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Preface 

The present book is a texkbook in a course .on alg~bra, offered to 
sophmores at Bogazi~i Univers[ty. It contains much. more material than 
could be reasonably covered in a year. Depending. on the level o( tlass, 
taste of the instructor and other factors, some paragraph,s may l;Je 

. ' 
omitted: For this reason, l tried to keep the paragraphs· independent: 

This bpok is written, of course,. to teach algebra, but this is not my chief 
concern. My principle· objective in. writing this. book. is to introduce the, 
student to mathematical , reasoning.· Tnis book is addresse_d to students 
who are earnestly willing to acqui~e mathematical ·maturity, and ,a · 
course on algebra is a very convenient means to gain it. Hence I assume 
very little . on the reader as far as mathematiCal background is concerned, 

but I suppose the reader is genuinely read);. to undertake SO!lle necess­
ary trouble and toil in order to gain mathematical maturity. I am 
perfectly aware that this might be a heavier prerequisite than demand­
ing a strong mathematical 'background. 

Mathematical m~tti'rity cannot be. gained by merely wishing it, . nor can 

anything in mathematics be learned a·t all by reading a text7book or by 

attending certain courses: He (or she) who wants to learn mathematics 

should . be actively ·doing ·mathematiCs: give lectures, prepare seminars, 

write articles or reports, solve. problems, .etc. At the sophmore level,· a 
modest way. of doing active mathematics might be solving exercises. For 

this reason, I included numerous exercises at the end of each paragraph 
(except §47) ran~ing · from routine . computations to, extensions· of the 

ideas· to more general situations. Soine exercises are asked several times. 

I . tried to choose instructive ~xercises and avoid tricky ones. .I ·would 

strongly suggest that the you attempt to .solve them. This· is the way .to 

. learn mathematics., But do not be ·disc.ouraged when you cannot. solve an 

exercise. They are· not enemies to be dcfeat~d, Even if one fannot solve a 

problem, one gains a better -grasp of the theory. Learning \Vhere and 

why a certain method fails also deepens and solidifies your understand­
ing of. the matter. 



For reasons of method, the text is independent of the exercises. Although 
a few of the e((ercises are mentioned in some examples, these examples . 
may safely be omitted. Exercises are never needed in prpofs of 
theo~ems. Wheri I' need a result contained· in an exercise, I prove it, even 
in extremely easy ·cases·: Hence one. can read the proofs without 
botheJ;ing to solve any exercise. But I warn again: reading and following 
a proof is certainly not the. same thing as understanding it. 

'· ' The prerequisites· are collected in . the first chapter. As ·the reader is 
assumed to. be familiar with the contents of Chapter I, I allowed myself . 
certain . deviations from the strictly ·logical order there. The reader wiil 
probably· find certain proofs in, Chapter 1 unduly long: Tl1ey might be 

'long, but not without reason: . As a rule, I do not give the shortest or the 
simplest proof of a theorem, but the proof· that lends itself most ·easily to 
generalization. For instance, Example2.3(f) could . be shorter when we 
used rational numbers,. but the given . argument is used again· in Lemma 
31.2 in a much more general situation, and the shorter proof· would not 
work there .. Proofs in. Chapter 1 are presented in such a way as to work 
also . in broader contexts in later parts of the book. 

What is said a_bout · Chapter 1 in relation to the re'st of the book . is also 
true for the whole book in relation to higher algebra. Whenever possible; 
r gave proofs that work also· in more general situations. For example, 
writing the groups additively arid reading "R -module" in place · of 
"abelian group". in §28, one gets structure theorems of R -modules over a 
principal ideal domain R: 

The book really begins with Chapter 2. Here we introduce groups. After 
we learned subgroups and Lagrange's theorem, we present some 
imP.ortant examples of. groups ( § 11 ~§ 17). This makes it possible to' see . 
some genuine examples of homomorphisms. Then subgroup structure 
and homomorphisms are examined (§ 18-21 ). The remaining paragraphs 
of Chapter 2 are not heavily needed in later parts of the book. An 
exception is· the material on solvable groups (§27), ;which may ·be· 
deferred until §59. 

· Chapter 3 is about rings· and Chapter 4 about vec,tor spaces. The study of 
the subring structure of a ring (§30) a~d the subspace structure of. a 
vector spac~ (§41) depends heavily _on the subgroup structure of a group. · 
Here of course there . can be. no question about independence· of pa;a~ 
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·graphs. We- study divisibility theory in integral domains and in poly_-' · 

. nomial domains in Chapter 3. The theory of vector spaces i~ Chapter 4 is 

quite general, but is developed as far as needed for Chapter 5. In 

·par-ticular, computation-al aspects are "neglected and we do not give 

methods -for solving numerical Ii_near equations . 

. The book reaches its climax in Chapter 5. Groups, rings, vector spaces 

come-. here. in a happy interplay. We focus our attention on algebraic field 

extensions. and give an exposition of Galois theory. I did. not restrict my­

self to fields of characteristic 0, but confined the discussion of separabil­

ity. to algebraic extensioqs. 

I might be criticized for' ni)r pace, whicli is indeed ex.tremely slow. But 

tllis book is primarily written for beginners, and· it suits _them better to 

develope the material slowly. At the same time, hope the book will 

have something to say to _the experts as welL 

I would like to close \~ith thanks to some people. Foremost among them. , 

is my friend and colleague Yal~m Koc; froin the department of Philosophy 

and now the dean of our faculty. I thank· him for his friendly encourage­

ment and for his help .that has been .most invaluable. · Withoui his mate~. 

·_rial help, this book would appear at a 1nuch later date. in a much. less 

satisfactory fornl. It is a plcas~nt . d~ty., to ex'teiid my deep thanks to. him. 

I also thank Attila A~kar, chairman of our department, and Giirol IrZik 

from the department of Philosophy for ~heir encouraging remarks. fic-­

nally, I would like to th;mk all the lovely nice siudenis of the mathcc · 

matics department.. It is a great pleasure to teach theni. 

November 1990 

Istanbul 
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§ 1· 
Set ·Theory 

We assume that the reader is familiar with basic set theory. In this pa­
ragraph, w~ want to rec?tll the. relevant definitions and fix the notation. 

Our approach to· set theory will be informal. For our purposes, a set is a 
collection of objects, taken as a whole. "Set" is therefore a collective term 
like "family", "flock", "species", "army", "club", "team" etc. The objects 

. . 
which make up ·a set are called the elements of that set. We. write 

XES 

to . denote that the object x is an element of the set S. This can be read "x 

is an element of S", or "x is a member of S", or "x belongs to S", or "x is in 
S", or "x is contained in S", or "S co~tains x". If x. is not an element of,S, 

·we write 

X II: S. 

For technical reasons, we agree. to have a unique set that has no 
elements at all: This set is called the empty set and is denoted by 0. · 

A set S is called a. subset of a set T if every element of S is also an 
element of T. The notation 

t 



S<;;;T 

means that -S is a subset of T. This is read "S is ·a subset of T". or "S is 
' i~cluded in. T", or "S is contained in T". By convention, the empty set 0 is 

a subset of any set If S is not a subset of T, we write 

S q, T. 

This means there- is at least one element of T which qoes . not belong to S. 

If S ~ T and T <;;;; S, then S and T havt< exactly the. same elements. In this 
case, S and Tare said to be. identical or equal. We write 

if S and T are equal sets: Whenever we want to prove· that two sets S ·. 

and- T are equal, we must show 'that S is included in T and that T is 
included in S. If S and T are not equal, we put 

S .:T. 

If S <;;;; T but T ;: S, then S is said to be a proper subset of T. So S is a 
proper subset of T i[ and only if every element' of S is an elementof T 

but T contains at least one element which does not belong to' S. The nota­
tion 

SeT 

means that S is a proper subset of T. This is read "S ,is a proper subset of 
T', or "Sis properly included in T", or "S is properly contained in T". By 
convention, the empty set 0 is a proper subset of every se.t except itself. 

Some authors write S c T to mean that S is a. subset of T, the _possibility 
S = T being included, and S ~ T to mean that S is a proper subset of T. 

The reader should be 'careful about the meaning of the symbol "c" he or 
she uses. In this book, "c" denotes proper 'inclusion; 

Sets . are sometimes written by displaying their elements within braces 
(roster' notation). Hence 

(1,2,3,4,5} 

is the set whose elements are_ the numbers 1,2,3,4' and 5. Obviously, only 

those sets which have a small number of elements can be written in this 
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way:: ·In many cases, the elements of a set S are characterized by a 

~property P and the set is then written 
. [x: x has property P). 

In this- book, N = ( 1 ,2,3, . ; . } is the ~et of natural numb~rs, l = [ 0,+ 1 ,+2, ... ) 

is the set of integers, Q = [F: a,b E l, b ;z! Q) is the_ set of rational num~ 

bers, IR is the set of real numbers, C is the set of· complex numbers. 
These notations are standard. Some authors regard .0 as a natural 
number, out we agree that 0 1/. N in this book. 

Given two .sets S and T, we consider those ol:ijects which belong to S or to 
T. Such objects will make up a new set. This set is called the union of S 
and T and is denoted by S u T. We remark here that 'or' in the definition 
of a union is the logical 'or'. Let us recall that 

and 

Thus we.. have 

. · 'p or q' is true in case 'p' is true, '(j' is true; 

'p' is true, 'q' is false; 
.'p' is false, .'q' is true; 

'p or.q' is false in. case 'p' is false, 'q' is false. 

S U T (x : X E S or X E T). 

In particular, S u T ::: T u S. 

S1 U S2 U ••• U S
11 

{x:. X E S1 or X E S2 or ... or X E S
11
·}.'_. 

n n 
We usually contract this notation ·into U S ., just like' we write 'bai 

. . i=d I . · i= I 

inst(':ad of a1 +az + ··· +a
11

• More. generally, if we have sefs Si' indexed by. 

a. set I, then their union i~ 
1 

Si is the set· 

U S. = {x: x E S. for at least one· i E /). 
i€ I I I · . . . ,r' -

Given two sets S and T, we consider tho_se objects which belong to S and 
to T. Such objects will · mak·e up a new set. This · set is called the 

illlersection of S ·ami T and is denoted by { n T. ·We remark here that" 
'and' iri the definition 'of a intersection is the logical .'and'. Let us recall 
that ' 

'p and l( is true 111 case 'p'. is.lrue, 'q' is true; 

3 



and 

Thus we have 

'p and q' is false in case 'p~ is true, 'q' is false; 
'p' is false, 'q'. is true; 
'p' is false, 'q' is false, 

S n T = {x : x .E S and x E T}. 

In partic:ular, S n T = T n S. 

If we have sets S1,s2, ••• ,Sn, their intersection S1 n S2 n ... n S~ is given by 

s, n s2 n ... n Sit:= {x: .X E s, andx € s2 and ... and X E S): 
It 

We usually contract this notation. into fJ
1 

Si.. More generally, if we have 

;;.. sets s., indexed by a set J; then their intersection n/ s,. is the set 
I 1€ 

n S. {X ; X E S. for all i € /). 
. 1€ I I I . 

