

‘then F is algebrarc over K 1f and only 1f F < “A. _i

The last theorem in thls paragraph states that an algebrarc extension of.'
- an algebrarc extensron is an algebralc extensron sometimes . referred. to-

“as the transmvrty of algebralc extensrons -

S

. "50 16 Theorem Let FE K be feldsﬂ If F is an algebrazc extenszbn of E B
7 and E zs an algebratc extenszon of K then F is: an algebrazc extenszon of K.

4

Proof:. We- must show " that every element of F is algebralc over K Let'};'
ue F. Since F _is algebrarc over Ej-its clement u is algehralc over. E and‘

lhere is a. polynomlal f(x) € E[x] with f(u) = O say
. f(x)—e0+ex+ +ex :

We put L K(e el, .. e) Then” clearly f(x) € L[x] Smce E is algebralc
over K, each of e, pre1e3Cy .18 a’lgebrarc over 'K and Theorem 50 12.tells us. -
that LIK is finite dlmensronal Also, smce f(u) =0 and f(x) € L[x] we sec

" that u is algebralc over L and Theorem 50.7. tells us- that L(u)/L is finite - .
.dimensional. So lL(“) K= lL(ll) LHK(eO, vev€,):KI is a finite: number: L(u) °

:VIS a flmte dlmenslonal extensron of K By Theorem 50 10, L(u) is an alge- L

L

4
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braic - extensron of K. So every element ‘of L(u) is algebrarc over K In
"~ particular, since u € L(u) we see that u is’ algebrarc over K. Smce u is an -
arbitrary element of F we conclude that F is an. algebraic -extension of K.

< . o e ) L ,"/ oo

50.17 Definition: Let K and L be subfields of a field E. The subfield of E
generated by K'v L over P, where P is the prime subfreld of E, is called.
“the composltum of K and L, .and denoled by KL. o

“So KL =P(K u L) by definition. It follows immediately ‘from - thls |
v defmmon that KL = LK. The composuum KL is the smallesl subf1e1d of E
contammg “both K and L, whence KL= K(L) -L(K)

'

In order to- defme the comp051tum of two f1elds K and L, it vis necessary-
“that thiese be contained in a larger f1eld If- K and L ‘are not- subflelds of a

o common f1eld we cannot def1ne the composnum KL

I E/K is'a f1eld extensron and a, beE, then the comp051tum K(a)K(b) of
K(a) and K(b) is K(PU {a, b})—K(a b) ;

Exercises .

1. Find the mmlmal polynomrals of the followmg numbers over the fields
_1nd1cated o

) (a) \/— ‘ i ’. over @, @(\/—2-),'@(“15)
®V3-N2 o over 0,0(V2), 0W3). g
‘_ ',(°)‘5+‘5+"F o over 0,0(V2), 03y, @(\/2“/‘)
) »,(d)‘\/f.,_\l,—— o . S ‘over @ @(\/2) @(\/q), @(\/—)
e (e)'x3/§+\[§ v .. over Q, @(‘12) @(\/—) @(ﬁ+\l_)

CoVEET w000

A
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» (g)‘ '\fa -1+ V2 . : " _over- /®(\’2) @(1) { .
(h)\j 1-V2. . over o, 0(2),00). |
\l 1+ \Iz+\l 1= \12 "‘over. @,@(vz),o(;). »

N

2. Let E/K be ‘an extension of fields and let D be an integral domain such
that K < D <. E: Prove that, if E is algebraic over K, then D is a field.
- 3. Let E/K be an extensron of f1elds and al,az, ...';am elements of E whrch
.. are algebrarc over K. Prove that K[al, 20 el ]-K(a'l,az,'.'.. a-). N

4, Let E/K be a freld extensron and a, b € E If.c a.is algebralc of degree m
‘over K-and b is algebralc of degree n over K, show that K(a,b) is an

algebraic extensron of K. and that IK(a bkl < mi. If, in addrtron m and n‘; N

are relatrvely pnme, then in fact (K (a, b): Kl

5. Let E/K be-a fleld extensron andL M 1ntermed1ate frelds P‘rov‘e' the v,

followmg statements :
- (@) ILM:K] is finite if and only if both [L: K[ and [M: K! are ﬁmte
(b) If ILM:K] is finite, then IL:K] and IM:K| divide |LM:K]. ‘ , A
(c)If |L:KT and IM: Kl are fmlte and relatrvely prlme then ILM KI rs; o
equal to |L: KIIM:K]. , ’
(d) If L and M are algebralc over K, 'then LM is algebralc over K.
(e) If L is algebralc over K, then LM 1s algebralc over M, -

.

6. A complex number u. is szud to: be .an algebraic 1nteger if. i is the root.

: of a monic polynomml in. Z[x]. Prove the followmg statements

(a) If ¢- e C is” algebraic over Q, then there is a natural number n , A’

such _ that ne: is an. algebraic_ integer.

‘(b) If u € @ and u is an algebralc mteger then u'e Z

(c) Let f(x) and g(x) be monic polynomrals in @[x] Iff(x)g(x) € Z[x] .
_then fx) and g(x) are in Z[x].. (Hint: consider contents.) . - .

(d) If u € C is an algebraic 1nteger then the - mrmmal polynomlal of
u. over o is in fact a polynomml in- Z[x] T C

o
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) §51
Kronecker S Theorem f

In ‘this paragraph we prove an 1mportant theorem due 'to L Kronecker.
‘wh1ch states - that - any polynomlal over a field. has a root in some exten- .
s1on field. It can be regarded as the fundamental theorem of field exten-
sions. As mlght be expected from Kronecker's phllosophlcal outlook, the 3
_proof is constructive: we do not. merely prove the existence of such an -
extension in an unseen .world; ‘we actually descnbe what 1ts elements
are and how to add multiply and invert them R

In our, dlscussmns concernmg “the roots of polynomials we assumed up
to this’ pomt that we are g1ven (1) a field ‘K; (2)a polynom1al f(x) in K[x];
(3) an extens1on field E. of X; (4) an element-a ofE which is-a root of f(x)..
‘But in. many -cases, we are given only a field K and a polynomial f(x) in B
K{x], and the problem is to find . a root. of: f(x) In more detail, the problem -
..~1s to find a field E, an extension of K, and an element a in E ‘such that fla)-.

= 0. Not only are we to find a, but we are ‘also to f1nd E, wh1ch is not
glven in’ advance Kroneckers theorem tells - us how to do this.

Let us con51der a hlstorlcal example, viz. the mtroduct1on of complex
numbers into mathematlcs in the 18th and 19th centurles Mathema— :
ticians had the field R . of real numbers, and the polynomlal x2+1e€ R [x].

~ This polynom1al has no root " in R because there -is no real number-
whose square is —1 However there were strong indications (for instance
Cardan's formula for the roots of a cubic polynom1al) that a toot ‘of this

polynom1al would be very welcome. What' “did mathemat1c1ans do, then? :*

They- invented a symbol -1 1, Wthh they perfectly knew not to be a real
number, and con51dered the expressmns -a +b\/ 1, where ‘a,b € R.. These
_expressions were coined complex numbers" (not. a fortunate name, by
- the way). Two complex’ numbers a +b\/ landa +b \/—l are regarded as
equal if and only if @ =a” and b =b". ‘The sum of two complex numbers is. -
defined in the obv1ous way The product of two complex numbers
- a +b\/—1_ c+d\f_1 is found from the naive calculatton '

- (a+b\f_)(c+d\f_)—ac+ad\f_+b\f_c+b\f_d\f_

»‘61‘8‘ v



~ac 4 bd(\/— )2+ (ad 4 bc)\/—
(ac bd) + (ad + bc)\/_ :

-lwhere we mlerprel (\/ 1)2 as lhe -real number -1. Thus N1 is a compu- i
‘tational - devrce we mulnply complex numbers . using “the: usual field -
propertres of R, and pumn;, -1 for (\] 1)2 wherever (\I 1)2 occurs.. The
. _rigorous foundatron for complex numbers ‘as ordered’ pairs of- real

_numbers, due to. W. R. Hamrlton came in the- mrddle of . the’ 19th century;.
but  there . was nothing basrcally wrong in. "'defmmon of - complex;-'

‘num-bers - used” by ‘the  earlier : mathemauclans The’ freld C. were
constructed in- thrs wiy as, the exlensron field R (i) of R havmg ‘a root of -
the - polynomml x2E1 e R[x] More specrfrcally, the complex number 0 +v
l\/—lrsarootofx +l ‘

~

Another example leen the fleld @ and the polynomlal x4 - le +1 in
Ox], 'we wrsh to find a root of - thrs polynomral What can -we . do? - As» :
“mentioned m Example 50, 9(d) we' invent . a symbol a; subject-it to’. the
. condltron at -‘10(1 +1=0 and consrder all expressrons co+ca +c202+c3 3,{
cas cl,cz,c3,. run mdependemly over Q. These expressrons are new’ num- .

"bers”. These new "numbers” are multrplred using the usual freld proper- . -
. ties of @, und puliing, 0 forba4 - l()a +1 wherever a*- 10a%+ 1~ occurs .
(cqurvalemly, pumnb 10a2 - 1 for a wherever a4 occurs) ‘The fleld @(a)(
is conslructed trom ©® and a as an exlensron field of @ having a ‘root. ‘of
L the polynomml x* - 10x? # 1 € Olx]. More- speclfw'\lly, the "number” "

0+la+()a '+ 043 1sarootoft —10t +1

It “i‘s now clezrr what - to (lo inwthe ’gener‘ul ‘case., Given a field K and an_ir-
reducible polynomial f(x) in K([x], to find aToot of f(x), we invent .a ‘sym- .
“bol u, subject it to the “condition. f(1) =0 and c]ohsider the K-vector. space.
with the K:basis. Lu,u?, .., where n = deg f('x)” and 1au?, .. u"" are
computational symbols " We muluply lhe elements of. this: K-vector space -
by treating u« as an mdclcrmnmle ovcr K. and writing O for f(u) whu~_
" ever. f(u)- oceurs, Thc rigorous mclhod of -doing, this is lo consldcr the-
» ldclor Ting K[xl/(/), assug ggested -by Flreorern 150.6. ‘/ . Lo
.y

~ .
4

51.1'° Theorem (l\ronccl\cl s l'hcorcm):"l;et- K be a field and fixy an
'urcrlucthle /)ol\nmnml in I\’I \] I:/zcll' there is an extension Sield E r;gf K
such - that /(\)‘ hus a root in I ‘ b : o
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" Proof:'Let E = K[x]/(f) the factor ting of K[x] ‘modulo the pr1ncnpal 1deal )
'_generated by f(x) in K[x].- Since K[x] isa principal ideal domain and f(x) is
irreducible in K[x], ‘the factor rmg E K[x]/(f) is a f1eld (Theorem 32. 25)

’ The mappmg R : K—»E
- : k= k+ ()
is -a ring homomorphlsm because - ¢ -
(k+5m—w+wp+v)(k+v»+ua+m)kp+g@
and

(klkz)cp_kk +(f) (k +(f))(k +(N) = k,qo ke

'for any k k € K Since f(x) 1s 1rreducrble in K[x], 1t is not a unit-in K[x]

thus 1¢ = 1 + (f)¢ 0+ (f) and o is one-to- one by Lemma 48.8. So ¢ is a-
‘field homomorph1sm We 1dent1fy K with its 1mage Kq) in E. So we w1ll .

write- k instead of k + (f) when k.€ K. In this way, we regard K asa’

" subfield of E and E as an extens10n field of K.

Let us write u =x + (f') € E for brev1ty We claim that u is a root off(x)."
‘Indeed 1ff(x)_b +bx+bx +--+ b x" eK[x] b, = 0, then.

f(u)—b +bu+bu+ - +b u o T
= (By + () + (b, +(f))(x+(f))+(b +(f))(x+(f))2 (b, + (D + D)
= (by + (M) + (b, +(f))(x+(f))+(b + +(f))+ +(b +(f))(x +(M
=b, +bx+bx+ +bx +(f) S » . -
'—f+U) B T RPN
=0r(p T -

~=0€kE .

. and 50 u'e E is a oot off(x) Thus E is‘an extension freld of K contarmng o
a root of f(x). (The identitification’ of K with Ko c E amounts to writing k
for k+0u+O0u®+-.- +Ou" ¢ E when ke K) Y-

) ~7Let us keep the notation of the. precedmg proof. Clearly K(u) c E. Also,
- any element of E has the form ¢; +¢x + c2x2 +-es+ ¢ x™ + (f), and thus

equals 0+ o (x+ ) + cyx + (f))2 +C,,,'(x + (f))"'

—c0+cu+c2u2+ HC um o

and belongs to K(u). So Ec K(u) Th1s shows that E = K(u) 1s a 51mple-
extension of K ' : : :



i
Now let F K(t) be another srmple extensron of K, generated by a root t
in'F off(x) € K[x] By Theorem 506 ‘we have the. fleld 1somorphrsmsd

«: K[x]/(f) K(u) S B KIx() — K(t)

() + (f) — g(u) e+ (- e
'1nduced from the substltutron homom’orphrsms 2 :

Tu.K[x]—_>K(u) AR T K[x]— K(t)

@y g(x)q 80
‘(see Theorem 30. 17) Hence \

16 K(u)—'K(t)
g(u)— g0

v

is a field isomorphism: K (1) = K(t). Besides, since ka = (k + (). = kTu_;/tf :

‘ and' likewise kp = k for all kﬂe‘ K, the res'tric_tion, of «”1p to K © K(u) is the

" identity "~ mapping on K. We proved the vfollow}ving‘_strengthening of - .

Kronecker's theorem

51.2 _ Theorem: Let K- bé‘a feld and let f(x) € K[x] ‘be 'an' irredt’iciblé "
) polynomtal in K[x] Then there is a scmple extenswn K(u) ofK such that
ue K(u)is. a root of f(x). Moreover IfK(t) is also a simple extension of K

such that t € K(t) is a root off(x) then K(u) = K(t) and in fact there is an

: zsomorplusnz L o: K(u)—» K(t) whase restrtctton to K. ‘is - the 1dentxty‘

‘mapping. on K. o : o SRR .- B

’

4

51.3 Defmltron Let K. be a fleld and let f(x) € K[x] be an 1rreduc1ble B
- jpolynomlal in K{x]. Then a srmple extension K(u) of K, where u is a'root
off(x) (which ‘field exists and is umque to .within an lsomorphlsm whose .

‘restriction to K is the ldentrty m'rppmg on K by Theorem 51 2) is called .

R

the field obtarned by adjoining a root of f(x) to K.

- 81, 4 Remark Let K be a fleld and iet f(x) € I’[xl be an 1rreduc1ble

polynomml in Kix}. Suppose K(u) is the:ficld obtained. by adJommg a root

u. off(x) 0 K. Let ¢ be the leadlng cocfficient of f(x) From Theorem 50 3
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we- learn that —f(x) is~ the m1n1mal polynomral of u over K Then it

.follows from Theorem 50.7 that IK(u) Kl deg —f(x) deg f(x)

degree over K of the f1eld obtamed by dd_;omrng to K a root an rrreduc-
1ble polynomlal f(x) € K[x] is equal to- the degree off(x) ' '

A

T

51 5 Theorem (Kronecker) Let K be a ﬁeld and let f(x) be a poly-‘

nomial. in K[x]\K (noi necessarzly irreducible over K) wzth deg f(x) =n:
Then there IS an: extenszon feld E of K such that. f(x) has -a root zn E and

'.Proof From f(x) e K WE know that f(x) 1s ne1ther the zero polynomlal‘

nor-a un1t in- K[x] As K[x] 1s a umque fdctorrzatron domam we - can
decompose . f(x) 1nto 1rreduc1ble polynom1als and adjom a'root of one of’

' -the 1rreduc1ble d1v1sors of  f(x) to K. The freld E obtained in thlS way. will

have a ‘root of - (that. 1rreduc1ble divisor of f(x) hence ‘also of) f(x)
Moreover |E:K| -will- be. equal. to tlle degree of; that 1rreduc1ble d1v1sor of

: f(x) hence wrll be smaller ‘than or equal to deg f(x) =n. S BT . &

51{6, " Examples: (a) Consider the”polvnomial F(x) _‘x -2¢F [’x/].~ It is

- irreducible ‘over" Fs, for otherw1se f(x) would have a root in Fg, - whereas.
fthere is..no element in Fy whose _square: is 2 € [F5 (in the language of
'f_-elementary number theory, 2 €Z isa quadratrc nonresrdue mod 5). Let: ‘
us adjom a. root u off(x) 1o IF The resultlng f1eld F. (u) is an Fq: vector‘ o
' space’ wrth an’ lF -basis [1 ), and u? 2 € IF Here are some sample com—* ’
"'putatrons in F (u) )

(4+2u)(3+u) '12+4u+6u+3u ~—12+10u+32 2+0u+1—3

»(3+2u)(2+4u)—6+12u+4u+8u =1+2u+4u+32= 7+6u.'=2+u

In view of the equatron wt=2 € lFS, we agree- to wnte ‘/2 m place of u ‘in

Fo(u). We keep in- m1nd of course that N2 is Just another name for our_'

’ computatronal dev1ce I here \/2 is not. the real number 1414 whose
- square js the real number 2. '

“Let us express (1 + 2\]2)(3 + \IZ) and (4 + \/2)1 m terms of the [F ba51s 4

_[1«1_)
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~(1+2\/_)(3+\/_)_3+\/5+6x/5+22-(3+4)+(1+6)«/— 2+2«/_
11 a2 4\12_4«1—_4\/_ (4 7
4’+\/§ 4+\[_.4_\/_ 162 14
' : =4(4\/2)—16 4J§_1+(
Check: (4+\/_)(1+\/_)_444\/§+\/§+2 6+5\/_—1 R

: Note that  o¢:F (\/ 2)—F (\/_) s’ an automorphlsm of ‘FS(/\I—.’Z), because
\ a+b\/_—>a b\/_ IR ' -
[(a+b\/2)+(C+d\/_)]<9~[(G+C)+(b+d)\/_]<p |
, =2 @ro-(b+dVN2_ S
: ‘ - =@-bN2)+(c-av2) -
o : '*(a+b\/_)<p+(c+d\/_)® ’ o
and [(a + b\/ 2)(c + d\/_ Do = [de + 2bd) + (ad + bV 2l
: © =(ac+2bd)-(ad +bc)N2 - .
= (ac +2(-b)(-d)) * (a(-d) + (- b)c)\/_
=(a - bWN2)(c - dN2) ‘
: =@+ Ve e+ dV2)p e
for all a + b\/2 c+dV2 € F(V2); and o is cledrly onto. and Ker ¢ = [FS(\J 2).
’ By the binomial lheorcm (Theorem 29.16), :
(a + bN2)S = a5 + 5a*bV2 + 10a%%2 + 10a2b32«/§ + 5ab%4 b54\/ 2
- : ‘=aq +4b5\/— a+4b\/§—a b\/_
“for all a + b\/2 eF (\/_) Thus ¢ .can .also be described as ’

e LC-(\F)—»IF(\/_)

t—>t5

) (b) The poly:;oxnial g(x)zxz = 3 € [Fs[x], 100, is irrieduci,ble.év’cr [F5 a3 € z
is a .qmdr.ni'c nom:esidu'e mod - 5). A('ljoining a root \15 of g(x) o By, ‘ we
obt.nn the ficld F. (\13) which 1s an ‘Eg-vector (space with a basis [] \/3] :
-over iFS, and (\]3) =3 € IF We.do not forget, of course that \/’3 15 a com- i

putduonal symbol only, and not the !‘b.ll numbu 1.732... whose squ.xrc
T 3 eR. In T (\{3) we' lmve )

~(3+2\/_)(1+4\/") 3+12«/§+2x/—+83 27+14\[— 2+4«J_
(2+3\/—)(2+4\f_)_4+8\/§+6\/§+173 4+3\E+\/§+3( 4\/3
1 I 1-3V3 _ 1-3V3 14243
= 1+2
1,+3\/§," ,1+3\]— -3W3 127 4 ( 20
s .:'4(l+2_\/._)=4+3\/3.




As 8 =3 in F, we. may also write V8 for V3, with the - understanding that

V8 e F (\/3) is- a computdtlondl device satisfying - (\/ 8)2 =8 =3. Here V8 is
"~ _not the real number 2.828. whose squttre is 8 € R. We mlght be

tempted to “write \/8 —\/42 2\/2 For the time betng, this is not leg1t~f

imate: as \/8 € F (\/3) and 2\/2 € F (\/2) are in different fields, and not in

. the1r 1ntersect10n [F xt is not medmngful to write \/8 2\/_

However thts suggests that w: F (\/ 3) — [FS(\/_) mtght be an tnteresttng

. a+b\/_—»a+2b\/_
._‘mappmﬂ Indeed
' [(a+b\/_)+(c+d\/_)]w—[(a+c)+(b+d)\/_]w
L =(a+o)+2b+dnN2
o 2@+ 20V2) + (¢ +24V2)
o C = (a+bV3)p +(c+dV3)y
and [(a+b\/3)(c+d\/_)]1p = [(ac + 3bd) + (ad + boN3}w
< =(ac +3bd) + 2(ad + bc)N2
= (ac +2:2b-2d) + (a-2d + 2b-c W2
=(a+2b\2)(c + 2dV2)
) —-(a+b\/_)tp(c+d\/—)w :
for all-a +b\/3 c+d\/§€ F (\/_) thus v is-a ring homomorphlsm As 1t 1s

clearly one -to- one and orito, w is a field 1somorphlsm Hence F: (\/3) and

IF(\/_) are 1somorphlc fields. We tdentzfy these two - f1elds by the 1so—'
‘kmorphlsm v, i.e., by declartng a+b\V3=a+ 2b\/2 for all’ a, be Fs. Then .’

. but only then can we wr1te V3 = 2\/_

We could 1dent1fy these fields by declaring a + b\f3 =a- 2b\/2 for all a, b ‘

in Fg, which amounts to identifying them by the isomorphism

oy (\/_)—» F (\/_) How we identify them is not 1mportant but we must
con51stent1y use one and the same tdentlflcatlon ; DR

“'When we tdenufy F (\/ 3) dnd F (\/2) by declanng a+ b\/3 =a+ 2b\/2 for.

all a,b _€ Fg, we can no longer 1ntetpret_ ’\/18, for.- example, merely as a

c'omputa'tio’nal device . whose' square. is 18 €. IFS,'for there ‘are two' ele-

ments in F (\/ 3)y=F (\/—_) whose squares are . 18 viz. 2\/2 -and. 272 = 3\/_

We must spe01fy which of 2\/2 3\]2 we mean by V18" Otherwnse we
might commit such ‘mistdkes as .

W2= \/9_2 r \/9’2 Vaz= E ints(&/?)

e




which’ resembles the mistake = R I

- 7= WV—_—7 - " iR,
. In.R there--are two ‘numbers whose - ‘squares -are 49, namely 7 and -7,
and \/49 is understood -to be the positive of ‘the numbers 7, "-7. Thus
when we: write 49, we spemfy which of 7, -7 we mean by N'49; This

prevents the mlstake -7 = \/( 7)2 In IF (\/ 2) spe01fy1ng 2\/2 or 3\/2 as \/18
prevents the mlstake 3\/2 2\/— )

Exermses .

1 Ad_|01n a root u: ofx + 2x2 2€ @[x] to @ and construct the " field @(u) ‘,
Express. (4w - 1)? + 2u - 5) (- 3u + 1)/(u? + 21 + 3) u + u3)(u -1
*in terms of the @-basm Lu,u? of @(u) R '

2. Find all momc 1rredu01ble polynomlals in -F [x] of degree two (a51de

from x2 - 2 and x% - 3, there are, elght of them). Ad_|ommg a root u of s

these polynomlals to _F, construct elght fields F. s(u) of 25 elements
'Prove that each of these fields is - 1somorph1c to'F (\/ 2)

3. Prove that IF5 and F (\/ 2y are cycllc '

P

-~ 4. Find a field K of nine‘elements “and ,shovv that K* 1s cyclic. -
C 5 Prove ‘the followmg statements.

(a) f(x) —’x +x+1€eF [x] is 1rreduc1ble over.F,.

(b) g(x) —x +X+ leF [x] is 1rreduc1ble over F,.

Let i be a root of f(x) and u a'root of g(x) ,
() h(x) =x* + ix+1e [Fz(z)[x] is 1rreduc1ble over [Fz(z)
Let t be a root of h(x) € IFz(t)[x] » . L o
(d) F (1)(1) ‘and F (u) are cychc A ' '
(@ Fb0e 2(u) '

L e2s



§52
Finite . Fields

‘We have seen some examples'of finite fields, i.e., fields with. frmtely
 many elements. In this’ paragraph we want to discuss some propertles

 of finite fields.

In modern t1mes, it is customary to treat finite f1elds after the presenta-,
-tion of . Galois theory Our approach 1o finite fields will ‘be more elemen-

tary and more concrete ‘than usual. We hope this will prepare the way to .

" a better understandmg of Galois theory See also Example 54 18(c) and .
Theorem 54.26. :

’ _We begin by r'estricting the order of a finite field to primepowers‘.

52.1 Lemma: -Let g be a "naturalbnumber and K a field with q eiemcnts.
- Then q = p" for some prime number p .and for some natural number n.

Proof: Let K be a field with ¢ elemehts. "The prime subfield of K cannot
“be (isomorphrc to) Q, for then K would" contain -infinitely many elements.
Hence ‘the prime subfield of K is (1somorphlc to) [Fp for some'prime-A
. .number p. We consider K as an le—vector space. The. dimension of K’ over
F, must be finite, say IK: IF | =ne N.Let {kl,kz, ...,k ) be an IFp-basrs of K.
’ vThen K con51sts of the elements ' ' R ) R

' T oak +a2k+ +ak

-+»@, Tun independently through IF. and .- . ¥

A ak, +ayk, +-- +ak¢bk+bk+ +bk“'*"""'
whenever (al,az, cind) # (bl,bz,. b ). Hence there are p possrble chorces

. as al,az, .

~ for each of a

1y +eesly and there are precrsely pp Lp= p “elements’ 1n K.

¢

. Thus the' condition q' p" is a necessary condition for the existence of a
field with ¢ elements. One ‘of our .main' goals in this paragraph is to show
‘that it is also a sufflcrent condmon ; -



’ .forallabeK

By thé'proof deLemma 52. '1 we know that a-field ‘with p” ‘elements i of
characteristic p. We prove two lemmas about (not necessanly finite) .
~ fields: of” pr1me characterlstlc ‘ ' - i

i

, ‘52 2. Lemma Let K be a fleld_ of characterzstzc p = O Then .~
{a+b)y= a” + b” and . (ab)" = a”b”

Proof We use the binomial theorem (Theorem 29.16). Here pis a prlme_

.numbcr and the bmomla] coeff1c1ents (p) are - d1v151b]e by p when k=

],2,7 ,p -~ 1: note thd[ p' |s d1v151b]c by p, S0 k'(p k)'(p) 1s d1v151blc by ,
o, but k'(p k)l is rc]duvely prlme 10 p, s0 p d1v1des (p) by Theorcm_

5. 12 Then for any ab e K we havc

Pl
(a+b)”~ap+2(p)a”"‘b +b”-—a1’+ 20+b” —a”+b”
k=1 k=

- since pl(,’: and clzar K= p 1mp]y that (p)a” kbL = O for k= 1.2, ..,p - 1 ‘

‘ Thié ‘btbves (a + b)p = a” + bP. The cLum (ab)” = apb” follows from Lemma. ‘
ga4(1). . o co ' ; a -

' Lemmd 522 states lhdt the mapplng ot K — K s a fxeld homomorphlsm
. : : a—af - '

(c]carly 11’ .] = O) By mducuon on m, we obtain

5 : : (a]+a2+ +a)”—a1P+a1’+ c+al ,

for any. m c]ements a,a,, ....d, ‘of a fleld of prlmc charactcnsuc p

S

52, 3 Lemma Let K be a feld ()f charactermtzc p# 0 and ne N.Then,
R s ' (a+b)”—ap +b”
- for any a,b e K. R B

i



Proof: We make. 1nductron on- n. The clalm is estabhshed for n =1 1n
) vLemma 52.2. If the: assertron is true for n-= k, then, for any ‘ab e K,
' (a+by*" = [(a+ by = (@ + bP')P = (aP'V + (BP'Y = @ + 0P

and it is true for n = k + 1 also. Hence it is true for all n € N T Do

, 52 4 Lemma Let q € N and let K be a feld with g elements
() a1 = 1 for all.a € K.
) a? = a for alla € K.

,(3) xq -x= H (x - a) in K[x].

aek -
“). Let fix) be a nonzero polynomtal of degree d'in K[x] lfﬂx)l(xq - x) in
- K[x], then f(x) has exactly d roots in K, and these Toots. are.'pairwise B
dtstznct : :

Proof: (1) K" is a multrphcatrve group of order K = IK\{O}I =q- 1 Hence
'aql-lforanyaeK :

(2) This follows from (1) if a ¢ 0 and from Oq =0 1f a=0. .
- (3) Any element aof K is a root of the polynomral x1-x¢€ K[x] by part .

(2), Thus both xq x and H(x— a) .are monic polynomlals in K[x] of
T, L aeK

,degree q havrng all the q eléements . of K as roots If xq x were not equal

“to H(x - a) then (xq x)- H(x a) would be a nonzero polynomral'
ack - a€K R

. of. degree 1ess than - q havmg at least q drstmct roots, “contrary to -

: Theorem 35.7. So x?-x = H(x -a)
) aek - :

4) We put x4 —Vx f(x)g(x) with g(x) € K[i] Then deg g(x) =g -d. The.
‘roots of x? - x are pairwise distinct by part (3) and, since any root of f(x)
is also a root of x7 -~ x, we. see that the roots of f(x), too, are palrwxse'

distinct. Likewise the Toots of - g(x) are. parrwrse distinct. Now g(x) has at -,

most. ¢ ~ d roots in K (Theorem 35.7). If f(x) had r roots in K“and r<d,
_then x7 - x = f(x)g(x) would have at most r + (g~ 'd) < ¢ rocts in K,
- contrary to the fact that all g elements of: K .are roots of x7 - x. Thus f(x) -
has at least d roots in K But it.can have at most'd’ Toots m K by Theorem ‘

,357 Hence f(x) has exactly d roots' in K. : L o

628 -



52.5 Lemma Let LIK be .a field extension and assume that K has q eIe-,_'

ments q € N, Let b be ‘an element of L. Then b € K xfand only lfb" =b

. Proof beK 1f and only if b is a root of H(x - a) SO 1f and only 1f b 1s‘

d€K

a root of x", - x; so if and only. if b" =b. ' o o

The last two lemmas will now.be employed to get information about the

subfields of a finite field. If'K c K, are finite fields, with p™! and p™2

’ -elements, respectiveiy, then K is a subgroup of K,, hence p™ - 1 = K" [
divides IK, 1 =p™2 - 1. by Lagranges theorem We proceed to show that‘

this happens 1f and only if m1 divides m2

‘

52.6 Lemma; s Lef mn € N and put d = (m,n).
(1)Foranyk€Nwehave(k’"—1k"—l)—kd—l , o
) If K is any field and-x an mdetermmate over K then, .in the unique
factorzzatton domam Klx], we “have (x™ -1, x" - 1) ~x?- 1.

Proof (1) We put e = (k”‘ - 1 k™ - 1). Since SRR

kP21 = (k8 - TR D2 gy kd +1),0.
"'we have k? - 11k™ - 1. Likewise k% = 1|k" - 1.and so k% - 1le. On the other
" hand, k™= 1 (mod ¢); so ¥ =Tin zZ;, so o(k)lm. Likewise o(k)in, so o(k)ld'
so Fd— Tin Z},s0 k=1 (mod e) so elkd--l From k9 - 1fe and elkd— 1 we

‘obtain. e = kd -1, as clzumed

(2) We put f(x) = (x™- l,x - 1) Smce . g

. 1= - )y (xd)('"/d)-2 rxdtl),
we have x - 1Ix '~ 1in K[x]. erewnse,gc - 11x" - 1 and so x? - I|f(x). On the
other hand, f(x)Ix™ = 1, so.(x T O =x"+(H=1+ (H in K[x’]/(f(x))’ lience

x + (f) is a unit in K{x]/(f) and the order of X+ (f) € (K[x1/(H) is divisible-

by m, likewise by n, and therefore by d. Thus x4 + (f) = (x + \f))d = 1. + o,
and f(x)Ix? - 1 in K[x]. From x - llf(x) ‘and f(x)lx -1, we getf(x) ~xd- 1,
as cl.umed . ! o

.
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. 52 7 Lemma Let m.n p € N and let K be a fteld (md X an mdetermmate

over K. . :
(D) For any k € N we /zave k- IILn = l zf(md only tfmln i
(2) In the polynonual rmg Klx], we have x™ - -11x" = 1 if and only zfmln )

(3) In the polynomzal rmg Klx], we Izave - x 12" x lfand only if mln: :

. Proof ()} k" - k"~ l if and only if (L"‘ = 1 k" - 1) =k™- 1. so if and only
»71f kims ") 1 = k'" - 1,50 if dnd only if (m n) - m, so if and only if: mIn

'-(2)‘ X" - llx -1, 1n K[x] if '1nd only if (x’"‘~ 1 x™ - 1) ~ XM - I, so if and-oniy
if x0mm) o o, so_if and only if x(’" W1 =xM- 1, so if and only if
(m;n) = m, so.if '1ndr iny_ if m|n. ’ ‘ : :

.(3) We have x*" - x |x*" - x if and only if x*" "\~ 1| x*" - 1, so if and only
if pm - 1] p™ - 1 by part (2), so if and only if m[n' by pa_rt . oo
52.8 Thcorem Let K I)e a field with p elements: (r prmze) -Then K has

. a subfzeld with p™ elementv if and only if min. In this case, there is -,

: exactly one mbfeld of K wztlz Pt elements This subfzeld is.
' {a € K a” =a). -

Proof: As noted . earher 1f K has a subfield H' w1th p" elements, then H>*

Toisa subgroup of K sop -1= IHI divides IK*l=p"- 1 by Lagranges

theorem. From_ p™ - llp - 1 we get min ‘by Lemma 52 7(1)

Supposé  now. min We wanl “to show llnt K lhas - subfleld w1th p™

elements. Lemma 525 leads us lo consider the - set-of all elemenls aink
satisfying a”" = a. So we put K, ={a € K a" —a} Then K, is not empty‘.",;
and “for any a, b € K . e have o

(a +b)P =a/’ +af” —a+b o soa.'+4bévKl‘ o _,(Lemma5;2:3),

(= b)” = (- lb)” _( 1P bP =( l)b ‘ s0:=b EA_K]'; ~ (even when p = 2), -
.(ab)” = aP" b/’ =ab, B 'soab“eK S ‘
amy” =1/, S solUbeK, - i (ifb=o0).

Thus K is a subfleld of K. We now show that K has exactly pm" eléménts

Since ‘min, we have " - x Ix” < x in K[x] (Lemma 52.7(3)). Thus the
polynomlal . x{’ - x‘has. exa.clly pm roots and these are pairwise distinct



(Lemma 52. 4(4)) and the roots of xP" - x are precrsely the elements in
K HenceK has indeed p elements ’ :

This proves’ that. X has a subfreld K, w1th pm eleme'nts whenever min.

Moreover there is only: one subfreld with p™ elements' for'if K2 is a’ .

“subfield of K and K] =p™,. then -any element b ofK satlsfres b?" =b by
" Lemma 525 so K,<K,;s0 K, =K. The proof is complete : R "l:ll",:‘

. As an 1llustratron of Theorem -52.8, assume that K4096 is'a f1eld with™
4096 = 212 elements. “Then all subflelds of K

4096 are.as the___figure, below, -
there K ‘denotes a fleld w1th q elements SR R

: _K4096 -

In partrcular assuming the exrstence of a freld with 4096 elements, -

can conclude. the existence of a-field with 21, 22, 23, 24, 26 clements, too.
"However we do not know whether a field with 4096 elements really’
" exists, so - the foregomg argument is' very weak. It “is in fact true that
there is a field with p" elements, for any prime number p and for anyA’
natural number n. We wish to prove this assertion.” We ' need some.

- results’ from elementary number theory

*.
I SRR

In the followrng, we use the notation Za This: means that n € N and:
. dln
that. we take a sum of terms a, as d ranges through the posmve divisors

“+a,+a +a +a6+a .1nd

‘For rnstan =
of n, mcludrng 1 and n. ce 2 a, al L+ a5

dil2:
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Y =a + a3t a5t ayg We cleary have- Z a,= z a .. The notations 'Had '
dl15 . . din dln- . © . din
. and H S, w111 have s1m11ar meanings. o

-52.9 Lemma:‘Let, P .be Euler’s function. Then, for any ‘natural _nun'zber'n,i.

WTCIES

dln .

}

Proof: For any ke N qa(k) is defined to be the number of p0s1t1ve'
mtegers ‘less than (on equal to)" k- that are relatrvely prime to k.. The
greatest common divisor of any . 1nteger in {1 2, ..,n} with n is a pos1t1ve
) d1v1sor d of n. Hence we have ’ '

12,.. bJ sd, where s = (ke N: k< p and (k,;l);d};

) ,Countmg the number of elements we - get n= I{l 2, ‘.- n}I = Z ISdI Here
: : . din

sd= {ke N:k < nand (k,n)=d} ,
= {k € N: dlk, k < n and (ki) = d}. . o |
‘={keN:k=dbforsome b e N, k<nand (ky)=d}
"={db e N:,db < n and (db,n) = d} ' :
= {db e N:,db < nand (db,d2)=dJ

={db€N1<b dand (b,d)—l}”._-'-

Thus IS, | is the number 'bf _positive integers b such‘that 1< \ nld and
(b, (n/d)) =1, and\thls number is p(n/d) by defmmon We then obtam
n_z|s,,|_zq><n/d>—zo<d> o

-din din dln

. For. ease in. formulation of the next lemma; we introduce some terminol- -

ogy Let m e N. A complete residue system - mod m is defined to be-a set
jof m. 1ntegers such- that one and only one of them is congruent to each

' one of 1,2, . < Thus a. complete residue system mod m is a set
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»(r,rz,.v..,r 1 ¢ cZ: such tlmt the residue classes mod m of rl, » ...-,rmfmzike‘
up Z_. In partlcul.lr r are' then mutually 1ncongruent .mod -m" (and, a,
fortiori, mutually dxsnnct) If rl,z,...,rm are integers mutually incongru-
ent mod m, then (ryiry,....r, }isia complete residue system mod m. -Also,
if any mteger is congruent modulo m, to_one of the mtegers ryr: 2, IRV

m

then {r,,r r ] is a complete residue’ system mod m.

1, 2,..

A reduced reszdue system m()d m is defmed to’ be a set of qa(m) mtegers
-, such that one and - only onc of them is congruent to each one of the

mtegers among 1,2, Seest that are relauvely prime to m. Thus’ a reduced',-

. resxdue system mod m is a set [al,az,...,a (m)} cZ such that the residue

classes -mod- m of. ql,qz, S, am)

7,mUtu‘aIly ,incongruent 'mod m (and,. a forttort, mutually dlstmct) If

1, . (m) are mtegers relmvely pnme to in and mutually 1ncongru-;

ent mod .m, then [a aw(m)] is a reduced residue system mod m. Also,
j1f any mteger [hdt 1s relatlvely pnme to.m is congruent ‘modulo ‘h , to

one of the. integers . ”1' - o then [al,az,..., qa(m)} is a reduced resi- .

N

- due system mod n. - e ) S i

52 10 Lemma. Let tp be Euler s functzon Let m,n € N and (m n) = 1.

1) If[rl,rz, RN } Z is. a Complete reszdue system mod m and if
[s‘,s , ...,sn] Z is a conzplete reszdue system mod -n, then i v
' . [ms+nr 1—12 amj=12, ..,n]t;Z

f is a complete restdue system m()d nn.

) If [al,az, e q>(m
, [br' byt &2 is a redueed residue system mod n, then
- (ma; +nb i=1.2,...0(m); j— 1,2, -‘..,qa(n)]

is a reduced res:due system mod mn }

o

(3)@(_m_n) = qa('n)fb('f)-.
. Proof: (i) It will be sufficient to show tlrnt any ‘tWo'dis'linct of the man
: ‘ numbers ms; + nr; are mcongrucnt modulo mn. Indeed,
i . ms; + nrj ms;. +nr (mod mn),"
“then oms, + nr = mS;. +nr (mod m) and ms + nrj ms;. + nrj (mod n)
oLy ,."rl nf (mod m) and ms.—: ms,. (mod n)
: r.= rj (mod m}) and si = 5;- (‘mod n)

."
r. —_— o L= .
j - ’] dnd S‘ = ,Sl
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’ ms; + nr; —-fms‘..fl-hrj,. \ |
(2) Let us take a complete residue system {rl,ri, . mod m such that
{al,az, ,aq;(m)} ; {r ',r2‘,.y. ,r.} and a complete res1due system {sl,sz, .,..-,sm}
mod .n such that'{b (n)} < {sl,sz,. -5, ) ‘We have {ajay, .., w(m)}‘ =
{r 1—12 .m, (rm)—l}and {b,,b. cp(n
Now {ms, + nr] 1j=12, .. m )= 1, 2 .,n} is a’ complete residue ‘system
mod mn. So it will be suffrcrent to show that ms +nr; is relatrvely prrme
to mn if and only 1f (spm) =1 and (r m)=1. =

-If (s ) > 1 then (s ,n) d1v1des both ms; + nrj and mn, so (s sn) d1v1des
(ms; + nrj mn) and (ms + nrj ‘mn) > 1. erewrse (r m) > 1 1mplres that
(ms+nr]mn)>1 ‘ : :

On the other hand, if (s, ,n) = 1 and (r] m) =1, then (ms +nr] mn) =1. For‘

: otherw1se (ms; +nrj ‘mn)- would be divisible by a prime number p. Then .

- we: would have plmn, so pIm or pln. Wrthout loss of generality, assume
plm Also plms; + nr, so plnrj Since plm and (m,n) = 1, we would get (p, n),' ‘
= 1. Then plnrj and (p,n) = 1 would. give pIr and p would divide (r m), ,

contrary to (r.,m) =1. So( n) =1 and (r m) =1 1mplres (ms 3 “nr, mn) =1.

'(3) From part (2), we learn that a reduced res1due system modulo . mn
has ¢ (m)e(n) elements Hence o(mn) = o(m)o(n) whenever m and n are
relatlvely prrme L - R -

It follows /by' induction on % lthat o(mym,.:.. m m,) = o(m )o(mé) p(m,) fo;rn
-all natural numbers my,m,, .. mk that are pairwise relatlvely prime. In:
‘part1cular if n€ N andn =p,"1p,” .o Dy % is the canonrcal decomposmon
- of n into prime - numbers then qn(n) = (p(pla‘)o(Pza’) @(Pk“")

Now 1t is easy to f1nd cp(p“) in closed form if p is prrme among . the p

integers 1,2, ,p“ exactly p*t of them namely ’
: o pLp2,. pp‘” X . -
are not relatlvely pnme ‘to p, 50 e),(actly p®-p% of them are . relatrvely
a-l

. prime to p. This means q;(p“) =p%-p™ . We can also write ¢(p°)

=p°(1 - —)

ol
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Therefore if neN;n> tandn=p®p 2,92, . p, % is the canonical . decom- -

posmon of n m[o prrme numbers, [hen

o) = o - P - ‘-“}»""H) |
—P‘ p 2_ ak I(Pl " 1)(P2 1) - 1)

n° pk (1___)(1__) (1__) \
n(l_/_..)(l____) (1__) T .,

N

Expandmg lhe las[ expresron we fmd » ‘, =

‘ M)fé—(——+5;+';‘5? gnnz Pm3~fffﬁkﬂuzf7““*

NG 1)"(———’-) -

plpz .Dk,

. L _
Thus (p(n) is equal to a sum of terms. of rhe form P where d 1s a

. producl of drsuncl ‘prime drvrsors of n, -and the srgn rs +.0r - accordlng as;'
‘the number of prlme drvrsors rs even or. odd Thus we can - write

rp(n) = Z u(d) -
) v : : - din , S v .
' where u(d) = 0 1fd is: drvmble by the square of - some pnme number

and, if'd is ot dwmble by the’ square of amy prime number; u(d) .= 1 or"
=1 uccordlng as - the number’ of (drsuncl) prime divisors of - d .is. even or

odd Thrs leads us to- the functron named after A E MOblUS (1790 1868)

52,11 Dcfmltlon The functlon u N o Z where '
mum_r : M__,j , _
cp(n)y= (=17 ifn 15 the product of r distinct ‘prime numbcrs, »
o p(n)-= ,0> otherwise, i.e:, if nis lelSIble by lhe square of -a i
o LT S ‘ prlme number
- is"called the Mébius function. -

For example, | u(1y=1, u<2) @ =-ly @ =0, Lu®) =1

i -

N K

“®=L_h”*“‘ M&;m_mwpqx,mmkr hfmf



The two formulas n= E(p(d) and- (p(n) —'2 (d)-n— are equ'i!’\/alent.f‘Thi'\S .
: din. .. din
is a speclal case of a formula l\nown as Moblus inversion’ formula that :

. connects a. d1v1sor ‘sum z a, with the ad' To estabhsh thlS formula, we
din - :

need ‘a lemma. R

52.12 Lemma Let n be the Mobzus functzon and ne N Then Y u(d)yis
- ‘ . din
“‘equal to 1 in caven-landtoOmcasen> 1 o

Proof: Ifn =1, then 3 u(d')'-;- Z n(d) = w1 =1 -
: dinl il s

. R
If n> land n'= p‘l-”lp_ 92, 1pfk, is the canonical decomposition of n into

prime numbers then

Z w(d) = Zu(d)— u(l) + (u(lJ )+u(p2)+ +u(pk))

. - din a'lplp2 Py L
- + (H(PIPZ) + N(P1P3) + + “(pk lpk))
+ (H(P]ng:}) + ot M(Pk_zpk_ll)k)) .
- 7 + p(plpz ) . - S
=L+ (‘1)(—1)‘_+(2)( 1)2+(§)( 1)3 e (D EDE

L=(-nk=0. L g

-

52. 13 ‘Lcmma (Mobnus mvers:on formula) bLet' K be ‘a feld and' let
.f N - K be any Sfunction. Defne the functlon F:N-= K by declarmg '

F(n) = Zf(d)

" din

fér all n € N, ‘valénu' . }(n)‘: ) u(&)F-(%) =3 “(d)F(d) S
: - © din - 7T din T

forallneN.
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Proof* Let n € N. For any positive d1v1sor d of n, we -have

FO =30,
N B \" . s b'd_ A A
WOF) = X u (@)
A

2u<d>F<—> 2 3 u(d)f(b)i
dln ' ‘ dln b%

The last sum is over all ordered palrs (d,b). of posmve d1v1sors of' n such

that db|n. Hence it is also the sum over all ordered parrs (b,d) of posmve o

‘dlv1sors of n such that bdln and we get

\‘. 2 (d)F(—-) =S 3 w(d)fib)y Efw)(z (d)) f(n)
din K -bln dlg‘ . - bln- d‘_n_ )
~ , o T o b

since Zu(d) is equal to 1 when b =n and to 0 when b is a proper :

diy

divisor of n (Lemma 5‘2‘.71'2). AR - » o o

52. 14 Lemma: Let K be afeld and let f: N - K be any functwn Defmé

the functlon F: N K by declaring

F(rz)—l'[f(d) R

.din -

- foralln€ N.Then  fin)= H F(—-)"(d) = H F(d)“(’"d)
, : “dln o din /
for all n ¢ N '

Proof: Letn ¢ N “We have F’(—) Hf(b)

bl—

F&),M=’ H fbyr@

n - ~\>/
oy
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HF( )"“” H bug f(b)"““
| N » . | din T d[n ‘bli' )
and .so - TS '

Y
di(nfo),

H e )"“” II H f(b)"“” =T (f(b) :
dln " .bln d"_]_ o ’ bln

We return to finite fields. ‘We will prove that, for any prime number p.

~ and. -natural “number =, there is a finite field, with p" elements ~and that
any two finite .fields with the same number of elements . are isomorphic.
‘We “begin by. discussing the decomposmon of x’"-x ¢ [F [x] into irreduc- -

ible polynomials in the unique factorlzatlon domarn [F [x] It turns out

*_ that all 1rreduc1ble factors of xP" - x are distinct, - and an 1rreducrble poly-
D 'nomral in [F [x] d1v1des x" - xif and only if | 1ts degree d1v1des n. :

52,15 Theorem Let p be a posmve prtme number and let F(x) be the
product: of all monic . zrreduczble polynomtals of degree din [Fp[x] (if there -~

is ‘no monic trreduczble 'polynomtal of degree dm [F [x] let F (x) be the

constant polynomtal 1eF [x]) Then '

A ox= HFd(x) “,-;,rb['xj;. o
R o din S

’I

E Proof All roots of x" —x are srmple because x" —x is relatrvely prrme

- to 1ts “derivative -1. So xP" - x “is not. drvrslble by the “square: of any

_any of, its 1rreduc1ble factors in F, [x]

'Suppose f(x) e F [x] is.a mon1c 1rreduc1ble polynom1al in [F [x] and let d =

deg f(x) We construct the ‘field F (a) by adjormng a-root a off(x) to [F

-»Now f(x) is; the minimal polynomral of a over- [F ;'S0 [H: (a) IF | = deg f(x)

d and [F (a) is a freld of p elements Therefore b’ =b for all beF (a)

-
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' '(Lemma 52 4(3)) ‘We are to- prove that f(x)lx" o X in. iF [x] if and on]y if. -
dln in.Z.

'Assume din.Asa € F (a) we have a” =a, so a.is a root of xP* X € lF [x] '
) But f(x) is the mlmma] polynomlal of a over. fF , hence f(x)Ix” -Xx in fF [x].
From dln, it follows that xP’ - X xP" - x (Lemma 52%(3)), sof(x)lx"J - X,

' Assume now f(x)lx"J -X. Then f(x)g(x) =xP"-x for some g(x) € fF [x], and_
'f(a)g(a)A— aP'-a =0.50a is a root of xP" - X! But then any element of‘
‘ lF(a)lsarootofx” -x:ifb € F (a), sayb f0+f1a+f2a ... +fd1 a1
,wnh fodyfy ooy € Fp» then we get- : ‘
b" (f0+f]a+f2a ’+-~+_]ij_ ad“)l”"
| —fop" +f]pnapn +fpn(a2)pn. .+ (f l)p (ad—])p
U sfyrfashet e f e =
Slnce the elements of F (a) comc1de wnh the. roots of x” - X (Lemma

52 4(3)), we see that any root of x” - x is also a root of x”" - x. Thereforev
xP - x d1v1des x"J - x and, by Lemma 52. 7(3) d d1v1des n. e

52. 16 Lemma Let. p be a prime number and let N, be the. number of
monic irreducible polynomials of degree d in F [x] Let F(x) “be the
product ‘of all the N, ‘monic irreducible polynomtals of degree din lF [x]
(wuh the understandmg (x)— 1 in case N =0; we prove presently that
- Ny > O) For any'n €-N, we have ' :

' : 'din ,
(2) o Fn(x) = H (xP” - x)n(n/d?.,.;',
: : din
@ N =S et
. Paw O
@ N0

Proof: (1) ThlS fO”OWS from xP" - x = H Fd(x) by equ‘lnng [hc dggrccs ’
. din ; i
v of the polynomlals on both SIdLS , .

i
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J

(2) This follows from -the same equatlon by Lemma 52.14 (w1th \the"
function F N 4 F (x) that maps neN o F (x))

7 . . )
l'(3) This follows from part 1) by Mobtus 1nvers1on formula (Lemma
52 13) : - o

- ' . o o, . . ) Te N g ; ] . n . . y
(4) N, > 0 by, its definition. Also, if N, =0, we get %“ u-(a—)pd’ = 0 from
. N . . . - - . n

}partlv-v(.Sl)natnd, dlvidlng bothv sides ‘by the ;smallest p? for which ﬁ(%)\; 0,‘

say by we obtain an .eq“avtio‘? ‘““(;5';)' Z B (—)Pd'd", where  the 'r‘ight

0 . d'
hand ‘side is and the left hand srde is not dlvmble by p, a contrad1ct10n :

- HenceN>0 . i y : : ',D

52 17 - Theorem Let n'e € N and let P be a prtme number Then there
_exists a fnzte field - wuh p’ elements '

Proof By Lemma 52. 16(4), there -is- an 1rreducxble polynom1al f(x) of
degree n in [F Ix]. Let X be the field obtumed by adJommg a root of f(x) to
lF “Then |X: lF l =n and K is a fteld w1th p elements (Theorem 50. 7) o

.52 18 Theorem' Let' K be a feta’ and [et G be a fzrute subgroup of K"
- Then G is cycltc In parftcular fo 1s afmte feld then iK* s cycltc

i1

:: Proof Lel, n IGI The order of any element g in G is' a dtv1sor of n,
. Hence we have the dtsjomt uniom ™ .. e
' _ S G= g {g'e G: O(g) nl e
' from wh1ch we obtam , T o
n=lGl=2 v(d),
~odin '
where tp(d) 1s the number of elements in G of order d

i

- We claxm that p(d) is enher 0 or :p(d) If there is+no. elem..nt in, G of order
d, then of course tp(d) . 0. If there does exlst an element ginG of order '
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d then all the d elements in the cycllc group <g> generated by g satlsfy
"ligd = 1. Hence they  are roots’ of the polynomlal x*-1¢€ K[x] and [hlS
polynomml has - therefore at lenst d.roots in" K. On the other hand, 1t can

have: at. most d roots ’ll‘l K. thus it has exactly d roots rn K, namely the L

elements * in <g>. “Thus any - element in"'G that has order d, whrch
necessarrly is aroot of r“F 1, is in the subgroup <g> -and an element 1nf
<g> is of otder d if and only if that element is a generator ‘of <g>. Thus:
the elements in G of order d. coincide w1th the generators of <g>.- There .
are (p(d) generutors ol '<£,’> S0 there are :p(d) elements m G of .order d, 1é '
tp(d) cp(d), as clurmed .