•. 

Two sets S and T are said to be disjoint if their intersection is empty: 
S n T = 0 . Given a family of sets S i' indexed by a set I, the sets S i are 
called mutually disjoint if any two distinct of them are disjoint: 

Si
1 
nsi;=0 forall i1,i2, E /, Si1 ;:Si

2
• 

The sets we consider in a particular djscussion are usually subsets of a 
set U. This sef U is called the universal :Jet. Given a set S, which is a 
subset of a universal set u' those elements of. t.J that do not belong .to s 
make up a new set, called. the complement of s and denoted by s· or sc 
or C u<S). Hence· 

S'= {x: x € U and x f/. S). 

More generally, we write 

T \ S = {x : x € T and x f/. S}. 

and ~all this set the relative complement of S in T, or the difference set T 

minus S. The syt S may or may not be a subset of T. Nott? that 

T\S = T ns·. 

According to our definition of equality, the sets (a ,b} and { b ,a} are equal. 
Frequently, we want to distinguish between a,"b. and b,a. To this erid, we 
define ordered pairs. An ordered ·pair is. a pair of objects a ,b, enclosed 
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within parentheses and separated by a comma .. Thus (a,b) is an ordered 
pair. The adjective "ordered.". is used to emphasiz~ that the objects have 
a status of being first and being ~ecorid. a i~ called the first c~mponent of 
the ordere<Y_pair (a,b), and b is called its second component. Two ordered 

cpairs are . declared equal if- their first components are e,qual and. their 
second components are equal. !hus ,(a,b) and (c,d) are equal if and only 
if a c and b = d, in which case we write (a,b) (c;d). Notice that we 
have (a ,b) ;r (b,a) ·unless a = b ·(here ;r ··means the negation of equality). 

The set of all ordered pairs, who~e first components are the elements of 
' a set S and whose_: s~cond components are the elements of a set· T, is 

called the cartesian product ofS and T, and is.denoted by S x T. Hence 

/Sx T = {(a,b): a .E S. ansi b E T}. ; 

We can also define ordered triples (a;b,c), ordered quadruples (a,b,c,d), 

more genei:ally ordered ~z-tuples (al'a2, ••• , an). Equality of ordered n­
tuples will mean the equality of their corresponding components. The 
set of all ordered n-tuples,. who-se· i-th components are the· elements of a . . . 
set S i' is c_alled the cartesian product ofSl'S2, • • ., Sn and is denoted by 
SIX s2 X ... x Jn· Hence . 

Six s2 X ... X sn = {(al,a2'''''an): ~I € st. a2€ S2, ... ,an€ Sn}. 

- . - . ' 

It is possible to define the cartesian product of infinitely many sets, . too. -
We do not give this definition, for we will not need it. 

A set can . have finitely. many or infinitely many elements. The number 
of elements in a set S is call~d the cardinality or the cardinal number of 
S. The cardinality of S is denoted by lSI. The ser S is said to be finite ifiSI ·: 
is a .finite number. Sis said to be infinite if S i.s not finite. A rigorous. 
definition of finite and infinite sets must be based on the notion of one­
to-one correspondence bet'ween sets, ·which win. be. introduced_ in §3 . 

. However, we will not make any attempt. to give a rigorous definition of 
finite and infinite sets. We shall be content- with .. the suggestive 
description above. 

Exercises 

l. Show that, if R is a· subset of S and S-is a subset of T, ·then R is a 
s.ubset ofT. 

5 



2. Show that 
·and 

(R u S) u T = R u (S u T) 

(R n S) n T = R n (S n T). 

3. Prove: S n T = S if and only if S!;;, T, and S !;;, T if imd only if S u T = T. 

4.. Prove the distributivity of union over intersection and of intersection 
over union: 

R u (S n T) : (R uS) n (RuT), 

R n (S uT) = (R n S) IJ(R n T). 

5. Prove the deMorgan laws: 
(S u T)'= s· n T' and 

for any subsets S ,T of a universal set U_. 

6. · Show that T\0 = T and T\ T = 0 .for any set T. 

7. Prove: (S \ T) u (T \ S) = (S u T) \ (T n S). This . set is called the 
symmetric ·difference of .S and. T. It js denoted by S D. T. 

8. With the notation of Ex .. 7, prove that 
(R D.S) b.T R b.(S b.T) 

SD.0=S 
SD.S=0. 
SD.T =Tb.S. 

9. LetS and T be finite sets.· Prove the following assertions. 
a) If S 0 T = 0, then IS u Tl = lSI+ ITI. . 
b) IS u Tl =lSI+ IT!- IS n TI.(Hint: S u T= S u(T\S).) 

10. Find all subsets of0, [1}, {1,2],[1,2,3},{1,2,3,4]. 

11. Prove: if S is a finite set, then S has. exactly 2151 subsets. 

,; 

•• 
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§2 
Equivalence Relations 

In ~mathematics, we often investigate relationships between . certain 

objects (numbers, functions, sets, figures, etc.). If an element a of a set A 
is related . to an element b of a set B, we might write 

a is related to b 

or shortly 
a related b 

or even more shortly 
aRb. 

The essential point is that we have two objects; a and b, that are related 
in some way. Alsq, we say "a is related to b", not "b is related to a", ·SO 

the order of a and b is important. In other words, ·the ordered pair (a ,b) 

· is distinguished by the ·relation. This observation suggests the following 
formal definition of a relation. 

2.1 Definition: Let A and B be two sets. A relation R from A into B is a 
subset of the cartesian product A X B. 

If A and B. ·happen to be equal, we speak. of a relation on A instead of 
.using the longer phrase "a relation . from A into A". 

Equivalence· relations constitute a very important type of relations on a 
set. · 

2.2 Definition: Let A be a utmempty set. A relation R on A (that is, a. 

subset R ofA x A) is called an equivalence relation ori A if the following 

hold. 
(i) (a,a) E. R for all a E A, 

(ii) if(a,b) E R, then (b,a) E R. (f9r all a,b E .A). 

(iii) if (a,b) E R ~nd (b,c) E R, then (a,c) E R 

(for all a,b,c E R). 
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This definition presents the logical structure ·of an · equivalence · relation­
very clear!~, but we wilL almost. never use this . notation. We prefer to 
write a ~ b, or a~ b, or a E b or some similar symbolism instead of 
(a,b) E R. in order "to express thai.a,b are' related by an equivalence 
reration R. Here a :._ b can be re~d ."a is equivalent to b". ·our definition · 
ttien ass.umes the form· below. 

2.2 Definition: Let A be a nonempty set. A relation R on A (that is, a 
subset R of A X A) is called an equivalence relaiion. on A if the following 

. hold. 
(i) a~ a for all a E A, 
(ii) if a- b;t~en b ~a (for alla,b E A), 

(iii) if a ~ b .and b - c then a --.: c (for all a,b,c E A). 

A relation - that satisfies the first condition (i) is called a reflexive 
relation, one that satisfies. the .. second conditfon (ii) is called. a symmeti-ic 
relation, . one that satisfies the third condition· (iii) is called:. a transit iv~ 
relation. An equivalence relation is· therefore a relation which is 
reflexive, symmetric and . transitive. Notice_ that symmetry and. transi-

. tivity requirements involve conditional statements (if • ; . , . then .. , ). In 
order. to show that . ~ is symmetric, for· example; we must make the. 
hypothesis a:_ b and use this hypothesis to establish b - a. On the other . . . . . . . 

hand, in order to show that "V is reflexive, we have to establish a ~ a f.or 
all a E A, _witho~t any further assumption. 

2.3. · Examples: (a) Let A ·be ·a nonempty · set or" numbers and let 
equality ='be our relation. Then = is certainly an equivalence relation on 

.A SiflCe 
(i) a a for all a E A, 
(ii) ·if a b, then b =a ·(for all a,b E A), 

(ill) ·. if a = band b = c, then a= c (forall p,b,c E: A) . 

. (b) Let A be the set of all points in ·the plane except the; origin. For any 
· two points· P and R in A; Ienis put P _.: R if R' lies on the lirie through the 

origin and P. · . 

(i) P - P for all points P in A. since. any point lies on the line 
. -·-

through the origin and . itself. Thus ~ is reflexive. 
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. (ii) If P - R, then, R lies on the line through the origin and P; 
· therefore the origin, P, .R lie on one and' the same line; ··therefore P lies 

on the line thiough the origin and R; and R - P .. Th~s - is. symmetric. 
(iiQ If P - R and R - T, then the line through the origin and 

R contains the points P and T, soT lies on the line through the. origin and 
P, so we get P - T. Thus- is transitive. 
This proves that - is an equivalence "relation on A~ 

(c) Let S be·. the set of all straight lines in the· p_Iane. Let us put m lin if 
the line m is parallel to the line n. It is easily seen that II. (parallelism) is 
an equivalence· relation on S. 

(d) Let l be the set of integers. For any two numbers a,b in Z, let us-put 
a . e b if a -b is even (divislble by 2). 

(i) a =·:a for all a € l since a - a = 0 is an even number. 
(ii) If a b, then a - b is even, then b -a = (a -b) is .also 

even, so b = a. 
(iii) If a = b and b.= c, then a - b and b .-c are even. Their 

sum is also_an even num"Qe'r.So a -c =(a -b)+ (b -c) is even and a= c. 
We see that is an equivalence .relation on Z. 

(e) The ·tast example may be generalized. We fix a whOle number n-;:! 0 

(n is called the modulus in this context). For any two numbers a,b in 1, 
let us put a b if a - b is divisible by n". 

(i) a = a for all a € Z since a -a = 0 = nO· is_.divisible by n. 

(ii) If a= b, then a -b = nm for-some m € Z, so 
b a -(a-b)= n(-ln) is divisible by n, and b a. 

(iii) If a b and b = c, then a - b = n m and b - c = n k for 
some m,k € Z , so a -c (a .;.b) + (b -:;> = nm + nk = n(m -+ k) is, divisible 
by n, and so a = b. ' 
Therefore, . = is an equivalence relation on Z. This. relation is called 
congruence. For each nonzero integer n, there is a ~ongruence relation. 

In order to disting!}ish between them, ...;e write, when n is the modulus; 

a= b (mod n) rather tlian a= b. 

(f) Let S = Z x (Z\[0)). Thus S is the set of ait ordered pairs of integers 
whose second components are distinct _from zero. L~t . us write 
(a,b)""' (c,d) for (a,b), (c,d) € S if ad= be. 

(i). (a,b)..,. (a,b) for all (~.b) t. S, since ab = ba for all.a € Z, 
b t. Z\{0}. 



(ii) If(a,b),.; (c,d), then ad.=bc, then da = cb, then cb =.da, so 

(c,d)"" (a,b). 
(iii) If (a,b)'"" (c,d) and (c,d)"" (eJ), then. 

ad = be and . cf = de 

adf = bcf and bcf = bde 

adf = bde 

d(af -be) = 0 
af .;.be= 0 

af =be 

(a,b)"" (eJ). 