. lSlnce tp(d)‘_ ((l) lor .my posmve d1vrsor of n we obtam no= Z lp(d)
y o , : - . : ‘ SIS din

~

Zcp(d) =n nnd thxs glvcs tp(zl) —':p((l) for nll posrttve dtvrsors d of n. ]i
" dln ' :

partrcular, (n) = <p(n) > 0 there 1s an: element a 1n G of order n. Thus G
is -the cychc group <a> - e T T a

tx

_ 52,19 Theorem Let K be a’field ofp elements and let t be a generazor_
_of the. cycltc group K‘ Then . : ‘ » ) . . .
HK=F 0. , R SRR
(2) Tlle mzmm(ll p()lynomml uft ovar lF Izar degree n.. R
C(3) If K, is -any jwltl oj p" elements thcn the mzmmal polynomzal t ()ver
[F ha?ar()ot mK . S T e
Proof Since 0 ¢ F (l) arid - since- any nonzero element of K, being a. power'
of £, is in F S0y we get Kc F,(0); thus K =F (o). This proves (1). Then the

degree of thc minimal polynomml of t over lF is: equnl to [lF (t) lF =K lF |

= n. This ,proves (2). llnnlly since the degree of the mrnlmal polynomml o

- of t over le is equnl to ", hence a (lwrsor of n, tlns polynomml rs a divisor:

of xP" - x (Theorcm 52. l‘i) and has n distinct roots in K (Lemmd 52.4(3));.
~in pnrttculur there 15 u root ot thls polynomral in K Thls proves 3). a

7]
."

52 20 Theorcm A’”‘ "‘“ juute /101119 wzth tlze‘same number ()f ele-
g ments are zsomorphz( Lo » ; S

3
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!
Proof: Let K and K be f1elds of p elements Then K is'a cycllc ‘group

(Theorem 52.18). Let t bea generator of K*: Then K=F (t) by Theorem"-.
52 19(1) Let fx) € IF [x] be: the minimal polynomral of ‘- over IF Now f(x)
has a root ¢ in K, (Theorem 52.19(3)). Let F,(c) c K - be the subfreld of K :
'generated by ¢ oVer lF Then n = deg f(x) = IIF (c) IF | < IK lF [ =n .yrelds -

. _‘ F (c) K We then get ; -

=F (C) =F [x]/(f(x)) =F (t) = .
from Theorem 506 Hence K= K _ e ~' o S =

N

~

- In view of this theorem we 1dent1fy all f1n1te fields of the same number
cof elements ‘Thus ‘there is a unique field of q elements-(q = p") and thrs
f1eld will be henceforward denoted by IF K

R . Exercises

K ,1 Fmd frmte subgroups of (E" and show drrectly that they are cycllc

‘2 Let E and K be finite flelds wrth K¢c E and 1E: KI = 5 Let ace K If there' ‘
~isno.b € K such that b2 = a, show that there isno b e E such that b? = a.

b

3. Let E and K ‘be f1nrte fields, with K ¢ E° and let” IE Ki =n. Let a € K be:

.- such ‘that there 1s no b ¢ K such that b2 ='a. Prove that, if n is odd, there -

isno b € E such that p2= ‘a and that, 1f n-is evern, there isabekE such
T».thatbz—a»»»- S ! :

4. Frnd all monic 1rreducrble polynomrals 1n F [x] of degree 23<and 4.
Verrfy Lemma 52. 16(3) )

. 5. Let p and g be d1st1nct pr1mc numbers Fmd the number of monic
- irreducible polynomrals in lF [r] of degree q ) '

. l RO
6. Let K be a freld w1th p elements Let a €. K and put f(x) = H (x - a” )

Show that f(x) el [x] Conclude that a +a” + a” F oo + al’ "e IF Thrs sum
“a +a1’+a” + - + a” is called the trace of a over lF and is denoted by
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‘\

K/F (a) Prove that TK/F (a + b) = K/F {a) + TK/F (b) and TK/IF (ca) =
-(:TK”C (a) for all a bekK and ce [F and show that there isan a € K wrth

Tye, (a) = 0.

a. Keep the notatlon of Ex 6. Prove that’ g(x) =xP-x —’a € le] 1s either‘
irreducible in. K[x] op is' a product . of p polynomrals of degree one. Prove »
that the latter alternatlve holds if and only if TK/F (a) = O

8 Construct addltron and multrpllcatlon tables for the frmte fields FyolgiFg |
and Fis o : '

N ; N

~

F IF

9. Find a generator of .the cyClic 4grol1p‘K" when K [F IF [F [FS,IEg, 16

10. Prove that a root .of x2 + Tx +2.¢€F, [x] is a generator of IF
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, §53 L
Spllttmg Flelds

» G1ven a -field K and a polynomlal f(x) € K[,x]\K is-it possnble to fmd an
= .extensmn f1e1d E of K’ such that f(x) can “be written as a product of poly-
. nomlals in E[x] of first degree" In thls paragraph we- study [hlS problem.

~

ThlS problem is related to another 1mportant questlon in the theory of
field - extensions: whether a- fleld 1somorphlsm ‘can be extended to a field -

1somorphlsm of the extensmn fleld More premsely, if E /K and. E2/K are‘:

;’fleld extensions and if : K = K +is a field lsomorphlsm can we find"a
,~~_‘fleld 1somorphlsm v E/ —»E such ‘that ;. = ¢? The answer is negatwe in

general but in the 1mportant case of - snmple algebralc extenSIons 1t—

" turns out to be posmve

- 337, Theorem 33 8) ERE

- these pr()perltev

. Let us. recall that for any fleld rsomorphlsm @ K — Ky we have a ring- '

'Alsomorphlsm ®: K [x] - Kz[x] gwen by (Zax)cp Z(a (p)x (Lemma o

Sy

Ga=0 t‘.O

531 Lemma Let E/K and E/K be feld .extensions and let P: K — K,
be a f:eid (vomorphtsm Assume. f(x) € K lx]is an trreduc:ble polynomlal
‘in K [x] and Jet fz(x) = (f(x))(p € Kz[x] be its 1mage under:p Let u € E, be.

K a root ()ffl(x) and u, € E a root offz(x) "Let K (4, yg E be lhe subﬂeld of
. E generated by uy and tet (“2) S E, be the vubﬂeld of generated by
. Then ¢ extends to -an tsomorphtvm of fi felds K (u) = 2(“2) that maps. : .
, 'u1 to w; that is, there is-a field momorphnm wi K (1) — K,(u,) such that - .
= u, lp = ”z and “’IK = tp Moreover t/zere -is only qne Isomorphlsm v wttl:

1

‘l’roof We make use of Theorem 506 and Theorem 30.18. Smce u, is a

. root ofif, (x) and fl(x) is 1rreduc1ble in K\lx], we see that ¢ ‘lf1 (x).1is the o

minimal polynomlal of " u1 over K, where ¢, -is. the leadmg coefflctent of
fi(x) (Theorem 503 as fi(x) is. 1rreduc1ble it is not the zero - po]ynomml“"

or a polynomtal of degree zero) Now (co"fl) = (fl) and - from Theorem ™

50.6 and. its proor(whlch depends on Theorem 30 17 -and Theorem 30 13) r
we know that S




a Ky(u) = Kl[)';]/(flj ; .
'Z‘a;‘“lk_f zflv.ai(?"%fl))i e T
i : i . o N
Cis a field. isomorphism. Likev;/ise there is a“field. isomorphism
| Ky(uy) = Kz[x]/(fz).
Tapie a6
R
Besidés; we -have an isomorphl:isn.l of rings
®: Kl[,?] = K,[x].

-

. Here (fl)‘/ is an ideal of K [x] thcrcfoArc Im'cﬁl(f’\) = (fz)~is an ideal of K [x]

and K [x]/(fl) o 2[x]/Im ‘pl(f) = Kz[x]/(fz) ‘by Theorem 30. 19(7) More :

_ spcc1flcally, we have the 1somorplnsm '

AKX/ — K [x)(F).
Cogv (o get ()

Hence aap™l: Kl(u'vl) — K,(u,) isa (ring, ~.a\nd ihcreforc also a)’ field' iso-
morphism. We write ¢ = arpl. Then ay = (@ao)apl =arpt =[a + (f])]xﬁ‘l =

la + (fz)]ﬁ_1 =ap™! =a for any a € I'(VI'A(wc regard ‘Kl‘as~ a.subfield of
K| [x]/(f;) and K, as a subfield of K,[x]/(f,) as in Kronecker's thco’rem

~ (Theorem 51. 1)) and wp = ()28 = (x + (fl))xﬁ‘l = (x +(fz))B = u,. Thus
p is an Extenswn of .. such lhat = 142 L )

..’lhe umqucness of p as’ an extension 0[ o with ultp =y follows from -the
fact that powers of u; forma K ba51s of K,(u;) (Theorem 50.7). Indccd

if p: K (g )—» 2(“2) is a field 1somorphlsm such that u u =1, " and Mg =@,

then u mdps any clcmen* t- E au, of Kl(u ), whcrf: a; € Kl, toty =
: . i . .

| ‘2_..(0;“1':)-“‘-:'2‘ ":i”("f“)i:Z “ﬁi‘*f”é‘.='(2ﬁl.-“,;i)‘w = v, and So.u:= veo@-
. . [ d. i o -
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°53.2 Theorem: Let E,/K and E,/K beé field extensions and let u € E;
‘and € E, be- algebraic over K. Th‘en the niim'mal povlynbmiai of u over -

'K coznczdes wzth the minimal polynomzai of u, if and only if there is an

‘

: rromorphtvm (necessarily umque) of fields w:K(u) — K(uz) that maps u,

to 112 and whose restrtctton to K is the rdenttty mappmg on K.

" Proof: If it _'and u, have the same minimal jpolynornial over K, then we
apply ‘Theorem 53.1 with the identity mapping 1: K — K in place'of ¢ and

. conclude ', that the identity 1somorphrsm can be extended to a unrque '.

1somorphlsm 1p K(u )—»K(uz) such that u1 u2

» Conversely, suppose that v: K(u )—» K(u) is-a freld rsomorphrsm suchs that".,

u 1p =u, dnd atp =aqa for al] ae€. K Let f(x) = Za x -be the m1n1mal poly-
; . i= 0 ’ ) -

_v\nomml of u, overK ThenO f(u)—Zau HenceO-Ow-(Zazl )tp

=0 o =0,

m

=Z (rz‘iul")w = 2 a U .itp =) a .(u- p) = = Z a u i —f(“z) Thus u

=0 ' i=0 S . 10 :

» root of f(x)and f(x) € K(x] is ‘a monic 1rreducrble polynomml whrch
- -, means . that f(x) is the mrmmal polynomml of u overK . R =

- 53.3. Remark Theorem 531 should' not mlsledd the reader to beheve-

“ that any field 1somorphrsm can be extended to larger fields. Consrder for .

: example the 1:,omorphrsm P! @(\/2) @(\12) given by a +b\/2 —--q - b\/ 2
Aa, b € Q). Now @(\f—j is dn extensron freld of o0HW2). Ifq) @(\12) @(\/2)

'Vcould ‘be extended to an 1somorphrsm V: @(\/—) @(\/—), ‘we would thC

N2 = (\IZ)cp ='(‘12)1p = ((\,[—) )1p.— ((\f—)w) a contradrctron, srnce ‘the

square of (\/—)lp € @(\/—) cR has to be posmve So o cannot be extended"

‘to an rsomorphrsm of @(\/—)

The most lmporldnt dpphcatron of Thf-orem 531 is that any .two spllttmg '
frclds of a polynomml are rsomorphrc We now’ drscuss this mdtter

i
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53.4 Deflmtlon Let E/K be a fleld extension and f(x) € K[x]\K Iff(x)

~can be written as a product- of lmear polynomials in E[x], i.e., if there are

' dy,a,,ay, ...,4, in E such that f(x) = aO(x a)(x - ay)...(x ~a,), then f(x)is
said to split in E. If f(x) splits in E but not in any proper subfleld of E'-
' contammg K, then E is, called a splztnng feld off(x) over K E

-

53.5 Exa'm'ples’ (a) Consider x% +1 € R[x]. Now x2 + 1 = (x - D)(x + i) in
C[x} so x + 1 splits in C.: It does not split in" any proper subfield of C
contalmng R .because. R is thé only proper subfield of C contammg R
~and x% + 1 does not split in R [x]. So C is a splitting field of x* + 1 over R.

C is not a splitting'ficld of x% + 1 over @, because x + 1 splits in.the field
‘@(1) c C. Now x>+ 1 does: not split in Q@ ‘which is - the only - proper subfreld
of Qi) contammg 0. Hence - Q) is a sphttmg field of x2 + 1- over @

(b) @(\/ 2) >IS a sphmng fleld_;of ',t - 2 e Q[x] over @

‘(c) x>~ 2 € Q[x] does not spht in @(\/_) because x3 —2 ‘ . o
=(x- \/—)(x + \/Ex+(\f—)2) in @(\/_)[x] and the second factor is 1rreduc-v. -
ible in @(\/_)[x] On the other hand, x* -2 = (x - ) - m\/—)(x - 0232)
) >1n @(\E w)[x], so x3.- 2 spllts in @(\E w)[x] In fact @(\E w) is a sphmng

field of x3 - 2 over Q. NO[ICC that @(\[E w) @(\E w«JE w2 \f—) 1s the f1eld-‘
generated by the roots of x3 - 2 over 0. ' '

(d) Let E/K be a fxeld extensron and f(x) € K[x] a polynomlal of posmve,'
degree n Assume that E contams n roots’ ay,ay, ....a, of f(x) (counted. with
mulnphcny) Then H = K(al,az, Ced)) is a sphmng field of f(x) over K-
lndced with the- leadmg coefflcxent ay € K, we have the factorization f(x)
c=ayx - a)(x - a,).. dx-a ) in H{x] since each factor x - Q, belongs to Hlx].
Hence f(x) splits in H[x]. On the other hand v1f L is any 1ntermed1a_te field
of E/K in whicli f(x) splits, then x - a,’is in L[x] and so a, is in L for all ks

" thus {a.a,,....a,) € L and H =K(a;,a,, ...;a)) € L. Hence f(x) does not split -

in any proper subfield of H containing K. Therefore, H is a splitting field-
of f(x) over K. This argumerlt_‘shows in fact that K(a,.a,, ... a,) is the’
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”nniqne'intermediate field of EJK which -is n‘splitting-\f'eld of f(x) over‘K.-
.In parttcul'\r E. 1s a sphttmg f'eld of f(x) if and only if E = K(al,az, N ).

!

_(e) Let E/K be a fleld extension, L an 1ntermedrate field" .of this extensron

and flx) € K[x]\K Assume - that ‘E isa splmng field of f(x) over K. Then E
‘is a splrtmg field of f(x) over L, too, since f(x) splits-in E -but not in any
. proper subfreld of E contammg K so that all the more so f(x) does not -~
splrt in any proper subf'eld of E contammg L. o

(f) Let p be prime. Any greatest common d1v1sor ‘of xP" - x. with its -
derrvatlve p x” -1 - I'=-1is a unit in F [x]. Hence xP" -x €. IF [x] has no

" multrple roots (Theorem 35. 18(2)) Thus an extension - f'eld of F 1n which

PLAS splits - must have at least thep distinct roots off(x) We know that .
_ x” - x splits in- the field IF . with p" elements (Lemma 52. 4(3)) Thus IF

is d sphttmg f'eld of xP" - x over F . . : \

(g) Let E/K be a field extensron .and f(x) € K[x]\K Let a € E be a ‘root of‘
f(x) and let L =K(a,) be the subf'eld of E generated by a, over K, so that
f(x) = (x -a;)g(x)- for some g(x) € L[x]. ‘We. clznm that if (g(x) has positive
degree and) E is a spllttmg field of g(x) over L, then E is also a sphttmg»
field- of f(x) over K -Indeed, if E is a sphttmg field ‘of g(x) over L, then -
g(x) = c(x - a2) Ax-a) where ¢ € K and az, a € E. We know that E =

- La,, .. a) from Example 53. S(d) Then flx) = c(x - a )(x a,)-. (x-a ) in A.

- Elx] and: f(x) sphts in E[x]. On the other hand if E° is any lntermedrate”
_ field of E/K and f(x) sphts in E°, then c(x_— a )(x ay)...(x - ‘an) in E°[x}, SO

A aI e EsoL = K(a)cE and a,, ....a, € E’, soL(az, ..sa)YS E'and ECE".
Thus f(x) cannot split in any proper. subfleld of E containing K and Eisa-
sphttmt, field of f(x) over. K S N

(h) ‘We’suw in. Example 753.5_(c)‘th;1t @(\ﬁ,«p)'isa splitting field of x> - 2

~over @,Likewise @(\/_)['y]/(y +y + 1) and @(w)[yl/(y - 2) are splitting
ficlds of x} - 2 over O (here y is an mdetermmdte over @) In these
ﬁelds w2 splits .as ‘ ’ '

[r-(\/7+() +y+l))][(x (\/_y+02+y+l))][x (\/_y +02+y+1))]

and [x- (54 (7 -2))][x (wy+<y —2))][x (my+(y3 M1,
resptctl\cly : '

o
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A natural questlon is .whether. any: polynomlal has ‘a spllttmg f1eld We '
show now this is indeed the case. The followmg theorem is due toi

_Kronecker

R

53.6 Theorem Let f(x) be an arbitrary” polynomzal of posznve degree

~over an arbitrary. field K. Then there is an extension field E of K such™

that |E: Kl < (deg f(x))' and Eisa spltttmg feld of f{x) over K o 4“}

'Proof We make 1nduct10n on n =deg j(x) Ifn= 1 then f(x) = c(x -a) for .

some ca € KandsoK isa sphttmg field of fx) over K and we have lE Kl =
,1 < 1' So the claim is estabhshed when n = 1. ’

~

’ ~Suppose now deg f(x) =n > 2 and the theorem is true for any poly-
_nomial -over any field if 1ts degree is- n - 1. “We -construct” an extension

© -field L of K in wh1ch f(x) has artoot'a and |L:K| < n (Theorem 51.5;
, possrbly L =K). “Then, by theorem 35.6, f(x) = (x - a)g(x) for some g(x) in

L[x]. ‘Now deg g(x)=n-1 and, by induction, there is an extens1on f1e1d E
of L such that E is a sphttmg ﬁeld of g(x) over L and IE LI < (n- 1)!.: From

'Example 53. S(g) we -conclude - that E'is a sphttmg f1e1d of f(x) over K.
Moreover, |E: K| =\E:LIIL: Kl < (n— 1)'IL KI < (n— Din=n!. - o

. o . N . . - /' .
We see . that Theorem 536 IS nothmg but repeated application of
~Kronecker's theorem (Theorem 51 .5). We use- Theorem 51 5 ‘succesively
until. we - find "a f1eld which contams all the roOts of f(x). In the proof of

Theorem .53.6, the successwe adJunctlon of roots is replaced by an,

»1nduct1ve argument . -

-

,-We now turn to the questlon of umqueness Example 53 S(h) reveals«"
that there can be many dlstmct sphttmg fields of a polynom1al However, .

as has already been remarked, all splitting fields of a polynom1a1 are
1somorph1c We prove a sl1ghtly more general theorem

53.7 Theorem: Let EllK'l 'and E;IK, be field. ex'tehsions'and"let' o1 Ky~ Kz

be. a field isomorphism. Let ﬁ(x) € K[x] be a polynomial in K[x]\K and ' ,
et f2(x) = (fl(x))cp € [x]\K be tts image under:p If E is a splzttmg field .
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()fj (‘() over K unr[ E7 is a splz!tmg jleld of/,(r) over. K,, thcn @ - extc.ndsjg
lo a flL'[([ lsmnmplmm P E — E, and $0 E; = E - IR

Proof‘ E s &anmle(l over K by the roots of jl(r) Smce each. rool of1
‘f](x) is dl“CbmlC over K and lhcrc .dre hmlely many- rools Thcorem'
50 12 yxclds that, lE KI is finite. We makc mducuon on |E K.

] ‘IflE 'KI =1, lhcn E 1 ,dnd fl(‘() splxls m K Then f7(x) sphls in K Jnd;", g
. K2 E,. ThusE K K E is lhe desxred lsomorphlsm _» e

Suppoxe now |E, KI' ~27and suppose l'hzll‘uny Field isbmorphism can be
extepded - to “an 1somorphlsm of splmmn ficlds of—correspondmg poly—'.
; nomials whenever. the deﬂrcc of a spllmnﬂ ficld' is’ less than -or equal to.
'n— l. Smcc lL KI md E s g,cnemlcd ovcr K by the Toots . of fl(r)
Ihcre must’ be ‘a root of j (r) in E which. does not bclong to K: Let 1, “be
. a root of fl(t) in F \K Assume g (x) €K Ir] is-the miinimal polynomml of
R , be root of (g, (X))<P = g5(x) € Kzlx] in E,. l“rom
Lemina 53.1, we: know'tlml ¢ can ‘be extended 'to an- lsomorphlsm
K )~ K,(ity). Now uy € ENK, }solK(u)Kl > 1 dnd E, K ()l <.n
~(Thu)rcm 48. 13) As E _is-a sphltlng, flcld offl(r) ‘over: K (u ) and E is a

over K| and lct u

sphtlln" lu,ld of /7(x) over K7(u2 (Ex‘lmplc .53, 5(e)) we conclude by”" ‘
.induction,” that- v can.-be -extended -to” an lsomorphlsm (b E,— E, Thxs @& s

lhe desired cxlcnslon of rp e e R s}

. C N < S 7"' ' "‘ .'. . ) T Coe . ;
53.8 Theorem: Ler K be a. field. an(l let f(x) be any po[ynoml('ll ‘of.
positive “degree - in K{x|. Ilwn any 1wo. \pllltlng jzel(ls of f(x) over K are -
is'umurplzic Iu: Jact,” the splitting /ta[zls ()j flx) “are zw)morpluc l)y an

lsmnmplmm /nuu; cach element of K

<l’r(mt lctl .md l.7 bc sphllmb hclds of f(x) ovcr K and apply Theorcm
©53.7 wuh K, —l\ K7 and P=1= |dcnt|ly nmppmg on K ' S -

n the remainder of " this paragraph; we discuss algebraically, closed
fields. . S Yoo e R



53.9 Definition: A-ficld K is said to be algebraically closed if K -has no -
_proper algebraic extension’ field, i.e., if any algebraic extension E of K
coincides with- K. - Ty o e

53. 10 Theorem Let K be a ﬁeld lee followmg statements are’ equi-
‘valent. & : :

- (@)K is algebratcally cloved _ .

(i) Any irreducible polynomtal in K[x] has degree one.
-~ (i) Every polynomtal of poszttve degree in K[x] has a root in K.

- (iv) Every polynomtal of - posztzve degree in K[x] splits in K

Proof: (1) = (ii) Assume lhdl K is algebralcally closed. If there were .an_
_irreducible polynomml f(x) in K[ X] w1th deg ﬂx) > 1, then E = K[x]/(f)
.w'ould be an. algebraic exlensron of - K ‘with K c E, contrary to the
' assumplioh that K has -no, proper ' algebralc extensmn Thus.every'
1rreducrb1e polynomml in K[x] has degree one. : . B

(11) = (i) Suppose thal dny 1rreduc:ble po]ynomlal in K[x] has degree one »
We want to show' that K . has -no- proper algebralc extensmn If E were a
proper algébraic extension of K then there would be an a € E\K, Now a
is algebraic over K dnd K c K(a) smce ag¢ kK (Lemma 49 6(1)) Th]S leadsv :
'_lo the contradiction - ‘ . '
~ 1 < IK(a) K| = degree of . lhe m1n1mal polynomxal of a over K

'- degree of an 1rreduc1ble polynomlal in K[x] =

-

_ Thus K is algebrdlcally closed.

‘(11) =>, (m) 'Suppo'se jthat any 1rreduclible polynemial‘ in K[x] has degree

-one. Let f(x) be any polynomial of positive degree in K[x]. We show -that -
J(x) 11as a root in K. Indeed, any - irredueible divisor of- f(x) has the form
c(x - a) with c,a € K and lhus h'lS a root a m K, so f(x) too,.has a root ina
in K ' ‘ : :

(111)=> (1v) Assume thdt any polynomnl of positive degree in K[x] has a .
Toot in: K and let fl(x) € K[x]\K Then fl(x) has a root a, . in K and fl(x) =
(x - al)fz(x) for some fz(x) € K[x] Iffz(x) has’ positive degree then fz(x)
- has a'root a, in K and f,(x) = (1 az)fS(x) for some: f3(x) € K[x]; so fl(x) = .

“(x-a D - a,)f3(x). Iff3(x) has ‘positive degree, then f3(x) has a root a, m. g

_ K and fs(x_) = (x a3)f4(x) for some f4(x) € Klx]; sofl(x)

i
i
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=(x-a)ly - (‘13)/:(1") ‘Proceeding-in lh@ way, we will meet an f'(x).

of du’ru: 2810 and filx)y=(x-q )(‘c -a )(x - 'z (\ -a )f 5phts -in K.
('iv = (n) Suppose ‘every polynomml of posmv dcgrcc in lel splilsni'_n K

and let flx) ‘be ‘an irreducible . po!yuomml i K{.\\'l. Then, by assumption,

'j(r) is a ‘product” of deg f(x) polynommls of degree one. Since f(x) is

irreducible, the number (/eg Jf(x) of factors. must. be one: deg f(,x) . So

" Adny 1rruduuble polynomial in Kl\[ hds degree onel - - ST a

An anmplu of an dlncbmlcally closed: ficld is -C. Thlb is ‘a consequence ‘of
the result known as the fundamental lhcor(,m of - algebra, which ays
that any polyn()mml with complex coctlxcncnls has a root in. €., The name
‘fundamental - theorem of algebra’ is  grotesque, for .this is neither a
fundamcnml theorem -nor. a lheorun of algebral Any proof of  this resull

s hound to use some results from dndlySIS

33.11 Lemma:  Ler E/K be a field extension and assume that E i
algebraically . closed. Let A be the algehiazt closuré of K in E (Defmltz(m
50.15). lhcn A is an alge/)r(ucally clu‘erl jteld

Proof: It sut'l‘iccs 0 prove 1hzu any polynomi:_\l in AlxXM has a roorin-A.

Let /(x) be a polynomial of positive degree in A[x]. Then f(x) is a poly-
nomial’ ()/f p’(isili\""'dcgrvcc in Elx] and therefore has a roolvbb injE
(Theorem 53.10). l‘hui A(b) is- an algebrdic extension of A and A is an
algebraic (.\tumon of K, 5o A(b) is an al!,cbmlc extension of K (Theorem

- 50, I()) (,oxm.qucnlly h e Alh) is dlb(,br‘uc over K .md hence b € A by the

ddmmun of A, : : . - : i ....B

53.12 Definition: Let E/K be - a- field -extension. If E is an dlgcbr‘uc:

extension of K and E s dl"(,bl’dl(..l“y closed, then E s called. an’ algebraic

e

( lmu;c of K.

Does every field K have an d|“(.hl’.ll( closure? The answer is 'yes'.and i

proof requires Zorn's Lemma. There is #o dlg(,brdlc difficulty in lhc
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. proof, but l'here arc certain sci-theoretical .subtellie:s and we’ \bm_hm, -
give the proof irr' this” book. It is also true that an algebraic closure of a

' freld K is- unique in the sense that -any two -algebraic closures: of a field K

are 1somorphrc by an isomorphism that frxes each elemem of K.

Exercises

1. Conslrucl a xphllmg: field over O of .

- (d)x -3
(b) x - 5
(c) x* - p, where p € N is“a prime number, _ ,

‘ @x3<1; ) o ; , : o | e
(e) X" -1 Where ¥y € MOIS a prrme number; o o :
(D x4 - 522 + 6;

" (g) x8 - 104* +3h»— 3()
(h) x° +3x + x5 - 8x? ~()t+4
(1)x “xr 4. :

- 2. Letk be a field ‘md let j(,x) € K[x] be of degree n > 0. IfE is a splrmng
_freld of f(x) over K, show th‘u [E:K] d1v1des n' ' : . -

3. What is the difference belween an algebraic closure of . A freld K and
the algebraic closure of K -in an extension field? ‘

4. Prove that a finite fiejd cannot “be algebraically closed.
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.§54
Galois Theory

4

Fhls pamgrdph gives dn exposmon of Gdlois - Ihcory Grven any fleld

exténsion EIK, we associate intermediate fre!ds of E/K with subgroups of -

- group, called .the Galois -group-‘of the. cxtensron Many quesuons ‘about

_thc mtermcdmte field structure of the extension can be. thus reduccd to-
frelated questions about the’ subgroup structure of the” Galols group Our

exposmon cloxcly fo]lows the treatment’ of L Kapldnsky

If E/K is a fleld extcnsron then E rs a flcld and also -avK‘-vecI_or'spﬁofz., l>t""_
Cwill: bc‘very fruitful to study both the " fiold and “the vector”spdée"

structure” of  E:. at the same.- time: For " this rcason we consldcr mappmgs
which prescrve both of these structurcs :

Lcl E be. a flcld ‘Let - us reca]l that d field: automorplnsm ® ofE is a oan

. lo-one rrng homomorphlsm from E. onto. E. Equrvalently, a - field

dutomorphlsm of £ is an dutomorphlsm of. the -additive group (E, +) which
is also’a-Tring isomorphism’ of ‘E. Clcdrly the identity mapping on. E is a
ficld, dulomorphlsm of E, 50 the set of all” ficld - automorphisms of E is not

empty. Bcsldcs if @ and are” any two ficld automorphisms of E, then ey - )

“ L and 9~ are dulomorphlqms of " the- additive group. (E, +) ‘which are ring

; lsomorphlsms from E onto E as well (Lemma’ 30.16);" thus py and @~ are

field aulomorphlsms of E. Thcrcforc the set of all ficld automorphlsms of .-
£ is"a subgroup of the - group “of all’ dutomorphrsms -of the additive group.
(}I,»L,+). .lhc;_group.,of;_all ficld ‘uutomorph_ls,ms of E. will be denoted by.

JAut(E). Thus. we “use the same notation for the group of additive group
aulomorphlsms of E dnd the group of fickd- dulomorphlsms of E. This is

nat -likely “to cause: confusmn Anyhow Aul(E) wrll pldy a minor rolc in

the sequel:
PRI

- i

Autcl )y is the cr)llcclion"of muppingS' from £ onto £ that preserué the field
structure of . 2. From these field uulonro_rphisms, we - select the mappings
that preserve the vector space structure of E.. We introduce = some

- terminology.
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541 Deﬁnltlon Let b/K and FIK be fleld extensrons A mapping : E—» 17‘
is ‘called a K- /zom()morp/u\m if ¢ is both a field homomorphrsm and a
- K-vector space homomorphr«m A K homomorphrsm ®: E—» F is called a
“K-isomorphism if ¢ is’ one-to- one and onto F. A K- -isomorphism - from £

“onto E is called a K- autommphzrm of E. The set of all K- automorphrsms
of w1|l be denoted by Aut E or by G(E/K) .

.~

»If@: E'—»_F is a K—hornomorphisrn, then_(lE)q) =‘IF (see the ‘remark_sd follow-
ing Definition 48.9) since’@..is a field‘homomorphism and, for any- k e K,’
there ho[ds /up = (klc)cp = k(I ) = Ll = k since o is ak- linear ~transforma-
© tion. Thus ko = k for all k € K. Conversely,»rf cp E— FisakK- homomorph- v
ism such that ke = k for all & € K, then (ke)p = kp-ep = L(ecp) for all £ e K

and e € L, and thus @ is a K-linear transformation, too. Therefore a field . . .

'nomomorphrsm o E — F. rs aK homomorphrsm if ‘and only if ® fiXes

every “tlement of K. ;s

54 2 Lmea Let E/K be a field e\ttenszon and let Aut E be the set of all -
K- automorplusms of E over K. Thﬂn Auty Eisa group

Proof: We have . € Aut L Aut(E) and Aut(E) is a group. Smce the
- composition two vector space isomorphisms and - ‘also the’ inverse. of - a
. vector spabe 1somorphlsm are vector space 1somorphlsms (Theorem
41.10), Aut E is closed under composmon and forming of inverses. Thus
Aut E is a subgroup of Aut(E) ‘ o e o

54.3 Defmrtlon Let E/K be a freld extens1on The. group Aut B = G(E/K)"
- is called the Galois group ofE over K - ‘

54.4 Examples: (a) Let E be any field and let P be the.prime subfield
of E. Any field automorplnsm ¢ ofE fixes 1 € E. This implies thal P leCS‘.
e'1ch element in P. Therefore any fleld automorphlsm of E is aP- auto—'
morphlsm of E and Aut(E) =Aut (E)
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(b) The famrlrar complex conJugauon mapprng (a + bi— a- bz “where
ab e R) is an R'- automorphrsm of C. '_ . . SR :

"(c) The mappmg ®: @(\/2) @(\/2) that. ' maps a + b\/2 lo a- b\/2 (where o

ab e @) is a 03) automorphlsm of @(\/2)

,‘((d) Let K be a field and x an 1ndetermmate over K Then K(x) is an) g '

’v.vexlensron field of K, Ifa € K7, then ax is transcendenldl over K and,- by
Theorem 49. 10 the mappmg c K(x)—» K(x) given by f(x)/g(,c)

‘Tf(ax)/g(ax) is a field automorphlsm of “K(x). It'is easy “to ‘see lhat o, is 1n
fact a K- dutomorph_rsm of 'K(x). Likewise, for any b € K, the mapprng Tt
" K(x) > K(x) given by fCOIg(x) = f(x +b)/g(x + b)isa K- aulomorphism of

K(x). As: X0,T, = (ax)t, = a(x + b) = ax +b = (x + b)o =xt0, “unless az= 1 or’

b= 0, we see Ihdt Aut K(x) is -a nonabelian group

) We frnd At K(x) In lhe followmg, end z are lwo addmonal drslmcl', -

'mdelermmdles over K

S

Let u be an arbllrary elemenl in K(x)\K, say u —p(x)/q(x) where p(x)

“and q(x) are relatively prrme polynomlals in K|x] and q(x) FS 0 We claim

that u -is transcendental -over K and K(x) is. finite dimensiona_l_ (hence-

dlgebr‘uc), over K(u)

' We prove lhe firsl‘cldrm viz. that u IS lranscendenml over K lfu were .

. algebrdrc over K, then u would have a minimal polynomml
. H(y),_y + ey 1y +c1y+c eK[y]
" over K. Then from H(u) =0, we would get =
' (P00 + ¢ (pO)gaNET +- e (p(x)/q(X)) +¢, =0,
P pF () + - +cp(x>q(x>‘ ‘+cq(x>*
g)Ip(x)* in K(x] and (p(x),q(x) ~ 1, -
g(x) is a unit. in K[x], so g(x) € K,
v ' ‘ o u=p)laix) € Kix},
Il(u) = u" v, k4. Ut s a polynomml of degree k(deg p(x))

i

k-1

contrdry to H(u) =.0. l“hus u rs lranscendenml over K
\ \

.Sccondly, we prove lhdl IK(x) K(u)l is finite. Now u = p(x)/q(x). Let us bul‘-

plx) = ax"+a, _x" Tyl - +a X+ ay, q(x) = b, x" +b_ lx”"1 +eee Hbx+ 'I)O,
- with anr# 0"#']) We note lhdl x i$ a root of the polynomlal
R L I(y) = (b )y™ + (b, ]u)y"‘ '» <+ (bju)y + b,

n-1"_

—a) ‘~a -1y oy - ay
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-in K(u)[y] Thus Xx'is algebrarc over K(u) We see moreover that deg F(y) =
“max (m,n) = max (deg p(x),deg q(x)) because b, u ~a, = Oasu ¢ K. We

~will show that F(y) 1s irreducible over K(u). Thrs will 1mply cF(y) is the
minimal polynomial of X over K(u), -where - l/c is the leading coefficient of
F(y) and SO lK(x) K@)l = deg cF(y) = deg F(y) = max (deg p(x),deg q(x))

Now ‘the- 1rreduc1brlrty of F(\) over K(u) Srnce u is transcendental over- K
the substitution homomorphrsm z-— u is in fact  a fr_eld isomorphism
from K(z) onto K(u)S K(x) (Theorem 49.10).. 'So\K(u) = K(z) and. Theorem
33.8 gives K(u)[y] = K(z)[v] Then F(y) € K(u)[y] s irreducible in K\u)[y] if

. and only if -its rmage F(z) € K(z)[y] is’ 1rreduc1ble in 'K(z)[y].. From_

Theorem” 34. 5(3) -and Lemma 34.11, we conclude FE(z) is 1rreduc1ble in

_'K(z)[y] if and only if F(z).= q(y)z - p(y) is irreducible in K[z][y] = K[y][z] - v
" But F(z) ='q(y)z —p(y) is certamly irreducible"in K[y][z] since q(y)z - p(y)

1s of degree one in K[y][z] and its coeffrcrents +q(y), -p(y) are relatively
prrme in K[y] (for p(x) and q(x) are relatrvely prlme in. K[x])

~ Thus we get [K(x):K(u)l = max (deg p(x), deg g(x)) for any u’=p(x)/q(x) in -

1

K(x)\K, where p(x) and g(x) are relatrvely prrme polynomrals in K[x]. and.

q(x) = 0

\Now let ¢ € Aut K(x) and xQ =u. Wrrte u -p(x)/q(x) as above Slnce

K(u) K(xw) = {fixo)g(xe): f.g € Klx], g = 0)
= {fix)e/g(X)e: fg € K[x], g £ 0)
= {(fx)/g(x))o: f.g € K{x], g = 0}
—(K(X))cp K(x)¢K Sy

'we have u-€ K(x)\K and - o o i

1 = [K(x): Kol = 1K(x):K(u)l = max (deg p(x).deg q(x))

yields .D(x) ='ax + b, q(x) = cx + d for some a,b,c, deKk. Here ad - be= 0 for i
cad-bc =0 1mp11es the contradrctron u _p(x)/q(x) = (ax + b)/(cx + d) e K.

Thus every automorphrsm in AutKK(x)ns«a substitution homomorphrsm'

that sends x to, (ax + b)/(cx + d) for some a,b,c,d € K. satisfying ad - bc =~

0. Conversely, “if ¢ is a substitution homomorphrsm of this type, with x¢ =

(ax + b)(cx + d), a,b,c,d € X, ad be = O then (ax +b)/(cx +d) =1 u is not
in K so u is transcendental over K and cp is a freld homomorphrsm from

'K(x) onto K (u). Srnce ad - bc # 0, both of a and ¢ cannot be 0, so

IK(x):K(u)l' = max (deg ax + b Jdeg cx +d) =1 and K(u) = K(x). Hence ¢ is a
field homomorphism from K(x) onto K(x). As ¢ fixes all elements in K, we

‘ 1nfer that cp is in Aut K(x) Therefore Aut K(x) consrsts exactly of the
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substltutron hOmomorphrsms x— (ax + b)/(CJ + d) where a, b c, d € K and :
ad - bc = 0. : ‘ ‘

- The next lemma is a generdliiation of ‘the familiar fact that the complex o
conjugate of any root of -a polynomial’ with_real’ coefficients. is also a root
of the same polynomlal In the termmology of §26, if E/K ‘s a ficld
extension, Aut, E acts- on the: set of dlstmct roots of a polynomlal f(x)

. over K

» 54.5 Lemma Let EIK be -a ﬁeld extemton and fx) € K 1f ueE is a’-'

root ofﬂx) ‘then for any qJ € AutK s the element up of E is also a root of o

f(x)

f

VProof: If'f(x) = ia then f(u) =0 1mphes 0= = 0@ = (f(u))<p = (La u)

- . L =0
= Z (a cp)(u cp) = ¥ a(up) =flup). Thus.'ucp is a root of flx). - o
Ci=0 o xo‘. N a ! -
Let. E/K be a flmte drmensronal extensron and assume (hdt {a ..,.,'a'm}' o
isa kK _basis of E. Then any . K aulomorphlsm of Ev, ‘comp‘letevly‘

" determined by -its effect on - the basis elements, for if o 'a_nd v are K- -

automorphlsms of E and acp =ay fori = 1 2, , then, for any a e E

which we wrne 1n the form ' L kag, we hdve ap = (Z k a):p = 2 k <;oa<p -
. i= () ,' - =0 - :

'—zk (acp)— Zk(atp)— Zktpatp— (Zka)\)—aw For [hls reason
‘10 . - =0 =0

we will describe the K-automorphisms of E by descnbmg the nnages of
" the basis. elements. Thus the conjugauon mapping will .be denoted by
[ = -, the mdppmg of Example 54. 4(c) by \/2—» -V2, etc.

T parueular 1f E/K is a 51mple exlenslon dnd a'is a- prlmmve elemenl '
then [1 a,a®, a1y s a K- basis of -E = K(a), where n is the degree of the

mlmmal po]ynomml of a over K (Theorem '50.7). Let ® € Aut E. Since a'e
= (acp)‘ for any i= 0,1,.., Sonn - 1, the mapping ¢ is comp]ete]y determined
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_by its effect on'a. Now ap i.si a root in“K(a) of the_mjninﬁal polynomial lof a
over K. Thus [Aut, El < r, where r is the number of distinct r‘oo_t_s'iﬁ K(a)
of the mmlmal polynomml of a over K. We proved. the following. .
lemma. : ' ‘ ' '

54.6 Lemma: Let K be a field. If a is algebfaic‘ovér K‘witll the minimal.
polynomial f over K, and if r is the number of dzstmct roots of f inK(a)
" then lAut K(a)l <r< a’egf lK(a) Kl.- - . , ‘ - ls]

54.7 Examples: (a) Let V2 be the positive real cube root of 2. Thus"
Q(2) ¢ R. We find AutgQ(V2). If ¢ € AuryQ(2), then V2¢ € R is a root
of the minimal polynomial ¥ -2of \3/-2— 'over @ -Since the roots of B -2
other than \/2 are complex \/2<p must be \/2 Thus o must be the ldentlty'
-mapping on @(\/2) and Autﬁ,@(\/Z)-—l v o ’

(b) C =R (i) anq the minimal polynomial of i over R is x? +'1, which has
two - ‘roots in C. Thus 1A ut, Cl < 2. Since the identity mapping and
, con_]ugatlon mapping are R- dutomorphlsms of .C, IALZ%CI =2 and we get
: Aut C = C,. Lll-.cw1sc Aut®@(\/2) : '

(e) We find Aut@@(\/Z\/_) We have @(\/2\/_) = @(\/2)(\/_) Here {1,V2} 1s.

a @ -basis, of @(\/2) and (1, V3) is a @(\/2) basis of @(\/2)(\/_) (because
_' x2- 3 is lrredumble over @(\/2)) hence, by Theorem 48.13, {1 \/2\/_\/—}
~ is a'@-Dasis of @(\/2\/_) Now any ¢ € Aut@tﬂ)(\/Z\/_) maps \/2t0\/5 or to

-V2 and \/3 to V3 or to ~\/3 dnd there are four posmbﬂmes for ¢:
' v(a +_b\/5+ cV3 + d()% =a+bV2+cV3 + d\/—
(a+b\/§+c 3+'d\'/_)<pz=a+b\/5 V3 - a6

T (a+b\/5+c 3+d\/_)cp3_.a W2+c3 -aVe .
(a+b\/§+m/§+dxl_)<p4_a-bxlz VN3 +aV6

(a,b,c,d € @), It is easy to see that P 1,PP 5,0, are mdeed @-au;omorph-
isms of @(V2,V3) so that Aut®@(\/§,\/§) = (9,,9,.05.0,4). Here ¢, is the
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identity mapping on Q(V2.3) and .2 =0, 00, = @, when (ijik) = (234). *
Thus A’”@@(\/E,\Ei) =C,xCEVY R . _

. We ‘now: proceed 1o estdbllsh the correspondence belween 1ntermedrale
fields of an extension, E/K and subgroups of AutE.

. 54, 8 Lemma Let. E/K be a flel([ extenszon and put G AutKE
(1) lf L is an mterme(hatc field of E/K, then

; ‘ {(peGl(p—[forallleL}

C isa subgroup of G '

‘ . ‘(2) If'H, lS‘ a \ubgroup of G, the
o {aeEacp_afordlhpeH}
is an lntermedtate f:eld of E/K

e

Proof: (1) Clearly e L soL = 8. oy e L, then loy) = (lg)p = Iy = I

forallle L,soqyelL” Andl(p lgwesl—kp‘forallleL so<pleL
-Thus L™ is a subgroup of Aut E. (In facl L’ -AutE) ) S

(2) Slnce any @ € H” AutKE frxes the elemenls of K, we have K c H If
ab e H then a<p =aqand by = b for ull @ €1, so o '

(a+b)cp—a<p+b<p—a+b ‘ a+be H .
-b)p = —(b(p) =-h, S C -be HS o
ab)p = acp b = ab T ab e H

(1/b)p = 1/be = 1/b (prov1ded b = 0) Ibe .
So'H is a subfleld of E and Iherefore H7-is an intermediate field of E/K..D

For example, in’ the notation of Example 54.7(c), we. ‘have'
023y =1<G= Aut®®(\/_\/_)
02 = (9,0,). @(\/3)—{<v ,eo31 006 = (o,0,).

@':’g



and 0 =00k w
(oo 500D (o) =003, (o) SO0,
| G =0. L

3

If E/K is a 'field t":xtensi‘envdnd H< Aut, E"theﬁ H' is called the fixed field

‘ ofH Let us consider the four. extreme cases of the pnmmg correspond--'

_‘ence in Lemma 54.8. ‘
!

54 9 Lemma “Let EIK be a ftel([ extenwon and G Aut E Then

()1°=E RE cE N - .
1(2)5_1 I L
YK =G. - . e o

' (4) G’ contmns K and pombly Kc G°.

' ‘Proof (1)1 {aeE (l(p—(llOfd“(pE 1)={acE:ay ;=a) =
(QE" = {(peG a@_(zfor‘tllaeE} {E]—l '
QK = {<p€G acp—uforalluel(} G. . C

(4) Of course K c G From I‘xample 54. 7(a) we know that Autﬁ@(\/2) = 1' ;

s0 that for- the - extension @(\/2)/@ we have G =1 and K= @ c @(\/2) =1

- —'G Thus G’ is. not 'ﬂways e(]u‘ll to K. . . \ ..o
E — 1 ‘. R I E 1 |

\

54 10 Defmltlon Let E/K be a. field extension- and put G = Aut E. IfG -

is equal to K, then E/K is smd fo be a Galois extension and E is Silld to be, -

Gualois over K.

Equwalently, E/K is G'\lms 1f tmd only if for any - element a of E\K there
' exnsts aQe Aut E such-that ae = a. It"is easy to verify that C is a Galois

‘ extensnon of R and that @(\’2) and’ @(\/2 N3) are Galms extensrons of @
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54. 11' Lemma: Let EIK be: a field extension and. put G = Auty, E.Let LM
be intermediate- jzelds of EIK and let HJ be- subgroups of G.If X is an
intermediate field of EIK or a wbgroup of G, we den‘ote X7y s_lzort/y by
X . Then the. jol/()wmg hold. - o .

MifL Q M, then M <
(QIfH <, then J' € H'. :
GYLc L and H< ™.
ML= L' and H7 =H".

-Proof:’ (]) Suppose L M If o ¢ M","then ap-=a for all @ € M and a
fornon dp = a for all ael, hcnce~cp € L7 and conscquently M c L.

(2) Suppose < J. 1lface j lhen ap = a for d” (p € l and a foruorl a<p =a
for all o € 11, hencc ael” md consequunly J

o (3) If a € L, then up =q ior all ¢ € L by thc definition of L7, sb a. is.l‘ixcd

3 by all the K- dulomorphlsms in"L". Hence a 15 m the fchd field .of ‘1.7 and .
ael” . This gjlves LeL” Ifgce /1, then arp/- a “for all a € H by the defi- B
nmon of II SO fxxcs Lvery clement inH’,sop € H. Thls glvcs Hel”

(4) By parts (1) dnd (2), prnmng ruverscs mclusxon lhereforf’ Lc Lind»

‘ _II 17 yield L™ < L™ and H°” Also, using (3) wnh L rcplaccd by
117 and I by L sweget g1’ zmd L’ “SolL” Cand H7 =1,
\F . l o ’ o . N X E - {
Ui A v ST A B K - ul ) A
M o M S ’ O H e——— H
L VAR . i . ' o U ' Ay
L= o ‘ ‘ A
N DR ’ ' S A
K —— o o - K G

Anogenerall Loomay very well be a proper subset of L7 and 1/ a proper
~subset of [0 Weintroduce e term for the case of equality.

54,12 Definition: [ct I/K be- a ficld cxlt,nsn()ry.lnd G _Aut E. An

Cintermediate field [ ni K s snd to be closed i L =17 and a. subgroup
11 OF G is said o be closed i€ 1L =117 o

.-
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- because, if H is any. closed subgroup of G, then H is a closed Jintermedi- © - - ’

: aud all subgroups will “turn out to be closed.

So Eis Galors over K rf and only rf K is- closed Lemma 54 ]l(4) states that‘ o
any prlmed ObJCCt is closed : :

54 13 ’I‘heorem Lct E/K be a fteld extenrlon and G Aut E: There is a

“one- to one . correspondence betwcen the set ‘of all cIosed tntermcdtate'

fclds ofE/K and the set of all closcd subgroups of G, gzven byL S Lo

Proof IfL is’ a closed 1ntermed1ate freld of E/K, then L is a subgroup of
G by Lemma 54, 8(]) and L7 s, closed by Lemma 54. ]1(4) Thus priming .is.
.a mappmg “from’ the set. of all- olosed rntermed1ate fields - of the extension -
1nto the set of all closed subgroups of - G "This’ mapprng is; one- -to- -one, for

L =M’ 1mp11es (L) (M DN whence L=M by Lemma 54. 11(4) - again. . R

Fmally, the- pr1m1ng mappmgI is’ onto the set- of all, closed subgroups of G

ate f1eld and (H V= =H. This completes the proof ' T "o

This theorem 1§, virt'ua'llyv useless” until we determme whrch 1ntermedr- o
ate ficlds and wh1ch subgroups are closed In the most important case

when : E/K is‘a” f1n1te d1mens1ona1 Ga101s exten51on all 1ntermed1ate f1e1ds Yo

Our next goal is to show that an’ ob_|ect is. closed 1f it'is "brgger than a
closed object by a- f1n1te amount ' (Theorem 54.16). .We _need - t
technrcal lemmas. T ST IR

[y

If E/K is a field, extens10n and L M are 1ntermed1ate flelds wrth L M,

. then the dimension - [M LT of M over L will be. called the relatzve_

dimension of L and- M. If G is the Galois group of thls extensron and HJ

©are subgroups of G-with H < J; then the mdex lJ Hl ofH 1nJ will be called_‘ o
, the relattve mdex of H.and J. S . . o

RV

54.14 Lemma: Let E/K be & field extension and LM intermediate fields

with L < M. If the felati've dt’mension 1ML} ofL and M is ﬁm'tre,j :,ihen “the
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relattve lndex of M‘ and L is also fzmte In fact IL” M 1< IM: LI In

'partzcular sz/K is-a fzmte dzmenszonal extenszon then IAutKEI < |EK1.