Thus "" is an equivalence relation on S. 

· (since d ;z! 0) 

·(g) Let T be the set of all triangles in the Euclidean plane. Congruence of 
· triangles is an equivalence relation on T. 1 

(h) . Let · S be the set of all continuous fu-nctions defined on -the closed 

interval [0,1]. For any two functions f,g inS, let us write f ~ g if 

J~ f(x)dx = 1~ g(x)"dx. 

Then ~ is an equivalence relation on· S. 

An equivalence relation is .a weak form of equality. Suppose we have 
various objects, which . are -similar in one respect and dissimilar in 
certain ·other respects. We may. wish to ignore their dissimilarity and 
focus our attention on their similar behaviour. Then there is no need ·to. 

distinguish between our various objects that behave. in the same way. 
We may regard them as equal. or. identical. Of course, . "equal" or 
"identical" are poor. words to employ here, for the objects are not 

absolutely· identical, they are equal1 only in one r~spect that we wish to 
investigate more closely. So ·we employ the word "equivalent". That a 
and b are e<tuivalent ·means, then, .a· and b are equal, not in every 

respect, but· rather as far as. a ·particular property is co~cerned. An 
equivalence relation is a formal tool -for disregarding differences 
between various objects and. treating them as equals. 

-Let .us examine our examples under' this ·light .. In Example 2.3(b), the 
points P and R may be different, but the lines ,they,determine with the 

9rigin are equal: In Example 2.3(c), the lines may .be different, but. their 
directions are equal. In Example 2.3(d), the integers may be "different, 

but their parities are equal. 'In Example 2.3(e), the integers inay be 
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different, but their remainders, when they are divided by n, are equal. 
In Example 2:3(f), the pairs may be different, but the ratio of their 
components are equal. . In Examp_le 2.3(g), the triangles may have 
different locations in the· plane, but their geometrical properties· are the 
same. In Example 2.3(h), the functions ~ay be different, but the. "areas 
under their curves" are equal. 

An equivalence relation :... on a set A gives rise to a partition of A in to 
disjoint subsets. This means that ~ is a union of certain subsets of A .and 
that the dis_tinct subsets here are mutually disjoint. The converse is also 
true: whenever we have a partition of a nonempty set A into pairwise 
disjoint subsets, there i_s an equivalence relation on A . . Before proving 
this important result, we introduce a·· definition~ 

2.4 Defin-ition: Let ...... be an equivalence relation on a nonempty set A, 

and let a be an element of A. The equivalence class of a is defined to be 
the set of all elements of A that are. equivalent to a. 

The equivalence class of a will be denoted by (a] (or by class(a),d(a), a 
or- by a similar s-ymbol): [a] = { x E A : i ~a.}. 

An element of an equivalence class X !: A is called a representative of X. 

Notice that x € [a] and x- a have exactly the same ·meaning. In partic­
ular, we have a €. [a] by reflexivity. So any a € A is a representative of 
its own e_quivalence class. 

The equivalence classe's [a J are subsets of A.· The set of all equivalence 
classes is sometimes denoted by A 1-. It will be a good exercise for the 
reader to find the equivalence classes in Example 2.3. · 

·, 

We now state and prove the result we promised. 

2.5 Theorem: Let A bi a nonempty .set and let ~ be ·an equivalence . 
relation on A~ Then the equivalence classes form a ·partition oj A. In 
other words, A is the union of the equivalence classes and the distinct 

I .- • 

equivalence classes are disjoint: 
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A = U [a] 
ae:A 

and if[a] ;e [b], then [a] n [b] = 0. 

Conversely, let 

A = U P., P
1
. n P

1
._ 0 . ifi ;e j 

. aEA I 
I.· 

be a union of nonempty, mutually disjoint sets Pi,- indexed by I. Then 
there is an equivaknce relation on A such that th.eP/s- are the 

equivalence ·classes und~-r this ~elation. 
·, ' .. · .... ' •, -

Proof:· First we prove A'= U [a]. Forany a € A, we hav,e [a]~ A, hence 
. . . . . aEA · -· .· . 

U [a]!;A. Also, if a € A, then a € [a] by reflexiv.ity, so• a € U [a] and 
ae:A . : . · . . aEA . 

A!;;; U [a] • So A = UA [a]. · , · 
. ae:A aE 

Now we. must prove that distinct equivalence classes are disjoint. We 
prove its .contrapositive, which is logically the· same: if two equivalence 
classes are not disjoint, then they are identical. Suppose that the 
equivalence classes [a] and [b] are not disjoint. This means there is a c in 
A such that c €-[a] and c € [b]. Hence 

.c"-a and c-b 
a-c and c- b (by symmetry) 

(l) a- b. (by transitivity)· 
(2) b-a ,(by ·symmetry). 

We want-::to prove [a] = [b]. To this end, we have to prove [a]!:: [b] ·and· 
also [bj!:: [a]. Let us prove [a]!;;; [b]. If X € [a], then x- a and a:... b by(l), 
then x- b by transitivity, then x E [b], so [a] !;;; [b]; Similarly, if y € · [b], 

then y- b , then y - b ·and b - a by (2), then y - a by transiti~ity; then. 
y _€ [a], so [b] !;;; [a]. Hence [(Z] ,[b] if [a] and [b] are not disjoint. This 
cornpletes the proof of· the first assertion. 

, Now the converse. Let A = U P ., where any two distinct P
1
.'s are 

· aEA l . 

disjoint. We want to define an equivalence relation on A and want the 
P-;'s to be the equivalence classes. How do we accomplish this? Well, if 
the Pi are to be. the equivalence classes, we had better . ca'll two elements 
equivalent if they belong to one and the same Pio· · 

Let a E A: Since A = U P., we. see that a E' !\ for some i 0 € I. This 
a€A I . • · 

index i0 is uniquely determined --by a. That is to say, a cannot belong. to 
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two or more of the subsets P ., for then P. would not be mutually disjoint. 
. ··. , . . I:. :: · · .,1 ·: : ·• , ,- . 

So each. element of A belongs .to on.e and only ~me of the subsets Pr 
~ . . ' . ' -· ' . . . . , ' . 

Let a,bbe elements ofA'an:d suppose a EP;
0
'and'b EP;

1
: We put-a;.,b if 

Pi
0 

= Pi
1

, i.e., we put a"' b if the sets Pi· to which'a ahd b ·belong are _ 

identicaL We show that "': is, an .. .equi':alence rela_tion. . .. 
, ··-. , (i) ·For a.?Y a E A, of course a be)ongs to. the set Pi

0 
it belongs 

to, and so a "'·a and "' is reflexive. 
' • • ' • •' ' ¥. 

(ii) Let a"' b., This means. a and, b bel~ng t~ .the same. set Pia: 

say, so b and a belong to the same se·t Pi
0

, hence b"' a. s·o "' is symmetric. 

(iii) Let a "'b and b ""c. Then the set Pi to which b belongs 

contains a and i:. Thus a and c belong to the same set Pi and a ""c. This 

proves that "" is transitive.· 

We showe~ that "" is indeed an equivalence relation on A. It remains to 

prove that Pi are the. equivalence classes under "". For any a E A, we 
have, if a E Pi

1
, 

[a!= {x E A : x"" a ) 
= (.t E A : x belongs to Pi

1 
} 

= {x e: !J P. : x belongs to Pi ) 
• I (I I_ . •· • I 

=Pi. 
I. 

This proves that Pi are the equivalence .Classes under "". 

Exercises 

I. On N x N, define a relation= by declaring (a,b) = (c,d) if and only if 

a + d = b + c.. Show that = is an equivalence relation on N x N. 

0 

2. Determine whether the relittion ~-on IR is an equivalence relation on 

IR, when ~ is defined by declaring x ~ y for all x,y E IR if and only if. 

(a) there are integers a,b,c;d such that ad 7 be =·±I and ~- = ay+b · 
cy+d '. · 

(b) lx- yl < 0.000001; 

(c) lxl = lyl; 

(d) x-y is an integer; 

(e) x-y is an .even integer; 

(f) there are natural numbers n,m such that xn = ym; 

(g) there are natural numbers n,m. such that nx =my; 

(h) X;;;;.)'. 
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3. Let - and "' be tw-o equivalence relations -on a set A, We. define by 
declaring a = b if and only _if a - b . and .,a "' b; and we define.::::: by 

_ dedaring .a =.b if ~nd ·only if~ -:-b or a ,.,b. Determine. whether = and =. 
are. equivalence, relations . on. A. 

4. If a relation on A. is ·symmetric and transitive, then it is also reflexive. 
Indeed/let·~ be the relation and let a £ A. Choose an element b £ A such 

- that a ~ b. Theil b~ a by sym~_?etry, and from· a .;.. b, b -a, it follows that 
a -a, by transitivity. So a -a for any a £ A and- is reflexive. 

This argume!lt is wrong. Why? 

\ 
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§ 3 
Mappings and 9perations 

Functions, ·also called mappings, build a very important type of relations. · 
Let us recall that a· relation from A· into B is a· subset of A .x B. Under 

special circumctances, a relation will be called _a function 'or a mapping. 

These. two terms will be used interchangably. 

3,1 Definition: Let A and B be nonempty sets. A relation f from A into 

B ·is called a function from A into B, or a mapping from A into B if every 
element of A is· the first c·omponent of a single ordered p~ir i'n f.!:;; A x. B .. . 

This definition embraces two .. conditions. First, every element a· of A will 

appe-ar as the first component ·of at least one ordered pair (a •*) in f, that 
is, the first components of the ordered pairs in f should make up the 

. whole A. No el~ll!ent · of A can be left. out. There should be no ele!llent of 

A which is not the first comp9nent of any pair in f. Second, for any 
a e: A, there can be only one ordered pair in f whose first component is 

a. In other words, if (a ,b) and (a ,b~) are both in f, these pairs should be 

-identical, which means b =b'. A relation f from A into B is. a m~pping .if 
and only if every element of A is the. first component. of one and only 
one ordered ·pair in f. 

Iff is a mapping from A into B; then A is c·alled the domaiJZ off, and B IS 

called the range of f. A function f from A into B must b_e thought of as a 

rule or mechanism by which elements of A _are· assigned to certain 

elements of B. The first condition, that every element of A is the first 

component of at least one ordered pair in f, is a formal way of ex~ 

pressing that elements of A, not of any other set, in. particular not of any 

proper subset of A, are the objects that are assigned (to' some elements 

of B). The second condition, that every dement of A is the first com-
/,. ' 

· ponent of at most one ordered pair in f, is a formal way of expressing 

that no element of A is· assigned to two; three or more elements of B . 

. We introduce SOflle notation. We write f:'A -+ B to mean that f is a inap­

ping from A into B. Occasionally, w~ write A _{B. The reader probably 
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expects that we write f(a) b in place of (a,b) E f. This is the symbolism 
that the reader is accustomed to, and re~inds us of a mapping rule that . . . .· -

assigns b to a. However, we will rarely write f(a) =b. We prefer to w.rite 
(a)f = b or af = b, with the function symbol f on the right side of the 
element a. This might seem odd, and the reader might wonder about this 
strange order of elements and functions. It takes some time to get 
accustomed to this way of writing functions . on the right, but the ad­
vantages of this notation. will far outweigh ·the little trouble it causes at 
first. This will be amply clear in the sequel. We r~mark that not. every 
algebraist conforms to this usage, and~an isolated notation will have 

__. different meanings according as wheth~r the functions are written on 
the right or on the left. We will point out these differences as occasions-., 
arise .. 

Suppose f is a mapping from A into B and a E A and b E B are such that 
t:f = b, (in this case, we sometimes write a .-+ b or a..!. b and say . that f 
maps a to b). Then b. is called the image of a under f. We also say a is a •· 

. pre image or an inverse image o/ b under f. Please. mark the articles: b is. 

the image of a, since a has one and only one image, but a is .!l preimage 
of b,.for b may have many preimages. 

3.2 Examples:(a) Let A be a nonempty set and let 
1 = j(a,a): a ·EA l!;;; A X A. Then 1 is a function from A into A. In our 
second notat~on, this reads a1 =a. This function is caned the identity 

mapping· on A. When we want to point out the set A, ~e write 'A instead 

of 1. 

Now let A!;;; Band put 11=. ((a,a) E Ax B: a EA}!;;; A X B. Then lliS a 
function from A. into B. In our second notation; this reads all = q. This 
function is called the inclusion mapping from A into B. Writing all for a is 
a formal way of recalling A !;;; B and a E B. 

(}))Let A= {1,2,3,4,5} and B = {a,b,c,d}. Consider 

f= ((l,b), (2,a), (4,d), (5,d)}. 

The~ f is not a function from A. into B since 3 E A is not the first 
component of any ordered pair in f!;;; A x B. Co!]sider 

g = ((l,b), (2,a), (3,(l), (3,b), (4,c), (5,d)}. 
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Then· g is not a functio~ from A into B since 3 E A is the first component 

. of two distinct ordered pairs in g >:;; A X B. 

(c) L~t A and B be t\\IO . nonernpty sets and let b E B be a fixed element 

of B. The!1 f, defined by 

af= b for' all a E: A, i.e., f= ((a,b) E Ax B: a E A] 

is a mapping from A into B. This is sometimes called the constant 

function b, 

(d) For any'(a,b) E: ~X~. put(a,b)s= a+ b. Then s is.a function from 

IR x ~· into IR. This s may be called the sum function. It is an example of 

a b.inary operation .. We · will examine binary opera!ions later . in this 

paragraph. 

(c) Let A {u,x,y,z} and B = {1,2,3}, and put 

uf I, xf = 2, yf 2, zf = I. 

Then f is a function from A into B. 

(f) Let A be a nonempty set and let S be the set of all su~sets of A. For 

. any a E: A, put af = {a} E S. Then f is a function from A into S. 

(g) Put xf = x 2 for· all x E. !A! •. Then f is, a function from ~ into R. 

(h) Consid~r j = ((x,y) E R x IR: x 2 = y 2 }. Then Jis not a function from !A! 

into IR , .. since 1, for example, is · the- first component of two· distinct 

ordered pairs (1, 1) and (1 ,-1) in/ .. On the other hand, if u:t denotes the set 

of positive real numbers, then g ~= { (x,y) E: u:t x u:t: x 2= y 2 } is ~a function . 

from u:t into u:t. In fact, g is the identity· function on u:t. . 

(i) Let f: A - ·n be a mapping from A into B and let A 1 be a. nonenfpty 

subset of A. For any a E A i, we put ag = a f. Then g is a mapping from A 1 

into B. In terms of ordered pairs, we have 

, g=fh (A 1 X B). 

g is called the· restriction off to A1• We usually write fA or J,
1
A, to denote 

· I I 

the restriction off to A l" If g is a restriction of f to a subset of the 

domain off, then f is called an extension of g. 
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(j) 'Let A. be a nonempty set and let B be a fixed subset of A. For any a in 
A, we put · · 

{ 
0 if a E: B;. 

Xs_ = 1 if a E. 8 . 

. · . 
Then x8 is a function from A into {0,1 }. It is called the characteristic 

function of B. Here we wrote the function on the left. 

(k) For any· x E IR , we put 

· {· 0 ifx is irrational, 
f(x):::;;. ··lif·x is rational. 

Then f is a fUI:ICtion f:om IR into Ill. In fact, f . is the characteristic 
function of t~e set of rational numbers; The image. of some X is not . 
known. For instance, it is not known whether Euler's ~onstant y 'is 
rational or not. Nevertheless, f is a genuine function. This example is due 
to L. Dirichlet (1805-1859). 

(l) Let A · be a nonempty set and let - be an equivalence relation on A. 
Let AI-· be the set of equivalence classes under -. Then · 

v: A -Al­
a -+ [a] 

is a· mapping from A into AI-. It is called the natural mapping or the 
canonical mapping from A into-A/-. 

3.3 Definition: Let f: A - B and f 1: A 1 - B be two fu11ctions. f and fi 
are called equal if A =A 1 and af =_aft for all a E A =A 1• , · 

So, in order that two functions f and f 1 be equal; their· doinains m1;1st be 
equal and the· images of any element_ in this common domain.: under the 
mappings /and fi must be equal, too. In par,ticular, if .(:-A -..B is a fun'c-

tion and B ~ C, then the function g: A - C, defined by ag = af for _all a in 
A, is equal to f. The ranges do riot· play any ,role in the definition of 
equality. (In some branches of mathematics, for example in topology, 
two functions with. different r;nges. are sometimes . considered di~tiJ"!Ct, 
even if their domains and function-al values coincide.) 
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. In the definition of a mapping f: A- B, we required. that every element 
-~f A be .. the first component of at least one ordered pair in f and . also that · 
every element of A be the first component of at most one ordered pair 
in f. There was no analogous requirement for the elements of B. If w~ 
impose similar conditions on the elements of B, we get special types of 
functions, which we now introduce. 

3.4 Definition: Let f:. A- B be a mappipg. If every element of B is the. 
second component- of at least one ordered pair in J, then f is called a 
mapping froin A onto B. 

The reader must be careful about the usage of the prepositions "into" 
and "onto", for they are used_ with different . meanings. That f is a 
fun.ction from A onto B means that every element of B is the image of· 
some element of A. For an arbitrary mapping f: A - B, an element of B 

has. per~aps no preimage at all, but if f is a mapping from A onto B, then 
each element of B has at least one preimage hi A. 

. . 

The range should be ·specified whenever the term "onto" is us'ed. ·A 
function is not "onto" by itself, it is only onto a specific set ·we shall 
frequently treat the word "onto" . as an adjective, but it will be, always 
clear from the context which range set is meani. · 

. I. 

3.5 Examples: (a) The mapping f: IR - IR, given by f(x) = x 2 for all 
x E IR, is not onto, since -1 E R, for instance, ~as no preimage under 1: . 
(b). Let l!r' denote the set of all positive real numbers. Then. the map­

ping f: l!r' - l!r', given by f(x) = x2 for all x E IR, is onto. 

(c) The mapping g; p,2,3,4,5} ...... (a,b!c}, given by 

lg a, 2g = a,.3g a, 4g = b, 5g = c 

is onto. 

(d) Let A be any nonempty set. Then 1 A : A ...... A is onto, for any a € A 

has a preimage a in A under 'A since a1A =a. 
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· 3.6-. Definition: Letf: A -+B be a mapping. If every element of B is the 
second component. of at most . one ordered pair in f, then f is called a 
o.ne-(o-one mapping from A into B. 

A function f: A :..... B is therefore one-to.:one if an arbitrary element of B · 

has either no •preimage in A or exactly one preimage: any two preimages 
of b e: B (if b has a preimage at ·all) must be eq11a1. So the necessary and 
suffiCient condition for a mapping f: A - B to be on~-to-one is 

af = b and a,f = b (a,a1 e: A, b e: B) 

or, more short!)' 

af= a,f · ==* (a,a 1 e: A), 

whose contrapositive reads 

A one-to-one mapping is a mapping by which different ·elements in the 
domain are matched with different elements in the range. Being a one­
to~one function is the negation of being a "many-to-one" _ fu_nction, by 
which many elements in the domain are matched with one and the same 
element in the range. 

3. 7 Examples: (a) ( (x J. ); x 2 = y} b: R x R is not a one~to-one function 
from R into R, for _two distinct elements x and -x (if x ¢ 0) have the 
same image. 

(b) Let W denote the set of -an positive real numbers. Then the mapping 
( (x,y): x 2 = y} b: W x. W is a one~to-one function from W into W. 

I . 

(c). The mapping g:-{1,2,3} --. (d,b,c,d}, give1i'by 

lg = b, fC = d, 3g =a, 

is one-to-one. 

(d) Let A be a nonempty set. Then 1 A: A -+A is one-to-one, for if 
a1A = b1A, then a = b from the definition of 'A· 
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Sup pose we have two functions f: A --+ B and g: B --+ C. For any_ a E A, we. 

find af = b E B and tlien 'apply g to this element af = b of B. We get an 

element c = bg of C. In this way, the element a of A is assigned to an. 

element c of C. Here. af =b is uniquely determined by I (since !·is a 

mapping) ana bg c is uniquely determined by g (since g is a ';napping).­

So c is uniquely determihed: we have a a mapping from A into C. · 

3.8 Definition: Let f: A ..... B and g: B -+ C be t~o _ fuf!ctions. Then 

h = {(a,(aj)g) _E A XC: a E A } !:. A XC, 

which is a function from A into C, is called the composition off with g, or 

the product off by g. 

We write h f "g or more simply lz = fg. Thus a(fg) is defined as (aj)g. 

In order to compose two functions·/ and g, we must make. sure that the 

range of the first function f is a subset of the domnin of ·the second 

function g .. Otherwise. their composition is not define'd. Note the order of 

the functions I and g. We apply f first, the[l g; and we write ·first f, then g 

in the composition notation fg. One of t11e advantages of writing the 

functions on the right tiecomes evident here, If we had wrilten the 

f~nctions on the left, then fg would have ;:neant: first apply g. then f I as 

in' the calculus, where (/ .. g )(x) = j(g(x))] imd we would have been reading ' 

backwards. Notice also that the domain of fg is the domain ol' f. 

3.9 Examples: (a) Let f: A "'7 B be a mapping. Then it is easily 'seen that 
ft8 = fand 11/ =f. 11"\decd', the domains. of flfJ, .f. 1A{ are _all equal to A and 

for all a E A. In particular, if ~(:A ..... A is· a mapping, then g 111 = g = r_ 1g. 

(h)Letf: {1,2,3,4}- (a,b,c,d} ami .s.:: (a.h,c.d} -JS,x.U.~.'l} be giv..:n by 

Then we have. 