'Proof We make mductron on n= IM LI Ifn = 1 then M = L and L =M,

so IL:M ‘| = 1. Suppose now n > 2 and that the theorem has been proved

':,_for all i < n. Since |M:L| > 1, we.can find an a ¢ M\L. Now |M: Ll is finite -
‘and ‘therefore M is.an algebraic extension of L (Theorem. 50.10), 0 a is
.alg‘eb'raic over L. Let f(x) € L[x] be the minimal polynomial of a over L~

~and put k =-deg- f(x). We:have k > 1 because a ¢ L (Lemma 49, 6(1)).

From Theorem 507 we deduce |L(a):Li -k dnd Theorem 48.13 grves "
[M L(a)l = n/k The situation  is deprcted below

n/k un n )
L@ —=— " L@
kou o N

In case k& < n,"i‘ndﬁcylioh seltlesv"e\?erything‘: from nlk < n and k< n, we.
obtain [L(a)":M’| < |M:L(a)| and IL':L(a)'I < 'IL(a):Ll' and therefore |L:M’| =

IL":L(a)| lL(av)':'M I< IL(a):Li IM:L(a)! = k(nlk) =n = IM:LI. The, case k = n. ’

requires a separate ,argumem'

'_Suppose now k = n-so that ]M L(a)l 1 and M= L(a) In order o prove

LM< n, we construct a one-to-one mappmg from the set R of all

right cosets ‘of M in L into the.set of all- distinct ‘roots of f(x). Since. R

" has IL :M | right cosets, this will prove ‘that LM < r, where r is the

. number of distinct roots of fx) m M. Asr < deg. f IL(a).Ll IM:L], the
’ theorem will be thereby proved ' S : IR

What the requrred mappmg should be- is suggested by Lemm'r 54.5. We

'pur.,'_ S a‘R—»[ber(b)— 0)

Mo ap

‘_(tp €L ) Since « 1s a Toot of f(x) dnd P € L°<G —Aut E, 'Lemma 545 :
'_yrelds that ag 1s indeed a root of f(x) “The mdppmg a is well defmed for '

if Mp=M"y (p,p € L), then<p—uu,> forsomep eM,sop flxes ‘every
element of M, s0 u fixes a and (M cp)a =ap =alpy) = (ay)y =ay = (M u))a ‘

.‘-Morcovcr alis one -to-one, for’ if M@)o = (M v)a, then ap = atp, 's0 apy}

a, so cp\p ﬁxes d, so Py -1 fixes each element of L(a) =M, 50y~ le M d'. -
M= M w: This completes the proof of IL M7 I IM LI

{
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" " The: assertionlAtttKEI < IEE::KIv,i'ollows ’easily: |AutkE|‘= lAutkE:_lI =K1l = -
K< EKL. L e g

54 15 Lemma: Let EIK be a feld extenswn and H.J are. subgroum of G . .
=Au E with 'H <. JAf the relative mdex |J:H| of H and J'is fmte then

_the relanve dlmenwon of.l and H' is also fmte In fact IH J° [ I.I HI

Proof: Let lJ Hl =n and assume, \by way. of contradictlon that IH:J) > n.

Then there are n + 1 elements in H” that are 11nearly .1ndependentr over J7,
. n i

2, ..-\7 ,ai Let U Hcp be the dlS_]Olnt decomposmon of .I as a

union’, of right cosets of H. "

say a,

s - . . S

" We consider the system of n linear equations-in ‘n + 1 unknowns:

(ay9))x) * (@), + (@30))x5 + 20 +(8, 0%,y =0
(a,9)%).+ (ay9))%; + (@z@))xy + === + (@, ,19))%,,, =0

T T ()
(aq))x + ((12(9 )x') + (1034; )x3+ 'i'-’_+. (an+1<p )xn+l/= 0 B e ‘.' . |

where the coeff1crents a¢> are in the field E. Since the number ' of ‘4 Ji

‘ unknowns is ‘greater than the number of equations this system (b) has-a - |
‘nontrivial solution in E (Theorem 45 1). From- the noritrivial solutions of s i
.\(b) we: choose. one for which the number of zeroes among x; is as small

as possible. Let x, —b —b X3 b e X =b,,., be such a solution,

Assume r of the b are n0nzero (r n+ 1) By the choice of b there .is no

solution x, —c Xy =Gy, x3—c3 v X T-c of (b) m whrch the number

‘of nonzero ¢/s is less than r.v

Eventually after renumbering, we may assume that b .,b, are distinct

from Zzero and (m case n+ 1> ryb,, p == b = 0. Also, we- may
‘assume that b, = 1, for otherwise we may “take the solution b lb,, b,/b,,
b, /b vy n+1/bl instead of b,,b,, b - n+1 Of course the number r of

nonzero elements in, both solutions are the same '

Let v € J. We consider the system:—
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o (al(p.l‘p)xli"*' (achl‘p)xz + (a,3¢’17‘lf))4x3 + (a +1¢’]‘P)x’l+l =l‘0 o
(qlqazw)x_l”fF (a2¢>2u>)x‘2:+(a3<p2ué)x3 . ,+-(a,.+.1“’2"’) bl ——0 ""

g (,a'lcp w)x, + (a‘ch'w)xz'# (a3cp w)x3+, et (d,,+1¢> WX, =0

" We make two remarks concernmg (s) First, since x, -b =1,x, = b,, x' =

by, sies X1
tha[ .xl = b ‘P— 1 x2 = bz‘P, = b3‘pv L

b ista- soluuon of (b) and p s a homomorphlsm it is- clear

X1 “bnﬂw is a solution "of (s).

Second, the system- (s) is identical wrth (b) asrde from the order of the

‘equations. - To prove. the ‘last .assertion, ‘we_ note that ?,v, <p2\p, P05 P, ‘p..
are clements of drstmct rrght .cosets. of H inJ, for Hoyp —anxp -implies .

(cp‘p)(cprp) €- H SO (pcp e H, soHcp Hcp $0: =J. Let ‘us ‘write then
anlw an,, Hcpzw Hcp,, Hcp3u> an,,. ,Hw He; =

so that cplw =% pw= n,%; ; <v3u> = N39; 5 - SPW =N cp, '

" for some g, n2, N3, --05m, e H (where [1 12,13, .. ,ln] ; [1,2,» n}) Thus each '

, fixes each a, inH" and the tk-th ~equat10n o .
(a cp, )x + (ach, )x, + (a3¢>, )x i ( ,,Hcp,) w1 =0
'm (b) is 1denncal with S R _ D
(a;n,9; )% +(a2ﬂk¢>, )x, +(a3nk<p, )x3 -‘+(an4,nk’ci>,~‘l')vx,,+1 =0
.and therefore Wlth ‘the - k- th. equanon‘ . SEE "
(alcpkw)x +(achku>)x +(a3<vku>)x +(an+1¢>ku>)
in (s). ThlS proves that (b) and (s) are 1dentlcal systems

n+l

=0

Consequently, the solutlon X = 1 x2 = bzrp,x3 =bwp, ..., an‘

is also a soluuon of (b). Now x =1 x = bz,x3 = b X =b o s a
-soluuon of (b) Hence the difference ofnthese soluuons .
7 \ . —0 x_—b —bzrp,. =‘b —b ,..v.,an:b"
“i.e, ) _-0 Xy = by = bypya., X, -b b, x

r+l ‘n+l

+1 _"’/)n+l‘p »

‘ lrs a so]ullon of (b)

‘So far ' was an arbnrary elcmenl of J. - We now. make. a ]udrcrous ch01ce -

. of p. One of the Py @y P4 2L P, hclongs to H, Say @ € I, s0a tpl =a,
_beuuse a, ell’ form=12 gn,n+ 1. Smccx —b x‘—b ) Xg b,s...,
X = l) o s a soluuon of (b) we gcl E

'ab +ab o Hlyby + e -+a b =0

n+1 n+l

666

=0,,x,, = 0 (c),



from the f1rst equatron in (b) Here [a a2',‘ 4 .-'.'., ,;'H} ' 1s linearly'indepen-' —
dent over J  and b=1= 0. Thus all of b b 2by ..0.b, | cannot be in J7: one

of them, say b is not inJ". So there 1s a \p € J such that b W b

l

We choose v E ] such that bzlp Z b Then the SO]UIlOﬂ (c) of the system

(b) is a nontr1v1al solutron “in which the number of zonzero elements is -
. less than ry contrary to the meanmg of roas the smallest number of .
» nonzero elements in any solutlon of (b) Thts contradlctlon shows that
- IH JI > nis 1mp0551ble Hence IH ] | < n—IJHI B =]

- 54 16 Theorem Let E/K be a fzeld extenslon and G = Aut E Let LM be S

‘ gzntermedtate fzelds of EIK w zth L c M and let HJ be subgroups of G with E
H<J. o -
(1) If L is closed and IM:L|-is fmte then M is closed and |L M’ I = IM Ll

' (2) IfH is closed ‘and |J: HI is fmte then .I is closed and IH J = {J HI

_Proof (1) Here M oM by Lemma 54 11(3) and L L by hypothesrs so
IM:LI < IM:M) IM.LI 1M LI M L =M (LY < IL"M < ML,
the last two" mequalrtles by ‘Lemma 54.15and Lemma 54 14, respectlvely‘
This proves IL M | = IM LI The proof of (2) is srmtlar and wtll be ‘omitted.

'l_

DA.

"We are now in a posmon to state and prove the ma_|or theorem of th]S-‘ o

paragraph ' .
B i

*54.17 Theorem (Fundamental theorem “of “Galois theory) Let EIK

be a fzmte dzmenszonal Galozs extenston of-. fzelds and G Aut E.Then
“ there is a one-to- -one correspondence between the set of all tntermedtatel'
fzelds of E/K and the “set of all subgroups of G, gzven by L—L". In thts .
correspondence the relatzve dimension of two tntermedzate fzelds zs
equal to the relative index of She corresponvdzng subgroups In particular,

1G1 = 1411 =1,

;o

'Proof' By Theorem 54 13, thére is a one-to-one correspondence between

‘the set of all closed mtermedtate ftelds of E/K and-the set of all closed o

' subgroups of G, given by L— L Now K is closed (E/K is a Galois exten- :

‘-



a0

. sion) by hypothe51s and all . 1ntermed1ate f1elds -are closed by Theorem* ‘
54.16(1) since they are finite d1mensronal over | ‘K. Moreover, if M is any A
"intermediate f1eld lhen IK M| = IM:K|. In. partlcular, E is closed and.
lAutE| =|G| = |G: 1| IG:E’| .= |K":E’ | = |E: KI Hence'G is finite. Since 1 is ‘
“closed, - it follows from Theorem 54. 16(2) thar all- subgroups of G are .
. closed because they ‘are finite subgroups of G. Hence the priming map- L
ping is:a one -to-one . correspondence between the set of all mtermedlate‘

fields of E/K and the set of all subgroups of G. Theorem 54.16° lells that

: the relative .dimension: |M:L] of two. lntermedlate fields . L < M is equal to
the relative - index - IL":M "] of the correspondmg subgroups of G and that

lhe relative index IJ H| of two subgroups H < J of G is equal to' the

B relallve dlmensron IH JI of the correspondlng 1nlermed1ate flelds o

54 18 . Examples (a) Let \/_ be the real cube’ rool of 2 and consrder the

exlensron @(\/5 w) over @ The Q- aulomorphlsms of @(\/5 w) are qal,qaz,qag, et

’¢4,¢5,¢6, ‘where -

wz'-—-" 2(,—.1'- w), e,

= V22 ';‘\IE(FI - w), - w»—rv_‘w-2= -1-w.

Any element u of@(\/i w) can be wrltten umquely in -the form S

'u—a+b\/§+c 4+dw+e\/—w+f\j_w IR

where a,b, c, d ,e f are rational numbers.. We show that @(‘\E m) 1s Galors
over O, To thls end, we have to. show lhal the fixed fleld of G 1s exactly .

D. Smce
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- (a+b\li+c 4+dw+e\/_w+f\/_m)<p2
-_a+b\/5+c 4+(d+ex/§+f\/_)m ,
—a+b\/5+c 4+(d+e\5+f\/_)( 1-w).~'
—_(a-d)+(b-e)w/5 +(c - f)\/_ dw—e\l2w f\/_u),

we see that an element u=a. +b\5+c 4 +du) +e\/_m +f'\/Zu) of@(\ﬁw)
'1s flxed by ?, if and only 1f
o . a=a-d, dm—d"
/‘ b b—e, re=-e
, ‘ 'c—c-f f= f
So .an e]ement u 0f®(\5 w) flxed by <p2 has the form a + b\ﬁ+ c\r— If u
s flxed also by (p3, then a+ b\/i+ c\/_ =(a +b\5+ c\/_)qo

: —a+b\/_u)+c‘.\/Zw

,A':—a+b\/_ch\/_( 1—u))
—a ‘¢ 4+b\/_u)—c\/_u>

'yleldsj b=0,c=-c, -c= O and souU=ac€ @ Smce an element u in the” .

fixed f1eld of - G 1s necessarlly flxed by ?, and <p3, that u has to be rational,
p
Thus the, flxed fxeld of G is @ TIus shows that @(\/5 m) is Ga101s over @

The multlpllcatlon table of G(@(\E w)/@) can be constructed easﬂy Smce

.\/_tpztp:; \/_@3 \Fw and wq)2q33 = (93 = (.o2, we have <92q33 = qa4 etc and the -

'mu1t1p11cat10n table of G(@(\E w)/@) is

91‘92'¢’3 ‘94‘95 (96‘
PP Py 9394 P5 Py
PP, 0 Py 95 06 Py
P P3 Pg Ps Py Py Py
:?4‘94("5(96("1‘92("3 : : .
Bs|Ps Py @) Pg @3 $; .
 W|Ps P30y Ps @ @

i
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. mined - by its effect ‘on the roots of x3- 2 The roots of %3 - 2 are, u1 =\/§ - .

~

So G(@(\/E w')/@) ista’ nonabellan group of order 6 and xsomorphrc to S '

"‘as ¢an be eas1ly seen by comparmg the tab]e above w1th the mulupllca-

tron table of S

: ’ 23) ,"(1:423)”" 4‘_(1‘2)V g 3 asy

e @3y T asy a2 32 (13
@3 | @) 1Y) U)o (03) L (132)

S oAz @) o132 @3 i L (1)
a2 | a0 a3 (13 o v (23) 0 (123)
s (32 a2 o (3 123) 0 (23)

a3 ey a2y 5r<23) B i(i32): ‘; a2

yThe 1somorph1sm G(@(\E w)/@) = S can be found m a better way by ob-. l

servmg that any automorphlsm 1nG(@(\E w)/@) 1s completely deter-. '
3

\

\juz \/—m Uy = \/—w Now q>2 maps u1 to’ ”1’ u2 to u3 and U, to uy and can

therefore * be represented m a readrly understood extensron ‘of ‘the nota-

a Taat ”2 3. -
-»tron for permutatrons as» ( ) = (u )(u2u3) = (u2u3) Droppmg u

* morphism  occupy correspondmg places The subgroup structure ' of S3 is :

N ‘and reta1n1ng only the’ mdrces, we see that- q>2 can be thought of as: the
: permutatron (23) m S The other (p can be- thought of as permutatrons in

-85 in a similar’ way and th1s glves the. 1somorphrsm G(@(\/E u))/@)— n

the mu]trpllcatlon tables above P ‘and its 1mage in §,. under this 1so—‘

well known and 1s deplcted below (A — B means A € B).

ey

w2y

13y -

(1(123),(132)) = A3




-+ So the subgroups of G(O(V2,4)/0) are

oyey)

!
{b) Let \2 be - the real. fourth toot of 2 and consider the extension - .

) : : . 4 o
@ (V2,i) over Q. The @-automorphisms - of Q(V2,i) are D ,PsP3:P4:P5:Pg,P7,Pg

.-where- - . o T . : . o S
' 44 e S '

qal:\E—,» 2, i,

47 4 _ . ) -
9 V2 — V2, P— =i

. /

1

: ot 6
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We put q32 =1 and’ rp3 =0. Then o(r) =2, o(o) = 4 and' 't --o‘.‘. Thus ’

1

G(@(\E 1)/@) is a drhedral group of order 8. Smce any automorphrsm in-

: G(@(\E 1)/@) is completely determmed by its effect on the four roots “1‘

‘\/_1 Uy = - 2 u4 = 21 ofx - 2 the group G(@(\Et)/@) is

o U, it
‘ rsomorphrc to a. subgroup of S We see o —( A 2 3 4)

ST u uzusu
, : and t = (u! u, u, ‘
_{1(13) (24)(12)(34)(13)(24)(14)(23)(1234)(1432)] S, by an 1s0m0rph-'~

“) = (g, SoG(@(ﬁn>/@>=<(z4>(1234>> <

©ism cp2 =1— (24) q,)s =0 — (1234) The subgroups of G(@(\E 1)/@) are‘ L

et 19l v (Ted (16

' 47'7;' R ;
CAutg@(N2p e e
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e

: Lct us . find the inlcrmediule‘ficld of @(\/51')/@ corresp‘onding‘ 10, [\l‘czr]

' We write .u = \/_ 2 for brcv1ty We h.1ve (u)o T = (uo)or = (m)or = (uo lo)r =

(ui-iyt.= (- u)r = - (ur) -u und (1)0 T.= (10)01' = (zo)r =it.=-i. Now lel

abcde,fglze@and c~a+bu+cu +du +ez+fm+guz+hul Then ‘

solt = (a +bu+ cu® + du + ¢l + fui + gu i+ hu 1)0 T

C=a +b(-w) F u? d(-u) + o= ) + 0 i) + 8- 0*"‘ uy(- y
—a—bu+cu2~du3-el+flll gu H'h“‘ -

. g and S0 5. is fixed under o T if” and only if

“a=a, b =- b- c—c ’ d:—d,‘

. e e =-e, f S g_'v‘g' “h=h, -

“soif and only if i b d—e—g = 0, 0 ‘

'_ so'if and only if s=a + cu? + fui + hu? l =a +f(uz) - c(m)2 - h(m)3
so if and only i 5 € @(uz) ' : 3

Thus the 1ntermed1ate f1eld of @(\El)/@ correspondmg to [1 o r] is.

{l,0 r] = Qui) = @(\/—1) Slmllar computatlons yleld that -the Galois corre-,
spondence is . as in the diagram below,  where intermediate f1elds occupy
the same relatlve posmon as’ the’ correspondmg subgroups

,@'(x/i,i)-

7 a3 o) »_’;""Q(‘J_Z—,i)__', 0(NZ(1+) - 0(N2(1-i)

WD o ew

N

.‘\

(c) Let p be.a pr1me number and n e N We con51der the extension

F, /[F The: mapping . . o} Fpo F,
(IR _:‘a—'ap .
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s a field homomorphlsm (Lemma 52 2) and fixes every “element -in le

',(Theorem 12.7 or Theorem 52. 8) Thus g, is (Fp-hnear and, since HF :F I tsv.;

» _flmte o is. onto IF (Theorem 42 22) So o is anIF -automorphlsm of IF
‘We put G Aut [F We want to show G —-<o> Frrst we prove,o(o) =n.
From as" = a’J =a for alla e F (Lemma 52 4(2) or Theorem 52, 8) we.
‘get gh=1, 50 o(o)ln On the other hand 1f m ‘is a posmve proper ~divisor.’
of n, then IF has a proper subfleld F wuh p " elements (Theorem 52 8)

—and there is’ a b € IF \IF with bo™ b’J # b so o™z 1. So we c_onclude o

‘\ o(o) =n. Smce lIF FI 1s finite, we get do L
‘ = O(o) |<c>l<lGI 1G: 1|—I(IF) (IF )l IIF Fl—n
from Lemma 54. 14 so |<c>| lGI =n and G <>, :

#

VIt is now easy to show that lF.n is Galois over le We have
. S C‘f"<o>—(a€|Fp,. as=aj= F,
. by Theorem 528 and thus [F ‘is Galois over |F. '

”The Galors correspondence is. easy to describe. The subgroups of <g> are

Din “one-to-one correspondence with  the -positive divisors - of n and any -

. 'subgroup H of G is of the form H = <o™> (Theorem 11. 8) The subfleld of

' IFP,. correspondmg to H = <c’"> is.

‘e CH =<a™> = [aeIF —a] [aeF afﬁ'a]:
»the umque subfreld of [F wrth p"’ elements S

A o : ,
. nlm Lo bnm
o B RS R J<o™
CFLL oo G=<e> 0 T vl
P T P .

S
i .
- s

In ‘all ihese examples we. fll‘St determmed the subgroups of the Galois
group. and _then found the 1ntermedrate fields correspondrng to them-f

One can of course ‘reverse . IhlS 1e one can determme the. mtermedlate s

fields “in the first place and then find the subgroups correspondmg to .
. them! However it is 1n general more difficult to fmd all 1ntermed1ate .

fields. of dn cxtcnston “for it -is. hkely that one " overlooks some of them.
‘/\lso i s ;more: dtfftcult to avord dupllcatlons For mstance in Example i
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:_54 18(c) At 1s not: 1mmed1atcly clear where @(\/2(1+t)) and @(\/2(1 1)) are,
-nor whether @(\/ 2(1+i)).= @(\/——(1 D). It 1s far edsier to- lrst ;the subgroups
: than to lrst the 1ntermedrate f1elds S e T S

It . is; natural to ask whrch 1ntermed1ate flelds correspond to.. the normal,"\
subgroups of ‘the: Galols g’roup of an exten51on -Also, what can’ be said-
- -about the factor groups of the Galols group" We proceed to answer these\
,questlons We need ‘a defrnmon f - o RN

'54 19 Defmltron Let E/K be a field extension and let G = Aut E be its
Galois group. An. 1ntermed1ate field L of this extension is sa1d to be
‘ stable relative to. K. and E,. .ot to be (K E) stable 1f every K- automorphlsm .
lcpeAutEofEmapsLmtoL S AR AT - N

In the 51tuatlon of Defrnmon 54 19 1f L is a (K E) stable 1ntermed1ate.‘j. '

fleld then the inverse o~ Lof any K- automorphrsm @ . of E also maps L into-
L. Thus the restriction o, toL of | any K- automorphlsm ‘of E is a. K-auto--

morphlsm ‘of L Thus ‘we have a restrlcthn mapping

A . res: AutE—»AutL o
e t »:: ® = R

A K- automorphlsm A ofL is said to be extendzble to E 1f there isak-

'automorphlsm @ of E such that a —kplL Therefore res’is.a mappmg onto N l
the set of all extendlble K- automorphlsms of L ' ’

 54.20 Theorem: Let EIK be a field extension. : \ -
()IfLisa (K,E)-stable. tntermedtate fzeld then L’ zs"a( normal subgroup .
'of the Galots group AutKE ) ; v |
(2) If H is a normal subgroup-: of Auty E then H isa (K E) stable lnter-
ymedtate field of the extenszon ' :

"Proof (1) We are. to prove that P 17\<p € L for all rel’ and P € AutKE"

'Thus we must show that a{e™ 1Acp) =a for all ac€L. Indeed 1f acl, A € L’ R

and ¢ € Aut E. then ap™t € L since L is (K,E)- stable so (ap” 1)7\ =agp’!
a(cp 17\q)) = (a<p 1A)qn = (acp 1)tp =a. Hence L AutKE
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. (2) We are to prove that aqo € H for all a e: H and Q.€ Aut E. Thus we
must show that (aqa)n =ae for all n e H lndeed if a € H ,ne€H and

peE Aut E, then'pne” e H since H < AutE, S0 a(tpnq) l) = a SO a(q)n)tp =a,
50 a(q)n)—aq) HenceH is (KE) stable - S = T

" 54 21 Theorem Let E/K be a Galozs extenszon and L an tntermedtate
fteld lfL lS (KLE)- stable ‘then L is Galots over K. ‘ s

- Proof For any. a € L\K we must fmd a A € Aut L such that ai # a. Smce
E is Galors over K there isa@.€ Aut E such that ap = a. Then q’|L € Aut L
by stabthty of L relatlve to K and E Thus (pIL can'be taken.as A.". .. O .

o 54 22 Theorem Let E/K be a- Galots -extension: and f(x) € K[x] be
‘ trreduc:ble m K[x] lfj(x) has a: root in E then f(x) spltts in E- and the i
roots off(x) are all Stmple : : - :

. Proof: Let a be a- root off(x) in E We put deg j(x) =n. We want to show
“that f(x) = c(x -a )(x a2) (x -a ) for some elements c, a;idy, .. A, m E.

' _‘ For- this purpose Twe . put g(x) = (x -a )(x 2) (x ~a: ) € E[x], vwhere

a,; ...,a “are-all the d1st1nct roots of f(x) in E We know m < n from

o Fheorem 357

- - _Any K automorphrsm of E’ maps a root of f(x) o a root of f(x) (Lemma

.

‘54 5) Thus the coeffncrents of g(x), which are symmetrtc ‘in the toots
a,a ,a, of g(x) are fixed. by any K- automorphlsm of E This shows .
that the cocfftctents of g(x) are in E-= K Hence, g(x) € K[x] Then f(x) and
, g(x) are two polynomtals in K[x] with a common - root a1 and f(x) IS
irreducible. over K. Theorem 35. 18(1)(3) glves then f(x)lg(x) -and conse—'
»jquently n =deg f(x) < deg g(x) =m. We have. m < n also thus n ='m.
~From f(x)lg(x) we get, then fxy~ g (x). So f(x) =c(x-a)x-a,)...(x- a;l') '
" “for some ¢ € K™ and the roots. a a2, e an €}E of are_all distinct, i.e., -all
roots off(x) are - stmple - B R = 1

)
lhc next theoren\ is- a: kmd of convcrse ‘to Thcorem 54. 21 The result 15 =
: not necessurlly truc ~without the hypothesis that L is dlgebratc (cf. Ex. 8)

[ L
i S . L . .
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54 23 Theorem Let E/K be a fzeld extenszon ‘and L an. mtermedzate¢

fleld If L is- algebratc and (zalozs over K, then L.is (K E) stable

t

.

' _Proof We want to. show- that a<p € L for any ‘a e L and any ¢ € Aut E.If

. a € L then a- is algebralc over K smce L is algebralc over Ko Let (x) be

'the minimal polynomial of a over K. Then f(x) is a product of n dlstlnct_' o
'polynomlals of degree one .in L[x] because L is Ga101s over K (Theorem .

54.22).. ‘Thus all roots of f(x) are in'L.. Now 1f P € Aut E, then a(p 1s a root
off(x), hence ap € L as was to be proved EREE R o

’ i
t

"., Let E/K be. a’ fleld extensmn and let L be a (K E) stable 1ntermed1ate f1eld

- of EIK. Let us cons1der the. restrlcuor{ mapping

ores: AutE AutL
S (pIL

e

- Slnce (q>q>)L (pL\pL for any two K automorphlsms Py, ofE we see that res’: L

B H a homomorphlsm ’T‘herefore (AutKE)/Ker res =Im res. Now Im res 1s

the ‘set of -all K- automorphlsms of 'L that are - extendlble ‘to E (hence the/

set of all K- automorphxsms ‘of: L that are extendlble to E-is a subgroup of +

Aut E) and Ker.res'= {p € Aut E: ‘plL' i} ={o € Aur E: a(p =aforalla € L}
= L = Aut E Hence (Aut E)/(Aut E) is 1somorph1c to the _group. of all K—

‘ automorphlsms of L'that are extendlble to E. We proved the

5424 Theorem: Let E/K be a fteld ‘extension ‘and L an mterme’d:afe

» fteld IfL is (K JE)-stable, then (L* = ‘Aut E is normal in Aut E and) the .

quotzent group. G(E/K)/G(E/L) (Aut E)/(Aut E) is tsomorphlc 10 the - ‘
subgroup of Aut L cons:stmg exactly of the Kautomorphtsms of L that

7

.are extendzble toE SR B A LD = R

.

We can now supplement the. fundamental theorem by descrlbmg the‘

i 51tuat10n w1th respect -to an 1ntermed1ate f1eld R

e

' '_-54 25 Theorem Let E/K be a ftmte dzmenszonal Galots extenszon of -

,ﬂelds and G= Aut E Let L. be an tntermedzate field: of E/K:

v [ . *. -

1677‘;




(1)E1s Galou ()ver L - : : SR :
(2) L is G'alotr over K lfand only if L7 = Aut E zs normal in G' Aut, E.In

this care G/L = (Aut E)/(A it E) is lromorpluc to the Galois group Aut L
- ofL over K Thuc G(E/K)/G(E/L) = G(L/K) :

Proof: Here lhe hypo[heses of [he fundamemal lheorem are- satisfied.
The ~fundamental thieorem states llml any 1ntermed1ale f1eld of E/K and
any subgroup of G is closed :

‘((1) In order to show llldl E 15 Galois over L we - must prove that L=L ’ L7,
that is, lhal L IS closed Thrs follows froh1 lhe fundamental lheorem

__(2) E/K is a frmte drmensronal exlensron by hypolhesrs and s0 L/K 1is -also
~afinite ‘dimensional extension. Thus’ L is algebrmc over K (Theorem

50. 10) If L is Galois over K, then L is (K.E)- slable by Theorem 54.24 and »
so'L” is normal in Aut E by Theorem 54. 20(1).. Conversely, if L° is normal

in-A uty E, ‘then L°"is a AR E)- stable mtermedmle field - by Theorenr'

54, "20(2‘)'“ Here:L = L because ‘lll 1ntermedmte fields -are. closed Thus L'is
(K, E) stable. Theorem 54.21 -tells then that L is Galois over K. So L rs:
Galoxs over K if L\nd only if L7 is normdl in G Aut k. ‘ oL

i

Suppose now L is Galors over K and L G Aut E. Thcn Aut, L[ IL: KIL.'

by “the "~ fundamenml [heorem (wnh L in place of E) Theorem -54. 23 slales

that G/L” = (A ut E)/(Aut E) is isomorphic to a subgroup of Aut L. ‘Using' .
L=L" (ie, L is closed) and G” =K (i.e., L is Galois over K), we see IG/L"| = - »

AG:LT=IL""G —IL Kl = lAut Ll by - the fundamental lheorem Thus G/L",

“which" is 1somorph|c to a- subgroup of Aut L, has the same order as

Auwt L. Since [Aut L} = IL K1l is finite, this 1mplles tlml G/L" is actually --

1somorphlc to Aut L rtsell, as - was to be shown ) e T =

We end this paragraph with™ an important ‘illustration of Theorem 54.25.

54.26 Theorem: Let F I)e 7 jlelrl of q elcments and E a funte dzmen-,
sional cxlemz(m of F llzcn [ is "Galois over [F ‘and /lur E ts cyclzc gener-

atcd l)s lhc (ultnmmphlsm G, W here P a— al f()r all a'e E

P
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Proof: Let'lE'[F’I = r and char F, ﬁp, so that F is the prime subfleld of lF
(and of E). We have q=p". where m= I[F [F I We consider the extensmn
E/[F Since E is an r- d1mens1onal vector - space over [Fq and [F is an m-,

dlmensronal vector space over [F Theorem 48. 13 says E is an rm dlmen-‘, o

sional vector space over lF and’ so |El =p™. . Thus E'is a f1n1te f1e1d and E‘
s Galors over: [F (Example 54 18(c)) Then E- is Galois over any

mtermedlate field of E/lF (Theorem 54, 25(1)) in partrcular E is' Galois
'over [F Furthermore, we know from Example 54. 18(c) that AutFE <o>,

where o is the freld 1somorph1sm a— aP for all a ¢ E and ‘that the group o
(IF) correspondrng to -the 1ntermed1ate f1e1d lF with p™ elements is <a™>.

, ‘Thus Aut E = ([Fq) = <p>, where p = o™ is the mapplng a— af"=al for all-,
. q . N . . - i

CaeE oo LT o

Exercises -

Frnd the Galoxs group Aut E- and all “its subgroups and descrlbe the
“Galors correspondence between the subgroups of Aut E \and the inter-

'\medrate frelds of E/K when :

[

(@ E= - 0(23) andK @

(b) E = o(\/_\F)andK Q,K = o2
(E= Q(23D. and K = Q(i), K = @(1\13),:
DE= O(2,i) and X = - Q(i);

(e)E = @(\/_\F) andK 0, @(\/2)

-2, Let E/K be a field extension: Prove that 1f L is a (K E) stable‘v
‘V1ntermed1ate field, S0’ is L and that if 1-1 1s a normal- subgroup of AutKE

_so isH”" o v : , r

3. Let E/K .be a field extenSion and G = ‘Aul'tKE Let L, M be intermediate
fields of E/K and let H,J be subgroups of G- Prove that <H uJs"=H"n J’

. and M) =L~ nM C -
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If, in addmon L is f1n1te d1men510nal and Galors over K then LM 1s fmlte o
d1mensronal and Galors over M and Auty , L= Aut LM

'

4 Let' K be a f1eld and X “an. 1ndeterm1nate over K Show that 1f L is - an '
thermedlate freld of K(x)/K and L =K, then lK (x) Ll 1s f1mte '

S Prove that K (x) is- Galors over K 1f and only if K.is mﬁmte

“‘6 Let’ K be an 1nfin1te f1eld Prove that a proper subgroup of Aut K(x) 1s~'
'closed if~and. only if it is a ﬁmte subgroup of Au, K(x)

7. Consrder the extensron @(x)/@ Prove that the 1ntermed1ate f1eldf“ ‘
. @(xz) 1s closed and the mtermedlate f1e1d @(x3) 1s not’ closed

_ ;8 Let K be an 1nfimte field ‘and x,y two d1st1nct 1ndeterm1nates over K n
) Show that the: intermediate field K(x) of the- extensron K(x,y)/K is Galors N
over K but K (x) is not stable relatrve to K and K(x,y) ; g
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N §55 n
Separable = Extensions

s

‘In §54 we estabhshed lhe foundauons of Galors thcory, but we have o -
handy criterion for- detcrmmmg whethcr a_ given” field extension is. Galois”
or not. Even in the quite srmple cases such as in Example 54 18, ‘we had
" to s(udy the effects oi3 automorphrsms on. the elements ‘in the - extension
field, and this 1nvolved ‘much calculation. .. The extensmn fields. in
_ Example 54.18 were seen to be spllmng flelds of certain polynomrals"-
~ over. the base field. In this paragraph we - will” learn that” a frmte
' drmensmnal exlenswn is’ Ga101s if and. only if the exlensron field is a
splitting field of-a polynomlal whose 1rreduc1ble factors have no multlple'
_ roots. We. give a name. to irreducible ‘polynomials of " this kind:

-

. 55.1 “Definition: Ler K be a field and f(x) € K[x]. If fx) is irreducible .
over K. and has no multlple roots (in any sphttmg freld of f(x) over K),
then f(x) is said to be separable over K. - ’ ' . '

.

Thus all thé dég f()c) roots of a 'polynomiai fx) separable over K are
distinct and f(x)" spllts into dlStlnCl hnear factors in any spllttmg fleld of
'f(x) over K. R : c
: The exrstence of multlple ‘roots can be’ decxdcd by means of the deriva-
tive. If K-is a f1eld f(x) an irreducible polynomral in- K[x] and E a sphttlng‘

field of f(x) over K, then Theorem 35. 18 5) and Theorem 35 18 (6) show'. L

that flx) is separable over K 1f and only if f“ (x) = 0.

. How can an. 1rrcduc1ble polynomlal f(x) have a zero dcnvatwe" Now f(x).
is not 0 or a unit because of 1rreduc1b1h{y, SO deg f(x) =m= I Let f(x) =

“

Eax wrth a, = 0. Thcn f(x) = ZIax" = O if and only if za = O for all i
=0 T <7
=12, ...,m. In parllcular (ml)a =ma_ 0 Smce a f1eld has no zero -

d1v1sors and ‘a, # 0, this forces ml = 0. Th1s is 1mposs1blc in case char K =
0 and is equrvalem to: plm in’ case c‘lzar K p = 0. Likcwise, if a, = 0, the
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_cdndition .ia = 0 is equlvalent to plx in case char K =P So for terms ax

S

s S tmlp) :
_ wrth a; ¢ 0 we, have L—p] for some ] and we may write f(x) —‘~iap}x"/._ ‘
: : CE0

'Puttrng [m/p] = n, ' i T b and g(x) = ijx ‘we. obtam f(x) = g(xp) Thus
c =00 '

: f(x) is. actually a polynomral in xP, Conversely, 1f f(x) = g(x") then f (x)
g (xP) pxP =g (xP) 0 = 0 by Lemma 35. 16 We summarlze L

.f‘55 2 Lemma "Let K be a feld; If char. K\‘ 0, then any polynomlal
zrreduc:ble over K is ‘separable over K. If char K =p # 0 and Ax) € Kx].is

o zrreduczble ‘over. K,-then f(x) is separable over K if and only sz(x) is: not

“a polynomtal in ¥, i.e., f(x) lS not - separable over K lf and only 1ff(x)
g(xp) for some g(x) € Kix). : :

In terms of separable polynomlals we now: deflne separable elements'
‘tand separable f1eld extenslons e e

\

k -55 3 Defmmon Let E/K be a ﬁeld extensron and aeE Ifa 1s algebralc
. over K and the mlmmal polynomlal of a over K is separable over K, then
‘a is sard to be veparable over: K : ‘

K

2 Ty : . . . )
~Thus any element a ofK is separable over K smce the m1n1mal polyno- -
L mml of a over K isx-a € K[x] and Xx=-ais separable -over, K ‘

T S R

X

o

. 55 4 Defmltlon Let E/K be a field extensron If E is algebralc over K
and " if. every element of E'is separdble over K, then E s ‘said’ to be ‘
'reparable over K or a separable extenwon of K and E/K is called a

vveparable extenwon . ’ ) s '
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The polynomlal PLET @lxl is 5eparable over @ because it is 1rreduc—4 .
ible. over @ and char @ = 0., 0n the olher hand, x?2 el lx] is nol separ- n

-able. over. !F because 1= (x + 1)2 is nol even 1rreduclble over !F

lf, E/Kf‘is_. an .extension of. fieldsgof, char_acieristic 0, then »a’ny'elemenl of E

that is algebraic over K is separable over' K. Thus any algebraic extension-

" of "a field .of. characler-islie 'O'iis a'separable ,exlension of. that 'field.

I
Vo

- We- compare separabrh y over-a. f1eld with VSCparthhtv .over ‘an mter-'-'

‘mediate field.

' 54 5 -Lemma: Let E/K be a feld extenszon and let L be an mtermedzate-'

fteld of E/K.Let a€ E be algebratr: over K. Ifa is separable over K, then a

s separable- over’ L.

Proof Lemma 505 shows lha[ ‘a is a[gebralc over L. Lel f(x) ’be the

mmrmal polynomral of a over K and ‘g(x) the minimal polynomlal of a

over L. By Lemma '50. 5, g(x) is a divisor of f(x) Thus any rool of . g(x) isa
~root of f(x). Since a 1s separable over. K, the, roots of J(x) are. all - 51mple‘

hence, all "the more 50, lhe rools of g(x) are all 51mple and a is: separable

overLf' . © o

-

55 6 Lemima: Let E/K be .a feld extenston and let L be an mtermedtate ‘_ '_

fteld of E/K Then E is separable over L and. L is scparable over K

Proof: Assume that E is separab]e over . K. We are to’ show tha[ (l) Elis

dlgebrarc over L and L is algebrarc over K and (2) any element of Eis
separable’ over L and any - element of L is separable over K. Since E‘rsv

~ separable over K, we deduce E is algebraic  over L (Lemma 50: 5) and any:

“element of E, being (algebraic and) separable over K, lS also separable .
~over L (Lemma 55 .5). Thus EJL is a separable extension. Moreover all -
eIements of E are separable over K So in particular, all elemems in' L are -

separable over, K and L/K is a separable extensron Lo s T o

N
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"' The converse of Lemma 55 6 is also true and wrll be proved later in th1s .
' -paragraph (Theorem '55. 19). Our next.goal is to characterlze Galors e)\ten-l./’

!

_ sions as spllttmg f1elds of separable polynomrals

".:

: 7557 Theorem Let E/K be a. fmtte dtmenszonal fteld extens:on Then .
o the followmg statements are. equtvalent oL BT S =

. (1) E is Galois over'K.

‘(2) E.sa separable extensron of K and the spltttmg feld over K of a"

‘ polynomza’l ‘in Klx]."

'(3) E is the splzttmg fzeld of a polynomtal in K[x] whose trr_e'ducible‘

- factors ar‘e separable over K
)

iy

".;Proof (1) = (2) We prove E/K is.a separable extens1on Smce E/K is a .

 finite d1mens1onal extension, E‘is algebralc over K. We have also to. show

that the m1n1mal polynomral over K of any: element uin'E is’ separablek‘
-‘over K. This follows lmmedrately from Theoreml 54. 22 Hence E-is a

g separable extensron of K S

e

We must now. show that there is a polynomlal g(x) in. K[x] such that E.is af‘., ’
. spl1tt1ng field of f(x) over K. Let {a Wy a } be a K- basis of ‘E. and le[vp_,

f(x) € K[x} be the mtmmal polynomtal of: a overK (i =1 2,0,m). We put
: g(x) —fl(x)fz(x) Sy (x) € K[x] From Theorem 54 22 agaln we learn’ that-
‘each f(x) “hence also g(x), spllts in E Moreover g(x) cannot spl1t in any }

. proper “subfield. L of E contammg K for if L -is*an intérmediate - fleld of E/K-

,,’and g(x) splits ‘in- L, then L - contains all roots of g(x) hence L -.contains

az,.,,am and - we have<>‘\ - Voo , SR
. =5.(a,.a,, ... a)tK(a az,.,. )CL
'so E-= L Thus E is mdeed a. splrttmg f1eld of g(x) over K

‘ (2) = (3) Assume now E is separable ‘over K and E 1s a sphmng field

over K of a polynom1a1 g(x) in K[x]. We are to prove that the 1rreduc1ble B
factors -of g(x) in K[x] are separable over K. Let g(x) = fl(x)fz(x) f (x) be a

the’ dccomposmon of g(x) mto 1rreduc1ble factors fi(x).in K[x] Since g(x)‘ :
sphts in E, each f(x) has a root a;€ E, . Here " a; is separable over K because -
- Eis separable over. K. Thus the minimal polynomldl of: a over K 1s a -
] sepdrable polynomial over K “But the m1n1mal polynomml of a over K. is-
. _Lj(x) w1th some suuable c; € K because 4 is ‘a root of f(x) and f(x) is,; o+



B rrreduclble in" K[x] So cj(x) 1s separable over K and consequently f(x) is

also’ separable over K

5

"7(3) => (1) Suppose now E-is a sphttmg freld of-a polynomral g(x) € K[x]
whose 1rreduc1ble factors in K[x] are separable over K, We put

: Iq, {aeE acp—aforallqaeAutKE]

‘Clearly K c K. In fact K is the flxed f1eld of Aut E, hence K (s an
: 1ntermed1ate field of the extensron E/K. We prove that E is Galors ‘over K
by showrng (i) E is Galois over _K (u) Aut E= Aut E (m)lE KI IAutKEI '

' bThese will 1ndeed lmply

'

lEl%l lAut El » - (by. 'theu'fundamental'theorem of

‘Galors theory, s1nce E/K is a flmte d1mens10nal Galors extens10n)

_ 7 lA u g El IAut,EI ' (by (11)) ‘ :

L A z,(a—tE.m, Y (by (m)),_
so .. - IEK| SIEK],. Sy e
50 - .?‘ K o =K B T
and ‘ E is Ga101s over K " s (by (i));. S ' R ‘, o

Srnce for any ¢ € Aut E -there :ho‘lds'_ a'@‘:.a for all,?a.e_‘KO', we .see that
AutE<AutE' R L ‘

(i) In order to show that E is Galors over Ky we“'havve to find for-

, each b € ENK,, ‘an automorphrsm P "€ Aut E such that bcp # b Ifb € ENK,, T

then, by def1n1t10n of KO, there is a P I3 Aut E such that by = b From L

'Aut E< Au! E we’ see € Aut E and bcp;tb ThusE 1s Ga101s over K

\

(u) E/K . is a f1n1te d1mens10nal extensron hence E/K is a finite
drmen51onal extension: and E/K; is. Galois. Therefore by the fundamental

'I.theorem of Galois theory, the subgroup Aut E ‘of Aut E is aclosed Sub— -

group of Aut E Hence Aut E =Ky = ((Aut E)) —(Aut E)"'—AutKE

(m) We prove |E KI IAur EI by 1nducuon on n =|E:K|, the hypothe51s;‘ .

belng that £ be a spllttlng field over K of a polynomlal in K[x] whose
‘Arrreduclble factors (in K[x]) are Separable over K. S '

Ifn =1, then‘E K so Aut E Aut K { K] and IEK] _]_l{zL]I —]AurKEI
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'Suppose now. n- > 2 and supposc th.n IE K = lAut Fl whcncvcr E /K

a finite dlmcnsmnal extensxon ‘with | < [E| KI <n such th.n E is a spht-
rtmg field of a polynomial in K [,x] wllose 1rreducnb e fdctors (m K [x]) are
scparablc over: K . : : :

Let g(x) € K[x] be the polyvnomial of which E is a splitliné ficld over K
~and let g(x) —fl(x)fz(x) J,,(x) be the decomposmon of g(x) into irreduc- -

ible polynommls f(x) in K[ ].- The. polynommls f(x) cannot_all be of flrst .
" .degree," for then the- Toots “of f{xY would be.in K. and,-as E is a splmmg R

field of g(x) over K, the ficld E- would coincide with K, agamst the . hypo-_
‘thesis IE Kl =n > 1. Thus-at least one of f(r) have. degrec > 1. bL'et us
assume deg fl(x) =r > 1andlet a € F bc a root offl(x) We put L K(a):
Then lLKl—randlELI~n/r<n . :

‘Now E lS a spllmng fxcld of g(x) € L[x] over L (Example 53. S(e)) and thc"

1rrcduc1ble faclors (in L[x]). of g(x) bcmg, dwnsors of f(x) have no

.muluple rools and are thérefore ﬁepamblc over L ‘Since |E:L| = ,,/,- < n,
we get |L: L| |Aug, EI IL"1" by mducuon ' o S :

‘In~ ordcr to” prove IE KI = IAutKEI i.e., in order to prove 1E: LIIL KI
IA uty E:L°|IL, lt wnll be thus sufﬁc1ent to show th.n r= IL Kl.= IAutKEL[

We show IAutKE L l=r by defining a-one-to-one nmppmg A from thc set -
R of nz,hl cosets ‘of L”.in AutE onto the set of distinct roots off‘(x) in E:

 Let {a=apa,,- a} be the dxstmcl roots of fl(x) in- F We put

‘ S A:R > {a az,...,a,).\ L
o ’ - Lo ayp. ) S ,
(p € Auty E; ~we know -ap € E is'a root of fl(r) frOm [emmd 54. S) Tlm .
’m apping A is well dcﬁncd for if L' —1 p, then

: ‘ ope L’ L

;(plp‘ fixes each’ cI(,ant of L = K(a)

R (L N '
S d(w h=a,

S (ap)e”! =a - R

" ap =ay '
e (LoA= (L w)A L
so A is well “defined - and, 'rcadmv the lines bd(,]\WdrdS we- sec that A is

/

one-tosone as well 1t rumuns lo show’ that. A is “onto, lndccd if a; iy iiny '
Jroot ol fieatin By thn lhuc is 4 mld ’1():11()morphxsm 'y ’((a\—v K( (1)

686



T g(x) in E[x] have degree one and g(x) sphts in E.

. 'mappmg .a to a; and f1x1ng each element of K (Theorem 53 1) and o, can
be extended to a K- automorphlsm P E~E (Theorem 53.7).: Then A-
ends the -coset. L” ?; € R to.ag; = ax, = a;. Hence A is -onto. Th1s grves
IAut E:L" I —I‘RI —I{a ol ]I =r. The proof 1s complete ' < .- o

k Thns'for finite dimensional extensions, ibeing» 'Galois;is equivalent to N
separab111ty plus bemg a Splltt1ng field., S . ,

If E/K is a field extensron and E is'a spllttlng f1eld of f(x) € K[x] over K,
then all roots of. the polynomral f(x) are in E. We show more generally .
that, if there is a root-in E of a “polynomial over ‘K, -then all* roots of ‘that -
'polynomral are in E. Thrs glves a characterization- of - spllttlng f1elds
w1thout referring "to -any part1cular polynom1al :
\

LI

_’558 Theorem Let E/K be a ftnzte dlmenstonal fteld extensmn The
following. statements are. eqmvalent ~ ‘

(1) There is a polynomzal f(x) €- K [x] such tlzat E isa spltttmg fteld of f(x)

over K. )

o (2) If g(x) is any trreduczble polynomtal in K[x] and tfg(x) has a root in
- E, then g(x) splits in E. : , :

Proof (1) = (2) Asume that g(x) € K[x] is 1rreduc1ble over K and that )
.g(x) has a root u € E. We want to show that_ all 1rreduc1ble factors of g(x)
in E[x] have degree one. Suppose on the contrary, that h(x) € E[x]is an :

-1rreduc1ble (over E) factor of .g(x) with deg h(x)=n> 1. We ad_tom a root
- tof h(x) to E and thereby construct the field E(1). :

-

: Now u and t are roots of the. irreducible polynom1al g(x) in K[x], ) there
is:a K- 1somorphlsm P: K(u) = K(t) (Theorem 53.2). Since 'E is a splitting
field of f(x) over K () and E(¢) is a. splrttrng field of f(x) over K@)

(Example 53. 5(e)) the X - 1somorphrsm @ can be extended 10 a K-

isomorphism y: E — E(t) (Theorem 53.7). But then |E: K[ IE(t)'KI .
AEQ):ENE:K| = nlE:K| > |E:Kl, a “contradiction. Thus all 1rreduc1ble factors of -

N

t

(2) = (1) Suppose. now that any 1rreduc1ble polynomtal in K[x] spl1ts in E

whenever it 'has a root in E. Let" {aj.a,,..:.a ) be a K-basis of E and let
A \ . - . o, . . . o
\ . " s
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‘,f(x) € K[x] be the m1mmal polynomm] of a; over K We put f(x)
fl(x)fz(x) f (x) We cla1m E is a splmmg fleld of f(x) over K.

: Each f(x) has a root (I m E o} each f(x) sphts in E by hypothe51s so f(x)

splits in E. Moreovér f(x) cannot spht in a proper _subfield of E contam- .

ing’ 'K for if L is -an intermediate field of E/K and Sf(x)splits in- L, then all -
) rools of f(x) will be in L m parucular each. a, “will be-in L, thus E =

K(a ,42, ,am) C,K(a_ R am) L Hence E 1s a sphmng fleld of f(x)
over K., . Loy '_ RN Do oo

- . . . : - . v

Theorem 55.8 leads us ‘to

‘ 55 9 Defmmon Lel E/K be a fleld exlensmn If E is algebralc over K

- and if every- 1rredu01ble polynomlal in. Klx] that has a root in E in. fact"

N sphts in E, then E is sald to be normal over K ‘and E/K is called a normal
. .extenwon ) : ' ’ . ) :

Wilh‘ lhis ,‘teir}nino‘logy, Theorem_ 55.8 reads as follows. “

55.8 Theorem: A finite 'vdi_rﬁensi‘o-n»al extension’ E[K is. a notr'm'al exten-
" sion if and only if E is a splitting field ovet K of a polynomial in K[x]." O

- :55.10 Themem Let E/K be a fmzte dzmenwonal fzeld extenwon E is
, Galozv r)vet K if and only: 1fE is normal and veparal)le over K.

N : i
Proof: Thls is 1mmed|a‘tel from _I‘heorem' 55.7(2) zm_d._Theorem, 55.8. Sea

- 55 11 ']heorem Let E/K be a fzmte dzmenwonal fzeld extenwon There is -
" an _extension fzeld N of E such that , ; T
(1)sznormaloverl( L e ,4, e
(i) nr) proper mbfeld of N contamzng E is m)rmal over K
(m)IN KI lvfmlte , : ’ ‘ -
(|v) N n Galrm over K zfand only if E is veparable r)ver K
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v Moreover if N ts another extenwon fteld of E thh the same propertles :

“then N and N’ are E- tsomorpluc

i

'fProof Let {a sy, A be a K- basrs of E and let f(x) € K[r] be the '
mmrmal polynomral of a; over K. We: put flx) = fl(x)fz(x) f (x) € K[x].-
o Let N be a sphttrng f1eld of f(x) over E, w1th IN:E| finite (Theorem 53 6).
- We claim N has the. propertles stated above. Srnce IN EI and |E:K| are both -
finite, IN Kl is f1n1te This proves (m) . ’

‘To estabhsh (i), we “show: that N is a sphttmg field of f(x) over K :
‘(Theorem 55. 8) Certzunly f(r) sphts in'N, because N isa splrtung field of
'f(x) over E. Now we have 10" -prove that f(x) does not split in any proper

_subfield of N pontzumng K. If L is«an intermediate field of N/K in which
, f(x) splits, ‘then L contains all roots of f(x),. hence {al,az, Y } € L, hence

(al,az, o.a) € K(aa,, .0, )L S N;so L, in which f(x) splits, is an
1ntermed1ate fleld of N/E SO L E since N 1s a spllttlng fleld of f(x) over .
E. Thus N is mdeed a sphttmg field. of f(x) over K. -

Now (u) IfL is a proper subfreld of N contalnlng E, then L cannot be
'normal over. ‘K. Otherwise L, contalnlng a root a; of f(x) would “in fact

contzun all roots of f(x) by normallty, hence L would contaln all the roots

" of f(x), thus L would contain ‘E and all roots of f(x) Then L would contaln
'H where H is the subfield of N generated by the roots . of f(x) over E. ‘But
 H is the unique spllttrng field of Ax) which  is an 1ntermed1ate field of
N/E_(Example 53 5(d)) so N = H c. L and thlS forces L N Thls ‘
establishes (ii).‘ ' : :

(iv) If N is Galois over K, then N is separablé over K and the intermediate‘

field E of N/Kis also separable over K (Lemma 55.6). Conversely, if ' Eis
separable over K, then a; are separable over K, so f(x) .are separable.

‘over K and N” is a splrttmg field over K of .a polynomial f(X) whose» SR

1rreduc1b1e divisors- are separable over K. Thus N is Galois over K
(Theorem 55.7).

-

Flnally, 1et N’ be any extens1on fleld satlsfymg (1), (i), (m) As a€ EcN’ and__'f

N’ is normal over K, the field N* contains all roots: of the- mlmmal poly- .~

nomial f(x) over K, hence N’ contains all roots of Jix), hence N’ contains a
splitting field H~ off(x) over K. Then H’ is normal over K’ (Theorem 55.8)..

Becapse - of the condition (i), we get H" = N", Hence N” is a sphttmg field of

f(x) over K ‘From Example 53.5(e), we- deduce that N is also a splitting
R R E » . : Y
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field of f(x) over E. Thus both N and N are splmlng frelds of fx) over E _

' and ‘therefore N and’'N” are E 1somorph1c (Theorem 53 8) . o

LRI

, 55,12 Defmltlon Let E/K be a. flnlte d1mensronal/ f1eld extensron “An
extensron f1eld N ofE as in: Theorem 55 11 1s called a normal closure of E-

s

. over K.

s

' Slnce a normal closure of E over K is umque to wrthm an ‘E- 1somorphrsm ’
- owe sometlmes speak of the normal closure of. F ovcr K

, The fleld @(\/_2_ u)) is a normal closure of @(\/_) over' @. L1Lew1se @(‘J_Z_t)_~

Clisa normal closure of. @(\/_) over 0.

LN
)

- Our next toplc is the so- called prrmltlve element theorem whrch states
“that a. flmtcly generated separable cxtensron IS in fact "a simple exten-'
sion. This. theorem is. due to. Abel, but the _first complete proof was grven :
by- Galors The elements of a f1n1tely generated separable extensron can

’

‘therefore be expessed 1n the extremely convenient form Z a u ‘where o

LU ls a prtmltrve clcment of the cxtcnsron and a ; are in the base f1eld

LY . ~

1585, 13 Thcorcm Let E/K be an- algebratc separable extension of fields.
and a, b € flzen there is (m element ¢ in K(a b) such that K(a b) = K(c)

N

l’rool" We drstlngutsh two cases accordmg as K is a flnlte or- an lnfrnlte
T]el(l : o S - R [RRE ‘ i

‘ll K is finite, thcn K(a b) is finite dnncnsronal over K (Theorem '50. 12)» \
tlnd has IKl‘K(“ byKI elements. llence K(a,pb) i finite and ‘its characteristic is
p = 0, thus lF K(a b) and. K(a b)y=F (L) for some c in K(a,b). (Theorem’

52.19(1); ‘¢ can- bc chosen as a gencrdtor of the cycltc group K(a b)?). Then" '

K(a h) = K(c).

R
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s

" .Assume .now ')'K is 1nf1mte Let N be*- a normal closure of ‘E. over K_'V .
o (Theorem 55: 11) Let f(x) € Klx] be the m1mmal polynomlal of ‘a over K\
Cand g(x)'e KIx] the m1n1mal polynomial -of b over K. Since a;b € E SN and

N-. 1s normal over K, all roots of f(x) and g(x) lie in N.

Leta-a a,, .. a € N be thc roots off(x) and b b Wby, 'b € 'N' -be 'the.,

g
. ‘roots of g(x). Smce E is separable over K, a and b are separable over K, so

- fix) and g(x) are separable over K 50 a; # a; when 1¢_/ (lJ = 1 2,. n) and“"
b;r:b whenk;él(kl—IZ )}j[ : ' :
: There are" f1n1tely many elements in- N ‘of - the form _ ‘ R
‘ b-b; ' -
“aq : : (1,1—12 nkl~12 NN r;é_/) i

Smce K is assumed to be mfmrte there is a u E K whtch ls dtstmct from',»‘

all these (b -—*h )/(a ) Hence

.

Wrth this u we put c = au + b =au+ b We cla1m K(a b) = K(c) Certamly‘ - '

K(c) c K(a b). In order 10 prove K(a b) c K(c) we must show a,b € K(c)
Smce b= c -au, ‘the relation.a € K(c) implies b € K(c) Hence we. need

only prove a € K(c) *We do lhlS by showmg x-ac K(c)[x] We, shall see :

that x - a 1s a greatest common drvtsor of two polynomlals in K(c)[x]

. -Now a —a1

E ’K(c)[x] “Thus' x -a is, a drvrsor ‘of 'the” greatest common. divisor -of ‘ f(x). and

: g(c - ux).-On' the: other hand, any root- a; of f(x) distinct from’ a,’ cannot be. "
‘o a root of g(c - ux), because then ¢ ~ ua would ‘be .a root of. g(x) hence a;

would ‘be equal to one of b. --b by, sees »b,,» contrary to" (G ). Thus a =.a,. s
the only common root of f(x) and g(c = ux). Thus x - a is a greatest

common d1vrsor of the polynomtals f(x) and g(c - ux) in K(c)[x] and x - a:;_ S
"1tself is in K(c)[x] This grves ae K(c) and completes the proof - *D ;

Lo

.We can now prove that every - f1n1tely generated algebralc separable‘ .

CXICHSIOI’I IS a s1mple CX[CHSIOI’I
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.,.55.14‘ Theorer'h:‘Let' EIK be dn algebr,'aic' l;fépat'able extension of fields

. and assunie E = K(dl,az, ..sd ). Then there is an element ¢ in E such that -
.Probf We méke ‘indUcliOﬁ on- m. The claim “is true- \\;hen ‘m =2 by
_Theorem 55.13 (w1th E = K(a b)) If the dsserllon ‘is proved for m - l then

o K(a AU 1) =K(c) for some ¢, and thcrefore we hdve K(a S )

S =K(a1‘,(12,‘ . 1)(a )—K(c )(a )-K(cl,a )= K(c) forsome ¢ € E = I

:We glve a useful characlerlzanon of sxmple algebralc c,(lensmns ~This.
ylelds an- a]tcrnallve proof of Theorem 55 14. . :

5515 Thcorém -Let E/IK be -a fi}zite (Ii’hzéizsio;z'al extension 'bf- fi‘e"ldsb E is

a stmple extension of K 1f and only if there'arﬁ only fmztel/ many inter-

. mediate fields ()f E/I’

’Proof Assune first th'u E is a sxmple extension of K, say E = K(c) We ‘
want to show" that there are fmltely many” intermediate’ ficids. We will .

_show that each lnlelmedlatc field of E/K . 15 unquf'ly dclcrmmcd by-
“divisor of the mmnml polynomial -of . c over K.,

Let f(x) € K[r] bc lhe minim:ll pblynomial of ¢ over'K. Let L be an

'-mlcrm(dldlc ficid of ‘E/K andlet g(x) € L[x] be the minimal  polynomial

~of ¢ over L. The ﬁcld L s g,encru('d ovcr K by lhc cocﬂlcmnls of: g(x). '10 \

see lhxs Iu g(x) Za xt (wnh a, l)-and M‘: K(”vaz’ ...,am). Smcc g(.{c)

i=Q

s in L"[.);],_w_c.havc {a a,) < L and K(al,az,:'._..,am)_g L. Thus M <L

2'*'

~and |E:M| > |E:Ll = |K(c):Ll = L(c):Ll = deg g(x) =m. On the other hand, ¢

is a rool of a polynomml g(x)in M[x] of dcgrce m, so the degree of the
mlnlmdl polynomm] of ¢ over M is-at most m, so [E:M| = |K(¢):M| =
IM(() Ml.< m. ([hcorcm 50. 7) Therefore ‘| £: Ml =m =|L(c¢):L| =|E:L] and

cunsuqugmly,[l Kl = IM Kl Togc\hcr with M ¢ L lhls ngcs M=1L (Lemma‘ '

T 42:15(2)).

" Therefore - cach. ihlnrmﬁdin@ field L of E/K “is uniquely - ducrmmcd b\'

the mmmnl pnl)n()mnl g(t) of the- prlllllllVL glumnl ¢ over llml inter-
mediate tuld I We kno‘\x g{x) divides f(x) in L I.t[ (L cmrmq.S().IS)‘ Let N~
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,

‘be a. nornm] closurc ot E over K Then N conhuns d” rools of f(r) dnd f(x)
splns in N Of "course ey dl\l(]Cs f(r) in N[x] and smcc Nix}'is a. umque ’
- delOFlZdllOﬂ ~domain, g(x,) is a product “of - -some . of lhe linear factors of
f(t) in Nlix]. Smcc in Nl\] lherc are only f1mtely many momc divisors “of
f(x) there - is only a fmlle mxmbc,r of possxblhtms for g(x) and there are.
only a ﬁmte number of ‘intermediate fields L. e '

k“‘AAssume converscly llml .thuc @1rc only a finite numbéf of interthdiale‘_
- fields of E/K. If K is finite, \o is £-and E is snnple exlcnslon of its prime
B subfleld and of K (Theorun 52. 19(1)) ‘So we may’ supposm K is mflmle
‘We choose an elemernt ¢ in £ such that lK(c) KI i$ as Llrne as possible. In
other words; IK(c) K| = IKU)) K for any bre E. With this ¢, Swe anm Ee=
K (). ’Olhc'rwne lllerc'ls an e .€ ENK(¢). As k r‘mﬂeb throu;:h the infinite
s‘c't"‘K we get fmllcly “m: my mtcrmedmle fields K(r + ek). Thus there arc'
k 'md & in K such-that, k= kP and-K(¢ +'ek) = K(c o ek’). 'lhen ¢ + ek and
¢+ ek’ nre in K(¢ + ek), lhcn thur dlflerence e(k k ‘) is:in K(c + ek), then’
Loeis in K(c + ek), hence ('A is-also in K{c+ ek) and fm.llly ¢ =(c+ek)-ek
isin K(c + ek). Thus ¢,c € K(c + ek). So K(¢) < K(c + ek), Since e € K(( Fek)

/A"md ¢ £ K(c), we gel K(c)e K(c +ek) and thus 1K(c): Kl < U\’(t + ('k) Kib. o

.(Lemnm 47 15(7)),_‘1 conlmdxcuon llunce E K(c) AR

Theorem 55.1;.4 t'olblol“x‘ "t'!§ ' easily fmm Th sorem 55 15. quppose L
[\’(al,ciq;‘..'. a“, )' xs an dl :chraic soparable exlensxon of - K. Wc find a nonm} ’
dosmc N ofK over B lhm N 15 Gala 15 over K. and finite dlmm‘wmm] over-.
X »(Ihcorcm-“b 11\ The Galois. group “of the- c)\lelmon N/K.is thus finite..
“and . it has Imnvl mm/ ,ub"loups By the tun(lumcn al ~iheorem "of
(Jdl\.‘o lhcm\, ﬂn,m are tmucly many intermediate fu,lds of 1\"1\ and so
~ finitely many nmrmcdmlu ficlds - of E/K. lmorcm 55.}5 Slale‘s‘ that [ isa -
‘.nmp]c extension of K. L B ‘ .

We prmecd {0 ,51'0‘ 't’hc ’ConvgrSu of Lemm.l 55.6. We necd'r.some'

'pu}.non ]l,mm‘\s,-whuh ‘m 0! mmnsm mtercst as \\ell

s >

\

5516 Lemma: Lot E/K beoan-cxtensi fou of jiel /s of characteristic p = O

)

iud ot ahc L. Assume . is .zme/wu ic o w K Then s ‘({71‘}"/)1” over K
~and '();21_37 if Kay =1 m' ). ' ' P
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Proof; Suppose first that a is separable overi'K. Th'en‘d is/valso separable

© over K(a")’ by Lemma 55. 5“Let g(x) € K(aP)[x] be the ‘minimal polynomial

. of a over K(a?). Thus all roots of - g(x) are :simple. Since a ‘is a root of the
polynomml xP 2 aP e K(aP)[x], we have g(x)lx” - a”in K(a”)[x] Therefore
’ g(x)lx” ~ a? and’ g(x)l(x - a)? in E[x] So g(x) = (x - a)’" for some m such

) ‘that 1< m<p. Since’ g(x) has no multlple roots,s we get m' = 1. Then g(x) -
=x-ac€ K(a”)[x] and- .consequently a € K(a”) Th1s gives K(a) c K(a”) and,

-since K(ap) c K(a) in any-case, we obtam K(a) = K(a”)

Conversely, suppose 'that K(a) = K(aP). We want . 10‘sho»\7that a is separ-

‘able over. K Let f(x) be the~»m1n1mal polynomml of a over K. If a is not
separable over K, then f(x) has the form f(x) = (x”) for some g(x) € K[x]

Here 'g(x)“is' irreducible ‘over K because g(x) is not a unit in K[x] (for f(x), =

" being jrreducible over K,.is not a unit in K{x]) and any factorrzatlon g(x) =

r(x)s(t) W1th deg r(x) = 0= deg s(x)’ would glve ‘a proper factorrzatlon

T f(x) = r(x”)s(x”) with deg r(xP) = 0= deg s(x”) contrary to- the irre-
~ ducibility of f(x) over K. Clearly g(x) is a momc polynom1a1 and, since 0 =
.. fla) = g(a®), we sec that a” is a root of 2(x). Thus g(x) is the minimal -
’ polynomral of- a" over K (Theorem 50; 3) Of course deg fix) —p deg g(x)A

and - :
lK(a) Kl deg f(x) p(deg g(x)) > deg g(x) lK(a”) Kl

"Hence K (aPf) is a proper subspace of the K -vector space. K(a) (Lemma
42.15(2)), contrary. to'the hypothesrs K(a) = K(aP) Consequently, K(a) =
K(a”) 1mplres that a is separable over K. S B =

55. 17 Lcmma Let E/K be a fmte dzmenwonal cxtenwon of ftcldr of .

c/zaractertsttc p =0, say |E: Kl =n. T/len the following are equivalent..

v__(l) There -is a K-basis [u iy ] ofE such that (u,Puf, .. ,un"] is also a
K-basis of E: B ' ' .-
©(2) For all K-bases {11,12, ot ) ofE {1,P.1 2 . -i,LPY is also a K-basis of E.

() Eis.a separal)l" cxtcnwon ()f K

Proof: (l) = (2) Lct {u u } be a such a K- basls of E - that

- [u]”.uz”. ..f,u ”] is dlso a K basis ‘'of E and let {1,,1,, ...,n] be an arbitrary ’
K -basis of E. In order to show that {tlp,tz”, .. t”] is a K -basis . of E,. A

sufhcu to prove that { L7 } spans E over K (Lemmd 42.13(2); t”

syt ot

“«

are mu_lu.tll_) distinct_since 17 - lj" = (l,- - tj)_” # 0 for i = j) and thus it

7
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B . . SN \ L \"V_‘ - i'A N .
L sufflces to prove that u" e (t1 ,2 yae ,tn") for-all i =.1,2,...;n. But this is C
obvious: we. have L g — ‘ SR
) ".7 e U €.5; (tl,tz, PN ), e : _,
;Lr +kt +- +kt . : for_sc)me.[c’j'el(,“

u,
1] -
uf = k“’_tl" + kZPIZP 4o k "t“’ . for some-kPe K;
ST R R S
U € sK_(’r tz yeestP).

: (2) = (1) Thrs rs trrvral

@) => (3) Suppose now that {tl”,t,", t”] is- a K- basrs of E whenever
[tl,tz, ..ot} is. Every” element in E is algebralc over K because E/K is a-
_ flnrte drmensronal extensron (Theorem 50. 10) Thus we are to show that
"'every element b ofE is separable over K. We do’ this by provrng K(b)
K(b”) (Lemma 55. 16) ’ ‘ . :
LetbeE. “We put r = lK(b) K1 Then r < n.and 11, b'bz’ 4. b } is a'KV-basis,
of K(b) We extend ‘the K lmearly 1ndependent subset {1 b, b b""} of E
to a K-basis (1,b,b%...67 e 0
‘,_Theorem 42.14. Then - {lb" P2 .. (b”)’ l,cr"H,':.
., E by hypothesrs and $0 [1 bPs (b")2 (b”)’"l} is a K- lmearly 1ndependent

- subset of K(b) Lemma 42. 13(1) states that {1, bP (bl’)z (b")’ 1} spans”

K(b) over K. So K(b) S sp(1, b” (b”)2 (b")"‘) c K(b") ThlS proves K(b) =
K(b”) Hence b is separable over K :

.c,) of E, as ‘is possrble by virtue of
€, P} is- also ak- basrs of o

’ 3) = (2) We assume E is separable over K and {tl, S '.-f”,‘;}l is a K- basis' o

: ofE We want to show that: {t £P tp} isak- basrs of E. Since t" = tP
-~ for. i ¢j, ‘the set. {tl",tz", 3 t"}«has exactly n= IE Kl elements and, ‘in vrew :
~of Lemma 4213, it° sufflces to prove that {tl",tz", . t"} spans E over K

'So'we put -L —sK(t 12 .- f") and try to show L E

‘Our frrst step w1ll be to establlsh that L is a subrmg of E. In order to’

prove thrs we. must only show that L is-closed- 'under mult1plrcat1on If a :

. —Zatp an\d b —th" are elements of L (a b € K) then ab— Zabt

=1 . - ]'— to . lJ“l'

“and L erl closed under multrphcatron provrded t"t" € L ‘As. [ 1ol .‘.,.,;tn},.-»»-
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is'a K baSlS of E there are elements Cijie 1 in K ‘with tt = Z Cuk k and so ,
. . ‘, ,J_l .

1’2’

thP = 2 cP tP €s (tP P ...,-t,;i’) =-L.ﬂrhus Lisa subring of E.

‘ Since L contaiﬁs- K‘"and {tl”,tz”, ca tn”},v'ahd L -is " contained -in 7t[1e ring ‘
: K[tl”,tz yie .,;nP]; we get L= K[tl”,tz”, .-..,tn"].i Now ‘for each i =2, ...;n, the.
“element - ¢f ‘is algebraic'over K, se algébraic ‘pver K(ilp, tti’jl')b‘anq SO’

K@?, .. PO = K@ P, oot 2 () (Theorem. 50.6) - and " repeated |
‘ __Y'apphcanon of Lemma 49.6(2), ‘Lemma 49. 6(3) gi;fes L= K[tl”,tz”, ...,tn,”_]i ‘

‘i-K(tl”,tz”, . t") Thus L= K(xlp,xzp,.' . t”) and Lf'is' ‘in 'fact a fleld. ,

 We now prove E = K(tl”, s t”) Let a be an arbltrary element of E. -

Then a is - algebralc over K and ‘over L. (Lemma 50. 5) Let f(x) € L[x] -be _'
the ‘minimal polynom1al of a over L: Smce ae st .o t) and -

vtherefore af €s (tl”,tzp, t”) =L, we see x? - aP-€ L[x] and a is a root '

- of x" - a” -Thus f(x) divides x” - a®? in L[x]. We put xP - af —f(x)e (x) S

'_where e>1, g(x) € L[x]\{O} and (f(x) g(x)) ~ lin L[x] Takmg derivatives,
we obtaln - - :
= ef(x)""f” (x)g(x) +f(x)g “(x),
» g(x) d1v1des f(x)g (x) in L[x] v
(x) divides g (x) in Lix],, oo
g = ' o ‘
S : 0= eft)*f (X)g(x) ,
‘and since E is separable over K, here f'(x) # 0, so f(x)¢ 1f’()c)g(x) # O‘dnd
: e=0inl, B ~
o ple inZ,
e-—pmforsomemeN .
p= deg(xp - aP) = pm(deg f(x)) + deg g(x)
“ m*ldegﬂx)—landg(x)— '
~e=pand g(x) =1 (comparing’ leadmg coefflclents)
(x-ay =xP-af =fx),
: x-a=f®ellxl, e
dnd ae ‘L. This proves EclL. Hence E= L =5 (lp,tz”, ..%,t.P) and. thus '
' [t]P‘t, s .-, P} is a K-basis of E as ‘was to be proved.” DR 1:1‘1"
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' 5518 Lemma Let EIK be a field ‘extension and a e E. Then K(a) zs a
veparable extcnszon of K lf and on[y zf ais separable over K. :

Proof: If K(a) is separable aver K then every element of K(a) is separ- . ;

able over K, -in particular a‘is separable over K. Suppose now a is separ-

able (thus algebrarc) over K. We wish to prove that K(a) is separable ‘

over K. The case char K = 0 ‘being trivial, we may assume char K =p = 0.
Let n = [K(a): KI. Then {1:a,@% ..., a™ ') is a K-basis of K(a) (Theorem 50.7).
Likewise {1,a? (aP)?, .0 (a”)”‘*] is.a K -basis ‘of K(a®), where m = |K(a?):K]|.

Since a 1s separable over K, we have K(ap) = K(a) .(Lemma 55.16) and m =

IK(aP):K| = 1K(a):K| = n. Thus {1,a"(af)%, ... (a?)") = (17 (@) (@), ... (a"')")
is also a K- basrs of K(a) Thus K(a) is separable over K by Lemma 55 17. o

55 19 Theorem ‘Let EIK be a finite drmens:onal field erlenwon and let
L be an. zntermedzate field of EJK. Then E is separable over K zf and only
if E is separable over L and L is separable over K. :

Proof: If E- is separable over K then E is separable over L and L is

separable over K (Lemma. 53.6). Conversely, suppose that E 1s separable' .
over L and L is separable over K.. We are to show that (1) E is algebraic )
over K and that (2) any ‘element in E is separable ‘over K. Srnce E/L and .
LIK are’ separable extensions, they are algebraic extensions and E/K'is - -

also algebralc by Theorem 50.16. Now the separabrhty of E over K. The
”case char K-= 0 being trivial, we assume char K=p = 0. As E/K is_a finite
dimensional ' extension by hypothe51s |E:L} and |L:K] are finite (Lemma
48. 14) Let'|E:Ll =n and IL:K| = ' ‘

Since E is separable over L, there 1s an L-basis {al,az, s, } ofE such that

{a7.a0,.. .,a P} is also an L-basis of E and, since L 1s separable over K,
‘there is a.K=-basis {by:b,, - b } of L such that {b P.b7; j e p} is also a K-~
basis of L (Lemma 55. 17) Then {ab} is a K—ba51s of E . by the proof of -

Theorem 48.13, ‘and hkew1se {afb "} is a K-basis of E. Hence {ab} is a K—\
basis of E such that {(a‘bj)”] >1s also a K-basis of E. From Lemma '55.17,

follows that E is separable over K. : ‘ S o

We close this paragraph with a brief discussion of perfect fields.
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55 20 Deflmtlon ‘Let K- be a field. If char K = 0 or 1f char-K = p = 0 and/ )
for each a € K, there-is a b~ e K- such that a = bP, then K is said to be .
perfect. ‘ L - '

Thus in case charK =p =0, K is a perfecl field if’ and only 1f the fleldl
homomorphlsm e: K =K is onto K. Then for CJCh a- € K there isa.

‘ , u—u . oo . : )
unzque b € K such lh'l[ a= bp for @ -is. one- to one Thrs umque b will be :

denoted by \/a

For example every flmte freld is perfect ~for ‘if [F is a Vfin'ite field and
A char F . =p= 0, then the one-to-one- homomorphrsm cp qu - IFq (w— uP)is ‘ 7
lF -lmear and- thus onto F. by Theorem -42.22 (or, more srmply, because -
lhe one-to- one m‘lppmg from the frmte sel [F mto [F must be.onto F )

~

55.21 4Theorem Let K be -a feld K is perfect if and only lf every rrre*\v
aucrble po[ynomlal in K{xj [S‘ sepamble over. K.

Proof The assertron is mvml in case Lhar K = 0 so assume- lhal char K="
p= 0.

Suppose frrst lhd[ K 1s pcrfecl Now 1ff(x) € K[x] is not separable over K

then f(x) = g x”) for some g(x) 3 K[x] say g(x) = Za xt and .
, : L= - .

1) = ) = Sap = 2 («7 g )Px'P = (z Ve x‘)”
; : =0 L =0 Ci=0 :
Slxy cannot; be |rrcdu01ble over K. Thus if K is a perfecl freld then every.

irreducible polynomml in- K[x]. is sepnmb[e over K.

Convcrseiy, supposc llm[ every 1rrcduc1ble polynomml in K[x] lS separ— o

dble over K. We want to show that K is pcrfecl Let.a € K. We must find a -
“hin K with b” = a. So we consndcr the polynomul xP-ace K[x] We adjoin "

a root \/a of x” - d 1o K and oblam the ilcld K(\/ a) (possrbly K c K(\/a))

~"Then, in K(\a)lxl. we. h«l\’C lhc factorization xP - a = (,\; - \/a)p- The mini- o

(%N
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1

mal polynotniaf of f/Z over K is thus (x - \7;)"‘ for somie k € {1.2,..~.p}. So
(x - \/a)" is necessarlly 1rreduc1ble and, by hypothesns sepdrable over K’
and has therefore no. muluple roots. This forces 'k =-1. So the minimal

-polynomial of" \/a is x - \/a € K[x] Wthh glves \/a € K, as was. to be
proved o v . R ‘ : B s |

Consequently every algebr.ue extension- of a perfect fteld K is separable
over K. Theorem 55.21 ylelds the  corollary that -every alnebralcﬂly
closed - field is perfect, since any- ifreducible polynomlal in an algebralc-‘
ally. closed field is of first degree and has therefore no mulllple roots (is
separable over that field). S :

Exercises

1. Find a normal closure of @(\/3 \/_) over @
2 If E/K is a fleld extensxon and IE KI =2, show that E is normal over. K

3. Let E/K be a fleld extensxon with |E:K| = 3 and assume that E is not
normal ‘over K. Let N be a normal closure of E over K. Show that IN:K| = 6
‘and that there is a umque 1ntermed1ate field L of N/K. satlsfymg RL Kl =2.

4 Let N/K be a field extensxon and assume that N is normal over K. Let L ‘
be an” intermediate field of . N/K Prove that L is normal over: K 1f and
only if E is (K,N)- stable ' '

5. Fmd flelds Kc L < N such that N is normal over L, L is normal over K
but N is not normal over K. . . : :

6 Find fields K < LeN SUCh lhill IN Kl =6, N is Galms over K but L is not .
Galois over K.~
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7. Flnd fields K c L'c N such that IN Kl is flmte N_ is normal over K but L

. is not normal over K

8 Frnd prrmrtrve elements for the extensrons @(\/2\/—) @(\/2\/—\/_)
| @(«Jzo @(\/_\/—) of@ -

9. Fmd a spllttmg field: K - over lF of (x + l)(x +x + 2) € lF [x] and a.

: pr1m1t1ve element of . K

o 10. Let P be a’ prime number and X,y two dlstmct indeterminates over [F

" Let'E =F; (x,y) and K =F (xp,yp) Show that E'is not a 51mple extension of X

K and f1nd 1nf1n1tely many 1ntermed1ate ﬁelds of EIK.

11 Proye the: followmg generallzatlon of Theorem 55.14. If K is a f1eld
K(a,.a,,.:..a) is an.algebraic-extension of K and a,,...,a, are separable,% :

over K th_en K(al,qz,'...,am) is a simple extension of K.

12, Let Krbe‘a field and K(a,,a . . ,kz ) a finitely generated extension of K.

Show that‘K(a Vi ) is’ separable over K if and only if all a 1% .‘..,am

. are separable over K

13. Prove that Theorem 55. 19 is val1d w1thout the hypothe51s that E bej
finite dimensional -over K. (Hmt 'Reduce the general case to.the finite -

‘dlmen51ona1 case) -

“14. Let L and M be 1ntermed1ate f1elds of a field extensron E/K Prove‘r

that if. L is separable over K then LM is separable over M

15 Prove that every flmte dlmensronal extension of a perfect f1eld is

perfect

\ 16. Let E/K be a ' finite ~dimensional f1eld extenswn If E is perfect show
that K is also perfect :
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§56
Galons Group of a Polynomlal

In this paragraph, we_ giv’e‘some zipplicationé of Galois- theory to. the
theory of equations. We shall introduce resultants and discriminants,
and -then discuss -polynomial equations f(x) = 0, where f(x)_is of degree"
2,34, - : : '

. 56.1, Lemma Let K be a fuld andf(x) =a L ta _lx"‘l, + e+ alr + ao, R
g(x) = b x™ 4 bm lx'"‘] TR + bk X + b be nonzcro polynomials in K[x]\K.'
Assume that at least one of a,b, is distinct from 0.:Then f(x), g(r)ha\e a
nonunit greatest common dtvnor in K[x] if and only if there are nonzcro
i polynomtals gl(x),f](x) € K[x| such that

f(x)gl(x) = (x)fl(x) and deg fl(x) <n, deg gl(x) < m.

' Proof One direction is. clear. Iff(x) and g(x) have a nonunit greatest
common - divisor- h(x) in K[x], then f(x) = h(x)f,(x), g(x) = h(x)gl(x) with
" some suitable fl(x) g,(x) in K[x] and ’
-deg fi(x) = deg f(x) - deg h(x) < n - deg h(x) < n
smce deg h(x) is greater than: zero Likewise deg gl(x) < m. We have of

course f(x)gl(x) = fi(x)h(x)g,(x) = fl(A)g(x)

Conversely, assume f(x)gl(x) = g(x)fl(x) for - some nonzero polynomials
f1(x), g,(x) in K[x] satisfying kleg fl'(x) < n and deg gl(x)'< m. We put
h(x) ~ (f(x),g(x)). We want to prove deg h(x) > 0. Write f(x) = h(x)F(x) .
g(x) = h(x)G(x). Then (F(x),G()) ~ 1 and f(x)g,(x) = g(x)f,(x) “gives
F(x)gl(x) G(x)fl(x) Suppose without loss of generality, a, = 0, so that
deg fix)=n. Now F(x) divides G(x)fl(x) and as (F(x) G(x)) ~ 1, F(x) divides
Ji(x); thus deg F(x) < deg L(x).< n=deg flx) =deg F(x) + deg hix) and '
we.get deg h(x) > 0. This compIetes the _proof. . : o’

~

Let K bea fieldand ~ f(x) =ax"+a,_ x"'+.: vax +ay,
‘ \ g(x) =b,x™ +b, x4 +bx + b, | '
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two ‘polynbmialé in-K[x], where. dh = 0 or b, = 0, so that deg ,"f(x) =n or

deg g(x)'= m. From Lemma 56.1, we know that f(x) and g'(x)‘have a

nonumt greatestcommon d1v1sor in K[x] 1f and only if- there are elements
d_.d _,,...d.,d _where at least one ¢; = 0 and at” Ieast'r

Ot Cmos ++ -1 C0r 158, o5 1%°
one dj = 0, such that ' - ]
(ax"+a, 1x"\l+---+a1x+ao)(c R L Ly S B
= (0, X" + b, X" e +bx+b d, x""1+d x"2+---+dx+d S (%)
.l -1 -2

This polynomlal equatlon 1s equ1valent to the system of equatlons

-ac =b'd - >

n m-1""-"m"n-1 - . S
4pCon- 2 A p16m-1 bmdn 2 + bm ldn—l
,ancm 3 + an 1"m- 2t 260 bmdn 3 + bm ldn 2t bm—Zdn—ll
a,cy+aye, =bdy+byd
oco —‘ b d
- This system can be wr1tten as
‘ac R ’ ,—bd ' : - =0
n m-=1 - ) m - n-1 . ’ ’ s . :
3 Cn2 + " a, lcm i - bmdn—Z‘— bmv—ldn—‘lr ' =
4Cn-3 + a,- l m-2 + an 2Cm- l - ‘bmdn-3‘ - bm-'ldn—l bm—Zdnjl - =0
. - a;c, + a,¢, - - bldo bod1 0
. % - byd, =0 -
or as .
4 Cuy - . - ) - . -bmdn—'i ST . o =0
. an_—l m-1 + ) A T . \»-bm—ldn—l bmdn-Z ) =0
LR L U L ancm:—ﬁi ' S —bm-an%l -‘bm-ldn-l - bmdn;3 =0
Ay +.a,C, +a3 m3 T e o =0
Ay +alcm 2t A, 4 S RETIIEE B - =0
‘ AyCpy alcm 3 S e =0
- ayc,-+4a,c, -byd, -.b,d, 0
a,¢, - bod0 =0
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We write this-system in- matrix form:

m colunﬁxs . ‘ v_ n columns
( a 00 0b, 0 0..0]c, [0 ]
ia'n_'l a, -0 ... 0b b 0.0 lc , ! 0
ian—Z an;la 0 bm—_Z bm—lbm - 0 Cn-3 - Lo
) |
I e | R
0 0 0 ... 0_, 0'0...{ by Ldo Lo

Let A ‘denote thé matrix of this system Then- the polynomla]s f(r) g(x)
have a nonunit greatest. common divisor - if and” only  if the -matrix
equauon AX =0 has a solunon ' '

d_1=d o -d ..., -d), -dp)'

X=(,. 13 m-2Cm=37 "'1"‘0’ gy Ty

in ‘which at least one ¢ = 0 .md at least one d = O From the equation (*)
§ and -the fact that K[\’] has no zero divisors, we deduce that, in--a solution -

X =(c,-; Sk = )l of AX =0, there is at’least one c; = 0 if and only if
there 1s at least one d = 0. ’I‘hus the po]ynomlals fx), g(x) have a nonunit
‘ greatest common d1v1sor if .md only if the matrix equauon AX =:0 has a
nontrivial solution, Thls .is the case. 1f and only if det A '=-0 (Theorem .
- 45.3). Smce det A = det A', we get that f(x), g(x) have a nonuml greatest
common d1v1sor if and only 1f det A' = 0. We proyed the ‘

56.2 .‘Theorem:‘ Let K be. a vfiel(l and f(x) =ax"+ a, l-x" Tyt ax +ag,
o gx)= _bmx"” ¥ b lx’”" o+ byx + b be polynomzals in K[x]\K, wl'zere at
least one of a.b, is (hstmc/ from O Then f(x) and ‘g(x) have a nonumt_.
greatest common divisor in Klx] if and only zf _the determinant -
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a a_ a4 @ 0 0% 0 0 0
. .O. a, . 1 g a, O -0 0.0
0 L Ot -oay a, a ‘ao -0 . O .0
i 0 - a 0 0 an, a"l;l ._al, : | ab
by by b7 by 0000 0
(1 b, m'_», ' b, ,bol;‘ 0 | 0 0 0
0+ 0 bm b, by by O 0} 0

0 0 .0 s b, brr;—l bll Chg

s eq?tal to’zero. S oo - ) . -

563 D‘cAfinition:‘Lei‘K be a field and f(x) = a,x" +.a

-1hcrc is dmblguny in. -this~’ dcfmmon and nolauon~lhc resullanl depcnds"

=X
. n

"y baxta

() = b X b X byx + b polynomlals in K{x]. The delerminahl

‘{’ Am e mv—l - 0 :
T . a.a, ;... ala0 ’ ,4 o

an an—l al (10

-t : an qp h (li ay -
. bm vbm-l ) bl b()
) bm‘bm—l: bl bO .
< R by by by by
by by by by

) .. (cmply p]dCCS are to be filled . wnh zcroes) 15 called lhe remltant ()f f(x)i
. and g(x); dnd is dcnoled by R(f.g) or by R(f(x) g(x))

56.4 'Rcmdrk B Nolicé. lhdi d and b can be zero- in Definition 563

not” only . on f(x) and g(x), but - also on ‘the numbcr of apparent
¢ocefficients; a point neglected in “dlmose every book. For cxamp]e let f(\')",

-n

! me}

n~17, i 0

P, X g g and g0 = h T4 b X e b E o by



. ﬁgain and let b '5 1 =0, Il(x) = ,n+1x'"+"+b x™+ bm lx”"l +o0c 4+ bx +b’

Then of course g(x) = h(x); but R(f,h) has one more - .column than. R(fg) .
and the expansion of R(fh) along the f1rst column gives R(fh) =da R(fg)

so R(f,h) = R(f.g) (unless a,=1or R(f,8) = 0). Thus adding an - initial* (erm
to g(x) with coefficient 0 ch.mges R(f.8) toa, LR(.8)- Consequently, it
fx) =ax" +a_1"1+ +ax+a0, : ' o
gx)=b x"+b, x" '+ +bx+b and b =b =,.-‘-'=bk+‘lﬁo,bk¢ 0.
G(x)= bt +b,_ 1x"‘ c+bx +by, RN -

then g(x) is obtained from G (x) by addlng m -k 1n1lml terms b \'"

b x™ L, bh]x" with coef_flc1ent 0 .and so R(f,g) = an""kR(f,Q).

m-17" _

Definjt'ion: 56.3 gives a new.lformulutien of Theorem 56.2

56.2 Theorem: Let K be a Jield and f(x) = ax" + a"_’ljc"'1 o ax + a,,
g(x) = b xm + b lx”"l <+ b X + b be polynomials in K[\f]\K - where at
least one of a, b is dtstmct from 0 Then Sf(x) and 2(x) have a nonunit

greatest common dtv:sor in K[x] if and. only tfR(fg) = 0.

We give some product formulas for the resultant of two polynomials.
These formulas make it ‘evident that the resultant is O if and only if. the
polynomlals have a nontnvml common factor ’ :

56.5 .Theorem: ’Let K be a f'eld and uu,, ... ",yl,yz, ...y, indetermi-
~ nates over K. Let a.b, be nonzero elements of K and let x be an indeter-
minate over K dtstmct from -all’ of Uy, ooy ¥13Y00 <o osY . Let fix) and
g(x) be polynomlals tn K(ul,uz, Sty Y, <Y, )] defined by '

< ' fix)=a (x ux - uy)...(x-u)
8(x) = b F-yDE-y)...(x=y,).
Then the following hold C

(1) R(f.8) is in R[an,ul,uz, - ’“;.;bm?);1 Yy » .. Ymls where P is the prime
subfield of K. o k '
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¢<2)R(fg)-a'"b;HH(u, oo

i=1" j—l

(3)R(fg)—_a"'1'[g(ul) e e SRR
;(4) R(fg) o, I'[f(y,

- Proof We put 7 RS ;
e f(x)—ax +a. 1x""+--‘ +a1x;+a0
g(x) bx +b A T +bx+b

: w_here 'bi,bj‘e« K(y, ,'uz, ,yl,yz, eees¥,,)- Thus, .R(fg) is a delermmant of a
" -matrix whose entries are ao,a az, ...,an,b b b ..-.-,bm and 0. Hence the
entries of the mamx are in P[ao, 18 <05l b b b b ] and ‘the deter-
‘minant R(f,g) itself is also in P[ao,al, sl bo,b b,,...,b ] (Remark
44.2(2)). Since each a;fa , aside from a.sign, is- an elementary .symmetric -’
polynomial - in" u,u,, ... ., and since the coefficients of elementary
' symm‘etric-pglynomials ‘are iﬁ-theprime subfietd P,"v?e gelf' |
A - ala, € P[ul,uz, ..o,u,] for bll:i = 1,2 .Vn

) So each a; “is in. P[a ul,uz, - .-,un]Ag P[an‘,ul,‘ilz, sl b A ,y2, . ,)’m]-'
. Ijlkewxjse each‘bj is in’ P[a 'u"uz,- .-..,u'n,b,;,yl,yz,v...‘,ym]. Consequently

- R(f®) eP[aO,al,az»;. ,an,b b by, ...,bm]QP[ah,ul,uz, .'..,un,bm,yl,yz,..;,ym]. ‘

This p}bves (1). Now blet L =P[ay"ul,u2, ceolh b Y122 .'..,ym}. We put

S = a"'b"HH (u -y)el.. T
i=1 j— L o B
. L ;,5 - : m . h
“ We have : g(x)fz b, H (x ~ yj), ;
. . v . t '~_l ) P
m
. g(u) —bmH(u —yj
=1
con n ’
11 g(u;.) =/)an H (u;‘— yj).r
. i=l : sl =l A - 4
Coand thus . - S =a;I"H gluy). | B ()|
: C sl Co . : S
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In- like mal;;lcf,>'ff0n1 f(;);';"; ff(x’ - u) .=:(,—‘1)" H (u; - x). ;ve get ,
| "~f(y) —( 1)" H (u‘ : ‘. _

Hf(y) —H(( ', H (- )' B

Hf(y)—( 1>"'"_¢""H>["1 - 3,

J=1 =1 , ) o
: S—(l)"’"b"Hf(y) R

.'Now let fo(x) be lhe polynomlal oblamed by subsmuung Y for-u; in f(r)
. Thus‘ fofx) =a (x u) (x - i 1)(x y)(x ;+1)(x u )_ ’
IR € P(a u., u;_ 1, z+1" N b ,yl,yz‘, ...,ym)[.ﬂ.

- Then lhe polynommls fo(x) and g(x) in’

P(a u ' il, gy ol b ,yl,yz,. .',ym)[x] k

have a common factor x- y and lherefore R(fo,g) =0

Thus ‘R(f,g) € L regarded as-a polynomlal in

P[a u ll’ ‘+1,.. lt b Yyl’yz" -’ym][lr],

.,'has the value R(fo,g) = 0. when ¥ 1s substituted for u;. 'So R(fg) has lhe
root y So U=y divides R(fg) in :

P[an,rul, sty ol .'..,un,bm,yl;y-z, ...fym][z‘ti] =L

. This is true for all i = 1,2, ...,n and for all j = 1,2, ... ,m. Sinée ‘any &, - yis
irreducible in “L, and u; ;'y is distinct from u;. y whenever G =300, -
the. polynomials u; - y; are pairwise relauvely prime. Thus R(fg) is

d1v151ble, in L by thelr product

n m ’ . . : -

O w-y

i=1 j=1

It follows that R(fg) is divisible by -~ - SRR
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.' . .A n . ] \A
S=a':b’;nHH (u;-

o =l j=l

in M[ul,uz, u',yl,yz,:'...,y 1, where we put M P(a b )

Let us write ' H = R(f,g)/S. Baswa]ly, we w1ll argue that R(fg) and S are -
both homogeneous (§35, Ex. 4) of the same degree and conclude that H s
a constant. Comparlson ‘of a monomial appearing in these polynomlals
will yield that this constant' must be equal to 1, whence R(f,g) = S. The
details are rather tedious. ' ‘ '

From (i), we see that S/a H g(u)
= (bmul"f + e )b, u)" +- ).‘..‘(bmun'" o)
=M ou ™+ ’ ’
m 71 2 "n .
. | € Plb Y19V ...,ym][ul;uz, :;.,lln]
is ‘a symmetnc polynomral in “1’”2; NS over P[b'm,yl,yz, .‘..,ym] anti

hence there is a unique polynomial h'm n indeterminates over the
integral domam P[b ,yl,yz,...,ym] such’ that '

 Slam =h(-a_,a,a_,la, ... 5ala;zsa,/la).
Let us recall that hy is obtamed from S/a"' by subtractmg symmetrtc

polynomtals of the form

k—k kaky - o kygokn o kn ’ ' L.
yo ! 0,2 3"'0n31 1Wngfr 'y'G‘P[‘bp_:’yl’yZ’""yml BN

. D ki ka0 ke kg
where yu, ", el u, ™ » ‘ ‘
We have m = k; by Lemma 38.8(2) since the leading monomial of S/a7

are certain monomials appearing in S/a7.

is b:‘"zil"‘zl mo..u ™. A symmetric polynomial of the form above gives rise

2"
~to a-term
_ kik ykarks a1k, kn
y(-a,_,/a )" a ,la,) q, Ja ) (1a la, ),
. . -k . - " . : Sy i : B .
which is (1/(1") ! times 4 poly‘nomml in P[bm,yl,yz, . ]1(10,(. sl l] As"
m = k, for each of the terms in h, we see arh, is a polynomml in

Plb,3y Yo oY lldgay, g, @ ). Thus g o

S =il(a;")(SIaT) = u,':‘hl'(—an_]/an, “,,,_,2/“# Lrala, tay la, )
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SeP[b ,y,,yz,. Wy ldgay, coa_al B (m)
'and S = h(ao,a ..5,an_l,

nates over P[b ,y,,yz, Y ](Lemma 49.5(1)).

n-: . -

Also N _R(f,g) € P[b b b ) ][ao,al,az,..._a]
- = ‘Plbm,y”yz,. Y ][ao, P ety po@ ]

_and, together with (iii), we - obtain

H= R(f2)IS € P[b ,yl,yz,. Ly aga) a,a).
Thus H € M[yl,yz, ...,ym][ul,uz, ERRLS ] is symmemc in ”1* s e e el and

ktherefore -

H= k(-a, L an'z/ 74, /a o tala )

for some po]ynomlal k inn 1ndeterm1nates over. M[b 52 SN .,_ym]; which -

gives H € M[bm,yl ,y2, ;..,ym][ 0,al, i n_l,an] (Lemma 49.5(1)).

"Now H = R(fg)/S R(f.8)h(aga,, ... a, .4,
coefficients an,an_l <oy, of f(x) by an indeterminate.s does not change
the roots Upslhg -5l o_ff(x), but,~in view of (i), changes S to ™S, so that ’

h(ta,ta,_, '...,tal,tao) = t’"h(a a'l P e ,al,ao) . .

L1kew1se multlplymg the coeff1c1ents a.,a, ... .. a0 of f(x) by an

1ndeterm1nate t changes R(fg) to I™R(f,g), as the determinant R(f,g) has

. m rtows -consisting of zeroes: ‘and the coefficients of f. Thus H does not

change when the coeff1c1ents of f are mu]tlphed by ¢. But any monomial
. k ‘

a,"

Yao"f’a, e M[bm,yl,yz, oy )

changes bthenr to jl(tao)"°(tal)k,‘. (ta'i)"'- = t"°+"’+"'+"~ya0"°a "' .. an"". Thus
the éxponent system of any monomial ya, {’al"l,-..a'l " appearlh‘g;m H is

such that k, +&, ++- + k, = 0. This means ky = k, =:+- = k, = 0 for all -

monomials yaok"al"‘. ak

in M[b rylyyzv ’---9y ]-

Repeatmg the same argumem w1th S/b'l in place of S/a , we get that H

1smM[an,u1, RS u] SoHeM P(a b )cK

a) where Iz is a polynomlal in n o+ 1 mdelerml-

a‘) Note " that: multipfying the._.

a *~ appearing in H and H is a "constant", ie., H is
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S -Thus R(fg) = HS for some H € K The constant term in S -a"'H g(u) is
. l— )

,equal to a?'bj. So R(fg) must. have a term Hd"b" Now R(fg) has the term;
aybg, the product ‘of the entrres in the prmcrpal dragonal Hence H =1 and

R(f,g) = S. This proves (2) From (1) and (u) we get the equatrons in (3)
and(4) : , . R R -

| 56.6 Le'nma Let K be a feld and _f(x) g(x) polynomtals of positive
degree in K[x], say deg f(x) =n and deg g(x).=m. Let a be. the leading =

coefftc;ent of f(x) and b, the leadmg coefficient of g(x) Let [N S be _
roots of f(x) and sl,sz, ¥ roots» of g(x) in a splitting fteld of f(x)g(x)' .

"over K. Then ’ : . S L

R = af:b" HH (r, —s) = a’"Hg(r) (—1)"‘",!72, H»f(s,:).

i=1 j—l :

" Proof: In a splrttmg freld of f(x)g(x) over K, we have the factorizations
X)) =a(x-r)x-r) L (x-r)
g8(x) = b, (x~- s,)(x—S) (x-s, )
' Thus f(x) and g(x) are obtained from = -~ - .-
F) =a(x - u)x = ). (- )

A Gx) =b, (x=y)x- Yp)e (X =Y,
where ul,uz',, ,un,yl ,yz,. -sY,, . are mdetermmates over K, by subsmutmg
r; foru, and s; for y Srnce ‘

R(FG) d"b"HH (u -y) a'"Hg(u)-( 1)"'"b" Hf(y)

o=l =l :
by Theorem 565 this substitution glves

R(fg)—a”‘b"HH r, —s)—a’"Hg(r)-( 1)""'17" Hf(s) o |

i=1 j— ] . ; j—

56.7 Lemma Let K be a field. Let ' -

' oy =ax +a_ix"‘+ +ax+a0' R
be a polynmmal of degree n in K{x]\K and’ L

. gx)=b X" +b, ],_t”“1+-'~+bx+b :
a p()l)nmmal in K[x\K, pombly b = 0. Let rl,rz, censly be the roots of j(x)
in some spllttuzg fzeld of f(x) over K. Then e '
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R(fg)—a’"H g(r)

'Proof Assume first b = () Let F be a splrttrng f1eld of f(x) over K in

which r,ry, ..o, lie and let E be ‘a spllttmg freld of g(t) over F so that

l’ 2’

both f(x) and g(x) spl1t completely in E. Then R(fg) = a"‘ H g(t ) by
' . . T =l !

Lemma 56 6

‘ Assu’me'.now b =0 and let k be the largest index for whrch b, = O Thus
b =b ' =-=b, =0and b, = 0. We put G(x) = bx* +bp Xt

Vbx+b -We get R(fg)— a”""R(fG) from’ Remark 564 and we have R(fG); o

—a"HG(r) by what we have Just proved Slnce G(r) = g(t) for any i ="
i = 1 e 5 . .
1,?.,.. n “we obtaln
R(fg) —a’"'kR(fG) a’"'k a"HG(r) —~a""HG(r) =a; Hg(r)
o Ci=1t : i

This completes the proof :: B S " ST B o

PN

56. 8 Def1n1t10n Let K be a f1eld and f(x) a nonzero polynomral in K[x] "

of - posrtlve degree n. Let a, be the leadmg coefflcrent of f(x) and let -

Ty - - r “be’ the ‘TOOtS of f(x) m some spllttlng f1eld E off(x) over K ’

“Then .
a2"'2H(r-r)2eE

: ’ S R A

is called the dlscrlmmant of f(x) and 1s denoted by D(f)

It seems as though the drscrlmlnant of f(x) depended on the splrttlng
field. E ~we choose and. we had to call 1t actually the d1scr1m1nant of f(x) in.