If=(! 
2f = c 
3f = d 
4f =.h 

ag U 
bg =X 

cg = 11 

d.s.: 5 
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/ 

I(f'g) = 
2(/g) = 
3(/g) = 
4(/g). = 

(1/)g' 
(2/)g 
(3j)g 

. (4j)g 

= ag =U 
. = cg = IJ. 

= dg = 5-
= -bg =X • 

(c)Givenf: [1,2,3}.-+(a,b} and g: (a,b} --(x,y,z}, where 

we have 

. f: l -+ a. and 
2 -a 
3 -+ b 

-.fg: 1 -+ y 
2 ~ Y· 

· 3 ~z. 

g: a_. Y 
b -+ z 

Notice that gf is not defined. 
',- ' \ 

(«1) -Given f: IR - IR and. g: IR -..R, we have 
x-..sinx· x-x2 

x(Jg) = (xj)g = (sinx)g = (sinx)2 = sin2x,. 

x(gf) = (xg)J = (:x")f = sin(x2). ' 

. (e) Given /: IR _,. IR and g: IR - IR, we have 
X-:>x2-l - x--x2+l · 

_. x(fg) = (xf)g = (x2-I)g = (x2-1)2 +1 =:X4 - 2x2 + 2' 

x(gf) = (xg)f;, (x2+1)/= (x2+ 1)2 --1 = x4 + 2x_2 • 

. Given two functions f: A - B and g: B --.. C, we might be tempted to ask 
whether fg = gf. Example 3.9(b) and Example 3.9(c) tell ·i:Js that this 
question is me~ningless,_ for, although fg is defined in these_ examples, gf 

is not even defined, let alone is equal to fg. Example 3.9(d) and Example 
3.9(e) show that the 'two functions fg a~d gf, even if they both exist, are 
not' necessarily.- equal. We have fg ;;e gf iri general: the ;composition o.f 
mappings is not commutative. 

However, it is associative; 

3.10 Theor~m: Let f: k-+B, g: B -c, h: C-D be three functions. Then 
(Jg)h = f(gh). 
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Proof: We must prove that the domains of (fg)h and f(gh) are equal and 
~hat an arbitrary element in the. common domain is assigned to the same 

element by (fg)h and byf(gh). < 

The domain of (jg)h is the domain of fg, which is' the domain off; which 
is A. The dom~in of f(gh) is the domain of f, which is A. So the ·domains 
of (jg)h and f(gh) .coincide. ·· 

Now let a be· an arbitrary element of A. Then . 

a((fg)h) (a(jg))h 

= ((af)g)h 

= (aj)(gh) 
a(J(gh)) 

which yields (jg)h f(glz). 

(by the. definition· of.ifg)h; forget that fg is a 
composition_ itself) 

(recall now that fg is a composition, 
· applied to an element a) 

(definition of glz, applied to an element af) 
(definition of.j(gh)), 

0 

Onto mappings and: one-to-one mappings . behave very nic~ly when they 
are composed. 

3.11· Theorem: Let f: A-B,,·g: B·-C be two functio·ns and letfg:A -c 
be their composition . 

. (l) Iff is onto and g is onto, thin fg is onto. 

(2} Iff is one-to-one ·and g is one-to-one, then fg is one-to-one. 

Proof: (I) Suppose f an·d g are onto. For any c E: C, we must find a 

preimage of c under fg .The only thing we know about C is that C is the 
range of g. Now g is onto,- so c has a pre image in B under g. -Let h e: B .be 

such that bg ::= c~ Since b E: B and_ B is the range off, and f is onto, b has Jl 

preimage a E: A under f, so that ~rf= b. Tht?n we get a(jg) =.(af)g ·bg =c. 

So a is a prcimage of c tinder fg. This proves that fg is onto. (Summary: a 

preimage of a prcimage is a preimagc ·that works.) 
' . - . . 

(2) Now suppose f and g are one,to~one. We must prove a = a
1 

whenever 
a(jg) a1(fg), for all a, a1 .t A.Jndeed, if 

· · · a(jg) = a
1
(fg), 
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then· . (af)g = (a/)g; 

af= atf 

·a = a 1 

This proves that fg is one-to-one. 

(since g is one-to-one), 

(since fis one-to-one). 

0 

The converse of Theorem 3.11 is· wrong. If f: A -+ B and g: B -+ C are two 

functions and if fg: A -+C is onto, it d.oes not ~!ways follow that both f 

and g are onto. Also, if f: A -+ B and g: B -+ C are . two functions and if 

fg: A -+ C is one-to_-one, it does not always follow that both f and g are 

one-to-one. This can be read off from. the functions displayed below. 

{a,b,c} L {x,y,z} .1i. { 1,2} {a,b} 4 (x,y,z} ~ (1;2,3} 

a ____,. X ---? 1 a ---7 X '~ 1 
b~ y ___.;. 2 b ~ y --------'> 2 
c ~ z ..,/" z ~ 3 

Here fg is onto, but fis not onto; and f 1g1 is one-to-one, but g
1 

is not one­

to-one; 

However, we have a partial result in this direction. Observe that g is 

onto -and f 1 is on,e-to-one in these examples. This is not a coincidence. 

3.12 Lemma: Let f: A -+ B, g: B -+ C be two functions. and let fg: A-+ C 

be their composition. 

(1) If fg is onto, then g is onto. 

(2) If fg is one-to-one, thenf is one-to-one. 

Proof: (1) Assume fg is onto. For any c E C, we must find a preimage of 

c inB under g. Now any,c E C has a preimage in A under fg .. Let c = a(fg), 

where a E A. Then c = (af)g. So af E B :is a preimage of c in B under g. 

This proves that g is onto. (Summary: the image of a preimage is a 

preimage that works.) 

(2) Assume. fg is one-to-one. We wish to prove that f is one-to-one. 

Suppose ·that af = atf, where a, a 1 E A. Applyi_ng g to both sides of this 

~quation, we get (af)g = (atf)g, therefore a(fg)= a 1(fg). Since fg is one-to­

one by. hypothesis, we g~t a = a 1• This proves that af = a/ implies a = a
1
• 

Thus f is one-to-one. o 
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In view of its importance, we record the most important· corollary of 

Theorem 3. I l as a separate theorem. 

3'.13 Theorem: Let f: A -+B, g: B -:C be. one-to-one and onto. Then t.he 
composition fg: A -+ C is one-to-one and onto. o 

Assume we have a mapping f: A -+B. We want to define a new mapping 
g: B -+A by inverting the order of the components of the ordered pairs . 
in f. In other words, we want to define g by putting (b,a) e:· f! if and only 

if (a,b) e: f. This g is a .relation from B int9 A. The question arises: when. 
is g in fact a mapping .from B into A? 

The necessary and- sufficient condition for g ·to .be a mapping is that each 

element of B be the first component of at least one. and at most one 
ordered pair in g. By the definition of g, this is equivalent to the con­

dition that each element of B be the second component of at least one 
ordered pair in f (i.e., f be onto) and also. of at most one ordered pair in 

f (i.e., f be one~to-one). Let us observe that the mapping · g is then 
uniquely determined by 

' bg =a if and only if af =b. 
We proved the 

3.14 Theorem: Let f: A -+B be a mapping~ The following assertions are 
equivaleni. 
(i) f is one-to-one and onto. 
( ii) There is a unique mapping g: B -+A 

hg = a if and only if af 
such that 
h (a e: A, be: B) 0 

3.15 Definition: The mapping g of Theorem 3.14 is called the inverse 
mapping off, or simply the inverse of f. It is denote.d by. j 1• 

3.16 Theorem: Let f: A -+ B he one-to-one and onto, and let f 1: B -+ A 
be.its. inver.~e. Thenfj 1= lA andf 1f= 'n·. 
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Proof: We must show that the domains and functional values. coincide. 
The domain of f/1 is the domain off, which is A, a.nd A is the domai_n of 

iA. Further, for- any a E: A, we have a(jj 1) =_(af)j 1 =·a =a 'A by the 

definition of ! 1 ·This proves fj 1 ='A· 

The domain of j 1f. is the . domain of £ 1, which is B, and B is the domain 
of.1n. Further, for any b € 8, we have. 

b(] 1f) = (bj 1)f= af (where a is the unique element of A with af =b) 

= b = brB. 

This provesj 1f = 'n·. 

. ' ' 

D 

~.17 Theorem: (1) Let f: A --.8 be one-to-one and onto. Thenj 1: B -+.A. 
is one-to-one and onto: 

(2) Letf:A --.B be a mapping. Jf·there is a mappingg:B- Asuch that 
fg = lA and gf =.In, then f is one-to-one and onto (and therefore g ·is ·the. 
the inverse of f). 

Proof: (1) We have f·lf = zB by Theorem 3.16. Sirce .ln is/ one-to-on~ 

(Example 3.7(d)),J-1 is one-to~one by Lemma 3.12(2). Also, we have 
ff:I= 'A by Theorem ·3.16. Since 'A is orito (Example .3.5(d)),f1 is ont~ by 

Lemma 3.12(1). 

(2) We use the same reasoning. fg = 1A is one-to-one, so f' is tine-to-one, 
", - ' 

and gf = 18 is onto; so f is onto. o 

A mapping f: A : B is said to ·be a one-to-one correspondence between 
A and B in case f is one-to-one and onto. If f is a one-to-one correspond-

, . 
ence between A and B, then f·l is a one-to-one correspondence between 
B and A by Theorem 3.17(1). 

* 

* * 
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We now introduce binary operations.· They constitute a generalization of 

the four elementary operations addition, subtraction, multiplication and 
division ·that everybody learns in the primary school. Consider addition, 

for example. Given any two numbers a and b, their sum is a uniquely 
determined number. This is the core of the operation concept: given two 
objects a and b, associate with them a unique object of the same kind. 
More precisely, we have the 

3.18 Definition: Let S be a nonempty ·set.· A binary operation on S is a 
mapping from S x S into S. 

The important thing about a binary operation A is that it is· defined for 

all ordered pairs (a,b) E S :X: S and that the result of the operation, (a,b )A, 

is an element of S. 

Although a binary operation A is a, mapping, we .will not employ the 

functional notation (a;b)A .. As in the case of the elementary operations, 
we write a sign.like "+", "- ", "o", "(!) ", "®" between the clements a and b to 

denote the image of (a ,b.) under A: So the image of (a ,b) will be denoted 
by a+ b, a- b, a o b, a <Db, a ®b or by a similar symbol. 

3.19 Examples: (a) The elementary operations addition, subtraction, 

multiplication are binary operations on !A: • Subtraction is not a binary 

operation on N, since I 2, for instance, is not an element of N (although 
I and 2 are). 

(b) Let M be a set and lej S ·be. the set of ·an subsets of M. Taking union 
and taking intersection are binary operations on S. The usual notation 
"A u B ", "A n B" conforn1s to the remarks above· . 

.. 
(c) Let F be the set of all functions from a set A into A. The usual com-

position of funciions is a binary operation on F. 

(d) Let us write x o y = x + y 2 and x tJ y = x 2+x+ 1 for. rea.l numbers x,y. 
Then· o and b. are binary operations on !A: • Here y does not enter into 

x tJ y in any way, but this does not preclude b. from being a binary 
oper:ttion. 

(c) Let V be the set of all vectors in the three space n:t 3
• Taking dot 

product of two vectors is not a binary operation on V, ·since the result is-
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a scalar (real number), not· a vector. On the other hand, taking cross 
product is a · binary operation on V, since the result is a uniquely 

determined vector in · V. 

(f) For any natural numbers m ,n, let m • n denote. their (positive) 
greatest common divisor. Then • is a binary operation on N. 

(g) Let S be the set of all students in a classroom. For any students a,b 
in s, let a ·b. be that student who sits in· front of -a. Then .. is not a binary 

. operation on S, for a ·b is not defined if a happens to sit in the foremost 
row. Remember that a binary operation on S has to be defined for all 

pairs in S X S. · 

(h) For any ordered pairs (a,b ); (c ,d)' of real numbers, we put 
(a,b) + (c,d) =(a+ c, b +d), 

(a,b).(c,d) = (ac- bd, ad+ be). 

Ti1en + and . are . binary operations on ~ · X ~ • Notice that · one and the 

same symbol "+" stands for two different binary operations, one on ~, 

and one on ~ x ~ . / 

EX"ercises 

1. Let f : A _.. B be a mapping. Prove that f is one-to-one if and only if 
there is a mapping g: B _..A such that fg = 'A; prove that f is onto ·if and 
only if there is. a mapping h: B _..A ~uch that hf = 18 • 

. · 2. Let f: A _.. B be a mapping. For any subset A 1 of A, we put 

A:A 1) = {f(a) € B: a € A 1} 

and for any subset B 1 of B; we put 

. .f'"(B1) ={a € A :J(a) € B1}. 

(f(A 1) is called the image of AI' and .f'"(B1) is called the pre image of B
1

. 

Most people refer to f(A) as the range of f. Here we wrote the functions 

on the left.) Prove that 

f(A
1 

n A2) !:-f(A1) n f(A 2), 

j""(B1 n B2) · =.f'"(B1) nj""(B2), 

AI r;;; j""{f(AI)), 

f(A 1 u A2) = f(A1) l! f(A 2 ) 

j""(B1 u B2) = .f'"(~1 ) u j""(B2) 

f{_r-(Bl)) r;;; Bl 

3. Keep the notation of Ex. 2. Prove thi:tt f is one-to-one if and only if 
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4. Keep. the notation of Ex. 2. Assume. thaf f is one-to-one and onto; and 
let_.{ 1: B ::-A be its inverse. Show that . 

r(B1) =J 1(B1) and·. (f 1)'-(A 1) =/(A 1) 

for any subsets B1 and Ai.of Band A, respectively . 

. . 

29 

. . 



§4 
Mathematical Induction 

Examine the propositions 
2n ;;;. n for all n E N, 

1 +2+··· +n n(n + 1) for all n e: N, 
2. 

nn + 1 ;;;. (n + l)n for all n E N. 

How do we prove them? They are stateme.nts involving a variable n 

running through the infinite set N. Strictly speaking; each one of these 
propositions above is a collection of infinitely many, propositions. We can 
verify them for a finite number of cases where n assumes some specific 
values. Thus we might verify zn ? ·n for n = 1 ,2,3, . . . , 1 bOO 000 and 
convince ourselves -of the truth of this statement, but this is far from a 
proof. On the other ·hand, we cannot check the truth of infinitely many 
statements within finite time. So we must reso-rt to some other means. 

In order to prove propositions about all natural numbers, an axiom is 
introduced. It is the fifth Peano axiom about N · (Giuseppe Peano (1858-
1932), an Italian mathematician and logician). It is called the axiom of 
mathematical induction. 

4.1 Axiom (of mathematical induction): If S is a subset of N such 
that 

I. · 1 E S, 
II. for all k E N, if k E S, then k + 1 e: N, 

then S is the whole of N, i.e;, S N. 

We can use this axiom to prove statements of the form :p for al1 n e: N' n 
as follows. We let S ~ N be the set of all natural numbers n for which Pn 
is true. First we verify 1 e: S, that is, we verify that p 1 is true. Second, we 
assume that k e: S · and under this hypothesis, which is called the 

induction hypothesis, we prove that pk+l is true. So we show that k e: S 
implies k+ 1 e: S. By the axiom of mathematical induction, S N, so the 
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statement p n "is. true for aH n E · N. We formulate the axiom as an 

operational procedure.· 

4.2 Principle. of mathematical induction: Let p n be a statement 

involving a natural number n. W.e can prove the proposition 

for.all n E N, Pn . 
by establishing .that 

I. p 1 is true, 

II. for all k E N, if pk. is true, then pk+l is true. 

Proofs by the principle of mathematical induction consist ~f two steps. 
In the· first step, we show that p 1 is true. In practic!!, this. is often quite 
easy, but we should not neglect it. In the second step, we assume tha~ P~: 
is true. This assumption is the inductive hypothesis. Using this hypo­
thesis, ·we prove· that p k+ 1 is true. A proof by induction will not be 
complete (and va-lid) if we carry out the first step but not the second, or 
if we carry out the second ·step but not the first.· 

4.3 Exar:npies: (a) Prove that I + 2- + · · · + n = n(n 
2
+ 1 f. for all n E N. 

We .use the principle of mathematical induction. 
·1(1+1) -

I. 
2 

• so the formula is .true for. n = 1. 

II. . Make the inductive hypothesis that I + 2 + · · · +k = k(k 
2
+ .l) · 

We·want to establish I + 2 + ··· +k +(k +1) ~ (k+l)((k+l) +I). We have 
. 2 

1 + 2 + ... +k + (k + 1) k(k2+ 1) + (k + 1) (by inductive hyp.) 

= <} + t)(k + 1) 
(k+1)(k+2) 

= 2 
so the formula ·is true for n = k' + I if it is true for n ;= k. Hence 

I+ 2 + ··· +n 
n(n +I) = ---'---:::--.:.. 

2 
for all n e: N. 
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(b) Prove that 2 + 22 + 23 + ··· .f.2n = 2n+l- 2~for all n € N. 

I. We have 2 :::, 21+1 - 2, which proves the assertion for n = 1. 

II: Assume 2 + 22 + 23-+ ... + 2k = 2k+l - 2. Now we must prove 

2 + 22 + 23 + ... +2k + 2k+l = 2(k+l)+l 2. We have 

2 + 22 + 23 + . •.• .+ 2k + 2k+ !· = (2k+l - 2) + zk+l (by inductive hyp.) .. 
2(2k+l) 2 

= 2k+2 - 2, 

so the assertion is true ·for n = k + l if it is true for n = k. Thus 
2 + 22 + 23 + · · · + 2n = 2n+l - 2 for all n € N. 

(c) Let h > -1 be a fixed real number. Prove that. (1 + _h)n > 1 + nh for all 

n EN. 
I. We have (I + h) 1 > 1 + liz,- so the ;inequality is true for n = J. 

·II. Let us assume (1 + h)k > 1 + kh. We want to prove that 

(1 +hi+! > 1 + (k + l)h. We have 
(1 + hl+l = (1 + hl (1 +h) 

> (I + kh)(1 + h) (by inductive hyp. and 1 + h > 0) 

= 1 + h + kh + kh 2 

> 1 +h +kh + 0 
:::; 1 + (k + l)h, 

so the inequality is true for n = k . + if it is true- for n = k. By the 
principle of mathematical induction, 

(1 + h)n > 1 +.nh for all n EN. 

Sometimes it is convenient to use_Jhe principle of mathematical induc­

tion in a slightly different form. We assume (not only q k' but rather) 

each one of ql' q 2, q 3, ••. , qk is true and then conclude _that qk+l is true. 
This establishes the truth Qf q n for all n € N, as the following lemma 

shows. 

4.4 -~ Lemma: Let qn be a statement involving a natural number n. 

Assume thq.t . 
i. q1 is true, 
iL for all k € N, if ql' q2, q3, ••• ,qk are true, then qk+l is true. 

Then qn is true for all n € N. 
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Proof: We prove the lemma by ·the principle of mathematical induction·. 

We put. 
P1 ql 
pk = q 1 and q2 and· ... and qk · (for all k EN, k >- 2). 

Now induction. 
·I. p

1 
is true (by the hypothesis i.) 

II. M·ake the inductive hypothesis that pk is true. Then 

q1 and q;_ and ... and qk .. is true (definition o_f pk) 

ql'q2, ••• ,qk are all true (truth value, of conjunction) 

q k+ 1 is true . (by the hypothesis ii.) 

q 1, q2, .•. ,qk, qk+i are all true 

q 1 and q2 and ... and qk and qk+1 
is ·true. pk+l 

is true 

Hence, for all · k E N, if p k . is true, then p k+ 1 is true. By the principle of 

mathematical induction, p is true for all n E N. So . n. - . 
q 1 and q2 and ... and q~ is true for all n E N. 

·In particular, q n is true for all n E N. This completes the proof. 0 

We can now formulate a new form of the principle .of mathematical 

induction: This form will· be used many times in the sequel. 

4.5 Principle of ·mathematical induction: Let q n -be a statement­

involving a natural number ·n. We can prove the proposition 

for all n E N, qn 

· by establishing that 
i. q 1 is true; 

ii. for all k E N, if q1, q2 , .•. , qk are true, then 

q k+ 1 is true. 

The statement '2n >- n 2 ' is not true for all natural numbers n, but true 

for all natural numbers .n >- 5. The . principle of mathematical induction. 

can be. used to pruve this and similflr propositions.- Let a be a fixed inte­

ger (positive, negative or zero) and let p be a statement involving an 
• . - n 

integer n >- a. We prove the (ruth of Pn for a11 n >-·a by showing that 
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1. p is true a , 
2. for all k ~ a, if p k is true, then p k+ 1 is true. 

This is easily seen when we put q 
11 

= p ll+a·l for n E: N and use Principle 
4.2 with q in place of p . There is a similar modification o( Principle 4.5. 

II . II 

Exercises 

Prove the assertions in Ex. 1-5 for all n e: N by the princ·iple of mathe-
matical induction. 

1. 1 + 3 + · ·· + (2n + 1);::: n2• 

2. 1 + 4 + 7 + ··· +(3n- 2);::: 
n(3n-1). 

2 
n(n + 1)(2n +'1) 

6 
n 2(n+l}2 

4 
n(n +. 1 )(2n + l)(3n 2 + 3n -

30 
6 .. Prove that 2 11 ~ n2 for all n ~ 5, n e: N. 