E and denoted by DE()") However there ‘is no need to refer to the -~

’ spllttlng field since the dlscnmmant is ‘in fact an. element of the field K.
Thls ‘we _prove in the next theorem Co L L

In. the next theorem if f(x) —"a Xta, l;t""l +_} Lo alx + a0 and f (x)

nax" Ty - l)a x"2 e + a,; then R(f,f) is understood to be the. . -

determlnant with n + (n - 1) TOWS, the flrst n-= 1 TOWS be1ng
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aao‘m

_ a, a,;-
surrounded with zeroes and. the last n - being . )

. - ‘na (n- )a’I1 ap o , C
’surrounded wrth zeroes, even if na =0, (n ‘Da,_,= 0, etc. (this happens
when char K =p = 0and pin,a, = =-0, etc) In" other words we. defme

R(fj) as 1ff is of degree n .- 1,. although the degree of f may be less -
" than n - 1 (cf Remark 56. 4) " ‘

56.9 Theorem: Let K be a field and’ f(x) a_polynomial of bosztlﬁe degree
n and let a be the- leadmg ‘coefficient. off(x) Then the dzscrzmmant D(f)r-

- of fix) is in K. ln fact RESLY=(= 1)rn-1i2g D(f)
Proof: Let E- be a splmmg field of f(x) over. K and let I 2 T, be the

roots off(x) in E. We~ evaluate R(fj) We have R(fj) =ar 1Hf (r) by
’ i=1 :

_Lemma 56.7. We must find f (r). From f(x) =a (x r )(x -r ) (x - r ),L :
we get’ - S T )

f(x)—Za - ). = -r,-,)(x—r,+1>.'.L(x4'rn)

=1 ’ o

S0 fr)=a(n ). (- r )0 (- )y =a, T =r).
o T R L

J=i

Thus R(ff)—a"]Hf(r)—a"lH(a H(l‘ -’))_(12"] H(” —’)

i=1 ) jl ’ izf
. . o i
—aa“"zl—[(r~r)-— ‘2H(r—r)H(r—r) o
i izf o l<j T j<l X
sa ] (r, -r) H( D= 1) "_
- i j<i
C=a (l“"zl—[(r—r)n(l)(r‘—r)
A | o ‘t<j )
(1 a_nz H (r _r) (- 1)(n ])+(n-2)+ +2+1 H (r _ r)
: izj 7 o i<j



" =\(_1),.(,.;1.)/' 2n-—2 H (r _ r)z _( 1)n(n-1)/2a D(f) : . a .

i<j

56. 10 Examples (a) Let K be a fleld and ax’ +bx+c € K[x] wrth a ¢ 0
The dlscrrmmant of f(x) 1s( l)a ‘times the resultant ' :

ab}c -|a ‘b>‘c,”_.,;b,__26' . '
20 b 0]=10 -b 2c|=a |, —'a( b? +4ac)—'—a(b2 4ac)
10 2ab| [02a.6 | |7 ° ' ,

-y

hence 1the drscrrmmant of- f(x) is b2 - 4ac 3

: (b) Let K be a f1eld and x3 +px +q € K[x] The dlscrrmmant of f(x) is.
(-1)32217 times - the resultant '

10pqo 10 g 0 ' ,
ey 11 0 ’
1010 p q 0.1 Og,vp q o‘-2p’-’gqg
30p00|=|00-2p-3¢q0 =’301p,'0'
030p0 03 0 p O 03 0 ,
100.30p 00 3 0 p ' P
é»‘_gp —gq (OI V '2p;3q 0 o 3
0.0 -2p -3¢ gZOp 3q|=4p° +2iq
0.3 0:p DA '

‘SQ the discriminant of f(,r) is ejquali'to" —_4p3 - 27q4%.

We now turn our attention to: polynomial equations.

56.11 Lemma (1) Let E/K E /K be fzeld extenszons Assume that there
are field zsomorphzsms p: K — K and p:E— E and that v is an extens:on

'of<p Then Aut E = Aut E i : ‘ S

2) Iet K be a field and f(x) a polynomlal in K[x]\K Let E'and F be two
. splztung felds of f(x) over: K Then Aut E = AutKF

Proof (1) For- any o € Aut B consrder the- mapping »” cnp E —~E. Clearly
P otp 1s a freld 1somorphrsm (Lemma 48. 10) Moreover, for any a, € K,
R :
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there is a unique a € K with-ay = a(p, = a i.e., alqa —‘a '\p‘l =qa and. a \p‘ oyp .
—(a ) ')c\p—(a)c\p—(ac)\p—-a\p-al,sow oy is. m fact aK aulomorphrsm
ofE _Thus we have a mappmg : :

A AutKE—»Aut E

) »0 -y U\P
Now (6 0)A =y (o 1)y = (u’)_‘c\p)(\u_ tp) = GATA for any o,t € AutE, 50 A is a
group homomorphrsm Repeating the same argument wrth KE,(p v and K

_El,(p ,\p mterchanged we conclude that " the muppmg
. B Aut E — AutE’
R wew '

is an inverse of A, s0 A 1s.one to-one and onto A.u E Thus A is an

1somorphrsm and we get AutE Aut E

(2) The fields E and F are K- 1somorph1c by Theorem 53 8, so the claim
follows 1mmed1ately from part (1).: L o

Thus Galors groups of ‘any two splitting fields (over K) off(x) are iso-
morphrc Thrs Jusufres the definite article in the next definition. '

56.12 Definition: Let K be a field and f(x) a polynomial in K{x]\K. The
Galois group Aut E. of a splitting field E of f(x) over K is called the Galoxs
gmup of f(x) € K[xj ' S S , :

- 56. n Examples: (a) O@) 15 a sphlllng fxeld of x? + I e @[x] over @ and
- heénce lhe Galois .group of X%+ 1 € @[x] is Aut @(1)"‘

i (I)) The Galois group of_ x3- 2 [(p],q>2,(p3,(p4,q>5,q>6] = §;. Here we used the
notation of Example 54. 18(4) ' '
‘ (¢) The Galois g,roup“ ofv X~ 2 s {(p],oz,px,q)“,@s,(p@(pr(px]’: <o,,r>"=" DX.' Here
~we .used the notation of Example. 54.18(b). Wc know‘__l,hal D, =
{1 (13). (74) (17)(34) (13)(24) (14)(73) (1234) (1432)} ’
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(d) Letp be a. pr1me number The f1eld !F is a spllttmg fleld of x" - x: ‘
over F (Example 53. S(f)) Hence - the Ga101s group of xP - x € !F [x]'is
- AutFIF [x] <o>, where.o 1s the homomorphlsm a— a” (Example 54, 18(c))

.

56. 14 Theorem Let K be a fzeId f(x) a ponnomzaI in K[x]\K and Iet G '

be the. Ganxs group of. f(x) Then G lS zsomorphlc to a subgroup of a‘
symmetrtc group S ) ] Lo -

'Proof Let E be a sp11tt1ng f1eld of f(x) over K and let al,az, 'a> be _the .

distinct roots of f(x) in E (l < deg f(x)) Any ¢ € G Aut E maps any
a toa a; ‘and thus g1ves rise to’ a permutatlon o, € S namely l—> J. Thus
o, 1sg1venbya<p—>a : ! : ‘ :
v Now the mappmg g: G - S s a homofnorphisrn of g_ro’u'psjsince, for any:-
(p N R - ; e .
SP,\P,E G, we have' _ SEERIRUV R L g
' : ey ";'ai(qz‘\p) = (alqi)\p =a, ¥ =’a.ip (put:i"ao‘ =j) .
B R A e I

=4, (la)a l(ao) L

"~ fori= 1,2 n and 50 c:w;— GOG‘J’ Here ¢ € Ker o if and only if a9 = a for g
all'i. =12,...,n. Thus" an automorphism in Kero fixes each .¢element of Kf,

and fixes each a; Slnce E is generated by a over K (Example 53. 5(d)) we

deduce that an automorphlsm in Ker .o fixes all elements of - E Thus Ker o
) = (). So © is one-to-one- and G is 1somorphlc to Im o < S IR =

DN

S

The preceding proof is qu1te s1mple G acts on the set of distinct’ roots of
4f(x), and. -the: permu,tatlon_vrepresentatl_on o is one- -to-one; thus G -is-
’is'omorphic ‘to- a subgroup of Sy and. Sy itself is- 1somorph1c to'S . We will
often _ 1dent1fy “the Galms group of a polynom1a1 with "its : 1somorph1c'n V

‘1mages in Sy and in-S,.

The Ga101s group of a polynomlal reflects many 1mportant propertles of
that polynom1a1 We describe how - 1rreduc1b111ty is ‘reflected - m the Galois -
group. It turns out - that the decomposmon of f(x) 1nto 1rreduc1ble"‘
polynomlals is 1nt1mately connected w1th the partltromng of -its roots

into" d15_|01nt orbrts -Let; us recall that a group G is said to act transrtlvely'i -
on a set X prov1ded for any x,y € X there isage G such that xg =y :
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_(Definit'ion 25.11). IfLG S acts transmvely ‘on. {1 2,: ‘n] then we, shall i
call G atransitive subgroup of S . Thus G < S is transmve if and only if, -

for any ij €\' (1,2, . n] thereisate G such 1hat it -j

56.15 ,‘Examples: (ai) A 'subgroup 'vG‘of Sn is transitir/e if ;and on]yvif‘, for

any i € {1,2,...;n}, there is a o € §_ 'such that 1o =i. The necessity of this .

eondition is clear. Corrversely, if the condition is satisfied and i,j are in
{12,...,n], thereareorerrthla—zandlr—J,soo reGmapszt01,
_hence the condmon rs also suffrcrent -

(b)yIfH < G <., and H is transmve, ‘then G. is also transitive.

(c) A, = {1(123)'(132)] is a -transitive subgroup'of S, for  there are
: permulatrons o, in A, with la =i for any i =1,2,3, viz. ¢, =1,0; = (123) and

= (132). Then S, rs “of course -another transitive subgroup of S, On, the
_other hand {1(12)] is not' a transitive. subgroup of S, for lhere is no
permulallon o in {1, (12)] that maps 1-to 3. Likewise {1,(13)}.and {1,(23)} are
not transmve subgroups of . ;. Certainly {1} is not a transitive subgroup
of S,. Thus A, and S, are ‘the only transitive subgroups of S,.

(d) Let o = (12 .n) € S Then <o> is.a transmve subgroup of S since 1o*
—zforany1—12 -

(e), IfG is a transmve subgroup of Sn, 50 is any conjugate of G. Indeeo,\ if
"G .is transitive and 'r € S' lhen for any i,j € {1 2, 7ou,n), lhere isac€G

-1

that maps it o) e, itlo 1 ‘—_[ Thus lhere isac’e Gr ‘that maps i lO_I ;

dnd G*® is therefore lr.,msmve

(fy It. follows from the last two examples thal <(1234)> .md its conjugates :

T <(1324)>, <(1243)> are transitive subgroups of §,. Also. v,

{1, (12)(34)(13)(24)(14)(23)] is a transitive subgroup of Sy From V A47
.und V,< §,, we see that A, and S, -are tr.msmve subgroups of S,

 Likewise D = {: (13), (24) (12)(34) (13)(24) (14)(23), (1234) (1432)] and its
: conjug.ues ST
A r,(]2),(34),(1 3)(24),(12)(34),(14)(32),(1324),(1423)]

{1, (14), (23), (12)(43) (14)(23),(13)(24), (1243),(1342))
are transitive subgroups of §,. On the other hand, {1, (12) (34), (12)(34)]

and -its conjug.nes are not lr.msmve subgroups of §,.

)
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56. 16 Theorem Let K be a feld and let f(x) € K[x] be a monic poly-

‘nomial havmg no multiplé " .roots. Let E be a spluttng field off(x) and G =

Aut E the Galois ‘group ofj(x) Let rl,rz, censly € E be the roots -of f(x) Let:
m =0 and m o=n.

( 1) Assume. the notation 50’ chosen that - " L

T~ {1’ 29-~ r ] {rl+l’m+2’ e )r ] [r +1’m+2""'rm3]"

"7'?.{"' l+1 m“+2"'."rm,‘]'

are the disjoint- orbtts under Ihe act:on of G: Put

f(x) (x - m+1)(x m+2) (x r)eE[x] forz-12 'k

Then f(x) € K[x] andf(x) is trreductble in K[x] so that

A =f (X)fz(X) Sy

is the canonzcal decomposmon off(x) mto 1rreduc1ble polynonuals zn K[x] -

| '-.(2) Letf(x) fl(x)fz(x) fk(x) be the canomcal decomposztton of f(x) tnto

-'momc zrreduczble polynomtals in K[x] and. Iet r.- +1, m +2, be the .
rots-of ) (=12, .0k). Then Lo T
._,{1,2,.. rn}-{r,z,, N }U[r +I’m+2" iy }U{r +l’m+2’ il ]
, 1 LU u {r 47 m 1+2,...,r }
is the partmonmg of {rl, o } mto dzs;omt orbtts under the actton of G

-Proof (1) We f1rst prove that J; (x) ¢ [x} The coeff1c1ents of f(x) =
(x - Tom, +1)(x m +2) J(x = T ) are elementary symmetrlc polynomlals o

inr, ,,+1’ T +2, ""’m',.' Any automorphrsm -in. G maps. each one of these
.,r_-to one of them agam and thus leaves the coeff1c1ents

,1+1 m 42 m;.
of fi(x) unchanged 'So the coefflclents of f(x) are in the flxed field - of G.

Now - f(x) - has no multlple roots, $0 the 1rreducxb1e d1v1sors of fx) are

separable over K and, since: E is a Spllttmg ﬁeld of f(x) over. K- we infer E S

is. a Galois, extens1on of . K (Theorem 55.7).and: the flxed f1eld of G 1s_

.exactly K. Hence f (x) €K [x] =

We prove next that f(x) 1s 1rreduc1ble in K[x] Let g(x) € K[x] be an

V'lrreduc1b1e d1v1sor of” f(x) In E there is a’'root of g(x), say r ‘+1 Then .

fOr any P € G, ’m qu 1s also a root of g(x) But {r 1@ <p € G} —;orbrt of:‘.

o ] Thus each of r,

Tm l+1 [rm = m +2’ +l’ 2

g(x) These raots are d1st1nct for f(x) has no multlple roots " Thus g(x) has

)

N T

: .~,rm 1s a root of: o




at least m, - m, | distinct roots."Thén m, < m, é’f < deg g(x) < .deg f(x) =
m;-m; and S0, g(x) - fi(x). Thus f(x) = g(x) 15 irreducible in K[x]

It follows that f(x) —fl(x)fz(x) Ji(x) is the [eanomcal decomposmon of ’

'f(x) into 1rreduc1ble polynomials in Kx]. . |
|

o

) Suppose now f(x) fl(x)fz(x) fk(x) is the canomcal decomposmon of

f(x) into irreducible polynomlals in K[x]. We are to show that the roots of A
f{(x) make up the orbit of r_ Indeed, if ¢ ,€_G then T, 419 is also a
root of £ and thus:’ - ' ‘

otblt fof T, 41 S [’m,._‘+|’ T, 422 RN A N

.1+ !

On the other'hand,” if re Eis any root of f(x), then k'(rm.‘,'ﬂ) = II{(r)A by a:

K-isomorphism v that sends r_ tor (Theorem‘53 2) and y can be

at1
“extended to a K- automorphlsm ® (Theorem 53.7; E is a splitting field of_f
f(x) over K(r ' 1) and over K(r) by Example 53.5(c)). So there is a ? € G

with r H(p =r and any root r- off(x) is in the orbit of . » Thus:
. <l
(r, (TR rmi} c orbit of r .--1+',"
This corﬁpletes the pr"oof.y o o o

56 17 . Theorem: Let K be afeld f(x). a polynomzal of powttve degree n
in Kix| and let G be the Galois group of fx). Ifj(x) is zrreduczble and- -

separable over K, then n divides IGI and G is zmmorpluc o a. transzttve
mbgroup ofS

Proof: Lét E be a splmmg field of f(x) over K. Then E is a Galois exten-
sion of K (Theorcm 55.7) and, under the action of G, there is only one

orbit of the roots of f(x) Thus G acts transitively on the Sel of roots of
flx) and its isomorphic: 1mdge in S, acts transitively on (1,2, ...,n}. So G is

1somorph|c to a lransltlve subgroup of '§,. Furthermore, lf re E is any
root of f(x), then K(r) is an intermediate fleld of E/K and IK(r):K| =deg f=
n (Theorem 50. 7) and, by the fundamemal Theorem of Galois lheory, G
has a subgroup K(r)" of mdex 1G: K(r) t =1K(r):K| = n. So n divides |G| by
Lagrange's theorem. - R o
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We shall regard the Galors group as a subgroup of S It will be 1nterest-‘ -
1ng to determine ‘the role of A This is connected wrth drscnmrnants

'56.18 Theorem: Let K be a field such that char K = 2 and let fix) € Klx].
Assume deg f =-n > 0-and let E be a splitting. field of f(x) over K
: Suppose f(x) has n dtsnnct roots Iysly Lol m E Put '

e H(r r) —(r rz)(r - r3) (rn_ r)andd= 82
i<y o - o 7

) Fbr ¢ €-Auty E< S there holds Scp = 8 zfand only lftp is in A and Sp =

-8 tfandonly xf(pts in S\A ) C

(2).d, whzch is an elements- of E is- actually in K. In fact d— a *Z"Z)D(f) '

wher_e a,is the leadtngv coeff czent and D(f) xs the dtscrlmlrzant_ ‘of flx).

_ ‘Proof (1) We have Sqa = H(r -r.) =»( oy ’)'-; o e ) .
’ l<] .
where r; —-rtp We d1v1de the ordered pa1rs (l,j) wrth i< 1nto two

~

classes accordmg as i< j or:i” > j’. Then Sq;) = H(r —r) H(r

- : o ; R 2 i<j j’ o o
' ‘ ; <y ‘.»">’,“f R

= H(r -r) H( 17 r)

i<j i<j . o T

'_r <jtoo >j
= H(r —r) H(—l)(r r) / (interchange the""durnnry indices i end j)'

i<j' j<i . ) o L R o
L  1>: ' C T B
= H(r -; D). 1)’ H(r —r ) (where s is the number of factors in

i<j el < o . -

<o T A T <

the second product hence s 1s the
- number of inversions " ‘of the permuta-'

tion (1 2, T ‘n) =(p e‘AutKE<Sn)‘

=(- 1)‘ H(r ~r;) H(r = 8(<1>) H(r =ty )~ 8(q>) H(r -7;) —E(tp)ﬁ
. l‘jl j<l . B l<j ;,<j .
i<jo o L jrsit . s

l
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» Thrs proves (1)

7 (2)- The. equauon d=a '_(Z"Z)D(f) is 1mmedmte from the deflnmon of .

discriminant (Defmmon 56.8). This “implies of course that d is in K, since
D), bemg a, -1 tlmes a determinant of a matrlx w1th entries in K, is:an

element of K. Alternanyely, we have 8(p =8 and thus dq; = (82)qa = (Sqa)z
(8)* = 6% =d for any ¢ € Aut,E. So d’is in the fixed field of AutE. Since
the roots of f(x) are sxmple by hypothesrs the: irreducible d1v1sors of f(x)

are- separable over K and thus E is Galois over K (Theorem 55.7), so the "

. »flxed f1e1d of Aut E is K and drs in K : ) . ) o

56.19 Theorem: Lef K 4be a field such that char K = 2 and let f(x) € K[x]."
Assume ‘deg f = n > 0 and let E be a splzmng field of f(x) over K.

Suppose f(x) has n dtstlnct roots r,ry, ....r, in E so that E is a Galois

extension of K -(Theorem 55.7).\ Put ;8:‘ H(ri—rj). Corzsidcr the Galois
' : i<j
~ group AutyE as a subgroup of S,

Aln the Galois correspondence the mtermedzate fzcld K(8) corrcsponds to

“'_Aut EnA An parttcular Aut, E <A, tfand only: 1f8 € K.

Proof In the Ga101s correspondence the subgroup of Auf E correspond-
i mg to the intermediate field K(8) is :
- K(8)” =[¢x€AutE ap =a forallaeK(S)]
o € AutyE: 89 =8}
_{cpeAutE <peA]
: =AutEnA, ' i
by Theorem 56.18. In parllcular Aut E < A, 1f and only if Aut, En A =

[

" Aut E so if_ and only if K(8)'= Aut, E K’ hence if and_ only if K(6) =

hcnce if and only if § €. K.~ -~ T . tl

We ‘now study Galoxs groups of polynomlals of degree 234 Wc start

" with. quadmuc polynomlals
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~56. 20 Theorem: Let K be a fzeld and f(x) an trreduczble polynomtal in

K [x] of degrec 2. Let G be the Galois group of f(x), regarded as a subgroup' .
of S,. If f(x) is separable over K, tlzen G = Sz~ C lff(x) is not separable ‘

over K, then G=1

56.21 'i‘h'eorem: Ife’t' K berq'field and j()vc‘) an irredueibie sgpdrqble poly-’k

“then G = A, in case D(f) is: the square of an element in K, and G = S3 in:

Proof: Iff(x) is separ'ible over K, then G is a transmve subgroup of S, T
(Theorem 56. 17) -Since S, is the only transitive subgroup of §,, the result'—
" follows. If flx) = ax? + bx + ¢ is not separable over K, then f(x) =2ax +b =

0, so 2a =0= b (and a =2 O), so char K = 2 and f(x) = a(x -+ e) for some
' suitable ¢ € K, and a sphtung field of f(x) over K is K(r), where r is a root .

of f(x). Then any e inG maps r tor and thus fixes K(r). ThlS means G

' consrsts of the identity mapplng on K(r) Hence G=1. - o o

nomial ‘in- K[x] of degree 3. Let G-be the Galois group of f(x), regarded as
a subgroup of S;. Then G =S, or G.—A More speczﬁcally, zfchar K= 2,

- case D(f)yis not ‘the square of any element in K

. Proof G isa transmve subgroup of S (Theorem 56 17) Since- S, and Ay a
are - the only transmve subgroups of S (Example 56. 15(c)) the result

fo]lows

"'Assume in" addition char K 2 Then G = A 1f -and only if 8 e K in the\

notation of Theorem 56.19. Slnce 8%2=a '4D(j) where a, is the Ieadmg

coeffrcrent of f(x) (Theorem 56.18), we conclude G = Ay if and on]y if .
'4D(f) 1s the square of an’ element in' K, thus if and only 1f D(j) is the.

‘square of an element in K. o : u]

56.22 Examples: (a) Let 3 + 6z + 2 € E,{x]. This. polynomial has no root
in F,, hence is irreducible and then clearly separable. over.F,. Tts dis-

criminant —4(6)3 272t =4 + 1-4=1=12% (Example 56. IO(b)) is a square

in iF , 80-the Galors group of ¥+ 6x + 21 is A

(b) Let’ x +5%c+5€ @[x] ThlS polynomlal is 1rreduc1b1e by Ersenstems.'

crrterron and is separable over @ smce char Q .= 0.- The discriminant is
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equal to -4(5)3 - 27(5)2 = —1175 Wthh is not a square in @. So. the Galons
groupofx—5x+51sS '

Next we mvestlgate polynomlals of degree four “Here S, w1ll come into
play. We know. that V = {1, (12)(34) (13)(24), (14)(23)} is an .important
normal subgroup of §,. It will be useful to find the intermediate field"
corresponding to 'V, in the Galois correspondence.' )

' 56.23 Theorem: Let K be a field such that char. K =2 ond let fix) € K[x] -
be a polynomial of degree four. Let E be a splitting feld off(x) over K.

" Suppose f(x) has four distinct roots r,r,,r5,r, in Eso that E is a Galois

1272734
extension of K- (Theorem 55.7). We put « = =r r + I, B=rrytnr, and y

= rr, +ryry and cons:der the Galois groupAutKE as. a subgroup of Sy

. (Theorem 56. 14).

" In the Galois correspondence the mtermedlate feld K(a,B,y) corresponds "
to Aut E n V

'Proof In the Galois correspondence the subgroup of. AutKE -correspond-
ing to the mtermedlate field K(«,B,y) is
: K(a,ﬁ,y) ={p € AuyE:ap =a for all ac€ K(a ﬁ,y)}
{cp eAut E: o9 = o, bp =B, yp = v}

Ifo = (12)(34) € Aut E, then P fixes « smce oxp = (r + 1 4)<p =r,r + r4r3
=, + I = o Slmllarly Bo = (ryry +1,r)e =r,r, + r‘r =pand yp = .~ ‘
(ryry +1ryr3)e =ryry +rr, = y. Thus (12)(34) € K(a,B,y)" if (12)(34) is in

Aut E. In like manner, one. verifies that (13)(24) and (14)(23) belong. to
K(a,ﬁ y)’ whenever they are in Aut E This proves V n Aut E< K(a, ﬁ,v) o

" To complete the proof we show for -any ® € AutE, that ¢ ¢ V4‘ 1mp11esi
® ¢ K(x,B,v)". “Indeed 1f P ¢ V then ¢ 1is in one of the cosets/V4(12),
V,(13),-V,(23), V,(123), V,(132) of V,inS,. If o € V,(12), then P = lp(l.2) ,
for some y €. V n Aut E, therefore (rlr3 +r 2P = (r r‘ + Iyl row(12y = '

(ryry + ryr,)(12) and ) does not fix B since
,3+rr4—ﬁ ﬁcp—(rr +rre =(nr +rr4)(12)—r23+rr
‘ylelds (ry = ryry = (r 2)r and so r, = r2 or ry =r,, contrary to the

hypothesis that the roots of f(x) are distinct. Slmllarly, lf Q€ VV4(13),,'then’
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P. docs not f1x Y and 1£ P € V4(23), then P does not flx ‘& lfo € V4(123)

then- ¢ does not fix « :since li ~ ‘
‘ 34\—tx—ao—(r r2+r3rd)q>-(r r2+r3 4)(123)—r2r3+r1 PR ,
ylelds (r )r2 =(r-r )r4 and SO F =Ty OF Iy =11y, contrary to the

hypothe51s Slmrlarly, if 9.€; V4(132) then ® does. not fix ‘«. " This proves
that no automorph1sm m Aut E\V can be 1n K(a,b,y) Hence - we o_btam
CK(a,By) <v, nAutE as was to be proved S T -

56 24 Defmltlon Let K be a. ﬁeld and let f(x) € K[x] be a polynom1al of

degree four having four. dlstmct roots rl,rz, 3o, N2 spllttmg field of f(x).
- over K. We put & =nrr, + r3r4, B =rry+ rars. and'y =r r4 + rory. The

polynomlal (x- a)(x - B)(x - y) € K(a,b y)[x] is called the resolvent cubic

off(x) R T e -

,56 25 Lemma Let K. be a feld and let f(x) € K[x] ‘be a polynomtal of
degree four having - four dzstmct roots ina splitting field of f(x) over K.
- Then the resolvent cubxc of f(x) is a polynomtal in K[x]. In fact, zf f(x)
x bx + cx2 +dx + e, then the resolvent cubic of f(x) is equal to _
: x3 - cx + (bd 4e)x (b2 4ce + d2)

Proof Thrs is routine computatlon Let o, 2,r3,r4 be the roots of f(x) ina . _

»-sphttmg field of f(x) over K. The resolvent cubic of f(x) is.

: x - (a+b+v)x2+(ab+av+bv)x («By), - .
where a = rlr2 drary, B=nr 3 + r2r4, y = rlr4 + r2r3 ,Let o, be the m-th

»elementary symmetric polynomlal in 4 mdetermmates Then we have
a+Bry=nr,trrygt Tyt + rr,+ r2r3 = cz(rl,rz,r3,r4) =¢;
a6+ay+6y-r2r2r3+ e = -
, (r tr+rt r4)(r r2r3 + rlr2 PR r3 st r2r3r4) 4rlr2r3r4

= al(r ,r2,r3,r4)a3(rl, 2,r:,,,r4) o, (Fpor. £ 3,r4) =bd - 4e; ‘ 5
aPy=--=ble-dce+d . 0w
56.26 Theorem: Let K be a field and let fix) € K[x] be a polynomial of -
degree ~four, which_is- “irredicible -and separable over K. :Let E be-a

. splitting field of j(x) over K and let rl, o 3,r4 be the (distinct) roots of f(x)
in E. Weput X =rr,tr 4,B—l‘l‘3j- s and y = rir,+ryrs. Let G = AutE"
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~ Now E is Galois over K(«,B,y) and the Galois group Au

be the Galozs group of Ax), Conszdered as a subgroup of S - We put
K (a, ﬁ,)') K f m; Then ‘G can be descnbed as follows :

< m = 6. .
e om =3 »\ ‘ - ,
= m=2 andj(x) is zrreduable over K(a ﬁ,Y).
= = 1 ; .
e m =2 and ﬂx) is reduc:b]e over K(a,ﬁ ).

Proof: Since 'f()é) is’ irreduglble ‘and” separable over .K, its roots are"
distinct.- We know' that G is.a transitive subgroup of of §, and 4 divides
|Gl (Theorem 5,6.17)._The transitive subgroups of §, whose -orders are
divisible by 4 are Sy ‘theSyloW 2-subgroups. of S, (isomorphic to Dy),
V, and the C)'CIIC groups generated by 4-cycles like <(1234)> (Example :
56. 15(f)) Thus G is one ofS A gD V Cy -

' The mtermedlate fleld K(a,B,y) corresponds to V,nG (Theorem 56. 23)‘

K( .B.y)
V n.G. Since: V, 9§, wehaveV nG < GandsoK(aﬁy) is, a.Galois

extension of K. and the Galors group of K(a,B,y) over'K is (1somorph1c to)
G/(G nv )(Theorem 54, 25(2)) We get :
“m= IK(a ﬁ,y) K| = |Aut K(a,B; y)l IG/(G nv )I and

G=S, = m =/IG/(G_ 0 VI = 1SV, = 6
G=A; = m=IGAGn VI =1A,/V,|=3; :

Gz=D; = IG/(G nVvl= ID8/V | = 2; moreover, E-isa
spllttmg field of f(x) over K(a B,y) and AuK( B E=K(a,B,y)-= Ven D =
V4' is a transitive subgroup of §,,s0 f(x) is irreducible over K(a,ﬁ,’y)_ by
Theorem 56.16; ) '

G=V, . = m—lG/(GnV4)|—IV/V|~l
G=C, = IG/(G nvl= : . v
S =1{1,(1234), (13)(24) (1432)]/{1 (13)(24)}! =

(eventually ufter renaming the roots, we .may assume; - without’ loss of

7 generality, that' G = {1,(1234), (13)(24) (1432)}); moreover, AutK(u By)E

, K(a,ﬁ,y) =<(1234)>nV, = <(13)(24)> is not a transmve subgroup of §,,
f(x) is not irreducible over K(a,ﬁ y) by Theorem 56.16. - '

!
This proves the = assertions in the ‘statement of the theorem. As the |

five cases arc mutually exclusive, the converse assertions are. also valid.
‘ o : ‘o

E=K(a,By) is



.

56. 27 Examples (a)_ The ' polynomlal f(x) =x%- 4x +1 € @[x] has no_- '

1nteger roots. and  is - easrly verified to have no quadratic factors in Z[x],

-so f(x) is 1rreduc1bIe over Z ‘and over @ (Lemma 34.11). Slnce char @ =0,

f(x)is separable over Q. LIn order to determine its Galois ‘group G, we

find the resolvent cublc of f(x) ‘The resolvent cubic of f(x) is. -
=x3+4x®-4x-16 R T
= (x + 4)(x - 2)(x + 2) T

. and the Toots a,ﬁ,y of the- resolvent cubic are -4, -2, 2. Thus @(a,ﬁ,y) =
vand m = |Q(x,B,y):Ql = 1 Theorem 56. 26 yrelds G= V

From f(r) =0 (r 2)2 = 3 we' see that the roots (say in IR) off(x) are '_ K

-Note that r 1/r r3— r1 and r =—1/r Srnce “
(12)(34) € V,’=G fixes i, +r2 =6, -
(13)(24) € V G ﬁxes r ,- hence also r 2 \/_

(14)(23) ev, G ﬁxesr +r -\/2 the Galors correspondence

is as deplcted below.

o)

06y o(3) QWD) <124 <134 (e

@ .

V'4,

(b) Let f(x) =x* + 5x> +5 € Q[x]. Then f(x) is irreducible over Z by ..
Eisenstein's - criterion: ‘and also over' @ by Lemma 34.11. Thus f(x) is

separable over @ Let G. be the Galois group of f(x). The resolvent cublc

of f(x) is x3- 5x -~ 20x +100= (x - 5)(x = 20) =(x- 5)(x 2‘/—_)(x + 2\/5)
with roots" a,ﬁ,y = 5, 2V5, 22v/5. Hence' @(a,ﬁ,y)—@(\/S) So Theorem " )

+ 56.26 gives, G Ds or G= C In fact, since
. g 5 : ,
ﬁ(x) = (xz + ﬂ) (xz + 5%)

is reducible over @(\/5)» we have G = C,. .

=5 = (-4)x? +(00 41)x - (021-4( 4)(1)+02)

R s

b
;
L

B
i
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(c) Let f(x) = x* - 2 Q[x]. Theh‘f(x‘)“is ifrcduc{iblefover O by Eisenstein's
criterion and Lemma 34, 11 Let ‘G be the Galois group of f(x). The
resolvent cub1c of f(x) is x3 + 8x, whose roots. ‘are «,B,y = 0, 2\]21 -2v2i.

Therefore m = I@(\/Zz) Q=2 and G = D or G = C, Itis easy to see lhatr

fx) is 1rreduc1ble over @(\/21), SO we get G =D, f_rom Theorem 56.26.

-

Exercises - -

Fmd the resultant R(fg) when f(x) =x3 4 4x ~ 3x +x - 2 € @[x] and )
g(x) x - 3 € Ox]. R 3

» 2Letheaf1eldandf(x)—ax +a_1x""+ T+ ax +ag, (x)—bx+b
- polynommls in K[x], yvn_th b, # 0. Show lhath(fg) = (-b,)"f(- bi1by).

‘3..Let K be a field and f(x) = ax" +-a".l_'1x_’k’.‘1 +oeee a X+ ao, A
‘g(x) =b,x"+b, X"+ bx + b I > m, show that R(f+ cg,g) = =

.R(fg)forall ceKk.
_ 4 Let K be a field and fg h € K[x] Prove ‘that R(fh,g) = R(fg)R(h,g)

5. Let K be a field and fg he K[x] Prove that D(fg) = D(}‘)D(g)[R(fg)]2 and
that D(f(x)) D(f(x - c)) for any ¢ € K. :

6. Let K be a field and f(x) = ax3 + bx? +cx +d e*K{x]. Prove that
' D(f) = b*c* + 18abed - 4ac - 4b3d - 27azd2 '

'7 LetK be a field and f(x) = x4 +.ax? +bx+c€ K[x] Prove that
D(f) = -4a3b? + 144acb2 + 16a’c - 128a2c‘2 +256c3 - 2704, o

8. Let K be a 1ield f(x) a'p’oly_nomial of degree n in K[x],_'with. leziding
coefficient’ a, Cand let ’1v’2' ceealy be the roots of f(x) in:some splitting field -

of f(x) over K. Put R and km =r"+ - ot rn'" for m € N. Show'.

that
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o D(f) =a2n‘~2 5 “n
S A 52,1,-2 B

: V(Hint multrply two Vandermonde determlnants)
8. Where did we use. the hypothesxs char K¢ 2 in Theorem 56 18"

9 Find the dlscrlmmants and Galors groups of the followmg polynomlals
(a)x +3x—1€@[x] . :
- (b) 3 —2x2+4x+6e @[x]
(c)x -x+2€IF[x] o
(d)x +3x—3€lF[x] B T
-10. Find " the Ga101s groups of the - followmg polynomlals over the flelds '
indicated. ~ - S ’
(a) x - 2 over @(\12) and over @(\/21) - B
(b) @3- 2)(x - 5).over Q@ . o
(c)x = 8x2+ 15 over @. *'1 e Lt o
) x* + 4x + 2 over@ and over @(\/2) . i ,
(e) (x2 = = )(x? - 3)(x - 5) over @ over @(412) over @(\f 6) and over' -

'@(\!_\/_)

1. Let K ‘be any arbltrary ﬁeld and f(x) =x3 - 3x + 1 € K[x] Show that f(x) -

" is either ‘irreducible over K: ‘or sphts in X..

12. Let K be a fleld and f(x) an 1rreduc1ble separable polynom1a1 of
~degree three in K[x]. Suppose ’1’2'3 are the roots of f(x) in_ some

splitting field of f(x) over K. If the Galois group of f(x) is 83, show that in

-the . Galois . correspondence K(r) corresponds to’ the subgroup {1 Gk)} of -

S3» where[u,k}-~[123} I -

13 Prove that S has no transmve subgroup of order ‘six.

14 Let V4 be a prlme number and G < <S8, Show thatv G is transitive if and
only if p divides the order of G. ‘ : Coe :
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R - 8§51 -
‘ ~Norm and Trace

i

In this ‘pa‘rag'raph, we - introduce norm and trace of_elemenrs in an exten- -
sion field.. These’ can- be. defined fo_r any finite dimensional extension, but
‘we restrict ourselves to the ‘imbor‘ta_nt caée where the extension is
separable. - ‘ S ' - '

. In order ‘to define’ norm and trace, we need K- homomorphisms of " an
extensron fleld of K. Im the case of a separable extension, these are easy -
to describe. : ) '

"L'e't ‘K be a field and E a finite. dimensional separable extension of K and
N a normal closure of K over E so that N is finite dimensional and Galois
over K (Theorem 55. 11) Let us put |E:K| = n.:Since E is finite- dlmensmnal /
and - hence finitely” generated (Theorem - 50.10) -over K, there is an'a € K~

such that E ='K{(a) (Theorem - 55.14). Let f(x) € K[x] be the (separable)" '

minimal polynomial of a over K, so that deg f(x) = IK(a) K| =|E:K| =n

-~ (Theorem 50. 7) Since N is- normal over K and f(x) has a root'a in N, the

polynomlal flx) sphts in' N, say:
fx) = (x= a‘)_(x a,).. (x—-an), ©q =a,-a, (s a, €N’
and a;,ay; ,a, are ‘pairwise distinct. Then K(a) and K(a‘.) c N are K-iso-
morpliic by ~Theorem- 53.2, n:umel»),r by the K-i‘s‘_omlorf)hism‘
N N
ul - ', - Ul
=K(@)=Kla] — Kla)=K(a)

k +ka+---+k (1"‘2+k' el ko +ka.+---+k a? ik art,
0 1 n-’2‘ . =27 nlt

where k L kn 2,k € K Thus edch W is AK homomorphlsms from E -

. vmm N. Conversely -any K-homomorphism w: E — N must map a to one of

d,.dy, ‘..,an' and must coincide with one of LTE OYERR 90 {L[)],Lpz, ...,Lpn} is

the complete set of K- homomorphlsms from E into N.

~Wesgive a gc:rer:rlizatiorr of- this result.



e/,

57.1. Lemma Let K be a ﬂeld and E a fmlte dtmenszonal separable‘
‘extension of K. Let L be - an- mtermedtate fteld of E/K and let N be. a'
" normal closure of K over E. 1f<p L— N is a K-homomorphzsm, then ¢ can .

be extended 1s exactlyIE LI ways to a K homomorphzsm E—

N i
VE wasa,l—lp (i=12,...m1¢cL)

‘-vL )

K
Proof Since E is f1n1tely generated and separable over K, it is a simple

extension of K, say E = K(a) (Theorem 55.14). Let |E LI m "and g(x) € L[x]
the. minimal polynomial of a over L so thdt deg g(x) =m. Let f(x) be. the

- minimal® polynomial of a over K. Then f(x) splits in N because -the irre-
- ducible  polynomniial f(x) € K[x] has- a root in N ‘and N is normal over K.

Slnce g(x) divides f(x) (1n L[x]; Lemma: 50. .5), the roots of. g(x) are all in N.
Let a'= al,az,. .4, € N be the roots of g(x) “Then any extensron p:E-> N

,w a K homomorphlsm) of ? must send a to one of ‘11'“2’ ;.., - and any !/

inL tolp, and  thus. must comcrde with one of. the mappmgs

e E=L@)= L[a] ;» Ligl=L(@)< N

h¥hat ""2+1 @ ) + (o)a + - + PO Ol ;'

plys oo l € L), where i=12,...,m; and these mapplngs R »are>

m2’ml

‘indeed extensions - of ¢ (smce q) l’—> 1 @) and field homomorphisms (cf.

Lemma 53.1, Theorem 53.2). Thus [q)l,tpz, SeoW, } is the complete set of K-

homomorphlsms from 'E into N Wthh are extensions of o. o

We can now give the. definition of norm and' trace.

57.2. Defmmon Let K be a f1eld and E a f1n1te dlmensmnal separable

extension of K. Leta € E. Choose & normal closure N of K over E and let
{<p1,<p2, ....®} be the set of all K-homomorphisms from E into N'(so k =

|E:K1). The norm ofa € E over K is denoted by N x(a) and is ‘defined asv
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4

:\ : E/K(a) = (a<p,)(aq>2) (aq,k)
: The trace of ace E over K 1S denoted by T K(a) and is defined as

TR E/K(a)‘—‘,a‘pra"z T A%

(a) and . N

E/K E/K

(a‘) therefore de(pend on E, K- as well as a. It seems as

"~ . though NE/K(a) and TE/K(a) depended “also on the normal closure N we: ’

_choose, but they actually do not depend on N Thls wrl] be provedV

-'shortly (Lemma STAGY. ©

; have : . » N '
E/K(a) = (aq> )(acoz) (awk), TE/K(a): ao] tagy+- +—g<pk,
where {wl.wz,. %) = Au ST B

57.3 Examples (a) Consrder lhe extensron C .over R. Now C is GJIOIS
over B and Autn(E = {x,(p] where @ is the conJuganon mappmg Thus

f/ﬂ

In case E is Galors over K the normdl closure N is equal to E and then we-

(a + bl) =(a + bi)(a + bx)cp = (a + bt)(a - bi) = a + b and Tfm(a + bl) .

—(a+bz)+((a+bt)¢:)—(a+b1)+(a bi) =2a foranya+bt €C(ab€ R)..

"~—((1+b\/—)+(a b\[-)-2a foranya+b\f2€®(\/2)(abe®)

(c). fD(\/ 2) is a scparable extension of 0, bul not: Gdlors over @ A normal -

'closurc of 1] over @(\7 2) is @(\32 w?). There are exactly . three - @—'

. ,(b) @(\J 2) is a Galors extensnon of @ and Aut0®(‘J2) = {l,q>] where @ is the
~homomorphlsm \’2 —: —\[- Thus NO(\/’)/O(a +bV2 2D)=(u+ b\/—)(a + b\/ Do =
(a+bV2)a - bVD) = a? ~2b% and Ty p(a+ BV2) = (@ +5V2) + (a +b\.’_)<0 ‘

homomorphrsms from @(\/2) into @(\)2 u)) ndmely \72 - \]2 (the -

ldany) \/7—- \f_w and \/2—»\[7» So. No("f—)/o(“ +b\/2+cxf~2

T “‘*”‘E“N—) >(a+b*12m+c(\/”)2 2)(a+m/“m +c(\/—)2w)
VU Eee=dd ety Al ~2abc

dnd rn{'\ 216 ((l + b-\l’) +('J_—2 . Lo \_- B
e ““‘”’\/’“(\F) >+(a+b\/7w+c(\F)2m2)+(a+mFm +c(\/—)”m)
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-—3a‘ ‘ ’ :
»for anya+b\/5+c(\/_)2€®(‘/2) (abce@)

In these “examples, norm and trace are found -to be in the base field. This
is- always true. In fact, the norm and trace of an element are essentrally '
coefficients of the  minimal polynom1al of that” element. In particular,
'they are 1ndependent of the normal closure that we -use in their def1n1-
tion. 'We now ‘prove these assertlons ’ ’

'57.4 Lemma: Let K be a fleld and E a fmte dtmenszonal separable-
' extenszon of K. Let a,b be arbztrary elements of E. =

(1) NE/K(ab) NE/K(a)NE/K(b) and Ty, (a + b) = E/K(a) +T /K(b)
@) Ifb € K, then E/K(b) b'E I ! and TE/K(b) = |E: Klb

3) If}(x) =x" +a, lx""l +- + alx +a, € Kl[x] is the mmzmal ponnomzal

.of b over K then :
Ny () = ((-1)q )'“‘”" and T, K(b)- |E: K(b)|( G-

Proof Let N be a normal closure of K over E and let {tpl,tpz, .;,ip,;} ‘be the

set of all K-homomorphisms from E into N. In view of the comments

above, their number k. is the -number of roots of the minimal polynomial .

“of a primitive element of the extension E/K hence k = IE KI (or use
Lemma 57.1 with L = K). : : :

() Clealy  Nyj(ab) = (abw,)(abw,)...(ab,)
o = (ap;bo Yap,be,). ..(apbe, )

o= (ae)(be,)(a9,)(be,). .. (ap ) (be,)
© = (a9)(a9,)... (a9 )(be, )(btpz) (bq:kl
=N E/K(a N g (b) : :
and (a +b) =(a+ b)cp1 +(@+b)o,+ - +(51‘ +be, .

E/K
. = (ap; + bcpl)\+ Frupz + bq:z) + -+ (ap, + bo,) B
=ap, +bo +ap; +bp, +--- + ap, + by,

= (@9, +ap, +or +ap) + (boy + bey o +boy)
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- H : ¢ .
“ . . s e

S= EIK(a)+TL./K(b)

(2)Ifb€K theana —bforallt—lZ ok and .
o E,K(b)—(bcp )(bw,).. (bq»k)—bb b=bt
E/K(b)_bq>1+bq>2 +bq>kfb+b+, +b‘ kb:

(3) Let f(x) X"+ a, 1x" 1. A+ +a X+ a0 € K[x] be . 'the mlmmal polynomlal
of b over K’ and let b b, b --e»b, be the roots of f(x) in N Then n =
lK(b) KI andf(x) = (x b )(x b2) (x b ) 'I‘hus :
_ by +b+ ~+b =-a_, and bb,.. b-—(—l)”ao

Let us wrlte |E: K(b)l =550 that k = sn.- There are exactly n K- homo-‘
- morphisms. a,,a,, ...,q, from K(b) into N (namely o;b — b)). The restric-
tion: to K(b) of any ®; (1_ 1,2,. k) is_one of. these “1'“2' ...;'(x’i, and each q

(i=12,...,n) can be extended to precrsely s.K- homomorphlsms from E

[into'N (Lemma 57.1). Let these extensions of a be Q; m, (2) (‘) In .
this way, we obtam nsK homomorphlsms a(’") E — N @i=1, 2 n;‘m =

“12,....9). Smce ns'= k .we get

N [qal,qaz,'_..:,qak}e (a‘.("ﬂ:‘i = 1',2, onandm=12, 5.
Thus . L ’ e
[;/K(b) = (bq) )(bq)z) (b(Pk) H H ba (m) = H (ba ): :

i=1 m—l . r_.

R ,'=ff[<b,.)f (1’[ by = ((-1)" 0):
- o S '

- and Ta_/k(’b).ébq»l4bq>z+‘-"“+b@k > Z”“(m"‘zs(” )
» o - i=1 ‘m=1 i=1

—st —s( an_l) . 4' - B

1—1

) We have already mentroned lhat NE/K(a) and. TE/K(a) depend on the
flelds E and K. It is clear from- the definition .or ‘from Lemma 57.4(3) that

Ng(a) and TE/K(a) will: ‘be distinct from NLIK(a) and TL/K(a) and -also
from NL./L(a) and TE/L(a) if L is an mtermedlate ﬁeld (wrth ace L in the

frrst case)

Norm and trace behave very reasonably through mtermedlate flelds we

have N =N TL/K"T[:/L for any mtermedlate field L

L/K, NE/L and TE/K

'



' of E/K. This is the content of the next’ theorem Although we know the
~structure . of extensions of. homomorphrsms in the separable case, we
grve a new argument that works in more general situations. ‘

57.5 Lemma: Let K be a fleld and E . a fmte dzmenswnal separable
extenswn of K. Leét a be an’ arbttrary e[ement of E.Then '
E/K(a) = L/K(NE/L(a)) and /K(a) e L/K(TE/L(a))

. Proof: (The assertron is. me'1n1ngful “for NE/L(a) is an element of L by
Lemma 57.4(3), thus we can take the norm  of NL/K(a) €L over K. The"'

claim is that thls is equal to the.norm of a € E-over K Srmrlarly for the ..

trace) R
s ~1NE/L

N gk g
n'.lNL/K,
K .

‘The proof has- been foreshadOWed is Lemma 57.4. Let N be a normal
closure of K over E: Then N is Galois over K by Theorem -55. 11 and N is
" Galois over :.L by Theorem 54 25(1).. We choose a field M- such that
({)Ec McN; (u) ‘M is Galois over L; (in)A is not 'Galois over L for any
_ field' A with E- cAcM. Thisis possible because N/K is Galois, N/E is _also
.Gavlois' and so. N/E is separable (Theorem 55.10) and there are only
finitely many intermediate fields of N/E ‘(Theorem 55.15). M 'is a normal
closure of L over E. leeWIse wé choose a field.R such that (i) L< R N; '
'(n) R is Galors over K (m)A is not-Galois over L-for any field A with

A c R. Thus'R is a normal closure of K over L. ' i

We put |E:K| = £, IELI—sand ILKI—nsothatk—sn Let
' {095, -+ ,cpk] be the set, of alt K- homomorphrsms from E 1nto N
{B,.B,, .- ,[3 -} 'the set of '111 L-homomorphisms’ from E info M ¢ N and
'”,{ai,qz, il ] the set of alk K - homomorphlsms from L mto Rc N
CThen'. | Ngg@)=(aeasy..(as),
- E/L(a) - (ap Japy).. (aﬁ,), ' B



L/K(b) = (bal)(baz) (ba )
foranyaeEbeL '

N is a sphttlng f1e1d of a polynomlal f(x) € K[x] over K (Theorem 55 11
and Theorem 55. 7) and therefore N is a sphttlng field of f(x) over L and’
over La (Example 53. 5(e)) The 1somorphlsm a; L — La; (€ ‘N) can be

: extended to an 1somorphlsm a(” ‘N— N (Theorem 53. 7) Here of course
(1) N » N lsaK homomorphlsm '

We c1a1m [‘P]vq’z’ . ,qak] = {b a(l) i=12,. ,n j=1.2,. s] Smce k =ns, we
: must “merely show that b a‘”# ﬁ a(l) when (i,j) = (t’J’) Indeed; if b a(l) ‘
' —b a“)r, then the restnctlon of ﬁ a“) and b a“) to L must be equal

o and smce b and ﬁ fix each element in L, we get a“) ‘ (1) SO a;.

L= %L ;
and i” = i. Then as a(l) is one-to-one, i” = i and B, S ﬂj a D 1mp1y that' :
B-=8 and j = j. ThlS establishes the_ claim. . )

- Thus, since NE/L(a) €L by Lemma 57.503), we gt -
A E/K(a) _(a‘pl)(a%) (a(pk) 11:1111'—1 a‘p.agl) / & | :
o _‘ o -fIl(Hl aﬁ )a‘”— H (NE,L(a))a‘” H (NE,L(a))a
| S _;L,Khvm(a)) _\- D ‘_ R
and srmllarly TE/K(a) TL/K(TE/L(a)) ) o o o o

’

57 6 Definition: Let Ebea f1eld and let {qa,,tpz, ...,qak] be. a ﬁmte set of
f1eld automorphrsms of E.If, for any a,,8y ....a, € E,

N " a (b(pl) + az(bcpz) et ak(bqak) 0. for all b € E '
_implies ‘a, -02 eEay = 0, then {qal,qaz, .. .,qak] 1s sard to be lznearly
mdependent _ ' :

3 . - . P

Equrvalently, [qa,,cpz, ceesp ) is lmearly mdependent provrded for each k-
tuple (al,az, .. ak) of elements from E, where ‘at least one a; 1s .distinct

from 0,.there isabekE such that - T L ' T
a (b(pl) + az(bqaz) e +1ak(btpk) = 0."
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o 57.7 Lemma: 4LetvE be»a'ﬁé‘ld and let [“51""2;""""/:} be .a finite_set of field ;

) automorphisms of E.If 9,,9,i....9,- are pairwise distinct, then [qal_,tpz, cees® )

is Imearly mdependent

Proof (cf Lemma 54. 15; note that we do not assume [cpl,tpz, . ..,kpk} is a",
group.) Suppose by way. of: contradlctlon, P sPgs + - - P, ATE dls_tlnct auto-
morphlsms of E and that [‘qu’z’ .-+, } is not linearly’ indepéndent. Then~
there are elements: al,az, .. ak, not all zero, in-E. such that ,

a (b¢1)+a2(b¢2)+ “+a(be)=0 forallbeE. . Wy

Let r be the smallest number of NONZero components a; in all the k- ,
tuples (all,az, wesd) EEXE >< X EN(0,0.,...,0)} satlsfylng (1),. and choose

a k-tuple (c,,c,, ...,¢) with exactly r nonzero components. We have r > 1.~
Renumbering t'he automorphisms we ‘may assume c,,...,, are distinct

from zero and (1n case r < L) L‘r+1

=g =0.
Then\ by )+c2-(b<p2)+ +c(b<p)_0 for all b ¢ E. @

- Since qal,qai, ooy ATE dlstmct Py = ®, and there is a u € E w1th utpl ¢ uq:u2
ertlng ub in place of b in (2) and using (ub)qa = utp utp » We. get:

AR

¢, (uo )(bq>)+c2(uq32)(bq>2)+-~- +C(uqJ be)=0  forallbeE. .. (3)
Multlplymg (2‘) by u(pl, we obtam

cl(ucpl)(bqal)+.e2(uqal)‘(b‘a,)2)+ +c(utp1)(btp)—  forallbe E. . (4)

~

'.Subtraction' gives :
[c. (qu2 ue))1(be,) +_-.-+[c(u£p ~up)l(be,) =0 - for all b € E.
Where at least cz(u(pz\ u<p );: 0. Hence there is a k- tuple

(0,ci(uqv2 ucp) C(u<p ucpl), 0,...,0)= (0,0, ...,0)

with at most r - 1 ‘noniero: components satisfying 1), _contrary. to, the
definition ‘of r. Therefore [qai,rpz, ...,®,} is linearly independent. R =
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'_f(a)~a+ao +ac+ . - +do

“isaun € E wnh

We now chamctenze '1ll eiemenls with trace 0 and ali elements - with
norm 1 in case of a Glels exlensmn with a flmle cyclic group. The second
part of Theoreni 57.9 (formuldled for flmle dlmen51onal exlensmns of @).
is the theorem with’ number 90 m D. Hllberts (1862 1943) famous report
~ on algebriic “number theory ‘and .is known as Hllberm theorem 90". It is
" the begmmng of cohomology lheory. : ' R

57.8 Définifion: Let E/K be a field extension. If £ is algebraic -and
"Gdloxs over K, and. if the Ga]ms group Aut E is cycllc then E is called a

C)Cll(. exten\zon of K And E/K is said to be cyclic.