1) 

7. Prove .that n3 '+ 3n2 + 2n + 1 ~ 0 for all n ~ -:-2, n e: l. 

8. Prove that, for any n e: N and for any positive real numbers 
al ,a2'' .. , a2•' 

9. Prove that, for any n e: N and for any positive real numbers 
al, a2, ... ,a~~, 

b = (a 1 + a2 + .. · + am)/m. Then use Ex. 8 with al'~' . .'. , a ,a 1, ••• , a , 
m m+ ·2• 

where am+ I= ... =a;.;::: b.) 
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§S 
Divisibili~y 

In this paragraph, we remind the reader of certain properties f!( integers 

concerning divisibility. First we .recall the definition. 

5.1 Definition: Let a, h E Z. If a~ 0 and if there is a c E· Z such that ac = 
b, then a. is called a divisor or a factor of b, and b is said to be divisible 
by a .. We also say a divides h. 

We write alb to e,xpress that a divides b. Whenever we employ the 

notation alb, it will be·assumed of course a~· 0. We shall write ath 

wl1en a ~ 0 and h. is not divisible by a. Thus we have 316, 3!9, 218, 5{9, 
5110, 3{7, 418, 316, 21 4, -21-4. The notations Olh and Otb a.re 
meaningless: not true or false, simply. undefined. 

Some basic· properties of divisibility are collected below; 

5.2 Lemma: Let a,h,c,m,n,m 1,m2, ••• ms,b1,b2, ••• ,bs, be integers. 

(I) If alb, then al-b, -al-b, -alb. 

(2) 

(3) 
(4) 

If alb andblc, !fwn ale. 
If alb and c ~ O,.tlten aclbc. , . 

If aclbc, tlzen alb. 

(5) If alb mul ale, then alb+ c. 
(6) If alb and.alc, then alb- c. 

(7) If alb and ale, then almb +nc. . 
(8) lfalbl'alb2 , ••• ,alb.~, then al m1h1 + m2b2+ ··· +m.vhs. 

(9) If a~ 0, then a 10. 

(10) I Ia and -I Ia. 

(II) If alb and b ~ O,then Ia I lhl. 

(I i) !f. alb and hi a, then lal = lhl. · 

Proof:(l) If alb, then a~ 0 an.d. ak = b for some k E: l. So a ~ 0 and 
a(-k) = -b; a~ 0 and (-a)k -h; a~ nand (-a)( -k) = b; with k;-k E: 

lienee al-b. -al-b, -alb. 

35 



(2) If alb and blc, then a .. ;;e 0 ;;e I} and ak = b and hh c for. some k,lt € . 2. 
So a(kh) = bh = c and, since kh € 2, we obtain ale. 

(3) If alb, then a ;;e 0 and ak = b for some k E 2. So (ac)k ===he. From a ;;e 0, 
c ;;e 0, we conclude ac ;;e 0. Hence aclbc. 

(4) If aclbc, then ac ;;e 0 and (ac)k =be for some k E 2. F:rom ac,: 0, we 
obtain a ;;e 0 and c,: 0. Since c ,: 0, we have ak = b. Since a ;;e 0, we, can 
write alb. 

· (5) If alb and ale, then a ;;e 0, and ak b, ah = c for some k,h -E l. So 
a(k+h) = b +c. Since k+h € l and a ;;e 0, we have alb+c. 

(6) This can be proved in the same way as (5). W~ might also observe 
that al-e if ale by (1), hence alb+(-c) by (5), so alb-c. 

· (7) If alb and ale, then a,: 0, and ak = b, ah c for some k,h E l. So 
. a(km+hn) = ak.m + ah:n bm +en= mb + nc. Since km +hn E 2 and a,: 0, 
we have almb+nc. 

(8) :rhis can be proved by a simple application of the principle of 
mahematical induction. 

(9) aO = 0 for al}y a E l.lf a ,: 0, we c_an write alO. 

( 10) a = l.a ( -1 )(-a). Herrce lla and -lla. 

(11) If alb, then a ;;e 0 and ak = b for some k E Z. So lallkl= lbl Since b ;;e 0, 
we have lkl . 1. Thus lbl = lallkl ~ lal. 

(12) If alb and bla, then a ;;e 0 and b ;;e 0, so we may apply (11) to get 
lal < lbl and lbl < lal. Thus lal lbl. o 

5.3 The~rem (Division algorithm): Let a,b E l, b· > 0. Then there 
are unique integers q,r E l such that 

a;=qb+r, O<r.<b, 
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(The integer q is called the quotient, and r is called the remainder ob-_ 

taincd when a is divided. by b.) 

Proof: There are two ·claims in this theorem: (1) that there. are integers 

q,r, with the stated properties and (2) that these are unique, that is, the 

·pair of integers q ,r is the only. one which has the stated properties. The 

proof of this theorem will accordingly consist of two parts.- In th/e first 

part, ·we prove the existence of q ,r, in the second part, their uniqueness. 

Existence. Consider the set T = (a- ub: 11 E 1} ~ 1. This set T contains 

nonnegative integers (tor example, a -(-lal)b is nonnegative). We choose 

·the smallest nonnegative integer in T. Let it be called r. Thus r > 0 and, 

by the very definition of T, we infc~ r = a - qb for some q E_ 1. We cbim 

r < b. If we had .r > b, then, since b > 0, we· would get 

r ?· r - b = (l - (q + I )b > 0 

and r- b would be a nonnegative integer in T, smaller than the smallest 

·nonnegative integer in r·. which is absurd. So r > b is impossible and 

r < b. lienee there arc integers q,r such that 

a = qb + r, 0 .;;;;; r < b. 

Uniqueness. Let a= qb + r, 0.;;;;; r < b, and a= q
1
b + r

1
, 0.;;;;; r

1 
< b, 

where q,r,q1 ,r 1 arc in~cgcrs. We \vish to prove q
1 

= {f and r 1. = r. It 

suffices to prove q1 = q, for then we would get r
1 
=a- q

1
/J =a- q/J = r 

also. Suppose; by way of crintradiction, that q ;r q 
1

• then there arc two 

possibilit~cs: q :> q 1 or q < q 1• Interchanging q,r with q
1
,r

1 
if necessary, 

we may assume q > q 1 without loss of generality (make. sure that you 

understand this reasoning). f-rom q > q 1, we get q - q
1 
> I, hence 

r 1 = r 1 - (I > r 1 - r = ( tl - q /J) - (a - q /J) = ( q - q 
1 
)/J ;;;;. 1./J = /J, 

a contradiction. So q 1 = q and r 1 = r. o 

This thcorciil foniwlizcs what everybody learns_ at primary. school: when 

we divide a by b, we get a quotient, and a -remainder smaller than /J. At 

primary school, one learns it. in the case a is positive, but, here a can be 

negative. Also, division ·1s carried out by successive subtractions 

a l~h,__ __ _ 
,q 

I~ r 

.n 



We subtract b from a until we get a ·number r smaller than b. This is 
exactly whiu happens when we perform division, and this is essentially 

the proof of Theo~em 5.3. · 

Giveri any two integers. a,b, an integer d is said to be a common divisor 

of a and b if dla and dlb. Using the divisio~ algorithm, we can show that 
any two integers have a greatest common divisor, provided only that not 

· both of them are equal to zero. · 

5.4 Theorem: Let a,b £ l, not .both zero. Then there is a unique integer 

- d such that 
(i) dla and dlb, . 

· -(ii) for all d1 £ l, if d11a and d11 b, then d11d, 
(iii) a> o. · 

Proof: The proof will be. similar to the proof of Theorem 5.3. We 
consider_ the set U = {ax by £ l: x,y £ l J. Now U contains positive 
integers, (For -e)f.ample, a(+l)- bO is positive when a;: 0 and the sign is 
chosen suitably, When a = 0, a 1 - b(+ 1) = ±-b i~ positive, provided we 
choose the sign appropriately; since- b ;: 0 when a =_ 0 by hypothesis.) 
We choose the smallest positive integer in U. Let it be called d _ So d > · 0 

·and d satisfies (Jii)_ Moreover, if d 11a and d11b, then d 11ax- by for any 
x,y E l by Lemma 5.2(7); so d1 divides every element -of U .. In particular, 
d11d. Thus (ii) is satisfied. It remains to prove (i). 

By the very definition of U, we have d = ax0 by0 for some x 0,y0 £ l. We 

want to prove dla and d!b. Using the division algorithm, we write-
a = qd + r ,- where q and r are integers and 0 < r < d. Then 

a = q(ax0 - by0) + r, 
r = a·- q(ax0 - by0) 

= a{l - qx0)- b(-y0), with. 1 -qx0, -y0 £ 

so r is an element of U and 0 < r < d. Since d is the ~mallest positive 
il)teger in U and r <. d, we have necessarily r = 0. Th,is gives a = qd, so 
dla. The proof of dlb is similar and will be omitted. 

Now the uniqueness of d. Suppose d' satisfies the conditions (i), (ii), (iii), 

too. Then d'la, d'!b by (i), and so d'ld by (ii). Also, dla, dlb by (i), and so 



did' by (ii). By Lemma 5.2(12), we obtain-ldl::zld'l. From(iii),we get d>O; 
• ' ' - ''r ' ' ' •-' 

d'> Q, which,Yields d d:. Thus d :is unique. · o· 

.5.5. Definition: Let a,b E Z, not both zero: The unique integer d in 

Theorem 5.4 is called the greatest common divisor of, a and. b. 

The greatest common divis9r of a and b .will be denoted by (a ,b). This 

notation is standard. The reader should not confuse it with an ordered 

pair. The . greatest common divisor of a and b is a natural· number, not an 

ordered pair. 

Definition 5.5 and...-the proof of Theorem 5.4 enables us to write the 

. 5.6 Theorem: Let a,b E l., not both zero·. Then (a,b) is the smallest. 

positive integer in ·the set {ax - by E :z: x,y E Z}. o 

Theorem 5.4 is a typical existence theorem. It. tells us that the greatest· 

common divisor (a,b) of any pair of integers a,b exists (provided a and b 
are. not both zero), but gives no method' for finding it. If a and q are 

smalf in absolute value, we might try to find the smallest positive 
. . . . . ~ . 

integer in the set {ax - by E Z: x,y E Z}. This is not very satisfactory, of 

course. Also, it is almost impossible if a and b are rather large. We pro­

pose. to give a systematic. ·method ·for finding (a ,b) for any pair of 

integers a,b,.not both zero. This method will prove :anew the existence of 

(a,b): and'in. addition wiH give us a systematic method of finding integers 

x,y such that {a,b) =ax by. It is Proposition 2 in Euclid's Elements, Book 

VII. (in algebraic notation) and is known as the Euclidean algorithm. · 

We first observe. that the· set U in Theoreni· 5.6 does not change if we 

write -a in place of a or -b in place of b. This yields 

(a,b) (-a,b) = (-a,-b) (a,-b) 

for all a,b, not both zero. Hence (a,b) = (lal,lbl) and, when we want to find 

(a ,b), we may assume a ;:;;. 0, b ;:;;. 0 (the case a = 0, b = · 0 is excluded) 

without loss. of generality. Moreover, the set U in Theorem 5.6 remains 

unaltered if we interchange a and b. Thus 

· (a,b) = (b,a)., .,_ 
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Therefore, when we want to find (a,b), we may assume a ;;;;;. b without 
loss , of generality, (}nstead of appealing to TheoreJ!l 5.6, we could use 
the definition to obtain· (a,b) = (-a,b) = (-a,-b) = (a,-b) = (b,a).) 