- 37 9 Thcmcm* Let EIK: be a fuute dtmenuonal cycllc extension. and let
o be a generator of AuyE. Lét a’e. E . ’
(1) TE/K(") =0 if and onl) if there is aii elenient b€ E Wll/l a=b-bo.

o (2) NE/K(a) =1if and mzl) tj t/zere is-an element b e E\{O] with a=b fbo.

’ ’Proof- Let IE'/(I = n. Then !Aut El = n by the funddmenlal theorem of
o Galois lheory and AuyE= 2 {1,0,0% ..,0" 26"}, with 6" = 1 and (o) = n. For_

- convemcncc we. write T instead" ot T, and’ N msteud of N

- (1) If a = /) - l)b lhen we h.we a t(,lescopln;, sum: - s -
"2+ao"] ) : i
=(b-"bo)y+(b-bo)s +(b-bo)od+ -t (b- bo)o "2 4 (h - bo)o" -1

= (h - ho)+ (bo - bo ))+(/)o - ha?) f‘ <+ (bo" 2= bo" Ny + (bo™ - bo")

L o=h- bo"=b-b=0.

Convcrsely, »assumc, lhat Tea) = 0. We first find an element ¢ in E with- -
T(c¢y = 1. Since o(o) =n, tlu, dutonwrphl\ms 1 g, ol yieesO "'2 o™l are’ diStinct

and {1,0, ol o "'} 15 hm,‘lrly mdepcndenl by Lemma '57.7. So there '

o . ‘ l(u)~n+no+noz+ <+ yo” 2+ucx"l¢0
Clet e = H/l(u) Since T(n) € K ‘and E s ‘Galois over K, we have (T(u))o’ = -

T(u) for any j = (,1,2, .: g1 and thus A

. _vu.‘n_ u 'n_<_“
7((.) I(H) ([(ll))0+(l(ll))o . .+;(-m)0 +('m3-)o 1.
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e : n2’ ol

u o
= TG _+ (T(u)o) (T(u) D+ (T( o ) ¥ (T(u) n= )
U ous  uc? o 2 ucf"l
ST T T T Twy T
Ty T o
= T(u)
We putb=ac+(a+ aa)(cc) T (a +aoc + aaz)((:crz) +(a+ao + acr2 + ao3)(ca )

R - (a +ac +ac?4 -+ ac"'z)(Ccr"'z) €eE.

T hen
b- bc* ac + (a+ao)(co) + (a +ao +. adz)(Cd ) '
+ (@ +ac + ac? + as3)co?d)
+ k(@ +ag +ac? + - +ac")(co” '2)
- (ac)(ca) (ao + (102)(Cc2) (ac + ac?+ ao3)(cc )
- (ac +ac?+acd + act)(co®)

‘ R - ~(ac +ac? +aod + -+ + ao™ HYco™ ) »
=ac + a(co) + (z(bcz) +- +a(co™?) - (ao + acr2 +er+ac™ 1)(éqn-1)
=ac+a(co) + a(caz) + +a(co ‘2) -(T() - a)(‘cg'."l)" :

c=ac + a(cc) + (l(Cd“) + a(c 03) +oeee 4 a(cg"’l) = aT(cy=a. -

Hence a=b- ba for some b. E E when T(a) =

(2) If a= b/bo for some b € E\[O}, then

_ .._._._ of —— . _'2 —— -1
N(a) ( o(bo G' (b )o" (b o”

_b bo bo? b2 pot _*b_1

S bobe? boT T bo™ o™ T B

Conversely, assume N(a) = 1. 'Ihen of course a = 0. From Lemma 57.7, it .
fo[lows that there is'a. d € E. for which

b = (a)d + (a- ad)(lc + (a-ao- (102)(10 + e+ (a -ac-ds?... ac"do"2
o+ (a ac-ac? ... ac"Zac"Hda"1

is distinct from 0 Then we get

albe) = a(ac)(la + a(ac (102)(10 -+ (l(ao -ao ac3)dc
+-+ +a(ao-astac? ... ac" s +alac-ac
=b- (a)d + (I'N((l)'(ld = b ad + a-1-d = b,

2.403... aa'H'aa")da"

Since b = O,'als_o bo = 0 and .iz(bc) =b gives a = b/ba_‘ - o



‘We close lhls paragraph with ‘two - appllcauons of Theorem 579 We
.descrrbe cychc exlensrons The degree is_the characteristic in lhe frrst :
case ..md rclauvcly prime to ‘the clmmcterrsuc in. lhe second case

r-

57.10 Theorcrn: Let K be a f'eld'of characterisric p‘ = 0 and let E be a
cyclic extension of K with |\E:K| ="p. Then there is an a € K such that fx) =
xP - x —a € K{x|is ureduubla in K[x] and E = K(t) for any root ofﬂx)

fProovf. By. hypothcsrs E is Galors over K. and Aut E is cychc of order D,
fsuy AutE=<o>. Then Ty (1) =1+ o + 10?4 +]0"']—p 0,s01=b=bo
’for some b E 'E (Thcorcm 57.9(1)). Let u =-b. Then to =1 + u and we ge\ -
wPs = (uc)” =(l:+ ny = lf’ +u” =1+ uf’ Hence :
(u” - o = Ws -~ o = (A+uwPy=(A+u)= uP -

"and u" - is fixed- by and thus by all dutomorphrsms in AutE. Since E
is Glels over K, this gives n? --u € K~ Let us put up -u=a. Thus i is a
: rootoff(1)~x”—,\-a€K[tl ’ ‘

It remains to show that f(x) is irreducible over K dnd lhat E = K(t) for )
~oany root t of j(() Since b is not tixed- by g, wesee b ¢ K, so ¢ K and
thus K < K(u) = CBut 1E: Kl p is prnne and -so lhere is no 1ntermcdmle; ,
ficld of £/K (Iixtmct from’ K and £. This forces K(u) = E. Then deg flx)=
=1E:K| = 1K (i1):K) = dcgrce of the minimal polynomml of u over K. Since the
minimal- polynomml of u- over K. dwrdes fx), we deduce that fx) is the -
‘minimal. polynomnl of u ovcr K. In parucul.tr flx) is- 1rreducrble in K{x]. '

: -'x\ow for :my Jj€ h/ < K \h'crc holds' jP =] and comequently

/(u+/):(u+,)7’_(u+j)~a~u”"+j”—u~j'—a—u” u-a=0.

Sowsu+tu+2 .. u+p-1e€kE are foots of f(x). Since f(x) has p roots,
“any root £ of flx) rs_cqual to i + j for some j € EFP So we get K(1) = K(u + j)

(= K(u) = E for any root t-of f(x). L ) - . o
57.11° Theorem: Let K be a field and let E be a cyclic extension of K of
©degree VE:K) = noAssume “that either char K =.0 or. char K = 0 but char K
does not -divide n. Ani(mc in addition, that x* -1 splits in.K.Then there

s an a € K such thar /(\) =x"-a € K[rl Iy lrie(luuble m K[xl and E K(u)
for any rootu n/ [(\) v
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Proof: By hypothe31s AutKE is a cychc group, say AutE = <o> and o(a) =
1Aut El =|E: Kl = n. All roots of the polynomial: k -1, which splits in K, are

srmple since its derivative nx" T 0 in view of the “assumption on char K. -
Thus there are exactly n d1st1nct roots of x* - 1.in K. Smce rf=st="1
, implies (rs)® = 1, the roots ofx - 1 make up a subgroup of K - Any finite .
~ subgroup of K™ is cyclic (Theorem 52.18), so the roots of*x" -1 form a

cyclic group of order n. Let re K bea generator of this group 'so that the;.
nrootsofx—larelrr gl :

We have NE/K(r) =r=1 (Lemma 57. 4(2)) and so there is a'b € E with r =

b/bo (Theorem 57.9(2)). Let u = I/b Then u € E\{0) and uo = ur. This
1mp11es u's = (uo)' = (ur)" L w'r" =u, sou” s fixed by g, 50 by Aut E and

therefore u" € K Let.us put ut = a

Then x"-ace K[x] and IhlS polynomial has n roots u,urur?, .‘.., ur"'1 in

K (u), which are all distinct. So x” - a splits-in K(u), but not in a proper |

subfield of K(u) containing:. K since any intermediate field of K(u)/K in
which x" - a splits, must cont\am‘ the root u# and hence must be identical
with K(u) Thus 'K (u) is a. splitting ‘field of. x" - a over K. Since the roots of
x"= g are distinct, the 1rreducrble factors of x" - a are separable over K -
- and thus K(u) is Galors over K (Theorem 55 .. Tn. partlcular TAut K@)l =

KGR | A S o

Any K- automorphlsm ol €. Aut E(/ 0,1,2,....n-1) sends uto urf "€ K(u)

‘ thus the resmctlon of 01 to K(u) is a K- automorphlsm of K(u) (Theorem i

42.22). Since uc! = urt = ur’ = uc/ when ije {0,1.2,...,n- 1) andi = j, we
- see that these K- automorphrsms of K(u) are dlstmct Hence there are at-

“least n K -automorphisms of K(u) This implies K (u):K| = |Aut LK)l = n
From n = IE Kl > |K(u): Kl >. n we get |K(u):Kl = n, whence E = K(u). B

_ Finally, since the mmlmal polynomlal of u over K divides x" - a and
deg(x"-a)=n= IK(u) Kl = degree of the minimal polynomlal of u over K,
‘we deduce that-x" -a is the minimal polynom1a1 of u over K and x ~-ais
'1rreducrble in K{x]. Moreover,- any root ofx - a.is equal to ur/ for some,
Jj=012,....,n-1 and since r.€ K, we get K(t) .-K(ur’) = K(u) = E for any
roottofx—a._" P P a
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EL - © - Exercises . R .

1. Let K be a field and'klet E be a finite dimensi“ona‘lf separable extension of .
K. Prove that, for any £ € K, there-is an-a-€ E such that TE/K(a)‘ =k

2. Let K L CECN be- fields and assume that N is normal over K. If s is
the cardinal number of -.L- homomorphisms from E into N and' n is the
',cardrnal number of K- homomorphrsms from L into N prove -that sn is.
. the cardlnal number of K- homomorphlsms from E into N.-

v3 Let K be a f1eld of charactensuc p =0 and fix) = x” x-a € K[x). Show
that f(x) elther spllts 1n K or 1s 1rreducrble in K[x] ' :

4. _Let K be.a freld of characterrstlc p=0 and fxy=xt-x-a € K[x] Prove 7
that 1f f(x) 'is irreducible in K[x] and ua root off(x) then K(u) lS a cyclrc .
‘extension of K of degree p S : v

5. Let K be a ﬁeld and n € N Assume that erther char K 0 or char K =0
but char K- does not d1v1de n. Assume that x" - lsphts in K. Prove that if
a € K and u a root of flx)=x"-'a € K[x], then K(u) is.a cychc extensron of‘
. K and |K (u): KI d1v1des n and u'K(“) Kl ¢ K. '
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CL§58
Cyclotomlc Flelds

The theory of c,yclotomy is concerned w1th the problem of - d1v1d1ng the -
perimeter - of a circle" into a given iumber of equal parts (cyclo tomy‘
‘means: - circle- d1v151on) Cons'der the unit circle in the complex plane The -
points dividing fhrs unit crrcle into n equal parts are the points e2niln '="
cos (2n/n) + isin (2x/n) ‘mdv the geometric problem of ‘cyclotomy. is
'v'equivalent' to studying - the " fields Q(e2™/7y'c C., The complex numbers
e2miln are roots of the polynomial x" - 1 and @(ez’”/") is a splitting field
of x" - 1. The spllttmg fields of such polynomlals over any field K will be
called cyclotomrc fields (although they may not be relevant to the geo-
metric problem of circle division). " ' : '

581 Befinition: Let XK' be - fleld and 1 € K the 1dent1ty element of K Let
neN. An’ extenmon field E of K is called a cyclotomic extenszon ‘of K (of
- order n) ifEisa spllttlng field of x" - 1 € K[x] over K.

58.2 Def inltion Let K be a fleld ‘A root of the polynomlal x*-1c¢€ K[x]i
is called an- n-th root of unity or, 1f there is no need to be exact sxmply a '

. root of ‘unity.

,‘58.'3 Lemma: Let K be. a field of  characteristic p = 0 and let n € N,
where n=p°m and (pm) = 1. Let u be an element in an extension field of
K. Th‘ert it-is an n-th root of unity if and only if u is an m-th root of unity.

Proof: If u is an m-th root. of unity, then u™ =1, so u” = (u™)"" = 17° =1
and u is an n- th root of unity. If u is an n-th root of umt_/, then 0 = "~ 1

= (u™)P* - 1 = (u"l - I)P S0 u'" - l =0 and u is an m-th root of unlty O
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-
. So in the. snuatxon of Lemma 58 3, a sphmng f1e1d of x" - 1 over K is also :
‘a splitting field” of x M _ l-over K, and conversely For this- reason, in case ;

“char.’ K¢ 0, it is no loss of generality to assume ‘that the order of a_
cyclotomrc extension is relanvely pnme to the characterrstrc of K.

'58.4 ‘Lemma: Let K be a fzeld and. E an extenszon fzeld of K contammg
~.all n- -th roots of unity. Asrume ‘char K .= .0 or (char K,n) = 1. Then the set
Cof all n-th roots' of unity is a cycltc group of order n.under multlpltcatlon

- Proof If 1] 'md ! are n-th roots of unlty, then (ut)'l =t =11 = 1 and ut .
s also an n-th- root of umty Since the number of n-th roots of unity is at
most n (Theorem 35 7) it -follows that the set of all n-th roots of unity is
a subgroup of K* (Lemma 9 3(1)).This group of -n-th roots of unity is
- cyclic by Theorem 52.18. To prove ‘that the order of this group is equal to

n, we-must only show. that all roots of x”" - 1 are simple.  This follows
-~ from the fact. that the derivative nx" “Lof x" - “1. is distinct from zero
- (because -of the assumpnon char K-=0 or (char K,n) = 1) so that x" - 1 and

.n"lhdve no common root. . . . N =

-~

" 58.5 Defivnitio'n Let K be a field and E an extension field of K
contammg “all n-th roots of unity. Assume char K = 00r (char K,n) = 1. A-

generator of the cyclic  group Of»d“ n-th - roots of umty is called a ...

. primitive 'n- th root of muty

7

- Tis a prlmmve n- th root of umty if and only if o(¢) =n. If Cis a pr1m1-' ‘
tive n- -th root of umty, ‘then all n- -th roots of umty are grven wrthout
”dupllcatlon in_the’ list - o »

_ = B - O,C e ,C3 Cn- o " . -
or in.the list - S ' -
‘ , CC,C,- ,C"',C"“l

and cf hds order nl(n.j) (Lemmd 11. 9(2)) Hence Cf isa prlmmve n-th root

~of unity if and only iif (n,j) = 1. There are therefore o(n) primitive ‘n-th-

* roots of unity (cf. §11). . 7 = - S - :

.



“Ifuis a root of unity and o(u) = d then by defmmon u is a prrmmve d—

th root of unity. : : :

'1 is a~pr1m1t1ve'f1rst root of unity, -1eC isa 'primitive' second root of .

Zunity, »w € € and w? are prrmmve third roots of unity, i € C and -ieC.
are prrmmve fourth roots of unity.

'58 6 Deflnltron Let [’ bea field and n € N Assume that char K = 0 or
} (char K,n) =1. Let Tbe a prrmmve n-th root of umty and -

{CGCZy .. q;(n)] = {C .I - 1 2 n and (Ilj) et 1]
the set of -all pnmmve n-th roots of - umty in some extension fleld of K.
~-The monic polynomial '

(x- C)(x Cz) (x C(,,))

of degree @(n) is: called the n- th cyclotomzc polynomzal over K\ and is
s denoted by o (x) : :

'

For example over Q, the frrst few cyclotomlc polynomlals are

<I>(x) x-1, G o) =x-(-)=x+1,
D4(x) = (x - w)(x wz) x? +x+1 R 4(x) - (x - z)(x+z) x +1.

. We see. that these are in fact_polynomials‘ in Z [x]. This is\ true for any
- cyclotomic polynomial. The n-th cyclotomic polynomial over K does not
depend on the extension field of K in which the primitive n-th roots of
unity are .assumed to lie. In fact it does not even depend on K (but only
on char K).

58.7 Lemma Let K-be a feld n € N and assume that char K O or
(char K.,n)=1.Then . . . .
M x-1=J] & ,x).

din
2o (x) € Z[x] 1fcharK Oandd> (x) €Z [x] F [x] tfcharK p;: 0

Proof: (1) Any root u of x" - 1 is an n-th root of unity and o(u) =d for
some divisor of n. Then uis a pﬂmmve d-th root of unity. Conversely, f»
din, any prrmmve "d-th oot of umty is an n-th root of unity with o(u)
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"d Thus <bd(x) = H(x— u) Collectmg together the roots of x ‘— 1 wuh
Cun=1 ) R ,
. o(u) d

) order d, for each divisor d ofn we get K
' x—l—H(x—u) I1 H(x—u) de(x)
‘ u“=1 . dln - u"= dln -
& - o(u)= d . ) )
' (2) Let D Z in case char K O and:D. = Z = IF in case Char I( p# 0. We
~ prove @ LX) € D[x] by. mducuon on n. Smce <1> (x) =x - 1 and @ (x) =x+ 1
. we thC <D (x) € D[x] when'n =1 2 b -

Supposc now n= 3 and thal @ (x) € D[x] for all d = 1 2, ...,n-"1."From (1),

*we have, x” ~. 1= (0] ¢>d(x) Let us put- f(x) = H d)d(x) Then f(x) is
- din f Cedin - .

' “dwen - - ) ' . ~dzn -

_d momc polynomml and f(x) e D[x] since, by mducuon ¢>d(x) € D[x] for

all divisors d .of n whlch are ,dlstmct from-n. Asx™- 1 ¢€ D [x]_ and f(x) is
“monic, there-are unique polynomials ¢(x) and r(x) in D|x] such that

' i—" - 1= q(x)f(x) " f(X)- o r(x) = 0 or df&’ "(x)z‘? deg f(X)

- (lhu)rcm 34 4) Now let E be an exiension flcld of K contammg all roots
of x" ~'l “The dwmon algomhm m E[xl reads o

- Xt~ -1 = fI»_n(x)f(x) + O

¢ Since D < K S E and the quotient fand"rc_maindcr are uniquely delerniiﬁ-
ed, the ‘unique: quotient g(x) in D|x] must be the unique quotiént @ (x)-in
Elx| and the unique rcmdmdcr r(x) in Dlx] must ‘be the unique. rcmdmdcr

0 in L[l] chcc <@ (x) = q(x) € D[x] This complcles the proof o
R lm cquauon D (r) __x_"_—_l__ is a recursive formuld for ® (x). Thus-
' ; I P 4(x) » .
Cdln )
dx:n ;

" (x) -x - 1/<p (x)(bz(X)%(X)

=x5- 1/(x = l)(x+ Nx? Hx+ 1) 2 —x+1
‘Another rccurs‘ivcvformulu is for d)n(x) is given in 'the n_cxt lemma.

ot
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58.8 Lemma Let K be a- fzeld n € N and assume. that char K =0 or

(Char K n) =1. Tllen
. . q) (x) H (\ )u(n/d) = H (x"/d'— l)u(d)

. dln .' : dln -

:Proof Thrs follows 1mmedmtely from Lemma 58 7(1) and Lemma 52 14A ‘

(in Lemma 52. 14 let the freld be K(x) and let the. functron F N'— K(x)* be

h—»CD(x)) - » ~ R - .o

'

For example we have over @

D lz(x) = (x 1)u(1)(x - 1)u(2)(x - 1)“(3)(x 1)u(4)(x - 1)u(6)(x_ 1)u(12) ’

= (x!2- )2 -~1)/(x - Dt - 1)= -x2 4+,

B L5 (x) =15 - DPOGS RO 1)”(5)(x- s
= (15 - - 1A - RS - 1)

S A TP ol T T

- 58.10 “Theorem: Let K be a field, ne N and assume rhat char K =0.or

(char K,n)=1. Let E be a cyclotomic extension of order n and let C € Ebe

a . primitive n-th - roo! of unity and let f(x) € K[x] be . the mmzmalr

polynomial of C over K Then
(1) E=K(); o R
" (2) E is-Galois over K:- 5 B : -
(3) IAut E|l divides cp(n) and Aut F is. zsomorphzc to a subgroup of Z
4) Aut E Z, = |AutE]l -cp(n) S flr)y=o (x) :

' T e o (x)is irreducible. in K[x).

Proof (1) Let a‘,az,...(,ak‘ be the "natural numbers less than n and‘
relatively prime to n (where k= cp(n)) so that %1,5%, ...g% are the roots

of & (x). Now E isa splrttmg freld of @ (x) by definition, so E is generated
by the roots of ® 20 over K (Example 53. 5(d)) and E K((;ﬂr Caz LT =
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' (2) The roots of- d> (x) are srmp]e because o (x) is a drvrsor of x" - 1 and -
the roots of X" =1 are srmple -(the derivative of. x"- 1, berng drsunct from.
0 since char K =0 or (char K n) =1, is relallvely prime to x" - 1). So the

*irreducible fictors: of & .(x) are-separable over K. Since E is a splrttmg'
field of @ (x), Theorem, 55 7 shows that E is Galois over K.

(3) S,lnce - 1s-a"‘root of d>n(x) € K[x] and f(x) is the mrmmal pol‘ynv_omiall of -
¢ over K, we see f(x) divides & (x) in K{x] and the roots of f(x) are'»c'ertain
<of the roots of & (x) Let deg f(x) =g and T™, C’"2 ' ~C’"*‘ be the ‘roots of
f(x), where m, 2, ...,m are some suitable natural numbers relauvely o
prime to n and less than 'n and m; = = 1, say. Thus" ;

. “flx)=(x - C’"‘)(x ) (x - C”") ‘
Here we ha'v\e’ IA utKE[-z,IE:KI': IK(C):KI deg j(x) =5 because E is Galors
over K. ‘Any K-au'tomorphisrn of E maps L to one of C’_”l,cf"2, g Let o,

bc the K- automorphrsm L= C"" (i= -] 2 49) 'Sin"cé‘

'arn,é(xm,' = C'?C’ <=> m; =m; (modn) Eadi A

) (;!"i,a »so@, are:pairwise distinct and AutKE= {aml,amz, e, )

“Let n; bc the resrdue class of m inZ,. Since'nr‘. and n are relatively -
prnnc -there holds m € Z" We put G = [m s om Y 77 ‘Consider-

lhe m.lpplng S ‘ S T

a: G——» AutKE

v m - « '. )

- As a 4_=_am = m -m y the mapping « is well dcflncd and one- -to- one.
7

m,

' Bolh G and Aut E have s elcmcnls SO & 1S also onto Aut E. Then « has-an

-

. mvcr,se B:

ﬁ AutE——»GQZ

43 —»m

.m;
:‘Slrpposc 'a"}.um,v:a'"[ Then R , ..
t=ga. = Cuhqm_=(Cam)am,=(Cm00 = (a, )m--(cmom'—CM"v
. ¢ : [ i T /

" so my = mm; (mod n), so,m';mj* =m’ and thcrefore
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(a,,,a,,,)ﬁ"(a )ﬁ m> < m m; -(a )ﬁ(a )ﬁ

Hence B: Aut E=Z) is a one- to -one group homomorphlsm and Im B =

s a subgroup of Z and ﬁ “is an isomorphism. form AufE onto G. Thls o
proves that Auty E is 1somorphlc to a subgroup of Z" It follows from -

"Lagranges theorem that |Awut, EI IG[ divides IZ"I = (n)

@ Smce Aut E is 1somorphlc to a subgroup of zZ and 1Z; l = cp(n) 1s finite;.
- we have the equ1valence Aut E e IAut EI cp(n)

; We have IAut E|l = deg j(x) and qa(n) = deg o (x) Now f(x) divides @ L(%)-in '

'K [x] and: both f(x) and © (x) are momc so f(x) =& (x) if and only 1f
deg f(x) = deg P (x) SO 1f and only if IAut Ei = (n) I

' ‘,Flnally, since @ (x) is monlc and T is a root of ®. (%), irreducibility of .

o] (x) in K [x] 1mp11es that @ (x) is the m1n1mal polynomlal of over K, 1e o

that f(x) =& (x) Conversely, if f(x) =& (x) then N (x) 1s 1rreducnble o

W_henthe base fiel,d”'is Q, w'e_‘have sharper reSu\lt_s. -

5

" 58. 11 Theorem For any n e N the n- -th cyclotomtc polynomtal @ (%)

", over Qis zrreduczble in Z[x]

Proof Letn e N and let g(x) be an 1rreduc1ble divisor of ® (x) in Z[x], ’
w_1th deg g(x)'= 1 so that @ (x) = g(x)h(x) say, where g(x), h(x) € Z[x] are’
‘monic polyn’omials‘ Let ¢ be a root of g(x) Thus g(x) is the minimal :
*_polynomial of ¢ over Q.

_Our flrst step’ “will be to show that P is also a root of g(x) for any prlme .

‘number p’ relat1vely prime to' n. Now Cis a root of & (x), so o(c) =o@(n)

~ and 1fp is a pnme number such. that (.,n) =1, “then o(CP) = o(n). and s

also- a primitive n-th root of unity: ¢ is a root of ® (x) so ¢? is a root of

- g(x) or of h(x) Let us assume by way of contradlctlon that C” is- not a

root of g(x). “Then C” is a root of h(x). Then ¢ is a root of h(xP) and h(xp) is

d1v1s1b1e by the m1n1mal polynomlal g(x) ofc over Q.

Let us wrllte h(x?) =,g(x)p(x), where p_(x) € @[x]. Lgt
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h(«\f”)~= Q(X)ZI(X) + ), r(t) = 0 or deg r(x) < deg g(x)

be the d1v1510n dlgornhm m Z[x] (g(x) is momc) The uniqueness" of lhc
, unauem and rcmamder in Z[x] @[x] lmphes plx)= q(x) and r(x) =0.
‘ _Thus we have h(x”) = g(0)p(x), where p(x) € Z[x]

Let viZ — [F be- the: n.nural homomorphlsm and let ¥: Z[x] — lF [x] be the

: homomorphlsm of Lemma 33. 7.-We- shall write 5 (x) instead of (s(x))v for
s(x)-€ Z|x]. Then h(x”) = g(X)p(x) lmphes »

“h(xP) =g (x)p(x) in F[x]. ,
Since char Z =p, there holds h(xP) —T(x)” in IF [x] and we get

R = g(x)p(x) in lF IXI

So thcre is an 1rrcduc1blc factor of. g(x) in IF [x] which divides A(x)? and
“which thcrcforc divides %i(x)in lF [x] Thus g(x) and  7:(x) have a common
factor in le[xl Smce g(x)h(x) ¢>n(x) divides x* -‘1 in Z[x], th_ere,xs a k(x) .
in"Z|x] s'uch ;hut o . - :
o T gRk() =x"-1 inZ[x],
so - E(xﬂi(k)f(k) =7cm =x" -1 inF [xl

dlld x"-1¢€¥F Itl has a muluple ‘root. But the dcrlv.mve of x" -1 € F [xl‘
is not 0 e F lxl so relatively ‘prime to x” - 1 and x" - 1 € F [x] has no

muluph, rools ”lhls contradiction shows that C” must bc a root of g(x).

'chcc_ if p is a pnme numbcr
(p.n) =1, o
¢ is a root of g(x), then ¢” is a root of g(x).

Let m be any nulurui number sulisfying I < m < nand (n,m) =1.Then- ‘
m =p,“p,"..p % with suitable prime numbers p, relatively prime to n.
' -~Repeated” application- of “the result ‘we. have just proved shows that ¢™

a root of g(x) when g is. This is true for.cach of the o(n) natural humbcrs
m such that 'l < m.< n and (n,m) = 1. Thus g(x) has p(n) (dlslmcl) roots

¢™ and g(t) is dlvxslble by H (x-¢m)y= P LX) Hence e (x) = g(x) and
1<m&n
(n, m) =1 ) .
b (x) is lrrt.duublt. in Z[x].- - ‘ ’ .- N & |
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58.12 Theorem Let n € N and let. s be a prtmmve n- th root of umty tn ‘
- some. extenswn of Q. Then @(C) is Galots over @ and Aut@@(c)"‘ z. " L

Proof: Smce o (x) is ‘monic and 1rreduc1ble in Z[x], it -is 1rreduc1ble in
‘ﬂ)[x] (Lemma 34 ll) The: cl'um follows now from Theorem 58 10.. . D' :

-~

We consider - the special case of Theorem 58‘12 where' n is prime.'Let P
~ be a prime number Then ‘the isomorphism Z = Aut @(C)lis given,
in the notatlon of the proof of Theorem 58. 10 by m - e, ' € Auto@(c) :

where ®, L= LM Both IF and Aut@@(c) are cycllc Let g e Z be such

- that 1ts resldue class gt e IF is a generator’ of F * Then Aut @(C)—-<o> o

o where o = cxg, 1e ‘o 1s the automorphrsm {— Cg.-,‘
)

Then the p-th prlmltlve roots of umty are -

g"'z. T

s cg c8’ &,

- and we have ok s Cg Let us put , = s, Then Ck+(p D= Co’”(" D2 Co k=
g, SO that any 1ndex k. can be replaced by any j with k= j (mod D - 1)
Now cko = (@ = (o) = (&) = &

hm

(c® )g" : = Ck+ Thus o raises the 1ndex by 1 and more generally o™

) ralses the mdex by m.

o Let us find the 1ntermed1ate flelds of the extensmn @(C)/@ Smce @(C) is.
Galois over Q, and smce Aut@@(C) =<o> is cychc of order p-1, there is

one “and -only one mtermedmte field for each positive. dwrsor e of p- 1)
namely - the one that- corresponds to the subgroup <c® ofAutOGJ)(C)"

- Hence this” field, say K ,-is the fixed, ﬁeld of ¢¢ and |K, @I [<o>i<a® =e.In’
order to descrrbc K exp11c1tly, ‘we note flrst that :

{lc,c«*g LRt rg"’}-{l,cO,cl,cz,cg, ,,ﬂ}—{lc,ca t?, L% oﬁ} "

is-a @ basis of @(C) since this set is equal to (1,2,c%¢3, . c""} which is‘a
0- -basis. of 0() by Theorem 50.7.  So” any element u in @(C) can be.
written. in. the form .

u =-00C0 FaG halytaTy ke ta (L,
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with uniqu_e]y" determined a();al',az, SRR 4 € Q. Here

[4 = ‘ . .. .
uct = (aoc() a0 +a,g, + a3c3 + a, ZCP 2):7

=080 T ey YAl F “3Ce+3 R, Cei(p-2)
and u is fixed by o¢, i.e., uo€ = u if and only if

ASern T B Ceur ¥ Glein ¥ BTz o ¥4, 58,3
=a

e+() * ac+ I‘Ce+l e+2cc+2 e+3cc+”5 Fooe ae+(p—2)ce+(p—.2)

- which-is equivalent, when we pul f= p - 1_)/e

a, =a

07 %0 = D200 T %407 T Uner0 i
A = 8pi) T Des1 T 330417 7 T yen

BT %27 Yer2 T Ber T T nyer s
U1y = Berie-1) = D2erte-1) T Berte-1) T T Yleste1)
and this means = au(c0 +C, + 8o +.C30 +oe C(f-l)c) ‘
Ty 0+l et H L yey)
T 2t Cpenr F ezt F Sne)
+ e o - - :

Cta, (G Cc+(e-1) t Coerte-1) T Cacne-1y T T Styente-1y)

. 3 , o N The
Weputn, =¢ +¢,, + C2c+k Tl T e (K = €= 1). The
elements n, - are called the permds of f terms. We. sce u is flxcd by o Af
and only lf u = agng +apn, +(12n2 =+, n, ; with Gplypys -y € 0.

, S()‘{n“, n], N, ""nc—l], 15_4 O-basis of Kc.

Note that o: Ny = Ay Ny = Ny, Ny — n3, ceny Mg ™ My ps N, ] — Ny Thus eugh‘
cof ngny, Ny, ., S ‘Fxc_:d by o€ and by powers of ¢, but not by any.
_ other automorphism. of A O(C). Hence all mlcrmcdmlc fields O(n),
, @(n]) @(n.,), .. @’(n 1) of @(C)/@corrcspond lo lhc same subgroup <o
of A utr{)(C) This forccs O(n,) = @("1) =0(n;) = - =0(n,_ )= K,. So any
pcnod of f terms is a primitive element of K ,” the unique intermediate
ficld of B(C)/D with lK 0l =e. > B
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‘We summarize our results.

. 58.13 Theorem: Let:'p be a. prin1e number and T a primitive p-th rooi. :
of umty in_some . extension field of Q. "Let gez be such that its resxdue'

class g in IF isa generator of [F Then

6)) @(C) is Galoxs over Q;-

(2) Aut QL) zs a cyclic group of order P~ 1 A generator of Auto@(c) zs# ’

the @ automorphzsm o: Ll = 8. e L
'(3) Let e andf be natural_ numbers such that ef p -1 and put

gnk g2nk }

=g 4y S k=012, 1),
‘Then there is one ond only one intermediate- fzeid of the extension

@(2)/0Q whose Q-dimension: is equal to e. This field is @(n,) for any k =
; 0,1,2“ .e = 1. The set {no, “1’ O I l] isa @ baszs of @(nk) All-
’*zntermedzate fzelds of @(C)/@ are. found in thxs way as-e ranges through

the posztzve dzvzsors ofp 1.0 77 o R . a’

58 14 Examples (a) .We fmd all mtermedlate f1e1ds of @(C) where thev"'
-complex number ¢ € C is a primitive 7- th root- of unity. These. are the E

simple extensions of @ whose primitive elements “are . the perrods

-order “to -construct the: periods; we need a generator -of F, *. One. checks o

ea511y that the re51due class’ of 3 1s a generator of IF The images of e

under powers of the automorphrsm o C—» C3 are

| , c, c3,c2,c6,c“,c5 , . ,
The- 1-term penods are ¢, C3,C2 C6,C4,C5 and @(C) = @(C3) = @(Cz) = @(C6) =
‘@(C4) = Q(c5) is the intermediate field wrth I@(C) o =6.

7'5’1'




The 2-term periods are § +.C ,C3 + C , C + C5 dnd O + C 8y is 1he
intermediate field |O(C + C6) Q] = 3. We also thC QL +c8)=0@C+cH =
0@ +cH =0+,

X

-

. The 3-term*per1‘od’s\‘are n=C+C2+ 8, N = c3-ép"c6 + 5 and O(n) = O(n ") is
~the intermediate field with [Q@(n):01 =2. . | o
" The sftermf period is ¢* + % + % + ¢4+ +c= -1 and O(=1) = @ is the

intermediate ficld with |O(-1):01 = 1. . : L :

i @(/c\) | |
3 X’@(wc*)' .
o(m N
g \.\ _ ‘//
2 ‘\/ ) 3 -

(h) We ‘determine . the intermediate fields of @(C)/@ where ¢ is a
primitive 17-th root of umty The d1v1sors of 17~ 1 =16 are 1,2,4,8,16 and
there are five intermediate flelds, of dlmens1ons 1 248 16 over Q. )

The n.snduc class of 3 ¢ Z in IF”x is a gcncrdlor of F,;". The successive

p(mcrs of 3 are congruent, modulo 17, ‘
‘ 13910135151116148741226

The 8 1um periods are -
—C+C9+C]3+C15+C16+C8+C + 2
- n,=c3+c"’+c5+c‘_‘+c“‘+c7+c‘.2+c"’. .
- An clcmcnlztry compulation shows that n()‘+~n-| = —'1 and n(')n'l =-4.-So n(')

: ‘Jl7
and n, are lhc roots of x2+x- 4 chcc NNy = ) thch of ”0’"1

has the plus sign 'depends on the choice of L. We may assume C is a 17-th
root of unity that appears in ‘the period with the plus sign (otherwnsc
replace ¢ by one of the roots of unity that appear in the penod with the

“1+¥17 . -1- \F_

2 _d"l

- plus sign). “Then n, =

The . 4- urm -periods  are ’ ' .
—c+c”+c‘“+c X, =+ LAt 42
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. s ‘C3+Q M ClZ x; =T+ 47 4 g8
and +x2 no,>c0)<2 - x+x3‘=n1,ﬁx x3'=_—1.

Hence Xo and x2 are the"roots of x2- nOx - l and xl and x3 are the. roots of

o : i s n +\/ n2+4 o \/ 4 L
2 K . LT AR I S (A 0 0 .
=nx- 1 Here»we mdy put x, = and x2 5 by ~

assumrng that C is a 17 th root of unity that appears in the perrod X wrth‘ »
Do ) S CoomE \/ i T
the plus srgn The srgnsof radicals mn.x;,x; = ——3:'— however can.no

longer be arbitrariiy, ,as’sigrred by choosing ¢ 'surtably. ‘To determme :
“which of "x,,x; has the positive. radical, -we note B

- (Xo XZ)(Xl X3) =_2(“(.)"7-’11)  N G
,——n0+4 ;’ . o | - e
W T gt x) =T, R , o |
o ' e ’11+\/ md -”1'\/ m+d e
so_that xl = X5 ,is positive. This'gives/x1 =TT and X3= T e

The 2- term perrods are. .

_C+C16 wgécl"s{cg B - . |
: —c3+c‘4a w=Cl+g2 -
g 1p _C9~+ 8, » _C-IS + 2 |
o "C10+C7 — ’“C“+C6-,’
,Here \pO + 1p4 =Xy and WoWy = xl, SO “’0 and p, are. roots of x - xox + X1
XoF \/Xo 4x - X0+\/ Xo~ 4X1 : : ‘ ‘
B — A} —
Thus o, v, = = ) . We put 1p0 ) n- like - ‘manner as:

above ‘one can find polynomrals whose roots are \p and determme the

roots wrthout ambrgurty

Al term perrod is C, whrch is a oot of x2 - 1p0x + l ‘Hence we may put C =0

\D0+\]w04._ B S i o ‘ -
The subfield structuré -of @(T) is depicted: below. - - S ,
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We now prove’ an important. theorem . due to J. H. M. Wedderburn which
states .that any finite division ring i\s"commutu’livc The proof makes use
of the class equation (Lemma 25.106) of the mulllpl]catlve group of
nonzero elements in a finite division ring. Let us recall ‘the class equatlon'
of any finite group G is” ’

. o V K ' ’ -
) , : S G =Y IGC ), o
: i=1 o '

'whcrc -k is the .number of dISlInCl conjugdcy classes, x e DY ar'ev
representatives of thcse classes and C,(x;) = (g € G: xg =gx} are ‘the
centralizers of x[. (i=12, ...k '

In addition to thiese centralizer groups, we consider cen.tralizér rings and .
evaluate their dimensions to find the terms” in the class equation. An
argument -involving: cyclotomic polynomials shows than that the class
equition cannot hold unless the division-ring ‘is commutative, o

In order not to interrupt the main argument,” we establish two lemmas
we will need. - ’



58. 15 Lemma Let n beAa natural number greater than one and let P
®, (x) be the n- th cyclotomlc polynomzal over - @ Then for any a proper

f'dzvzsordofn, we have G . o

i ;‘x("/ffi)fl .+.x("(d)'v2'+-"- + x4 1 in Z[x]

‘ “xh-
d)"(x) ._xd_
“and, for any natural number q,

n

I -
L—' - iz

so|f

Proof: Since @, (x)I(x" -'1) and x" - 1 = (x4 - D" - /(x4 - D), it is
sufficient to show that @ '(x)"is relatively pfime to x4 - 1 for any proper

divisor - d of n. But this s ‘clear, because @ 2(%) and x? = 1‘have no root in .
V common the roots of @ (x) are prlmmve n-th roots of umty, whereas a

oot of x4-1 cannot be a pnmmve n-th- root of umty if d is aproper.!

divisor of n. This" proves the _divisibility: relatlon in- Z [x]. Subsmutmg any
1nteger q for x (and usmg <I> (x) (x - 1)/(x - 1) € Z[x]) we obtam the "

d1v151b111ty relatlon in Z T , ‘ [ '_,f,El

- ..58.16 Lemma’: If n > Illand @, (x) is the  n-th cyclotemic, p_olyn‘omial"
over @, then |® (@)l >-q -1 for all g € N with ¢ =>72. =

Proof: We have ¢ (x) = H (x - chy, ‘where {-is a primitive n-th root of - -
. C k=1 N . LT -

, k=1 . ' : S

unity “in- some extensmn field of Q. For example we’ may take C =e

A Subsntutmg q for x and usmg the mangle mequahty Ia -bl > | IaI 16l 1,

Zn‘i/n
we, get

o @i= g - C"I H g - ez""’/"l > Hl lql - 21’“/"1 [

(k,n)l\- ; (kn)l o : (kn)l o :
qu—ll—(q—1)°<">—(q-1)(q—1)°<">‘>q—1'
k=1 - ,
. (k,n)=1 -



in case p(n) -1 > 1 since q > 1 In case zp(n) ~-1=0, we have n = 2 and .

|d>2(q)| q+1>q~1 : T . =

58.17 A”Theorem (Wedderburn's " theorem): If D' is a ﬂnire division
ring, then D is a field. : ' ' '

' Proof Let D be a division rrng with - f1n1tely many e]ements D*=D \{0} -
is then a finite group under mulupllcauon and the class equatlon of D"

D= ZlD Cpx);
=t
where k is lhe number of -distinct conjugacy classes of D* and XXy, ...,,fk :
are representduves of these classes. . }
_ ‘We now put Cp(x;) = {a- € D. xa = ax} =Cpx)u {0} € D Since d,b € Cp(xp) ‘
‘implie’s x(a'+ by =xa +xb =ax +’bx = (a + b)x,, we see Cp(x;) is closed
under uddmon and thus C (x ) s a subgroup of -D .~ under - addition

(Lemma 9.3(2)). As C p(x )\{0} = C (x) is a subgroup of D, we conclude
that C(x;) is a lelSlOﬂ ring (a subdnvrsron ring of D). :

The same argument proves that the center of the ring D:
R  Z={aeD:xa=axforallx € D} =Z(D"u (0}

isaa subdxvrslon r1ng of D. But Z is a commutative division rmg, ie., Zis
a field. Then char Z = p for some prlme numibef p and 1Z| = p* for some
-natural number (. We put ¢ = p' = - |Z| for brevrty._ : :

We have Z © D(x)C D. Since multlplrcuuon in D is associative and\
distributive over addition, and srnce la =a for all a € Cp(x;), we get that
Cplxy) and D are vector spaces over Z. Let dim L, C(x;)) =m; and dzm D=n.
Then, as in Lemma 52.1, we have 1C(x)| = IZI'"' =q™ and |D| = Z|" —qn

- This gives IC ()] :‘ICD(x )\{0}] =|Cphxpl - 1= qmi-1 and hkewrse ID™| =
ID\{()H = IDI -1=¢q"- 1. The class equation is therefore :

B BT (1 Ly
q - 1‘_ Z|D C (x)l 2{ 1C ) Z

i=1

S - 756+



_Now ID iCp (x )I is an 1nteger 50 q’"‘é 1 d1V1des q " 1 and thls 1mphes tl‘at‘

-m; divides n (Lemma 52. 7(1))

: .We want to show that D is commutatrve, or, what is the same ‘thing, that

Z=D. We will assume Z = D and derive a contradiction. Well, if Z = D, then"
n> 1 and there is at. least one ' x; such that |ID” C Lx)l = 1, because

‘-‘lD C (x) = 1if and only 1fx € Z(D ) We 5o choose the - notation that

.’[x ,xz, ,xh] =Z(D") and h+1,. . X, are not in the center of D" Then the :

" class ~equatlon becomes :

1= S0, e zw C )l = |Z(D')|+ 2 -j——

i=1 P i=hel - i=h+ 11 1

"—,l - ‘ o
q—l—(q-l)+ Z‘L‘—l'_ . , -
i=h+1 . .

and m;is aproper drvrsor of n for i= h + 1 k As n> 1. by assumptron

o (q) divides L—Tfor all'f = h +1,...k (Lemma 58. 15) > (q) divides

also q" - 1. We read from: the class equatlon that @ L(q) divides q - 1 But‘ o

this 1s 1mp0551ble, for Ifb (q)I > q -1 by Lemma 58.16.

Thusn—landD lecommutatrve : E— a

‘Exercises

1. Find the m-th cyclotomic polynomial oy (x) over @ .for‘m < 50.7

2. Let @ (x) denote the m- th cyclotomic polynomlal over @ Prove
(a) @, (x) = O (—x) if 21m :

(b) o, (x) = @ (xp)/<b (%) ifp is an odd pr1me number and pJ(n P

‘3. Evaluate the p* th cyclotomlc polynomlal P ,‘(x) over @ 1fp isa prrme .

numberandkeN - : .

4. Letpk € N and D be prlme Let @ (x) denote the p -th  cyclotomic

polynomral over @. Prove that, if dl® (k) then d=-1(mod p) ord =p.
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4

cLetpeN be prlme Sk € Z and let &*. be thc resrduc class of k in IF Let
n € N and P 2(X) the n-th cyclolomrc polynomml over @ Suppose thal '

ptn. Prove the following statements.
(a) pl® (k) if and only if o(k*) = n (order of & in IF is n)

(b) There is an mleger a with pl<1> (a) if and only 1f p=1 (mod n).

6. Lct neN and @ (x) the n-th cyclolomrc polynomml over O and. lcl‘

PyPy ---P,, be prime numbers of the form tn +°1 (s,n € Z) ‘Use Ex 5 and

" - prove the following statements.

()@ (anp p,.. -P,) =71 (mod- np]p2 P for'uny aenN.
() @ (anpp,...p,, ) = 1 lfa € N is sufficiently large _ '
(¢) For some a-€ N, there is a prime divisor p of @ (anplp2 pm)
which is dlSllllCl from pl,pz,...,pm. '
(d) There are 1nf1mlely many prlme numbers p of the form tn + ]
(This is a special case of the following cclebraled theorem of Dirichlet: if

Cah are any relatively prime 1nlegers, lhen there 1nf1n|lely many prlme

8. Prove the formula due to Gauss:

'numhgrs ol the form an + b. )

lmd .1” subﬁcld% of @(C) where T e ‘I: is a prlmmve n- th root of unlty'

21 +\]5+4’\f 1()+2\F

and 0= 4.5,(),8,12- Prove ez.«u/s 2

’.21_ Ay
cos 7 =g \/34 - 2\117

+—'\/77+3\117—\/34-2\117-2\134+2\117\

9. ‘Under the hypothcses of Theorem 58. 13 show ‘that - lhe set of periods .=

' mdcpendcnt of the integer g for. which g* is a generator ‘of IF , but the

'mdlcu of mdtvzdual perrods do depend on g. Describe this dependenqé. _

10. Let the hypothcsé’s-of Thcorcm_'58.13‘ be valid, wilh/p anodd -prime

~ number, .and let n(,,'n1 be the [(p 1)/2}-term periods. Prove lha'l ngn, =

-(p - /4 or (p + 1)/4 according as p=1 (mod' p) orp = 3 (mod P) Show
that n, < n, = +\/( 1)(1’")/2]) (The sign depends on - the primitive ‘p-th root

of unity ¢ we take. If we ‘choose £ = e2™P ¢ C, then the sign is plus. This

is consrd(.rrbly difficult. to prove. This exercise shows O(F \]( 1)(1’ bz p).is
contained in the cyclolomlc flcld 0(@). A _thecorem of class - field theory,"



known as Kronecker Weber theorem A-states that any frmte dlmensronal

Galors exten51on of @ whose Galois | group is abelran is contarned 1n a ’:

) suitable cyclotomlc extensmn of Q) o N ', SR o

11, Let Ck eC denote a prlmmve k th root of unlty Show that 1f (n m) ==

1, then” 0E,.L,) = @(c )and Q(, )n@(c )— g

.12 Let C € C be a prlmmve n- th root of umty Prove ‘that all roots of
unlty in @(C) are *C’ ([ 0,1; 2 - 1) ‘ :

13 Let-p € N be a prlme number and @ (x) the p- th cyclotomlc poly~~

_nomial over @ Flnd the dlscnmlnant of ¢ (x)

-

o 14. Show that ary fin_ite subring of a division ring isA_é'di\}'ifsion'ring. .
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§5
Applications

This paragfaph consists- of five parts In the first . part, we give an exact
deflnmon of “solvability by radlcals, dlscuss radical extensions,and,
establish the fundamental theorem due to Galois that a polynomial
‘equation is. solvable by radicals if ‘and only if the Galois 'grohp of the

B polynomial is a solvable group. In the second -part, we apply this

A.theo/rerri' to the .géperal polynomial of degree n over a field and deduce
‘Abel's theorem: if # > 5, then -the general polynomial of degre¢ n is not
solvable - by 'radicalst.,-lni ‘the third part, we discuss - solvability - of
- equations ~when “the degree' is - prime. In. the -fourth part,. we give
“formulas ‘for the roots of polynomials of degree two, “three’ and four. In

“the last. part, we examine wh1ch real numbers can be construcled by'

ruler and compass.

"We sludy solvablhty of polynommls by an algebraic formula We start

by clanfylng what. we mean by an algebralc formula Intumvely, thls is

an expressmn like .

\/\/ o w

1nvolv1ng addition, subtractlon, multiplicalio'n‘, “division “and taking n-th
roots, where the terms in innermost radicals are elements of the field to

which ‘the coefficients of the polynomial belong. If the terms are from a

field K, the ficld operations addition, subtraction, multiplication, division -

: ‘ . . ) . i 3 M 3 . n
‘give rise to elements in the same field K, but extraction of n-th root Va

amounts to a field extension, namely to the adjunction of a root of x"-a.

to K. Thus u_formulzi busiéally desribes a sequcncel

KOQK gK c ..gK,l
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-59.2 Del‘mmon Let K be a field and f(x) € K[x] We say the equatton‘ N
f(x) =0 is solvable by radlcals provided. there is a splrttrng field S off(x) R

bNote we do ‘not requ1re the ;,_splrttrng‘freld S 1tself_to be a‘radlcal e).{ten—

polynomral 11e and each K, 5 is obtarned from K by ad_]ormng a-root- of a-

polynomial of the form x" - g € K[x] toK These consrderatrons lead to.

the followrng defrnmons ; S ‘ ’ o

Uy ooslh, in E ‘such that
(1)E K(ul,uz,.. )

‘EK(ul,..., ) fort—2' ..,n,'

then E is called a radzcal extenswn of K. ‘; R B

(2) there exist natural rumbers hz; ,'hm,such,that 'u1"1 € K and

over K and a radical extensron R of K such that KcSc R

sion, rather that S be contained .in ‘some radical extension.

If in .the setup of Deﬁnltlon 591 by =rs “and if ‘we ‘put u;/ =u;. so that .

‘, € K(ul, el 1) then. we may msert the freld K(u U _qs
K(ul,-... 1) and K(uy, ool ) '

.

K(ul, Ll l)g K(ul, .»..,ui_l,u )e K(ul, coeally l,u.L u) = K(ul, . z-1’”)

wrthout d1sturb1ng the condltlon (2) m Defmmon 59.1 because

v

u;. ‘e K(u ,‘...,u._ ) and u. € K(u R ...,ul._l,u.,). '

: Thus 1nsert1ng add1t10nal 1ntermed1ate flclds 1f necessary, we may
: suppose ‘that the h in Definition 59:1 are prime - numbers whenever we
»want to. ’ c ‘

M N
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- of fields, K bemg the f1eld in whrch the coeffrcrents of the grven'.

l59 1 Del‘lmtron Let E/K ‘be a freld extensron If there are elements‘ '

‘ 1t "fOllows from"Definition "59'1 that a radical extension" is a finitely. N
’generated and in. fact a finite. dimensional extension. When we consider ' ‘
- radical . extensions as 1n Defrmtlon 591 we agree for unlformrty in
’ notatlon to read K(u A 1) asK when h =.1. :




'593 Lemma Le!KgL E beﬁelds -

Thls shows that £ is a radrcul extension of K- IR oo

One of the- prmcrple theorems in. this paragraph is -that, if a polynomial

equauon f(x) 0 is solvable by radicals, . then the Galois’ group of f(x) is.a
solvable group (Deﬁmtlon 27 .19). In- fact, we obtain more general results

" In the next three lemmas we study radlcallty of some related fleld

[}

extenslons o e _ ,,:_}

~

(l) If E'is’a radzcal extension ofK then E isa radzcal extenﬂon ofL
(2) IfLis.a radtcal extension of Kana’ 1f E is a radzcal extenszon of L,

' then E is a radtcal extenwon of K..

Prool‘ (1) lf E lS a radlcal extension, of K there are ul,u2, .V..,u,l in E 'suchr : :

: that E= K(u eeld ) and u '€ K(u -5l y) for some natural*numbers‘ .

h (1—12 n) ThenE L(u u2,... u) dsKQL E. andalsou"'e L
and u; hi € L(u .. u 1) for i= 2‘ . Thus E is.a radlcal extenslon of L.

(2) If 1, is a radlcal extensron of K, then there aré elements Uyl ol in

L such’that L= K(u T ) and naturdl numbers hl,h2, b such t.hat‘
h' € K and u; ‘E K(u et I Eisa radlcal extension of L then
there are elements tl,tz,...,t 1nE such that £ = L(tl,z, v t) and natural
numbers”kl,kz, --,-»k,,. such’ that t"‘ € L' and t"‘ € L(t ]) Thus’ there
“dre elements' 14,-;122, RNA ’1”2' m E‘ such that s
‘ E,=K(n],n2, R ll,tz, N ) dnd natural numbers h h ""'hmfknkz’ ...‘,I_cm i
© such that < TR R
S . . h. EvK 'ahd ‘ - . oo .
' 'u i€ Kuy, ...‘l._‘])‘,for i=2,....n,, ‘
k) U ; B ‘
€ K(ul, ..,un_],un) o Lo
ki i € K(u],u2, A N 1) tor =2, ...m00, 0
‘/‘

59’4 “Lemma: Let K be a field and LM radical extensions of K ‘vontained.
m wme erlcn\mn of K. Then their u)mpomum (sce Defmltlon 50. l7) LM

ista rrnlual cucn\mn ofK

l’ruuf:_.Siane {7 and ‘Mj are m‘dic:tl extensions of K, we have- .
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L = K(uppthy; oo ) and uhi € K(u ety ) (=12,.0m)

v M_:K_(tl,t‘,.. N )andtleK(t Seall) (’-:12 .,m)
with sorne snitable elements u i. and natural numbers h k Now LM is .
l the smallest subfreld of E contammg K and Upsthyy ... u A t2, sl SO LM =
K(ul.,uz, PN T S S t B Smce u; h; € K(u el ) for i=1, 2 ,n-and °
“likewise tki €"K'(u' ettt ) forj =12, Lom, we' conclude that
) LM' is a radrcal extensron of K (where K(ul,u -...,un,tl, ,tk_l)’ls to be -
read as K(uj,u,, ..., u)whenk—l) o R CAN =

59 S Lemma Let E/K be a- radzcal feld extenszon and let N be a normalr '
closure of K over E. Then N is a radical extenszon of K. 9 : ‘

. P_roof_. Let {a,.a,, ;. a4} be a K- basrs of E and let f(x) € K[x] be" the_
minimal polynomial of a; over K. We remind the reader of the fact that N
is a splrmng freld of f(x)— fl(x)fz(x) fm-(x)'over'.K' (see. the proof of .
Theorem 55.11)." Voo ' AT

Let a be a Toot of f(x) There is a K- 1somorphrsm P! K(a) = K(a) with a:p =
‘a (Theorem 53.2). Srnce N. 1s a splrttmg f1eld of f(x) over K(a) and over
K(a) (Example 53: S(e)) the: 1somorphrsm <p extends to a K- automorphrsm

d:N -+ Nof N (Theorem 53 7). Then E® is an intermediate field of N/K
which is K- 1somorphrc to E- and Ed contains .the Toot a; of f(x) In this

way, we fmd for each J=12....m and for each root b off(x), 1ntermed1—'

ate fields of N/K~ Wthh are K 1somorph1c to E and wh1ch comarn the root,
b off(x) . : : '

Let El,E2 ‘,E.‘ be the fields 'obfained in this ‘way. Then each E; is K-
1somorph1c to E and so a rad1cal extensron of K. Using: Lemma 59.4
repeatedly, we get “that the compositum  E (Ey(E( ... E)).. D) is'a radrcal

extension. of K. But this compositum; is a subfreld of N contain‘ing all. roots - -
of f(x). Since N is a splitting ‘field of f(x) over K, the compositum must
-equal N. Thus N is .a radical extension of K. ... . . a

BN
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59.6 Lemma Let E/K be a fuute dzmenrzonal ﬂeld exlensmn m. € N.
Asrume Char K =0 or (m; char K)=1and let g be a prmuttve m th root of

_unzty IfE lr Galotr over K, Ihen E(C) is also Galots ‘over K.

' Proof We have a cham of ﬂelds Kc E c E(C) By Theorem 557 there is
a polynomml f(x) € K[x] whose irreducible f.lclors are . separable over K-
such lhdl E 1s a splrmng field. of f(x) .over K and’ E(T) is the splitting freld
- of. the m- -th cyclolomlc polynomml @ (x) ‘over E, whose 1rreduc1ble,
factors too, are. separable over E (Theorem 58 10) )

’ .We cl.um E(C) is a: splmmg freld of f(x)(b (x) € K[x] over K (we have'»'
N (t) €. K[x] by Lemmd 58 7(2)) Since the. 1rreducrble factors of

f(x)<b (x) have no- muluple rools, they ar¢ “separable over K dnd the-; R

'chnm wrll 1mply that E(c) rs a Galors exlensron of K (Theorem 55. 7)

: Any root of f(x)fb LX) s in E(C) $0 f(x)(b (x) splrls in E(C) Now let F be a .

o ~subf|eld of E(C) conlammg K such that f(x)¢> x) splns inF. Then all” roots

, ‘of f(x) are in F and since E.-is" generale_d over‘K by ,ther,oots of f(x);
» ~-(Example 53 5(d), E ¢ F. M'ore'ox/er F contains g, s0 we have E(7) < F.

Thus f(t)‘.’ (x) cannot " split in any proper subfreld of E(C) comammg K
~and F(C) is: lherefore Galors over k..o Lo o

'59‘"‘.7 Lemmd Lel K be a field,.n' € N and. assume ‘that char K = O ()r'- B
: (char- K.ny ="1. Suppose lhal K contains a “primitive n-th root of unity. Let
e K\[0) rm(l,let u l)e.a root ()fx ~a € K|x|. Then - .

. ‘(l) K(u) is '« (}(llc exlet;smn ()fK : S
‘ (?) [K(u) Kl dmdes n and u'K“‘) Kl € K. o

l’r(»()t (l) We must show K(u) is Galois over K “and Aut K(u) is a cychc .
“group. If Ce K oisoa prnmme n-th r()ol of unlty, then u, Cu, C2u Y <o
are the roots ()f"r I‘hus K(u) is a spllllm;> field of x" - a over K. The
p()l\n()lnlll "oa hds no mullele roots, so-the irreducible dlvrsors of '
M -a .lr(, sepamble over K Fhus K('l) is Galors over K (Theorem 55. 7)

\\e n()\\ show lh at A Uty K(u) is cyehc If o € Aut, K(u) then uo is a.root “of

n

Tt (1‘.' SO 1o '",C_ “for some.. (no[ e essdrrly prrmmve) n-th root <, of.

', Uttty Smu Lo =u(o r) = (uo)r = (¢, )t = (c, r)(ur) C, L =(g ¢ )uand so -
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ot C for any o,t € Aut K(u) the mapplng e Aut K(u)——» <C> c K is a .

cf—-——»C

homomorphlsm of groups Here o € Kerg if and only 1fZ; ,if and
conly if uo ='u, soif dnd only-if o is the 1dent1ty mappmg on K(u) “Thus

‘Ker g = 1l and.¢."is one- -to-one. Th1s shows that Aut K(u) is 1somorph]c to.a
subgroup of K™ Smce Aut, K(u) is. flmte Aut K(u) is a’ cychc group by~

Theorem 57 18

N

(2) Let !K(u) KI d. Smce K1) is Galois over K we have lAut K(u)l = d by
the fundamental. theorem of Galois theory. ‘So AutKI; (u) is a eyclic’ group
_of order d, say A utYK“éu) =<o>. Now <o>is isomorphic to a ‘subgroup <C >
of \C> and <> has-order . Hence dln Moreover, o(t,) =<t >|* <o>| = o(c)

=d, 50 g, d = 1 and’ (z,d)c = (uo)* = (g u) = i dyd —ud so-ut is fixed.by o -

—and by Aut K(u) so ul e K since K(u) is Galors over K o <o

i

We now proceed to _prove that the Galors group  of a polynomlal is: a

solvable group if: the polynomral is” solvable- by radicals. Tt will be seen
that. it is - suffrereht to: prove this under the _dsumption that ‘a splitting

tield "of the polynomial is a radical -extension (rather than a.subfield of a

radical ‘extensiyn),” and. one may moreover suppose that splitting’ field of
the polynormal is Galois -over Lhe base field. As 'a technical convenience,

we  will bring a certain toot - of unity 111to thé base field. Then. the -
e subf,roups of the Galtns group rorrespondmg to the mtermedrate frelds

as’ in Defmmon 59.1 under the Galois rorrespondenee ‘will make up a
chain .,ueh ‘that CdCh .aroup will be. normal in the . next one and the factor

groups ‘will be: cycllc by Lemma 55.7. “This will give an abelran serres of .

the Gdlo.s group, which must be therefore solvable.

- 59.8 'L‘heorem Let K be a _/l(,’ld and E a Galozs e).tenston ‘of K. lf E is a

r(.(fzcal extension aj K, zl«eu Auty Eis a solvable group

s

Proof Since £ is’ a radlea. CA{CnSiOH of K we have E K(ul,uz, t.o,u) and

dlere are natural numbers hl,hz, sl such that 'e K(uy, .. u_ 1) forr
=1,2;.%.,n. Wrthor.t loss’ of gem,rallty, we . may suppose h are prime-.
~numbers. : 7

¢

\
o
'

-



_‘First' we show that char K, if dlstinct frOrn 0can be';assumed to be .-
" drstmct from all the prrme numbers h;. Indeed if 0,¢ char K = =P —.h

,then u” € K(u . 1) But E is, Galors hence separable over K and over -
K(u Sl ) (Lemma 55 6) 50. u “is.. separable over K(u,, .?..,ul_l)t and’

’ K(ul,.. i 1,u).-K(u cesl 1)(u)— K(ul, L ”1-1)(” ) = K(u ey W, Py =~
: K(u yoees 1) by Lemma 55 16. Thus K(u 1)—K(u NS 1,u) and ;.

‘can be deleted from' the set. of " generators We assume all generators of

. this type have been: deleted and thus all the . prrme numbers h; 'are :

relatrvely prlme 1o the - characterrstrc of K- in case- char K p= 0 =

Put m =h h h,l and let C be a prrmmve m-th- ‘root - of umty We".

cons1der the cyclotomrc extensrons E(C) of E and K(L) ofK

Smce erther char K= 0 or char K is- relatrvely prrme to | m, Lemma 59 6.
~shows that E(C)/K is Galois (E is finite drmensronal over K because E isa

.radrcal extensron of K). Theorem 54. 25(2) grves Aut E(,C) Aut E(C) ‘and
Aut E Aut E(C)/Aut E(T). We want to prove that Aut E 1s a ‘solvable

o show  that Aut

group If .we can show " that Aut E(C) is solvable then ‘Aut 'E will also.be"
Asolvable because a factor group “of a solyable group Ais solvable (Lemma..
' 27 20) Thus rt 1s suffrcrent to pr0ve that Aut, E(C) IS a solvable group

'We make one’ further reductron K(C) rs a Galors extensron of K by -
Theorem 58. 10(2) SO A”K(C)E(';) Aut, E(C) -and moreover Aut K(C)"'_ '
L Auty E(&)/Au K(C)E(C) ‘We know that - Aut K(C) is: abehan (Theorem
: 58 10(3)) Thus Aut E(C) /Au K(c)E(C) is abellan and solvable If we can .
(0 E(C) is solvable then Aut E(C) wrll also "be solvable in -
svrew of Lemma- 27.21. Thus it-is suffrcrent to- prove that AuK(O

‘solvable group. - Tl c e

We put K(C) E and K(c U, u) —E for i= 12 . ln partrcular E, =
: K(c 1y, . u )—K(ul,u N )(C) = E( ).. Smce E /K is Galors E r1s Galors

ovcr any rntermcdmte freld (Theorem 54 25(1)) Thus E is. Galors over E

E@)isa
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LetG Aut E _A’”K(c)

i correspondmg to E (l 0, l 2 )

wo-sl e -

Now -  ° ‘ch'ar E = O or. relatlvely pr1me to h L
o E K(Cu cel) = K(Cu .»..,‘ H)(u) E (u),.

e ‘GK(ul,... ”)C K((,ul,... 1) E

and 77 ,E has a pnmltrve h -th root. of umty, ©

since in fact E, has a prlmmve m- th root of un1ty (i = 12 . .“,'n)“ Thus-‘ .
Lemma 59.7 apphes and shows that E is a- cyclic, extension of E, ,-of
degree lE :El=h or1..n partlcular E 1s Galois over E and since E is -

~1

. also Galms over E;_ ,‘we get G; < G and G ,/G; = A ut E from‘» ‘
Theorem 54 25(2) Thus G, /G |-= IE I— h or 1 and. G /Gl 1s_ cychc. (of .. '

~ prime- order h; or -of order 1) Hence

Q'¢n42§ ;.’.‘.‘§1 G, <G, _Aut E AutK(C)E(C)

) 1=G \‘Gn-l A
is an’ abehan series of AutK(C)E(C) and Aut (C)E(C) 1s a solvable group Thls'

: completes the proof.” - . . e ) o

‘e .l‘
[ :

59 9 Lemma Let E/K be a f ield extenslon and
’ {aeS aq>—afora114>€AutKE}
Then Aut E= AutK E and E ls Galols over K. . .. . :

Proof Clearly K 1s,c10sed under addmon suhtraction multrphcatron)r h

and- diyision; 50 K is a field and ‘we have K'c K, by the - very definition” of
K. Any K- automorphrsm of. E fixes the elements of K, and, since K c K,
“any K, automorphlsm of E ﬁxes K elementw1se Thus Aut E= Aut E
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A,lf b € Eis fixed by all X, aulomorphlsms of . E, lhcn b 15 ﬁxed by ‘l“ K-

"dulomorphlsms of E;soh (—: K, Hencc K is the fixed ﬁcld of Aut E whlch .

" means E-is a Galons exlenslon of K o ! e e oo

\

oo

,.'.‘) l() lhcnrun Let Kc Sc R be a fzel(l\ If ‘R is.a radtwl exten\mn nf
K, t/zen AutKS‘ iy a \()lvablc group. ' L

"Proof: We put K, = [a € S acpt’—‘ a for all p € At ). Then Aut, S = AugS
and- 5 s a (ml(ns exlcnslon of K by -Lemma i‘) 9. ‘Moreover, R is a r.ldICd|

cxlunslon of K, (Lcmm.l 59. 3(1)) Let N be a normal qlosurc of K ‘over. R
_-lhcn N is a r‘ldlC‘ll exlcnslon of K by Lemma 595 .,

IN ,» . )_ v’i (

R 1 R
SR U A \ S L radical :
’ { radical { . o - ‘ .

“ Galois } - : e
- /

L ONow S is o (mlms cxlumon of . K so S s (KI,N) sldblc ("I hcorcm 54 23)
Then A il N Auty, N/ and Auly /Aut N s lxomorphlc to .the subg,roup

of A i s u)nsl\llng, ()f all K| aut()m()rphlsms of S that are extendible to N

- ('Fheorem 5-171) \Vlml is ‘this” subﬂr()up of Aut S" Smcc N is n()rnml

“over /\ “there isoa polynomml flx) in K |x| such lh.ll N is a spllmnz, ficld.
_of /(\} over K. (Theorem 55.8).. Thus’ N is a splitting field of f(x) over S

»(l Xi nnph v 53, S(L)) and any K| aulom()rphlsm ‘o‘f S can, bé extended 1o a

K- .llll()lll()l‘[)hl\m of N ([hcorun 53.7).. S() lhc, suhgjroup of Aut S CO[ISIS[-

Cing of .1H I\, .\ulmn()rphlsms of S that are L\lcndlblc to N is dclu‘llly the

whole \Ilv(, 5. We get . X . ' . . ) L

[

+

768



. V "-"A“__’ks'=';A,u(KlS.'E-AutK‘lN/'A«utSN" . .
Since’ any factor group of a’ solvable ‘group is solvable "(Lemma 27.20), -
suff1ces to prove that Aut N is solvable As in_ the f1rst paragraph in th1s'

'proof we’ replace the base field by- another .and make the - extens1on-

‘ -~'Galors We put K = {a € N: aq; =a for all ® € Aut N} = N. Then K, sz o

.. and- Aut N Aut N Here N is'a Galms rad1ca1 extensron of K, (Lemma

599 Lemma 59 3(1)) and Theorem 598 y1elds that Aut N Aut N is a‘_, ‘
solvable group *7 e i R S
From Definition 59:2 and Theorer 59.10, we get

59, 11 Theorem Let K be a feld and f(x) € K[x] lf the equatzon f(x) =0
is solvable by radzcals then ‘the Galozs group off(x) zs a solvable group u]

'We now want to estab11sh the converse of Theorem 599 Let: E/K be a‘

Galors extension.. If Aut E 1s solvable,” then the composition factors of,'
AuIKE are cyclic of pr1me order -and. the Galois correspondence gives rise .

to a chain of mtermedlate f1elds in wh1ch the’ two -consecutive terms“ ‘

represent a cycllc extensron of pr1me degree There are - two types “of .

" eyclic extensrons of prime -degree: (1) extensions of* the form K(u)/K
‘where u isa root of xP - x and charK = 0 or (p, char K)y=1 and 2 exten-r
sions of the form K(u)/K whcre u 1s a root of xP - x - a and p =charK.
(Just as Lemma 59.7 is the converse of Theorem 57.11, Theorem 57.10
admrts a. converse, see § 57, Ex. 3 43 Hence. the: extensions -of the. second

" type will creep 1nto ‘the 1nte1medlate f1e1d structure of E/K. There are -

two ways of coping with _this_ situation; Either we modlfy the def1n1tlon ‘
of radical - ‘extensions’ so- as to 1nclude extensrons of the second .type as. -
admissible- 1ntermed1ate steps (see Ex 12) or we 1mpose restrictive
hypotheses on the characterrstlc -to . prevent extensrons of the second
-type from commg up C ATRCUNNE o :

',l.'
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59, 12 Theorem Let K be a ﬂeld and E a fm:te d:menszonal Galozs;'f
extension of K. Assume’ char[( = 0 or 0.# char K and 'char K does not-’
‘divide |E : K. IfAut Eis a solvable group, then there is a radtcal extensmn

RostuChthatKCECR

_ Proof: We make mduct10n on-|E: KI If |E: Kl =1, then E=K and'K isa’
radrcal extensron of K containing K. Thus the theorem is proved in case
IEKl—l ‘ RIS S ’ IR :

Lel n =|E:K]|. Assume n> 2 and the_ theorem“ish provedv for all -field
e‘xlen'sions of. degree < n. EEEEE ER R

i Smce Aut E is a solvable group, Aut E = G has a subgroup of prime - -
index, say H < G-and |G:H| = p, where p is ‘a prime number (Theorem
27.25). Here o2 dlvrdes [Aut El = E:Kl, sop = clzarK by hypothesrs Let L be

','a prlmmve p-th root of unity. The cyclolomr_c extension: K(g) is a radrcal ‘

'4.exvtehsion of K, so, if we can prove there is a radical extension R of K(7)™

| I CE@©
S CEnk@.
. p R N B : - . ) R B ) —i
,'_A utE K ; e :

i .contulnrng E(L), then R will be a. radlcal extensron of Kv contammg E
(Lemma 59 3(2)) ) ' '

. We show thal E(C) is com.uned in some radical extenSIOn of K(C) Since E
s Guloxs over K, Lemma 596 yrelds E(©) is "Galois over K and Theorem
54: 23 yields E is (K E(Z))-stable.: So the “restriction mapplng o = ois a
homomorphrsm P: AuK(C)E(C)—> Aut E.If-c e Kerop ¢ AutK(C)E(C), then - %
fixes all:clements’ of E, so o fixes ull elements of E and also g, so o 1s the ;

rdenuty n‘mppmg on E(C) /50 Kercp = I’E(c)} and @ is one-to-one.
- We. dmmgursh two cases, accordmg as lm ¢ is a proper subgroup of‘

Aut E or equal 10~ AuE. Smce E(¥) is Galois over K, it is Galois over K(C) .
- by Theorem 54. 75(1) und $0 IE(C) KOl = lAutK(C)E(C)' ' : '
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1f Im e < Aut, E then [E(Q): K(C)l = lAu K(OE(Q)[

A utK(c)

)

(Im ol < lAut El=n. Now

E(C) bemg 1somorphrc to a subgroup ‘of the solvable: group AutKE

itself is a solvable group (Lemma 27. 20) and E((;) is Galors over K (%), so,
by 1nductlon there is a radrcal extens1on ‘R of K(C) contammgAE(C) The

proof is complete in. this case.

‘

If Im cp -Aut E then P 1s dn 1somorphlsm and has an mverse 1somorph-

. 1sm ! Aut E — AutK(O

E(C) We: put J Hcp'l Then J - At

K@)

lAutK(C)E(C) JI = p. Since H is solvable its 1somorphxc 1mage J is solvable.
.Let F = (AutE(C)) be . the 1ntermed1ate f1eld of the Galors extensron_\',‘

‘ E(C)/K(C) correspondmg to J

e '<—¢

e

| K(C) — ?_f

D

P
Jau K(OE@)

A
AutE

|H T

AsJ Q AutK(c)E((,) Theorem 54. 25(2) shows that F is Galors over K and

A utK(OF A utK(c)

E(C)/Au E(C) —-AutK(c)E(C)/J = C . So F is a cycllc_

extension of K(), so F = K(u) for some root of a surtable polynomral of
the. form x” a in K(¢)[x] (Theorem 57 i1). Thus F is a radrcal extension of
K(c) Here Aut E(C) =J is. solvable E(t) is Galois over, F (Theorem

54.25(1)) and |E(C):Fl < IEQC):FIIFK(D)] =

IE(T): K(C)I =n, so, by 1nduct10n

“\ there is a radical extension R of F with F ¢ E(c) < R. Since R is a radical |
~ extension of Fand F is a: radrcal extension of K(c) Lemma 59.3(2)° yrelds_ .

“that R is_a radrml extensron of K(c) with- K(c)

- the proof

PV :
!

i

E@) < R. This' completes -

o

s A

'59.13 Theorem: Let K-be‘a’j.'eld' and f(x) e K[x].a po/lynomia,l ‘of d‘egree,
> 0. Suppose charK Oor 0 charK > n. Then the equatton fx)=0
lS volvable by radlcals zf and only if tlze Galolr group of fix) s a solvable-

- group

‘ Proof If the equatron f(x)

O is solvable by rddrcais then the Galors;
group of the polynomral f(x) is solvable by Theorem 59. 11 o ‘
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Conversely, let S be a splmmg field of f(x) over K “and assume that the.
-"Galois group: Aut, S off(x) is solvable ‘In order to prove that the equation
-.f(x) 0 is solvable by radlcals i.e.,in order to' prove that there is a
radical extensron ‘R of K. satisfying K < S R, it sufflces, in view of
Theorem 59. 12 to show that S is Galois over Kand charK 0or charK
does not d1v1de 18:KI. o ‘ :

R

~To prove that S is Galms over K, we use Theorem 55.7. We need only
show that the 1rredu01ble factors of. f(x) are sepdrable over K. This is
clear, in case charK 0. If charK . # 0 and ax 4 - ¢ K[x) is an irreducible
'factor of f(x) wnh a ¢ 0, then d<n < char K and da =0¢K, so its
derlvanve dax?- - +--- is not equal to 0 € K[x] and ax? +ees is separable .
>O’VCI'K ) ' T - ’ o

Thus we ‘are done in.case charK 0 ~ln case. charK = 0 ‘we have charK

. > n, so lhe prime number charK does not d1v1de n! and as |1S:K| < nl, it - ’

does not. d1v1de IS K| either. The proof is complele o , BN = I

 *

In’ this part, we prove lhe celebrated lheorcm due to Abel which states'

" that the general polynomlal (over -a field of" characteristic ° 0) of degrce n

is solvable by ruadicals if and only if n <. 4 .and some -related results.
Flrsl of all, we must explain what v_ye mean by the general . polynomral of

degree n.

© 59. 14 Definition: Let K be a field and let @,y ....a,_,a be n distinct
' mdctcrmmatcs ovcr K. The polynomial ' - '

£ ="~ @ ka2 apt s (D ek (1),
in K(a "z' cnd )[x] is callcd the gencral palynamml of degree n over

K. -

nl'

Any monic polynomlal in Klx] can be obtained: from f(x) by substltutlngb
a_pprop_rmtc clc_mcnts_ of K for the mdclcrmmates This. justifies ‘the =



terminol‘ogy' Note, hovvev’er '“a pecnliarity the general polynomlal of .
‘-‘degree n over K is not a polynomral over K, that is, it is not in K[x] but in .
‘K(al, I,a )[x] Lo SR :

»Alternatmg signs are attached to the coefflcrents a, for convenrence m
_computatlons ‘This - makes it -easier to compare the coefflcrents a; w1th
; the elementary symmetrlc polynomlals '

Our. main’ goal is’ ‘to; prove that ‘the Galors group of the general polynom1a1
of degree n. 1s the' symmetrlc group S After ‘we- estabhshed some
- prepatory 1emmas, we prove . that each permutatlon of the roots mduces t
' an automorphlsm ‘of the Splittlng field if the. roots . are 1ndeterm1nates
(Theorem 59.17) and that /weican indeed treat the: roots. of the general
polynom1a1 as 1ndeterm1nates (Theorem 59. 18) : >

/
59. 15 Lemma Let D ,D2 be mtegral domams and the feld of frac-
tions” of D; ,D2, respecttvely Ifcp D - D s a rmg tsomorphtsm,'then the

N -

'mappzng , _
o0 <p1 F —-»F ‘.".\.,, 2 ‘
a/b - (aw)/(bcp) '

s a ﬂeld zsomorphzsm

Proof ‘We are to show that ‘91 is a one to-one rmg homomorphlsm from
F ontoF LetabcdeD andbd;é 0. Then

,f a/b = c/d <=> ad*bc ' @‘ (ad)cp ~(bc)q> > <=> ae: dcp bcp c<p
‘ R (aqa)/(bcp)“(w)/(dw) - 4:*' (a/b)<91 —(C/d)q>1, ,

'wh1ch shows that ®, is well defrned and one-to- one Moreover 1f u € F

then u = e/f for. some efe D, w1th f= 0, then e =ag- and f = bo for Some

ab e D ‘and b= 0, sou= e/f- aqf/bcp = (a/b)<p1 1s the 1mage of a/b e Fy
under q)l and thus <p1 1s onto F : :

It rema1ns "to prove th'xt ?, preserves addltlon and multlphcatron Th1s 1s
easy:- 1fabcd<—:Dandbd¢0then N ~' ‘ -

v

[(a/b>+<c/d>]q), [(ad+bc>/bd]q>1 —<ad+bc)cp/<bd>cp
s L= (a<pdq> +b<pcqa)/(b<pd<p) = (ao/bfp) +(C<p/d<p)

773 -




L= Galble, + (el

~and

o albeldyle, = (acbde, = @c)elbdip = (acpccp)/(bcpdcp)
“'(acp/bw)(Cm/dw) = (“a/b)qo](c/d)(p1
Thus <p1 is a flC]d 1somorph|sm . _' o R o

i

39 16 Lemma Let K be a feld and let x 1% ;..,xn be n d[stinc:t indeter-:
"“minates ovgr K.. ‘
(1) For each permutatzon g€ S the_ mapping

) o’ K(x ..;,xn) K(x Xyyee .,xn)';‘, o
"f(xl,xz, . )/g(x ,x:,_,..,. f(xh,xh X B XX )

is a fleld automorpluvm of K(x ,x:,_, ;xn),
(2)Ifo r€S andoxr theno = 1.
l’roof: (l}) Lelfg;e S . The mappipg o Klx ,xz,..‘. . e ‘K[x' . x|
‘ ) o ' E f(-x vxz’~' x)—’f(xlc’XZc : x ) ’

is lh(. subsnlullon homomorphxsm ‘that subsmutes xj forx (/—12 )

It has an Inverse (0 Y- 1_(0—1) f(x],xz, X ) f(x]a 15Xy sk l) Thux -
¢ is a rmg 1somorphlsm from the integral domain lel, STIRR nl onto
llsclf Lcmma 59. 15 nges that .
(a” )1 K(x .. x) » K(ﬁcl,i‘?_ . x) v
f(x Yy, )/g(xl,xz,. X)o— o e, . )c /g(xl,xz,,.:,xn)o", o
isoa - field dutomorphlsm of lhe the ficld K(r ,xz, 4...,xn) of fractioﬁs 6f
Klx, x5, .06 | But (0 DIs is noth;ng else than .o ", Ilence o “"is a field auto-

‘ m()rplnxm of K(xl, - x)

(2)1If.0 ;.: T, lhcn lhcre istaj. € [l 2.} such ‘that jo # jt,.then xjo’ ijc =

X = XnS00 ® L ‘ AR -
jt j» \;ﬁ . . S . E

R

59.17° lhwrcm Let K be a field aml xly,, ..:,xn'[;e n distinci indeter-
‘nunulu n\vr IVund la R R PR
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f=2x
fy =X

be -the elementary symmetrzc polynomzals m K[x ,xz,.. X,] Th?é(z'lth'e‘

Jfield of ratlonal functrons K(x, Xy, ..00x,) is, a Galors extenston of :
- K(fl,fz, : ,f) the subfeld of K(xl,xz,. ,x) ge’nerated by fl,fz, : ,f overK
and A“‘K(f,,/ J)K(xl, ,._ ,x)"’ R

’ Proof We. put E= K(xl,xz, ._..',;cn)‘ and L= K(ﬂ,fl, cenf) Let x he: a new :

- 1ndeterm1nate 'over K If Sl T e _
h(x) =" ‘f1(x1' 2; A, )x" - +f2(x1,x2, ,x )x"’2 +- +( 1)"f(x1, UNES )
‘ then h(x) € L[x] and h(x) splrts in E ) Lo

h(x) = (-0 5y (x EAN

Smce E L(x ,xz, ,x) is generated by the roots X ,xz, X, of g(x) over L

we deduce that E is a spllttmg field of h(x) over L (Example 53 5(d)) As_’ o
’.h(x) has no multlple 'oots the irreducible. factors of - h(x) in L[x] are_'-“'

separable over- L. Theorem 35.7 tells now E'is a Galoxs extension of L

B For each- of the; n' permutatlons ¢ in- S -thefe is'a 0" € Aut(E) by Lemma '

59 16, and o flxesfl,fz, . f asfl,fz,. f are symmetrlc polynomlals, so.v _
‘g” leCS L = K(fl\fz, f) This means o° € AutE.As PR et AuyE are .
distinct whenever o,T €S, are dlstlnct there are:at least n! automorph- S

isms in Aut E and {Aut, El 2.l On’ the. other hand |Aut El="|E: Ll since E

is Galois . over L .and 1E Lt < n! by Theorem 53:6 and Theorem 53 8. So_ .

we - have IAutEI ‘= nl. We know from Theorem - 56.14 - that AutE s

‘1som0rphlc to.a subgroup of S, In view of IAutLEI = n'" it must be
‘lSOmOI'pth toS o , . R I S = I

Vool



59. 18 Thcorcm Let K be a f:eld and n € N The Galms group of tlw

general polynomzal ofdegree n over K is lsomorphtc to S,

mnde,termmzltes over?-K S0 that

Proof Leta az,...,a 1,a
. n- n
g(x)—x —alx"‘+a2x"2 ax" 3+ A CDa x4 (- Da,

is- the’ ;:cneral polynomml of dégree n over' K, Weé put L = K(‘al', . a).
‘-(‘Lct\E be a splitting field of f(x) over L, ix] and rysty S, € E [x] the

roots of f(x) Then" E =L (rl,rz, .. ) K(al,az, - an,rl,rz,. r) -

—K(rl, 25 - r) by Example 53 S(d) The Gdloxs group of- f(x) is Aut E

Lel xl, X, be i mdetermlndles over K ~which’ are. d]SllnCl from - the

. ‘11’ Lys o A, LetE K(x Koy o x) and let f]‘fZ’ . ,f “be the elememary‘

' symmelrlc polynomials in K[x,x, » L ,x} and pul L= K(fl,fz, ,fn) “We

know AutE=S) from Theorem 59.17. R B
K(r], e ,A‘rn.); Ell - | K ix)=E -
< ) .- a0 N L - :
N IR T X : ‘
Kayay .a) =L = - = 'K Sy f) =L
K ' K

We show that ,ihcré is a,K.tisomorph'isxi1 @il ~ L. Fi,r'st,-observ,e: that we
have the substitution homomor;_)hism ®: Klal;ai, ...,aA] —»_K[flfz, ,fn] that
 maps a; 'to f’ and h(a’l,a\z‘, cees) to,lz(flfz, R fn).-Clcarly ¢ fixes-all ele--
~'ments Qf K. Furthermore, ¢ is one- to-one, for . if h1 h2 € K[a NOYI a'l
'then hy = h, implies /z @ = h (fl,fz, o) #= S, - ,f) = h,o by the' ’

unigueness assertion in . the - fundamental theorem on symmetric poly-‘

o ,nommls (Thcorcm 38.4). Thus ¢ is a ring. lsomorphlsm from Kla,.a,, ...l

: omo Inmop. Usmg Lcmma 59. 15 we extend ¢ to a ﬁcld lsomorphxsm 4’1'
, from L= K(a RSN omo thc the field of fractions of Im ¢ & L. Since L
= K(f],ﬂ, . f) and. {f,‘fz, v,y e dmo, it follows. that -the field of .
fractions Qi I og-is cqual to L and thus @y is onto L. Also P, ﬁxes evcryj
element of K. Ikm.c cp] Ly—.Lis a K- lsomorphlsm



-

~

n-2 -’ n3

'g(x)—-” ‘ +a2x aE e +(1)"'1a x+(1)"

'jfé h(x) X" —fx'1+f2x n-2 fx-3+_, +(-1)"‘1fn 1x+(—1)"f

Here El is a spllttlng fleld of g(x) over L, and E L(xl,xz, X ) is a spllt-

, (tmg field of. h(x) over L (Example 53 5(d)) so the~ 1somorph1sm qal L —L
can be extended ‘to ‘an isomorphism y: E — E (Theorem 53.7). Lemma
- 56.11(1)- and Theorem 59 17 gtve now Aut, E = Aut E= S Thts completes

lthe proof e , , " SR S }D

- 59:19. Theorem (Abel) Let K be a fteId n ‘€ N and g(x) the general

ponnomtal of degree .n: over k: 1f the- equatton g(x) =0 is soIvable by
" radicals, then n< 4, Conversely, tfcharK Oand n< 4 then the equa-~ o

' 'tton g(x) = 0 is soIvabIe by radtcals

sy

Proof The Galons group of g(x) is S (Theorem 59. 18) If the equatton
g(x) = 0 is solvable by radtcals then S, is a solvable group (Theorem
59: 11) son < 4 by Theorem 27 26. Conversely, ifn<4 and charK = 0,
‘then S is a'solvable group- (Example 27.10(a), (b, Theorem 27 25) and the

' equattonv g(x) 0 is solvable by radtcals (Theorem 59. 13) : B R = '»

N \

. -
PR .

_Theorem 59. 19 is a statement about general polynomlals lt -does. not_
-state ;that’ specnflc polynomlal equatlons ‘of . .degree .‘> 5-.cannot ‘be . -

t solvable by radlcals S - ST

In this pa‘rt we examlne solvablltty by radlcals of polynomtal equations ’

of prime- degree. It is necessary to “understand the - solvable transmve
subgroups of S ‘These have a simple structure After _we: gave  a

characterlzatton of solvable transmve subgroups of S , we prove. ‘the

curious . result of Galors “*In order - fof an- 1rreduc1ble equatlon of prlme

degree to be solvable by radicals, it is neccssary and sufficient - that once '

-t

The homomorphlsm tpl L [x] — L[x] of Lemma 337 maps ' . ‘ SN




- .any two of the roos are known the others can be deduced from them o
ratlonally (Edwar(";ls translauon) r ’

Let p be -a prime. number. It will be convement to regard S as actmg on '
"the p elements 1 2 .e,p of [F For any ae [F and b e [F We wrlte
‘ } ab Fp_' ‘F » | - . ’ -
, , u— au + b ' S
Clearly Tab = o whenever {a, b) = (c d). For any (a,b); (c d) € IF X [F we .
have . - R .

; uqa",-,ac (au+b)ocd —c(au+b)+d—cau+eb+d

(ac)u + (bc + d) = uaac bc+d,

‘ acbc+d SoA(p) _[a ab’ ae[F be[F] 1s closed under the
composition' of mapprngs Observe that °1 ‘0 € A(p) is_ the 1dent1ty o
mapping and .hence - a(l/a)(b/a) € A(p) is the.inverse- of < ab As - the -

‘composmon of mappings is associative, A(p) is ‘a group. In partrcular,.
each ¢ ab is . one -to-one ‘and onto, and-can be consrdered as a’ permutanon

in S Thus ‘we ‘shall regard A(p) as-a subgroup of S Then ‘

SO oabocd

.

-1 2
" ap "(a‘+b a2+b . ap+b)

. where the 1ntegers ought to be . mterpreted moddlo p The permutatlon
oy, = (12 p) of order p will be denoted as . :

{

59.20 Defmmon Letp be a prime number and o €S, If."there_ are
elements a € [F . and be [F such that - : ‘ '

ol 2 -

0= (a+b u2+’b' . ap+b)
‘then a r,s called a lmear permutatwn in S ln thrs case we shall denote
the permutzmon o as o, , Then A(p) = {5, pa € IF »be. [F ] is a subgroup
of S and is called the one drmenswnal affne group /over =120 p)
and <#> < G < A(p) then G is called a linear subgroup of S



, i ’
59 21 Lemma: Let:p be a pume number T.= (12 p) € S and let H be a-
subgroup of S B : o
(1) IfH is'a Itnear subgroup ofS then .th_e onIy eIeme,nts of order p in H

are =, w2, n'3 rrp

v(2)‘1f1r rr 3 ,rrp'l are the onIy elements of order p-in H then <rr> is a’

. charactertstw and normal subgroup of H:

| (3) If <> zs ‘a normal subgroup of- H then H zs a linear subgroup of S
4) If H is a Imear subgroup of S and H < Sp, then K is a lznear
subgroup of S ' o

\ Proof: (1) ‘Assume H - is a lmear subgroup of S and let.o € H Then o=0,,
\'forsuuableabEF a=0. RN :

4

.Ifa—lthenuc—u+b—u1rbforanyu€{12 ,p—l} 5007-rr ando(o)-
= o(x%) and o(x?) = 1'in. case b= 0 and o(nb) =p in case b =12,...,p- 1
" Thus the only elements 91p in H satlsfylng o(a1 b) =p are w,x w3, . n"'l.

To completc the proof we show that a#= 1 1mphes oo b) = p If a =1 and -

o=0 then ' uc? -a(au+b)+b au+(a+1)b

a.b’
, o " uo '-(au+(a+1)b)+b—au+(a +a+1)b
and similarly uo =a u+(a"‘+a"2+ +a2+a+1)b

oot

for any n € N.Asa-1 € fF s we can write

. - ' '. s ..

. L a"—]
~ uo":a"u_—i—ﬁb

from whlch we read that o —.z 1f and only if a =1, 50 0(c) =0(a) t
~order. of a in the multlpllcatlve group [F . But [F has order p - 1 and, by
Lagranges theorem,. there is. no a in [F w1th o(a) P Thus o b' cannot be

of orderp if a = 1.

(2) By hypothe51s <1r> H. Lct Q@ eAut(H) Then 1 = mp is an elcment of.
order p in H. Then TP = 7% for some a € {1 2,...,p-1},50 <> = <mp> <1r">’ :
=<n> and <w> is characterlstlc and thereforc also normal in H.

v (3) By hypothesis, <x> < H. We must prove H < A(p) Let o € H Then 1 = -

olro =x% €'<n>° —<1r>and1r =n¢ forsomeae {12 ...,p - 1}.Sono =on?
and B L

,/



' (t+ Do =‘trrc'=torr“=to +‘a,» " for any-t"er [1,2,....,p"—/1,p].
. ‘ a i St e
Thén (l+2)o—-(t+1)o+a—lc+20,

(l+3)c—-(t+2)c+at—tc+3a

LA

» and 51m11arly (t + u)o = to +ua for all l u-e [1 2 P - ‘ 1 }.~:Puttin’g_ = 0"

and. fo -b we get Uo'=to +Ua = au + b for any u = 1 2 A There-- .
fore o=0,, € A(p) Thls proves H < A(p) :

'

- (4) Assume now His a 11near subgroup of S and H ’ S We must _
prove K< A(p) Now <7r> s a characterlstlc subgroup of H bv part (2) -

and <m> is a normal subgroup of K by Lemma 23 15, so K is-a lmear";
subgroup of S by part (3) S R TN S [ R

-

L}

. 59 22 Lemma Let p be a})rzme number and K a. transttzve subgroup of_’;
-S If 1= H < K then H ls also Iransmve - :

_ Proof: Let ij € [1 2, ..,p] We claim - that the number of elements in the»

H -orbit _ of i is equal to . the. number of : elements in- the H orbrt of _/

Indeed since K is transmve, there 1s atek wrth it=j and’

,IH orbrt of tl =1H: Stab ,(t)l IH StabK(t) n Hl lH1 (StabK(z) n H)‘l

IHT (StabK(t))1 n H‘I = IH (SlabK(l))‘ n HI IH StabK(tr) n Hl

IH Stab, KU 0 Hl = lH Stab”(/)l 1H- orblt of M

‘ in’ vrew of Lemma 25. 10 and Lemma 258 ’I‘hus all’ orbrts of H have the

“same’ number of elements, say m Ifk is the number of H-orbits, then

the (1,2, . ,p} is partmoned 1nto k subsets each of which has m elements

- ~Thus p =mkand k =p ork.=1. If k' =p were true ie.,’ 1f there were p H- '
" orbits, the H- orbrts would consrst of single terms and, we would get uo' =

-

u for any. u € [1 2, .,p] o ¢ H. This would give H .= 1, contrary to the

hypothesrs Hence k =1 and H'is transrttve - S R =

..

A‘-‘59 23 Lemma “Let p.be a przme number and G < Sp; Then G s
"‘“”‘”Vc ‘f and 0"1)’ tfp dtvtdes the order of G. Lo e

[P,

T780



l
|
Proof: prHGl there is an element o ofG w1th o(e) —p Then o is a cycle - l
of length VA say (a 199+ : .a ) Then any a 1s mapped to. any a by e'/" gl é—: G . l

and so G is transrtrve Conversely, if G is ‘transitive, there. is,, for each a =
0 12,...p, 2 permutatr_on o,-with 1o, = @ and we have the coset. decomposi-

| tom L S S
G2 U [StabG(l)]cra, IR ER VR ]
|

: whence lGI _ |Stab (l)lp is d1v1srble byp T o

_ We can now t‘md all solvable transmve subgroups of S Basrcally, we usé

'Lemma 59.21 and Lemma 59. 22 to’ go downwards and upwards along a
,composrtron serres of such’ subgroups

g 59 24 Theorem Let p be a prtme number and G < S Then G is a. salv— \

able transmve subgroup of S lf and only lf G is conjugate to a ltnear .
"subgroup ofS i S e )

v_\

Proof Let G be a solvable transrtrve subgroup of S Con‘sider a.

'composmon series of G say

1H<JH<1H<| <|H <|H Gi

L

vThe composrtron factors H/H { ‘are cyc11c of prime . order by Theorem -
27.18. Since H,_ is. transrtrve H '-'1 is -aiso transrtrve by Lemma 59.22, and - . -
then H 2. 1s transrtrve then H: 3 transrtrve and $0 on In thrs way, _We see - .
that H, is transitive. Then D d1v1des IH 4 by Lemma 59 23 and we- get |H |

'_/_- p. SoH is a. cyclrc group generated by a cycle (a 19 - a) Replacrng G

by -a conJugate of G, we may assume H, =<n> = <(12 p)> Now ' Lemma -
59. 21(4) shows that H2 is a lmear subgroup of S .S0 H is also a linear . o
subgroup of S so..H4 is also a- linear subgroup of S and so on. In this- -
way, we conclude H =G isa lmear subgroup - of- S o

Conversely, let G- be a linear subgroup of- S Then T 1s a subgroup of G .

and so p divides lGI and. Lemma 59 23 shows G s a transitive subgroup S
of S ‘Now. we - have to prove G is. solvable As G < A(p) it will be

.suffrcrent to prove . .that A(p) ‘is solvable In, vrew “of the multxplrcatron
..rUIe aab cd acbc+d’ the mappmg ’ ’\ Lo B L .

7 73"1 o



Y

(.

e:A(p) - |

,‘.0, b_’(l

TS ‘a‘-horriomokrphis‘m'éonl'o [Fp , with' Kercp = {crl b € A(p) be [F } = <rr> Thus
> A(p) and A(p)/<rr> A(p)/Kerqo Im P = [Fpx 19 a'b_ellan, Then.

N

1> < A(p)

,'a

.isiun'&albe_lian'»S'érigs,'df' A(p) and hence A(p)-is solvable. ~ -

§

We give. another group theoretical characterization of solvable. transitive -

“subgroups. of S - This "will bc translated “into - Galois' charactenzauon of

polynomul cquauons of pnme dcgrec wlnch are solvable by radlcals

j()r any- two dtmnct l,j‘fr()m {1 2 ,p]

59. 2:: Th'eorem Let p be a prime niimber &nd G a trarisitive subgrbitp

' ofS Then G is solvable 1f and only if vis the only permutatton ‘in C that‘

ﬂxes two numbers’ from (1,2, ..,p} ie., lfand only lf
’ Stab (1) n StabG(/) =1

B l’roof Supposc first lhal G isa solvable lransmvc subgroup of Sp Then s

B

G 'is conjugate lo a subgroup of A(p), say G.= H", where <x> < H < A(p)
and Te S (Thcorcm 59. 24) Ifij are distinct numbers from {1,2, ‘.:..',[7}

‘_ and o € G flxcs both i and j,-then o* egT = (H )' = H A(p) fixes both '.'

iv! and jok - But, aside from the 1denuty, there- is no pcrmutauon in A(p).
that fixes two dlsuncl,numbprs from {1,2,...,p}.“Thus.c™ =1 and o =1. So

‘lhc ldcnmy permutation is the only pcrmutduon in. G that fixes two
* . numbers ln {12, ,17} ’ 8

.I\ow suppose convcrsely that G.is a transmve subgroup of S with lhe'

" property that the . ldcnmy is the only permutdtlon in. G that flxes two
“numbers in {1,2, ...,p}. Let ijj ‘be two distinct numbers-in (1,2, ...,p} and

write - : : ‘ -

H = Stabg (i) h.StabS. (/) = {r € S it=1i and _/1’ —_/}
. . - Yp . *

The ,hyvpolhcéis gives /1 n:G = I"If 0,0, € G and 0,0, bclong to. lh'ékamc

right coset.of 1/ in S, then o0, -l bclongs to H n C =100, = o, Thus“
‘ S c . .
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there is at most one element of G in each rrght coset of H in S So IGI is C

less than or equal to the number IS HI of right cosets of H 1n S and as H

©is 1somorphlc to Sp we have 1G1 < IS HI IS !/IH! ‘/(p 2)' —p(p -
.‘ Lemma 59 23 yrelds P d1v1des 1GH, so there 1s an element x = (a a2 ap)

12,

' Jia :
of order P in G. If we write —( 192 p)e S then (12.‘...p): e =rr s

E an element of order p in G“ Asrde from the powers of =, " there is no’
. permutation of - order in G‘ for if o e G" had ‘order’ p and <1r> n<e> =1,

then. |<1r> n <o>| I<7r>l]<cr>| =p? (Lemma 19.6) and .§0 there would be at

“least p2 dlstmct elements in G‘ ‘whereas’ 1G7l= IG] is at most pr-p. So <>
*“is a normal subgroup of G‘ by Lemma 59. 21(2) and G™is a linear © " .
subgroup of Sp by Lemma 59. 21(3) Hence G is, cont]u’gate to..a hnear'_'
= subgroup ‘of S and G is solvable by Theorem 59 24, BT =

RN

v

. For the sake of completeness, ‘ we proue' Galvoi‘s : theorem stating that " a S
polynomral equatron of prime degree is solvable by radlcals if and only .~
- 1f “all roots can be expressed ratlonally in terms of any two of them."

59 26 Theorem. Let. K be a ﬁeld of characterzsttc O and let f(x) be an

irreducible. polynomzal of przme degree J/ m K[x] The equatton f(x) =0is '

solVable by radicals if and ‘only if, for any. two dtstmct‘ root‘s a,b off(x)
K (a b) is a splzmng f eld of j(x) over K. :

Proof Let E be a sphttmg freld of f(x) over K and G the Galors group of .

“f(x): Then E-is a. Galors extensron of K (Theorem 55. 7) and G is'a

transrtlve subgroup of S (Theorem 56. 17). Let a, b be two drstrnct roots :

of f(x) and let J=K (a b) be the subgroup of G correspondmg to it.

K@p)| oo o

J is-the subgroup of G consrstmg precrsely of the permutatrons of the
rQots frxmg a and b. Now we have the is equrvalences R

" E K(ab) = J 1 .
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e .' 1 is the only. perihulalioh in G fixing. a and b
e G is'a solvable’ subgroup- of S, -

: kc:) “the equqnon f(x) 0-is solvab]e by radlcals
“This completes the proof. ‘ ] o ", =

.—v(‘ L

" In this bari we give algeofaic fo'r‘mulds‘fo'r the rool‘s of ‘polynomials of
':dcgrce two, lhree and four ﬁor -the sake of gcnorahly, we® assume tho
coefficients are mdetermmates, bui, as will be clear from the arguments,
- lhe formulas are - valld if’ the coeff1c1enls are taken from the base fleld

) 2
o '

"5'9'27 Theorem Let K be a fleld Wlth charK # 2 and lez ab be
'mdetermmates over K m that ; -

: (x)-xz—ax+b '
is the general polynomtal of degree two' over K. Then the roots Ty of
gl(x) are gzven by ' ' ’
‘ rl~— 2 .» - o r2:‘
where D= a’-4p. ' h '

aND oD
2

; Proof' The discfiminimi D of Q(x) is (Vr]"—;’rz)2 = (r + rz)A2 - 4r1"r2 =_‘a2_—. 4b.

Hence retr, = a and ry-or, \FD Solving this system of linear equa,n'o\ns

7 for rl,r,, we fmd

_a+\/5v’ ) _a—\/B'
-—.,2 > . B f\,z c.

\

In plrtic‘ular the« cubic. roots _of- umly, whxch are lhe roots of the poly-"‘
nomial x* +x+ 1, ‘are glven by. a, =(-1+ \/ 3)/ a, =(-1- \/ 3)/2 This
»mll bc uscd ln lhc next lhcorcm ‘ : '
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59 28 Theorem Let K. be a fzeld wtth charK = 23 and assume- that K
contatns ‘a primitive .cube- root of untty, say a. Let ab c be dlstmct
: mdetermmates over K and Iet s : o '

~ g(x)—x —ax +bx-c f

. be the general cubzc polynomtal over K Then the roots rr. r‘.of,g(xT)i_ar're

1y
igtven by « -
. ) : _1 B , 3 1 ,2\> S -»_‘ll ) S
- n "3‘((1+u+v) rzf—(a+a uj-on{) - r=x@ + o + %),
where , - —ab + = + __‘j 3D
R o 27 — .
' = 3 - 5 - - — -
V—Va Zab +. 2 c 3D :
are such that uv=a - 3b andD_.—-(a - 31,)3 -'_'—-(2a -9ab +27c)2

» Proof Let E= K(rl,rz, 3) be:a sphttmg field of g(x) over L= K(a b c) Then_

JE is a Galois extension of L. and the Galoxs group Auy E of g(x) is. Sy

"(Theorem 59. 17). Since Sy is transmve g(x) is 1rreduc1ble over L; and '
‘charK.= 3 1mp11es that the derlvatlve of g(x) is not zero, so g(x) has no .
- common root with- its derlvatlve and the roots rl,rz,r3 are d1st1nct Under "

the Galois correspondence the alternatmg group A, - corresponds

B subfxeld L(8) ofE where §= (r = )y = Xy - 1) -is' the square Toot of '
o the dlscrm,lmant of g(x) (Theorem 56. 18 Theorem 56 19)

Let D be‘the dlscrlmmant of g(x).. We evaluate D. Observe ‘that “rl"— (o/3),
- (a/3),ry - (a/3) are the roots of g(x + (a/3)), so- the root differences
’ 'and the dlscrlmmant of g(x) are the same as those of g(x + (a/3)). One
obtains easrly g(x+ (a/3)) =x3+ px-+ q, where p = (3b - a®/3 and. -
—( 20 + 9ab - 276)/27 Then D =-4p3 - 2747 is computed to be -

(a 3b)3 - +(2a - 9ab i z7c)2 ’
(Example 5610(b)) 2 .' _! ,
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i 3\ .
L@®=LWD)| Ay e
| 1 - A ;2“- B

. Now E is a cychc extensmn of L(‘\/D) because E is Galoxs ‘over L(‘JD)
’(Theorem 54. 25(1)) and “its- Galo1s group. A3 1s'cyc]1c of order 3. Thus E is

"obtamcd by. adjommg a Toot - of a polynomml x3 - € L(\JD)[x] to L(\/B)
(Theorem 57. 1]) A generator o ofA maps as follows '
S —>wau N o —>.-a2-u e ;&211 = :'uf .

An eXammann of the proof of - Theorem 57 11 Teveals that u should be
taken .as ‘a nonzero element of fthe form’ ad + a(ac)dc + a(ac)(acz)dc 'y

Sowith d € E. So we must find a d € E such that. d # ado'+ a?dal s 0.

fchoosc d—r Soletu« r+ar +a22+ar3:;

1+on +.a r Slm1]arly we: put V=.r

il

P

}

' We alrcady Lnow u € L(‘\/D) We how eva]uate 11 ‘We - have PN

3= - TN B R B R
) 1’”,,»“‘(”1-'*‘. qu2 ',*.'“»jra‘)'t =y 34 3aA + 3a B + 6rlr2 PRI ¢}

L S o _2'2 ‘. ’ o 2 2 2~‘ 3
~where we PUt A= 8 Oy + ) Sry r3 "51 jahd .»B = r:kllr‘2 # r2r3 A r3 A _forv

shormcss Thc melhod of- §38 glves J

- 3., .3, "3
i +.fr2 +r1 = (r +r2+r) 3(A+B,) 123,
K - Al . ,'\.

ST \',‘_;.2 ‘2 2 2 2,
and ‘A +B =i r2+r2 oy ;rl—i—rlr2 +.ryry 3 )

=A(ry; +r2+r)(rr+rlr.i+r .;) 3rlr23—-ab 3c

2 2 'z' 2

TA=B :.r~-2'r +r2.r H.rtr -rr

D R N T T B O B 1 e £ L RN
= (r, - 2)(‘5, ’--(.3‘-)(-*(2'—.}r,3=)-="@,1 SeL
so (i) lbecomes R RV
- .
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[(r + r2 + r3)3 3[((1b 3?@, -+ (éb. 320‘\17)]

3—,14-‘1'—3\.,ab—.3c+‘15\ | ‘J 3 ab 3¢ \/1—) ¢
- B o S A e /+ ”23
T e e iE S e

: 9 - 27 3 = S R
o 3___‘ — e - E . BT E B oo

"_qi 2 qb +"2,c7-’|-2_ ’3D. B o e ;

6r r2r3]

and .a" similar 'calcullation‘yie.lds R

V= - + - =-=3D.
=a 2ab 2(;»_27;3'
: : e : Oe : e
: So u and v are cube roots of the express1ons found above But there are
_ three: cube roots -of. these express1ons, "and we must de01de wh1ch cube .

roots we should take Th1s 1s found from .

RN ) 2, .2 - : :
, uv —‘(r +ar2+a r3)(r +(x r2+ar)—a +a2 +a3 - ala2 _aa3 aza3
—a —3b ' ‘ :

The cube roots must be- therefore SO choscn that thelr product w1ll be
equal to -a? 3b If i SRR S BT

; "_‘,,f 3_ 9y 27 3 y5p. S
V"uv_"..a‘ »2_c11b, +2 c+‘ \/ 3D ,  T

oS Y T 27 3 — . S
Cooalado Zap vl o33 o 3
\V,‘G\/f’ gebripes gD o

" are denote cube roots -with this . property, then,. solving 'the “equations

T , ‘
= 52 e ) e . L
v=intatntar e T : 3

for rl,r2,r3, we get - i AR S - , ]
I S S 5 T Cgun
-r——w+u+w \5=;m+au+ao«: nEz@tanta’y),

as was to bc proved. S A S = Nt




‘A remarkable facl is ‘that, ~if f(x) € Rix] has lhree real roots lhen lhe :
roots of f(x) -cannot be expessed in - terms® of - real radlcals We wanl to
dicsuss this matter. ‘We need an, elementary lemma )

o
AY

59 29 Lemma Let K be a fteld a € K and p-a j)rnne number Assume
charK Z P, Ifxp ace K{x] is reduc:ble in K[x] then a= c”for some C€ K

Proof Ina splmmg fleld of xP'~ a over K, we have the decomposmon “
| ’
A x-a 'h(x—cu)
. - - : S k=0 .
©. where u-is a-root of x" - a"and g isa prlmmve p- th root of umty If xP-a
is redumble in. K[x] and flx) e K[x]is a factor pf x" - a with 1 < deg fix)
< _p; then f(x) is a producl of some of the x - c*u, and- the. constant term
( l)hb off(x) is ( l)"c k- for some m €. N “where h deg fix). So b = au"
for some p- -th root of . unity, so byf = u”" = gh and, smce (h,p) 13 there
are integers k,n sansfymg kh + np 1 Thus a = a""a"” = (b r”)’c fpr = "
(b"a")"’andb"a"eK ‘ B =

‘. 59. 30 Lemma Let K- be a vubﬂeld of R and f(x) .an trreduc‘tble cubtc
polynomtal in K[x] Let S be a splttttngfteld of flx) over K. Ifj(x) has
_‘ three “distinct “real - roots, then there is no radrcal extensmn R of K. such‘
" that S c R [D

l’roof Lct I r2,r be the roots and D = (r - r2) (r - ) (r - r3)2 the dlS-
»cnmmanl ‘of f(x). Then D is a posmve real numbcr Put K, K(\/f)) < R
Clcarly K is a subf:eld of S. We may assume that f(x) is monlc -

Suppose, by way of. conlradlcuon lhere is a I‘ddlCle extensmn R of K wuh -
ScRcR. Then RK is a radical exlensmn of K, (Lemma 59. 4) So- lhere is
Ca flmlc cham of flclds

/

K K, S ;.Kn_»l c K =RK,
" such that 'K’.:K’._](u‘.) for some root ‘u; of a polynomial of the form x™i - q;

-in K, lxl (i:=23,....n). We may assute m, arc prime. numbers., Moreover,
after deleting redundant fields, ~we may. assume u, & Ki;lﬁ'_THu's we
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assume m; are pri‘me uie K, and u € K. Then x™ M€ Kl (Ix] is _
: 1rreducrble in K, l[x] for” otherwrse we had u”" = ¢™ for some ¢ € K, '
(Lemma 59. 29) and wlc, wlnch is drstmct from ‘71 in view of u; ¢ K’ "

~“would 'be a primitive m;; th root. of -unity, so u/e € K, R would be -
. complex _ number with nonzero _imaginary part, a contradrctlon Therefore

xMi= € K, Ix] is 1rreduc1ble over K;_ and is in fact the minimal. poly~ :
"nomral of u; € K over K Thrs gives IKK I = : )

_f(x) is 1rreducrble in K [x] for f(x) is the mrmmal polynomral of any of its
roots over K and if rl, s‘ty, were in K; then 2 =|K;Kl= IK KrDIK(r):K1 .
.would be drvrsrble by [K(r)):Kl = deg f(x) =3, whi(:h is nonsense. Now S is
a sphttmg field of f(x) over K, (Exqmple 53.5(e)) and since \fD € K,, the
Galois group Aut, S is 1somorph1c to A3 (’Fheorem 56 21) : :

AOn the other hand, the ‘roots of f(x) are.in § & R € R K, and. f(x) is
reducible over RK K LetK be -the. field-in the. cham above where f(x)
- becomes reducrble lhdl is to, say; let,i € {2,~ .,n} be such that f(x) is -’

‘ "._'irreduciblek over Ki and reduerble over K, =K, l(u) Then there- is a root

“of f(x) in K, say r € K and as above, f(x) is the ‘minimal - polynomral of r
over K, ,, so the prime number m; —IK K 1l -IKK 1(r WK 1(r)K I'is

* divisible: by K, (r):K 1= deg f(x) 3 and so m, = 3. Thus K is-an
extension of K, | contammg the root r off(x) .

: Let N be a splrttmg freld of f(x) over K Then\ N/K ié a Galois exten- :
- sion (Theorem 55 7) and smce \jD ek, the Galors group Aut, N is 1so-
“morphic to A (Theorem 56 21) SO |IN: K i _lAut Nl = 3, From r ¢ K,

and r| eNn K we get K c N n K N “and degree consrderatrons force
»NnK NSONCKﬂnddblNK 3 IKKIwededuceN K

Theorem 55.10 yrelds now “that K; is normal over K and since the irre-
du01ble polynomral xMi - a in K;_,[x] has a root #; in K “the other roots u w ! |
and L(iu) of x™i - a; are in K so © =1 w/u € K This contradrcts K c R. '

Thus there can be no radical vextension R of K such that § € R < R-, o
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" '59; 31 Theorem Let K be a fzeld wzth clzarK = 23 and assume that K -
_contains’ - a primitive cube .root” of _unity. Let ab c.d be dzstmct
.indeterminates .over K. and Iet ’ ' Lo

(x)=x —ax —bx +cx—d»

'be the general bzquadratzc polynonual over K Then the roots r, LT of o

"g(x) are gtven by o (

q¥m4ﬁ4W+W)

-—(a+\/_ \/_—\/y)
‘;[?f?ngj, wuvivn LR

=—(a \/u—\/7+\/_)

v <.

_{vlz'ere_ ',"u—a ‘—46 4y, ,_‘ v—a —4(1—4y, S y=a2-~4‘a‘—.4ﬁ,‘

« ﬁ y are tlze roots ofx - bx + (ac - 4d)x - (azd -.4bd + c2) and the
square roots are subject to the condmon : : - R

\I—\/V\/y—b—a +4ab - 8c,

Proof LCI rl r2,r3,r be lhe roots of g(x) and lcl a=rr+ r3r4, :
B.= r r3 L+ r2 4, Yy = r,r4 + r2r Then a,B, v are the roots “of the resolventv'

cubic .- - - v
x3 - bx + (ac - 4d)x - (azd 4bd + cz)

- .}md lhc Galoxs group of g(x) regarded as a polynomml in K(a ﬁ,y) is V -
(Thcorem 56.23, Thcorem 59.17, Lemma 56 25). We can solve for « ﬁ y in "~
“terms. of radlcals by the method of Thcorcm 59.28. As v, | = 4 we can
. find lhc roots l,r,,rg,r by mtroducmg lwo_'squqre roots. - For this
purposc, ‘we put -, ' S ’ '

R o )
u—(r +r2—r3—r)
, R 2
»*(r ~r2+r3 r4)

Loy E(nry -y +.r4’) .
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",;An easy computatron gives

u=al- 4p - 4y,v—a - 4a - dy;y = a? 4«-45

- and (r +rysrg 4)(r y =) - Tyt ) is ‘a symmetric poly-
“nomial in the roots rl,rz, 3,r , found- eas1ly to be - a3 + 4ab 8¢. Hence we

have. = oo : . L -

a =r +r2+r3+r

\/u =t -T-ry,
..\/v = rl—r2+r3—r4

Ny ="r .]-rz—r}+r4

provided we choose the square roots in such a'Wa'y that ’\/— \/7\/; .
=-g3 + 4ab - 8c. ‘Solving this system of linear. equattons we find .

=—(a+\/z_t+\/7+\/_), L =—(a+\/‘ W-\/y)

L nehe e, e e

In this part we settle some’ famous problems BN

A real number a w1ll be called consrructlble if it is poss1ble to draw a A
line ‘segment of length fal using ruler ,an,d compass only in a finite .
_number of _steps. Thus "constructible” means "constructible’ by ruler and "
compass”. S1m1larly, "to  draw" wrll mean' "to draw usmg ruler and’
compass only". Each step in a ruler and compass construct1on is one of
. the followmg types: . - .’ .
(i) fmdmg the’ 1ntersect1on pomt of two stra1ght lmes
(ii) fmdmg the 1ntersect1on points of two circles;. .-

/

(m) finding the 1ntersect1on pomts of a- stralght line ahd a crrcle

From elementary geometry, it is known that for any given ltne 1 and a
: glven P, we can draw a line through P parallel to I and also a_ line.
through P perpendtcul'lr to I
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“.- to: the axes. .

We draw lwo perpcndlcular llnes and regard ‘them as coordmale _axes.

Then “we fix "a ,unit length Then we “can draw lme segmenls on the
coordinate axes wnh mtegral lenglh Slnce we can draw - lines’ parallcl‘
~and/or perpcndlcular to the axes,'we can _locate all pomts in lhc_
"Fuclldedn pldnc with lnlegcr coordmalcs as lnlersecuon of lmes paraIcl]

- After the 1nlr0ducuon of - a coordmate system on lhe plane, we see that a
.real number a# 0is constructible if and only If lhe line: scgment

[0;a]% { )} or {0} % [0 al is conslrucuble (Closed mlcrvals Heére [0 al is to
be. read as la ()] when a < 0.) ‘ '

.-

Assume @ and b.re con’strucublé. Then @ + b and @ - b are constructible, .
" too. In addition, we can draw the‘liné" thr?)ugh (a,0) parallcl to the line
_scgmcm“joihing (0,b). and .(1,0), which intersects -the y-axis at "(Oab)
Also, -if b # 0, 'we can draw *the line lhrough (0 1) parallel to the ling
' scgmcnl Jommg (0,b) and (a 0) which intersects the y-axis: at (0,a/b).
"Thus g + b, a - b, ab and alb are conslrucuble wllcncver a ‘and b are
conslrucllble‘ (b = .0 in case of dlvmon) Thus the construcuble real
numbers - form a subfield of R-. In parueular all rational numbers arc‘ )
conslrucublc for @ is the prlme subfleld of lhe flcld of constructible . rcalf
numbcrs L o , R R

- A point (a h) is. said to bc L()n\truatthlc 1f both a and b are. conslrucublc

- This’ is the case “if and only 1f (a,bh) can be dclcrmmcd by a finite

scqucncc of ruler and compass constructions starting” from pomts wnh
integer ¢oordinates. IIcnce; “all " points  with rational. coordinates are’
constructible. =~ 7> : : :

In (-NUVCF.,, to determine which- numbcrs‘ are constructible, i.c., in .order to
dclcrminc the  coordinates of. cons(rucublc pomts we must examine
~what "typcfof p(iixlls ~arise. 4flcr L.}(,h of the - ruler and conﬂpuss
.construction steps” (i), (i), Gii). 1t will “be c‘()nvcmcnl/ to-introduce some

, lcrlmin()l()'g)ﬂ

K is a. sublld(l ol rml numbcrs, a point (a, l)) in lhc pl‘mc is lll‘lcvd a kK-

point if h()lh a and b Alrc clements of K. A slran;,hl llne lhroug,h two .
‘ distiner K -points is c‘lllcd a K-line. A urclc whose' center is an. K- p()lnl
and \\h(»\g mdnus is an clumnl of K is ulllcd a K- cnrclo v

N “

i
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A K-lin¢ lhas an equatlon of the form ax + by + c.= 0 where a, lf c € K
for if I 1s the _straight line through the K -pomts (xo,yo) and (xl,ylf) ‘then’ l
‘has the equatron Oy - yo)x +, (x0 =X )y + (xly0 %) =0. A K- crrcle Chas
an equatron of the form xZ + y? +ax +by+c =0, where abc ‘€ K for Af e
,'the center of C is the K- pomt (xo,yo) and the radlus of C 1s the K number.

kg then (ol has the equatron x2 + y + (—2x0)x +( 2y0)y + (x0 -+ y0 rz) =0

Now let K- be a subfleld of R We determrne the nature of 1ntersect10n
pomts of ‘two K-two. stralght lmes and/or K c1rcles that anse asia- result
of one of the steps (1) (i), ('111) T h ~‘ A.j-;f.-e RSN
Ifl and m: are K lmes, w1th equatlons ax + by +¢= 0 and dx +- ey +f 0
‘say, wherc ab,c,d ej €K, then'/ and m 1ntersect if - and only: if ae ='bd" = 0
‘ and’ therr point. of 1ntersect10n can be found on solvmg the system of

'11near equatlons S CRPE TR AR
v - ax+by-—c o
C L dxvey=of B TR
Vfor X,y by Cramers rule to be the K- pomt S R FE
‘ ((~ce + bj)/(ae = bd), (-af + cd)/(ae - bd)) L .735;/,'13-. '

"(Theorem 45 2). Thus two K hnes 1ntersect (1f at all) at a K pomt

Let C be a K—crrcle and la K lme wrth equanons x +y + ax + by +c -0

and dx-+ey +f =0, say,vwhere .a,b,c, d ej €K We find the 1ntersect10n S
points- (x,y) of of C and I. Here d,e cannot both be 0, for- then the equanon"' '2‘5;’. -

dx +ey+f =0 would not -represent a straight line. In case d = O ‘we have '
‘e #Z 0 and y = -ffe,. sox + (~f/e)2+ax+b( -fle).+.¢ = 0, giving Ax? +Bx +E-

=0, with A B ,E € K Hence the X- coordmate of an 1ntersect10n pornt of Cey s

.and/ is a root of a quadratlc polynomlal overK Let D be the dlscrlrnmant S
of, this polynomlal Either D-< 0 and this polynomial has no real roots, o
C and ! do not 1ntersect or D> 0 and it has ‘two (possibly equal) Toots

l,Jc2 in the field K(\( D),. 'S0 C and 1 mtersecn at two K (\/ D)- pomts (xl, f/e),
- (x,5,~fle). In case d. = 0, we put g'= -e/d h = -f/d and us¢’ thie equatIon_}r“—"
gy +hofl. Heregh <-: K. Now. (g)’+h)2+y +a(gy+h)+by+
Ay*+ By +.E =0, with A,B,E € K (not the same A,B,Eas abové). Herice the ~
¥- coordmate of an intersection  point -of C and / s 2 root . of 'a quad‘ranc 8

polynomlal over: K.-Let D be the dlscrlmmant of this polynomrali ,Erther D. t .

< 0 and ithis _polynomial.: ‘has no real roots, so C and [ do not intersect; or °
D> 0 and 1t has two . (p0551bly equal) real roots yl,y2 m the ﬁeld K (\/ D), .

~

'

793



so C and l 1nlersect at two (possrbly 1dent1cal) K(\/D) pornts (gyl + h yl) '
(g>2+h y2) : ¥ S

2+v2+ax+[7y+c—Oand

3 -crrcles ~say wrth equauons x

vx 41y2 F dx ‘+»ey +f= 0, where a b.c.defe K. Then the rntersectron '
. poirits -of C and G, ‘are the same as the intersection pomts of C ‘and” the

K -lines (a d)x +! (b —~ e)y +c=0. ‘Thus enher CI,C do ‘not mtersect -or they. .

l,rmersect ar two; (possrbly 1dentrcal) K(\lD) pomxs where D € K

AY .

‘So each stepqin-a ruler and compass construcuon gives rise to-a K- pornt

~or aK(\/D) -point: for: some D ¢K, ﬂ'K denotes /the freld of Imes/crrcles
used in that step. : '

A real. number A, s’ construcuble 1f and only 1f the pornt (a 0)
construcuble,.hence if -and only  if the pomt (a,0) can be obtamed as a'

' - result of:. a fmrte sequence of the steps @), (u) (m) begmmng wrth pomts

,havmg rational- coordmates Thus a_is conslructrble if and only if there is

a frmle chain of fiékds = ,
‘ @ KCKCKQ .CK ';K” SIS

'such that K= 1( 1(\j__) for someD eK anda €K, HerelK.K l-lor?.‘
accordmg as’ \]D |is or is not m K‘ i hence X, 0 is a power of two.

Moreover a € K, s0 @ = 0(a) [= K and l@(a) @l bemg a divisor of IK :0l,
'?“rs also-a power of two Thus @ is algebrarc over 0 and the degree of a is a
'power of two We proved the followmg theorem

’
{

"":'59 32 Thcorcm If a real number a_is constructlble “then a is algcbralc.
- over @ ,rnd lhe degree of a over O is a power of two. S o

-

"Thc conversc of Theorem 59. 32 is also (rue See Bx -10. We are ‘now in a
posmon Q. resolve -some. famous constructlon problems The- first one is
" the’ conslrucuon of a, cube whose volume is twice-the volume of a grven
cube (duplrc.mon of a .cube). Choosmg the: lenglh of a srde of the given

‘cubc as unn Ienglh thc side of the cube 10 ‘be construcled has length \1_ a

3
lhus tlrc problem rs lo construct the real number \/5 Hs.- minimal.

——



_polynomial is "x3 -"2, since th1s polynomlal is 1rreducrble over, @ by

. Ersenstems crrterron Thus \fi is algebrarc over @ but 1ts degree over @.

is- three not a power of wo. Hence \/5 cannot be' constructed ~it ;s

zmposszble to dupltcate a cube by ruler and compass a]one

'The second problem is to divide a- given angle into three equal parts'
‘(trrsecuon of an angle) An angle of 8 radians is the_ circular ‘arc of lenthA

6 on the umt c1rcle, whrch we ., may assume 'to 1ssue from the pornt (1,0)
and” termmate at the pornt (cos e, sin e) It rs construcuble if and only if
' (cos. 8, sin e) is constructlblc, In view of sine = +\/1 - (cos 6)2 we see
" that an angle: of 6 radlans is constructrble i and’ only if cos® s
‘ constructrble The problem is thus equrvalent to: given cos<p, construct
“cos(9/3). From the trrgonometrlc 1denmy e

€OS: 36 = 4cos 8 = 3cos6

we get, on writing a for cos:p,'the polynomial equation
N . i ) )

—3x—a—-0

for cos ((p/3) The polynomml 4x -3x-ac @(a)[x] where a is an inde-
‘terminate: over @, is known as the angle trzsectzon polynomtal It is
§ irreducible over Q(a): to prove tlns 1t will be suffrcrent to prove that it
is irreduciblé dver z/_[a] Lemma 34, 11); but 4x3 - 3x-a €. Z[a][x] =Z[x][al

is certainly frrreducrble in ¢ 1\x][a],;because it is of degree,one in a and its” -

coefficients (4x> - 3x), -l ¢ 7[X] are 'relatively prime in. Z [x]. So the angle

trisection polynomial is- “irreducible over @(a). The general trisection

problem is whether it is pos<1ble ‘1o’ construct a Toot of

—3x-a=0\4' . ,/ a'=c05cp

in“such a way that the construction remains valrd when a is trealed as‘
an ‘indeterminate. Since a. root of the angle. trrsectron polynomral has
degree three over @(a), ‘the “answer is negative: it is zmpos.\‘zble to find a

method for trisecting an arbztrary angle - by ruler and compaw alone,

This does. not mean of course that no spec:fzc angle can be trisected. On

the’ contrary, there are angles llke 90° that. can very well be trrsected

The . thlrd problem is to draw a square ‘whose area is the area of a olven
. circle (squanng the clrcle) Choosrng the radlus of -the g1ven circle as umt'

7

s
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length the side of the square lo be conslruclcd has length \I_ Thus the
_problem is.to construct. the real number Va-But « and all the more so Vo
are  not _algebrarc over @ (Example- 49.8(d)), let alone be "of degree a’
power of two: Hence Vr ‘cannot be constructed: it is impossible to square
the circle by ruler;andgcompass‘(alone. ' ’

The final problem is to draw a'regular n-gon. This is the same- problem
as dividing the crrcle into n equal parts.” Thus. we- are*to divide the angle
of 21r -radians into n equal parts, which -means we are to construct. t‘1e

—1
+¢ 2m/n

o number “cos (21r/n) ‘Now cos(2rr/n) = L 5 € R, where C = ¢ € C is-a.

'prrmmve n- th root -of ‘unity. The freld O(cos (21r/n)) is fixed only by the
dutomorphrsms ¢— ¢ and.l — ¢!in the Galois group of the cyclotomrc ’
ext'ensi,on' @(C)/Q, which is Galois and of degree- qa(‘n) over ‘Q (Theorem
58.12). So O(cos (Zn/rr)) is an intermediate, field"ofs®(c)/®' satisfying
10(8):0(cos (2x/n))| =1 {C,071} = 2. Thus |Q(cos (2/n)):0! = o(n)/2. Hence, if
cos(21r/n5 is constructible; then :p(n)/2 and consequently also @(n) is a
" power of -two. Let n.= 2“°p %ipP2...p,% be. the canonical .decomposition of
- ninto prrme numbers but possrbly w1th a, = 0. Then o

ep(n)-zﬂo-‘ -1p2“r-'.'.. @ ‘(p,flxpz—l) 0, - R

(lhe term 297! s to be: deleted in case a, = 1) and @(n) is'a power of two if
und only if a, —a2 -‘---—a =1 andp —’)"' + 1 for some k; € N. Here k;

" _cannot -be d1v151ble by"an odd ‘number -1, for otherwise 2! + 1 “would

'drvrde the prime number 2% + 1. Hence k;is -a power of two, say k; =2™.

‘Thus p; = =22"" 4 1. Prrme numbers of the ‘form 22" /+ 1 are called Fermat .
prlmes It is easily verrfred that 22 + 1is prime when m =70,1,2,3,4, but.
 22 + 1. 1s not prime (1[ is drvrsrble by 641) It rs not known whether there
are 1nf1n1tely or- finitely many Fermat: primes. In fact, numbers 22 +1.
are known to be prime only in the cases m = 0,1,2,3,4. We obtain: if a
‘.regular n-gon is constructible, 1hen n has the form n = 2“"plp2 Py
where p .are distinct Fermat pnmes The converse of thrs slatement is

also true, and“its proof is left to the reader. .
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. Exercises

1.-Let K be a field and define: an extension E of K to'be a radical éxterision
of K if E is separable over K and there .are elements u, 2, el in E- such’
that E = K(usu;, .- u) and. one of the followmg is true

h;

() u; is-a root of a polynomlal of the form x" - a; over K(ul, ...,u,._l)',_

. where e1ther charK =0 orcharK =p = 0 and p is re]atrvely pr1me to hy
C@) u is-a root of polynomial of the form xP - x- a; over '

K(u U l) where p= aharK = 0.

e
Prove that Theorem 598 Theorem 599 Theorem 59 10 and Theorem“"
59. 11 remaln valid wrth thls new def1n1t10n of radrcal extensrons

2. Let K. be a field and defme an’ extensron E ofK to ‘be.a radrcal :
extension of K if there are elements. u: Dollgs +en ,u ‘in E such ‘that
~E= A(ul,uz,. u) and one’ of' the: followmg 1s true: ‘ :

(i) u; is a. root of a polynomlai of the form xh' -.a; over K(u .~;.,tli_,i),
(i) u; -is a Toot of polynomlal of the - form x” X - a over . -

K(uy, ... 1) where p= charft = 0.

) Prove‘that‘.Theore,rn 588 emams leld wrth .this - new deflnltlon of.

- radical -extensions if we assume . E _is normal over K. Dlscuss Theorem.

'599 Theorem - 59.10 and Theorem 59 11.

3. Let A “be-a-field, ;4‘) e K [xJ -an rrreduc1b1e polynomlal of degree n=5,
E a splrttmg field of f(x) over K and r a root of f(x) in E. Assume that
AuE=S,. Prove the Iollowrng aasertlons : ‘

(D) K(ryis ot 2 Gators ex tensron of XK..

() IK(P): KI =i, :

(iEyAut, [’(7,5 ‘ 3 S : . L
W) N is’ a"nmrnahclosure of. 'K' ‘ov_er"K(r‘), then there is a- subfield
&N isomorphic to £. » ‘ < :

(v} There r= nc radical extension R of K such that K c K(r) S.R..

(This exercise shows: the hypothesrs that E be Galois. over K. is- 1ndespens—- :
able in Th“Ol’( m 598) DR T

4, Prove that S and A5 are the only nonsolvable transmve subgroups of
5 (Hmt Assume r = (12345).is in such a subgroup G ofS There is a
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. transpositlon or a 3-cycle in -G. In the: first case,” G ‘contains all transposi-
tions and G = S. In the second case, with- n al cycle in G, we have <1r"> =

<> and there are 52 even permutauons im G and A< Gl

5. Let f(x) € @[x] be ‘an 1rreduc1ble polynomml of: degree 5. Show that 1f
f(x) has three: real and two complex conJugate roots, then the Galors
group f(x) is S (Hmt Use Ex 1 and the dlscnmlnant)

76 Flnd flve 1rreduc1ble polynommls in @[x] whose Galois groups are S

7. Show thd[ \/ 2+«J-121 +\/2-xj-12 =4 (Rdffdcl Bombelli (ca. 1520- 1572))

8. Let K be a subfleld of R and let f(x) be a cublc polynomml in K[x] Let
D be the. dlscnmmant of f(x). Prove that -

(@)D >-0 1f and only 1ff(x) has three real. dlSllnC[ roots;

(b) D. <» 0 if and only lff(x) has one real and two complex conj"ugate
- roots; - . : - i .

(c)- D = 0 if and only ‘if f(x) has’ three redl roots one of which is-
: repedted : : . ‘

A}

- 9. Let K be a subfleld of R and let f(x) ‘be an’ 1rrcduc1ble polynomlal in
K[x] suchthat K(a) is a spllmng field over K off(x) for any root a off(x)
Show that there. is no spllmng fleld of f(x) over K and a radlcal extensron

. R of K sdllsfylng ScSRc R

l() Prove the converse of Theorem 59 32.. (llmt Show that, 1f the degree
of K, over Q@ is a power of .two, 50 is the degree over @ of the: normal
closure of @ over K . Use Galois.COrrespondence and' Ex. 12 in §26.)

N ll Prove thit the angle 90° can dnd thc angle 60° cannot be trlsected by
rulcr “and compdss alone SR R : v ‘

A ShOW lhdl, lf n has, the form nl— 29 "plp2 p Where p; are dlstlnct

Fermat P"fm?S ‘then a regular n-gon is constructible byA tuler.” and ~
compass alone. oo : . )
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B A.p‘pendix : -

In tlns appendrx , we want to point out some def1c1enc1es of the naive set:‘

‘theory ‘we .used m this” book and discuss Zorn's - lemma..

" n

We used the term “set 1nformally to desrgnate a collectlon of . objects. G...
* Cantor (1845 1918) the founder of . set theory,‘deflnes a set as "the  collec~
tlon of definite, well d1st1ngurshed obJects of our intuition or our thought
1o a ‘whole." . This definition is very general. - The objects need .not be
‘fmathemat1cal obJects They can be .concepts like charm, ‘courage, “‘miser-
'ab1l1ty In . fact Cantor writes rn .4 letter that set theory belongs to meta-‘-

phys1cs But then, if there is no restrlct1on on the- objects formlng a set,
~one is bound to admit "the. set-of all abstract concepts” or “the set of all

- sets”. Th‘esegsets ‘are elements of themselves the set- of -all :abstract
concepts , is an abstract concept, and the set of * all sets is a ‘set. This"
general definition of a set.‘leads now to log1ca1.paradoxes Con51der the -,
set. M = {A: A ¢ A} of all sets A such that A ¢ A. (This is- not_"

*unreasonable for example the set of all glrls is not. a girl) Now MeM. -

implies, by the definition of M that M ¢ M and M ¢ M 1mpl1es M € M So
M € M if and only if M g: M a contradlctlon ' -

]

ThlS paradox is known as Russells Paradox (B Russell 1872- 1970) It
was also known to G. Cantor to D. H11bert and to E. Zermelo (1871-1953).

(A similar parodox is due to C. Bural1 Forti (1861 1931): the set- of all

ordlnal numbers 1s an ordrnal number “hence ‘is smaller than ‘itself.)'
‘ L

These and analogous paradoxes rndlcate the necess1ty of a sounderl"
approach to set theory. In the. Godel-Bernay axiomatic set theory, there -

are three. pummve undefined concepts: class, membershlp and equallty

A class is 1ntu1t1vely a collection of - objects, to ‘which we. referred to as a-

set up to now (and what we c.llled subset is a-subclass in axromatlc set
_theory). The term set 1is reserved’ for the spec1al type of .classes' A~ for

which a class B ‘exist such that A€EB.A class which is not a set is called

“a'proper class. Loosely speaklng, a set is a "small” class and a proper
class is "wildly large Axioms' of set theory ensure that the subclass,

union, intersection, difference and cartesian ‘product of sets are sets. The‘

class of all subclasses of a set 1s also a set.

,\-
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; ot
Russells pdrddox does not arise_in. the Godel Berndy formahsm the. class

~{Ais 4a set and A e: A} is a proper class. (Thc class of all ordinal numbers

;»V“rs llkewrse a proper class.): We have the cldss of all ‘sets, the class of all
: groups the CldSS of all.; rrngs the class of all*nngs with 1denmy, the class .

of all K- vector spaces the: class of all frelds the class of all abehan

groups the cl,ass of all solvable groups etc. These are ‘not sets.

' 'Thus rsomorphrsm of groups is an equrvalence relanon on the class of all . .
groups, ‘ot on the. ‘set- of ‘all groups. In. like manner rsomorphrsm of rings "

is.an- cqurvalence relatron on’ "the class of all nngs and rsomorphrsm of K-
vcctor spaces rs an equrvalence reldtron on the Llars of all K- veclor

wspdccs

N o0 ) - c. o f (/‘ . - i .
A51dc from the classes of sets, -groups, rings, K-vector spaces, solvable
groups,’ all. the: classes whlch we called ‘set in the lexl are rndeed sets

..(not propcr CldSSGS) in axiomatic- set theory

e

VNow Zorn's Lemma. Zorn's’ Lemma - smtes that any pdrually ordered set,

in  which every . totally ordered subset has an upper’ bound, possesses a’

~maximal elcmcnl . We explarn the new lerms in ns formulation.

._}v‘

.

Al Dcfmmon‘ Let S ‘be a- nonempty sct and R a relduon on S. lfR:

- alrsﬁcs the: followmg condmons, then R is c,.rlled a partral order on S:

(r) a R afor all a € S (R is reflexive),
“ (it)far all a,b €S, ifa R b and b R a, ‘then a = b AR -is anleymmelrrc),,
~(iii) for all' a,b;c € S ifaR b and bR c, then'aR ¢ (R is transitive).

" The set. S is then “said to be parually ordered by R and S is called a
_‘.parnallv mdered set. ’

We shall: almost never use the ‘symbol "R" 1o dcsrgndte a p,.rrtml order. .
We use "<, f”" or a’ similar symbol for this purpose Then the
»L()lldlll()ll\ above assume the more pd]d[dblc form :

ajforal»la €S, R o
band b <.a = -a=h (forallabebs),

(l)(l

n N

(i) a

¥
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S W" D
(m)a band b < = ‘a<’c (for all q,b,c €35).

It is worthwhlle to’ compare partral order relations with equivalence : -

" relationis. Both relauons are reflexive and- transmve They differ in that

'partml orders are- antrsymmetrlc and equivalence relations are symmet-
These. are qu1te opposite conditions and partial orders ‘are 1ndeed‘;"
Avery drfferent from equ1valcnce relauons

‘The reader shoul be careful about the antlsymmetry property.” It does.
not say S : I o
g <b = bka ‘(a,b"eS)'
(where b §é a is the negatlon of b < a).

VA2 Examples (a) Cons1der the set N of natural numbers and the usual
order rélation <. Hence a<b means b-ace N ora=b. It is easy to see .,
that' <-is a part1a1 order on N. ’ v

(b) The ‘usual order relauon (for wh1ch a <-b means b -ac€ N ora =
b)is a parual order on Z

E _(c) The sets’ @ and R are pamally ordered by
' "(d) D1v1srb111ty is a part1a1 order on’ N because '
(i) ala, R
" (i) alb and b!a = a= _b ‘
_ (i) alb and bIc = a[c ,
for all a,bjcre N. '

(e) D1v1srb111ty is/not a partial order on Z, because it is not a_relation on "
: Z alb is meanmgful only when a=0. . . - '

'(f) The "is strlctly less than relauon < on Z is not a partlal order ‘on Z
_because it is . not reflexrve Is 1t antxsymmetrrc"

(g) Let 2> be the set of all subseis ‘of a given set A Then 2> is partrally
ordered by the set 1nclu51on o ‘Indeed for any subsets B,C,D of A, we
" have - - ({)B< B, : . '
(i)B< C and Cc B implies B=C,
(m)B cC and C = D implies BcD. '

’
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"On the other hand, )& is not. parually ordered by lhe proper set. 1nclusron'
< since c is not- reﬂexwe )

(h) Let & be the set of all subgroups of a- grvcn group G. Then % is

partially _ordered by the "is a subgroup of". relation <. Indeed, for uny
‘ subgroups B ,C.D ofG we have ' ‘ o '

' () H < H, S T

(i) H. < J and J< ~ implies. 'H =J,

' (i) H < J and J < K -.implies H < K. ‘ _

- On the other hand, 2 1s not parlmlly ordered by the "is a proper
'subgroup of" reluuon <. since < -is not. reﬂexrve , : L :

(i) Let & be the set of all subgroups of a grven group G. Then & is not a
partially ordered by the "is a normal subgroup: of" relation <1 because <
“is not transitive (cf. Example 18. S(i)) ' :

(J) Lct 2 be the set of all 1deuls of a grvcn ring R Thcn 2 is par*liully‘ :
ordered by the set rnc]usron c .f ‘

(k) Let K- bc a field and V- a vector space over K. Let 2 be the set of ull -
K- lrncurly rndependent subsets -of . V. Then 2 rs purtmlly ordered by the
set mclusron c. : . -

The nulurul numbers N s partmlly ordered by < as well as by |. We

~"know that, for "any two natural numbers n and 1, at least one of n < m
and m < n is true, whereas neither nlm nor min ought to hold. Thus anyl
. two natural numbers can - be compared by the partml order < ,.but not
by the .order [, : A

A3 l)cfmmon Let S bc K| noncmpty set and < a purtml order on.S. Let
a,b be elements of S. Ifa < borb< a,then ais said to be comparable
to' b (in thls case, b is also comparable to.a-and we also say then that a‘
and b are compumble) If any two clements of S are compurable then < -
is called a tatal order on S. The set S is then said to be tolally ordered by

o< .md S is called a totally ordered set. g
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Thus N is totally ordered b\' <. 'but not byvl./Here_ are some more
examples. EERE ‘

Ad. Exaﬁiples: (@) 7, @, ® are toully ordered by <.

(b) The set { ,{ } {1,2 ) {1,2,3)] is;iorally'ordered by <. The set
“Aw, {1}, (2], {3}, { 2}} is not Io'lully ordered by Q. o

(-c) The ,sef {'1, <p“>' <p>} of subgroups of Dg=<p, 0 p4" - =1>is- totally
_-‘ordered by the 'is @ subgroup of" relation < The set {1, <o>,<p? c>] of -
subgroups of D is also tomlly ordered by <, The ' set [1 <c> <p>] of sub-
‘groups of Dy is riot totally ordered by <. :
Can -you descnbe the groups - such that the set of al] subgroups is: totally
- ordered by <? ' ‘

*(d) The finite set {1,2.4,8,16) Lmd the mfrmte ‘set [1 248 16 32,64 ) are
lomlly ordered subsels of N \”hen N is ordered by l ‘

(e) Any nonzero rzmonal number can_be written " in the form 7“—,, where

S
a,uye Z '1nd 71(11 7J(v For Any two rdnonal numbers x = 7“ ,y = 7P~

where ’/hlvst we write X 'y provlded a< b. Then @\{O} -is tota'l‘ly -
ordered by «. - - ' ' .

AS Deflnmon Let S be a nonempty set and < a pdrua] order on.S. An

.element m ofS is called lma\unal “element of S 1f the fo]lowrng 1mp11ca— o

“tion hole

xeSad m<x = m=x..

,A6 Examples (a). Let G be a nonmvral group and ﬁ be the set of all ‘
proper normal subgroups , of G, p'lrtml]y ordered by the relation <. A
m'lxrmal normal subgroup. of "G, in thé sense. of ‘Definition 275 15»a‘
maximal” element of R, and conversely ’ -

(b) Let R be a r1ng dmmci from the null ring,, and % be the set qf .\ll
" proper 1derlls ot,R purlml!y ordered by the relzmon <. A7 maxinml”

\
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-element of A is c.tllcd a maxmml ideal’ of G. Thus M is a maxxmal ideal of
R if and only if there is- no lded‘ A of R such that M cAc R

(¢) Lel V' be'u vector 'spucevover a fiel'd 'K .'; Let % be the seL of all K,f
‘linearly independent subseis of "V, partially i’)rdcred by <. The ‘maximal
elements of & are cxaclly the K- bases of V. ’lhls assertion will bc proved‘-'
‘below (Theaorem A 10).°

(d) Z, ~when. pdrlmlly ordered by <,‘diocé_nol have any maximal
' e]ement o '

e

c () Let, S‘ = {u,b,L‘,if;ﬂJ'} ".ma défihe a relation <-on § by setting

a<a,- - Th< b,  c¢<e¢g, ' d < d; - e<ee, <,
a<.d, a < d, b<ce, - ¢<f -d < f.
Then § is partially ordered by <. We -see-that ¢ and f are maximal

elements: of §. Can_ you f1nd the lot.llly ordered subsets of. S" There are
lhmccn of lhem Co

A partially ordered set need not have a- maximal élement. If it does
‘have one, a . maximal” element need not be umque i.e., the set may have
morc  than’ one nmxmml cluncnls ' ' h

e . ; 'y,

A nmxlmal clcmcm m of a p‘lrll.l”y ordered set S is not neccssdrlly
“bigger” ‘,h“" adl the “other clements.- More precisely, it nced not be the
C‘flSc/’lhlll a <-m for all we S, 7 Fhis condition is stronger than maximality.
A maximal duncnl m is "bigger” than all the other elements that are
' "Loml)u/ab[c o m." DU ’ ' '

AT l)ci'iniliun' Let S be.a nonempty. set and < a pzirtizll order onS. ‘Let

A be a nonempty subset of S. An clement b ofS 1s called an upper bound‘
‘ of Aifad = b mr ull e Al -

It is implicil n lhis’dd‘inili(')n'tlmt b is‘compurublc to- all the clements of
An uper hound of A is not nuusarlly an clement of A. A noncmpty

subset ol 2 p.mnll\ ordered set need not have an: upper bound.

. L $0:4



: ‘A8 Examplcs (a) N is_a nnncmply subset of Z, whlch is pdrtmll) (m
de[ totahy) ordered by < dnd an upper bound of N docs not exist.

(b) 0 is parlmlly ordered by Consrder A - {a € @ a? <:.2). Fhercnre, '
ma'ly upper’ bounds of A, l(‘»r_ instanceé 3/2, 2, 10, 010. Is \/2 an . uper
bound of A? T o

. (c) Lct J% be thc set” of all suhscts of a glven set T partmlly ordcrcd by
c. A éubset L= {T F ] of 2 has an upper bound in- ,% “for.. ~
n

' _.mslance _U Ti is an. upper box nd of .,{

(d) Let 3 be the set of all prdper: subsets of [a b c] parnally ordcred by
.'The subset’ {{d] {b cl) of & does not have 'my upper b()und in 2.

7

- Let us recall .Zorn's temma.

A9 Zorri S Lcmma' ‘Let 'S be a partzally ordcred set. If every totally»-’
ordered subset oj Scontums (ur upper_bound, then-S has a maxmzal

" element. AT

\  ,'_
Some . explunauons are now in; ordcr “We - mal-'e use of Zorn's Lemma to’
prove lhdl cértain lhmgs exist. The’ idea is to ‘consider the object whose .
exrs ence we ~want to show as a ma x1mal elemcnt in -a’ partially ordered.,
set S. The set S and the partml order <- is dictated by the: nature of the
probiem at ‘hand. The partial’ Qrder is usually-a: naluralkorder like 'set
inclusion or the "is a ,subgroup of" 'rellation ‘Since we speak' of partial
orde'r h" set S must be nonempty In prucnce it is- either the easiest or .
the hardest’ part to prove that § is nonempty.: After: estabhshmg that S is
not empty, we 1mroduce a part ial order-<< on § such that the ObJCCKv\\(c'
want to show to exist.is a. nmxrmal element . of S. Then we take an
'urbltrary tolally ordered subset “A of S and 1nvest1gate if- A contains "an -

upper bound. Here it is lmpormm ‘to note ‘that “the- upper bound is '

requrred to be. an .element of A “Thus we must fmd an upper bound '« of

o
<c/
h



A and also aseermih that u is not merely in.!'S' “but in factin A. If. we can

" show that ‘any tomlly ordered subset A of § does. contain an upper
bound in A, we conclude, 'by Zorn's Lemma, that 'S has a maximal
element. The existence'of‘ a de]mdl element of S is- lhereby proved.

As an 1llus[muon we prove an lmportdnt theorem any - vector, space has
a basis. : ' S

-Al0 Theorejm; Let V be a vector space over a field K. Then V has a K-
basis. ! o ' : ‘ o

Proof: If V = 0, then .V has a K- -basis, ”nrlmel)/ @, and the theorem _is
proved - in thrs trivial - case. 'We assume now V = 0. Let 2 be the set of all -
K-linearly lndependent subsels of V. As V =0, [here is. a nonzero . vector
‘u inV and {u} is a llnedrly mdependent subset of V. Thus {u) € & and 2

“is not empty. 2> is partmlly ordered by <. We prove that any maximal

element of 2> is a K-basis of V. To prove this asseruon, we must show

that, if B €% isa mdxrm‘\l element of %, then B spans V over K. '

If B ¢ R is a maxrmal element of % and 5,(B) =V, lhen there isaveV
wnh’ v & s (B). Le_j A=Bu {v}: Since v ¢ $p(B), we have'v ¢ B -and

" therefore B.ec A Meére A cannot be an element of % - betause B cA and' B

Cis’a maxrm‘\l element of . Thus A is a K-linearly dependent subset of V.
- This means lha[ A has afzmte K- hnearly dependent subset C. Here Cc

s rmposmble because B is a K- -linearly 1ndependent subset of V. chce'
we necessarily have v € C. Let C={v,vv, ..5v, L Here {VI’VZ’ ---,V,,} cB.

‘As Cis lmearly dependent over K there are scaldrs (x (xl,(xz, .+ 1,4, not: d” s

~of [hcm nro such that”

cavt o vy oy, e v =0,
Now. @ = 0 ora # 0. In the first case, we have o v, +ayv, + - (xhvn‘,:'O,'
with {vl,vm\.. Vo } € B and not all of o0, - .- ,a, being zero, and this

means {v V. } is K -linearly dependent, so B is also K-linearly

1°Y2
dependent, commry to B e 2. In the -second case, there is an inverse o'
of a in K, and we get ) ' e

P SN PR BN PR e (B
v= (o _(II)QVL+(-‘I orz)_V2 +oee +(‘q Oln)Vn €“SK(B)’\

A
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comrz\ry m V. E.' sK(B).

Thus the assumpnon 5 (B) = V leads to contradrctrons Thrs forces rK(B) =

“V--and B isa K bdsrs of V,us wias to be proved

‘ i

We now employ Zorns Lcmnm to conclude that & has a ’lnaximalvb e

elemenr Flns will prove tlm V has a K basrs e S
- ’We\ huve {o show: that any,tomlly ordered subset of "2 has an upper
-bound-in & Let C = [A iie I} be a totally ordered subsel of 3. Itis
;natural to ‘expect that E U A, 'is an -upper bound of C. We_ certainly
have A c E for any. A € C hut we must also check that E € R.T0 this
‘.‘_end we must prove that Eis K- hnedrly 1ndependent that is to say, thal'
every finite subsel of [: is K- Imearly rndependent o o

'Lel {v, vy "be fmne bub\el of E. We have v, € A “for s'o'h{e'" suitable

€ C Slnce C-is totally ordered, euher A Ai orA g A Let us put
2.

UU A 1t A c A and U A |f A Ai' sa that {v, 2] Q U Now e1lher o

LUy A orA U LelusputU—A rfU irdndU UIfArQU,,'
3 ",

- so't hat {v } U Now enherU A orA U Let us putU;

|fU A andU =U, rfA QU SOLhdt {V

thls way, we see, that { 2, . V] where U is one of A, A‘. R ...,Al.. i
2. :

V3.V, ] Uy Proceedrng in

."From U € C SR, we rn‘er' 1lmt U is K hned\rly rndependent and from :
v ViV e V ] "_I » we-infer lh’tt {v Vo NRARY K- llnearly 1ndependent o

'lhus every f1n|te subset” ot E |5K hnearly lndependent and so E € 2.

"lhl shows that every tolnlly ordered subset of .& hds an upper bound in -

3. By Zorn's’ Lernm.r, lhere is a maximal element B of.& So there is a K-

»bu51sBotV L g L m
y o . RN o . ] R R . . . , P B

Redefimng 2 in the precedmg proof to be the set’ ot dll K lrnearly’
1ndependent subsets of V containing T, and usmg T € 4 to:show lh'u R
1s not empty, we bet the followlng gener'rhmnon of Theorem 42.14.

Y

All Theorem Lct V be: a vector space over a ﬁeld K and let T l)e a K-
llneurly ndcpcndent .subscl of V. Thcn tlzcre s a Kbartv B of V sucl
thatT c B. : . ' 0

(S . . J . T N

N
i
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The theorem that any fleld K ‘has ‘an algebralc closure can also be proved
by Zorns lemma. - One is tempted to consrder here the set (set! set? Set"’)
~ of. all algebrarc extensions of K and find a- maxrmal ‘algebraic extensions
of K.: But the’ problem is that the class of all algebraic extensions of K is_-
not a set and Zorn's lemma cannot be used SO uncrmcally One must first *
find a set of algebraic extensions of K to apply Zorn's lemma. . This is done .’
by showing. that an algebrarc extension of K -has. a cardinal. number not -
‘much greater than the- cardinality of K, and- algebrarc extensions of K can
be assumed to be subsets of a set M containing K, provrded -the
cardmalrty of M is large enough “For detarls the reader is referred to. the.

lrterature

Zorns lemma’ is equ1valent to an ax1om wof set theory, known as the
'ax1om of chorce The axioms of set theory 1mply Zorn's lemma erewrse
using the axioms - of set “theory except for the axiom of choice, and "
. admrttrng Zorn's lemma as an axiom, -one can prove the axrom of chorce/

The axiom of choice is independent of® the remammg axioms_ of set

'theory We refer the reader to the llterature for more 1nformat10n about

thrs toplc
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