The .greatest common divisor of a € Z (a ;: 0) and 0 is easily found. We 
have (a,O) = lal, as follows from Theorem 5.6 or immedialely from 
Theorem 5.4. 

Suppose now ~a ;;;;;. b > 0 and we want to find (a,b). We divide a by b. and 
get. 

a q1b+r1, O<:.r1 <b. 

Here r 1 may be zero. If 'i;: 0, we divide b by r1 and get 

b = q2ri + '2' 0 ~ r2 < r,. 

Here r2 may be zero. If r2 ;: 0, we divide r1 by r 2 and get 

r, = q3r2 + '3' 0 .;;;; 'J < '2· 

We proceed in this way. We have b > r1.> r2~ r3 > .. ·.Since the rys are 

nonnegative integers. ~and b is a finite positive integer, this process 
cannot go on indefinitely. Sooner or later, 'we will meet a division in 
which the remainder is zero, say at the (k+l)-st step (k;;;;;. 0): 

'k-i = ·q{k-1 + 'k• 0 .;;;; rk < 'k-1' 

'k-1 = qk+t'k + 'k+l' 0 = 'k+i' 

We .claim that rk, the last nonzero remainder, is the greatest common 

divisor of a and b~ and that it.can be written in the form a:X - by , where 
x,y are integers. 

5. 7 Theorem: Let a ;;;;;. b > 0 be integers and let 

a = q1b+ rl' 

b = q2rt + '2• · 

'1 = q3r2: 'J· 

'k-2 = qkrk-1 + 'k' 

'k-1 = qk+t'k 
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·be the equations we obtain when we use the division algorithm 

(Theorem 5.3) succesively until we get a nonzero remainder. (This cpain 
' of equations is known as ,the Euclidean algorithm.) Then the last nonzero 

re~ainder r" is· the greatest. ·co~mon. divisor of a and b. Moreover, r" can 

be written in the form ri_ 1x"- riy; x,y € l for i = k ._ 1, k- 2, ... , 2.1, 0 (we 

put r 0 = b; r_i =a). l.n particular, there are integers 11• y0 such that (a,b) 

a11 by0, and eliminating rl' r2, .... ,r"_1 from the equations above gives 

a S:fstematic way of finding the integers 11• y0. 

Proof: We must show that r" satisfies the conditions (i),(ii),(rii) of 
Theorem 5.4. We know r" > 0 from the' k-th equation in the Euclidean 

algQrithm, so (iii) of Theorem 5.4 is satisfied. 

We prove (i) of Theorem 5.4, namely that r"la and r"lb. We start from the 
last equation in the algorithm and go up· through the algorithm. From 

the. (k+l)-st equation, we get r"lrk_1• Using Lemma 5.2, we get rklrk_2 from" 
the k-th equation. So r"lrk_ 1 and rklrk_2 • From the (k-1)-st equation, we 

get rklrk_3, so r"tr"_2 and rklrk_3 ~ In· generai, if we have rklri+'l and rklri' the 
(i+ 1)-st equation gives rkl ri.: I' so we have ·r ,~:I ri' and r kl ri-1. Going through 
the equations in this way, we finally get r"!r0 and rk!r_ 1, that is, we get 
rklb and rkla. This proves (i) of Theorem 5.4. 

Now (ii) of Theorem 5.4. Assume e!a and e!b. We must prove e!rk. We start 

fr0111 the first equation .in the. algorithm and go d~wn through the 

algorithm.Fromthe first equation, we get t:Ja-·q1b and e!r1 \>Y Lemma 

5.2. So e!b and elr1.From the second equation, we get e!b q2r1 and elrr 

So e!r1 and e!r2 • In general, if we have elri-l and e!ri, the (i+l)-st equation 

gives e!r;_ 1-qi+lri and e!ri+l" So e!ri, and e!ri+l" Going through the equa­
tion~ in this way, we finally get e!rk. This proves (ii) of Theorem 5.4. 

Hence rk is the greatest common divisor of a and b. 

Finally, we show . the representability of rk in terms of ri-l, r/ as 
described. We start from the penultimate equation · in the algorithm and 

go up through the algorithm. From the k-th equation, we obuin 

r" rk_2 - r"_ 1qk, so rkcan be. represented as rk_ 2x rk_ 1y, namely with x 

1, y = qk. Substituting rk_3-qk-lrk_2 for r"_1 in this equation, we get 

rk = rk-2- rk-lqk rk-2- (rk-3-qk-lrk-2)qk 
= rk-3(-qk) + rk-2(l + qk-lqk), 

' ' 
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so rk ·can be represented as rk_ 3x .-. rk:_;y, namely with x - qk, 

y = -(1 + qk-l qk). In general, if rk can be written in the form 
r1x -r1+ly, - x,y E Z, · 

we get, using the (i+1)~st _equation in the Euclidean algorithm, 

rk = rlx -ri+ly 

= r;.x -(ri-1- qi+lri)y 
= ri-1(:-y),+ ri(x + qi+l-y), 

which shows that rk. can be written also in the form ri-lxl - r1y I' namely 
with x1 = ,-y, y 1 = -(x + q1+1y). Going through the equations in this way, 

we finally obtain 
rk = aXo -b Yo 

for some ·x
0

,y
0 

E Z. This completes the proof. D 

5.8 Example:· To find the .greatest common divisor of 14732 and_ 37149, 
arid to express it in the form 14732x- 37149y, .with x,y E Z. 
We have 37149 = 2.14732+ 7685. 

14732 = 1.7685 + 7047 
7685 = 1.7047 + 638 
7047 = 11.638 +29 

638 = 22.29 
·and the last nonzero divisor is 29. So (14732,37149) 29. Also 

29 = 7047 - 11.638 
= 7047 ..: 11(7685 ..; 1.7047) 
= 12.7047 - 11)685 
= 12(14732 - 1.7685) - 11.7685 
= 12.14732 - 23.7685 
= 12.14732 - 23(37149 - 2.14732) 
= 58.14732 - 23.37149, 

so 29 = 14732x- 37149y with x = 58, y = 23; 

5.9 Definition: Let a ,b be integers, not both zero. a is said to be 
relatively prime to b if (a,b) = 1. 

Since (a,b) = (b,a), b is relatively prime to a in case a is relatively prime 
to b. This observation enables us to use a symmetric phrase in this case. 
We say a and b are relatively prime if (a,b) =1. 
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5.10 Lemm·a: Let 'a,b be integers, not both zero. Then a and bare rela­

tively prime if and only if there are integers x0 ,y0 such that aXo -b Yo= 1._~ 

Proof: If (a,b) = 1, then there are integers x0 ,y0 such that aXo -b y0 = 1 by 
Theorem 5.6 or also by Theorem 5.7. Conversely, if there are integers 

x
0

,y
0 

with aXo - b y0 = 1, _then 1 i~ certainly the _smallest positive integer in 

the set (ax - by E 1: x,y E 1}, hence (a,b) = 1 by Theorem 5.6. o 

5.11 Lemma: Let a,b be· integers; not both zero, and letd = (a,b). Then 

a/d and b/d are relatively prime. 

Proof: a/d, b/d are integers, not both of them zero. We have· ax - by = d 

for suitable integers x,y E 1 by Theorem 5.7. Dividing both sides of this 
equation by d > 0, we get 

. , (a!d)x- (b/d)y = 1, 

and so (a/d, bid) = 1 by Lemma 5.10 0· 

Using Lemma 5.10, we prove an important result that will be crucial in 
the proof of the fundamental theorem of arithmetic. 

5.12 ·Theorem: Let a, b,c be integers.lfalbc and (a,b) = 1, then ale. 

Proof: Since (a,b) = 1, we haveax- by= with some x,y E 1. Ml!]tiplying 

both sides of this equation by c, ~e obtain acx -bey = c:__ Now alacx and! 
since albc by hypothesis, albcx; hence alacx- bey by -Lemma 5.2. So ale. o_ 

We separate 1\{ 0} into three subsets: (1) units, (2) prime -numbers, {3) 

composite numbers. The numbers 1 and -1 will be called units. The units 
divide every integer by -Lemm·a · 5.2(10). Any other integer. a has at le;tst 

four divisors: + 1, +a. These are called the trivial divisors of a. A div·isor -of 

a, whi~h is not one pf the four trivial divisors of ~. is called a proper 

divisor of a. If a nonzero integer a is not a unit and has no' proper 

divisors,_ the~ a is called a prime- number. Thus 2, -3, 5, 7, -II are prime 

numbers. A nonzero integer, which is neither a unit nor a prime immber, 
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will be-called a composite number. So a E Z\(0} is a composite number if 
and only if there is a d E Z with I < ldl < lal and dla. .~ 

Prime· numbers are the building blocks -of integers in the following 
sense. 

5.13 Theorem: Any nonzero integer, which is not a unit, is either a 

P!ime number or a product of prim_! numbers. 

Proof: Take an integer n ~ 0, and assume that n is not a unit. If n is 
prime, there. is nothing ~to pr_ove·. If n is composite, then n = n 1 n 2 for 

some n 1,n2 E l, I< ln11 < lnl, I < ln2 1 < lnl. If n 1 and n2 are prime, we 
are through. Otherwise, factor n1 and n2 into two numbers,· Keep factor­
ing until you get ·down to prime numbers. Since. the factors· get smaller 

and _smaller in absolute value, we will teach prime numbers at the end. 
This is the basic idea and we make this reasoning into ·a rigorous proof 

by induction. 

We use Principle 4.5. Let qn be_· the statement that n E N- is a prime 
number or a product of prime numbers. We begin induction at n = 2. 

Since 2 is a prime number;. q2 is true. q3 is ~lso true, for 3 is prime. q 4 is 

true, for 4 = 2.2 is a product of the prime riumbers 2 and 2. 

Suppose now q2, q3, q4, ··' ,qk_; are true, ~o that 2,3,4; ... ,k -I are either 
prime numbers -or products of prime numbers. We want . to. prove that k 

is a prime· number or a product of prime numbers: If k is prime, we are 

. done. If k is· not prime, we have k = k 1 k 2, I < k 1 < k, 1 < k2 < k, for 
some integers k1 ,k2• Since qk and qk · are true by the induction hypo-

' 2 

thesis, each of kl' k2 is either a prime number or a product of prime 

numbers: 
k1·=p1P2···Pr: k2 =p'1p·2···P·s 

where pl'p2, ... ,pr,p'1,p'2, ... ,p·s.are prime numbers (r = l·ors =I is 
possible, in which case k1 = p1 or k2 = p' 1 are prime numbers}, and so 

k = k 1k 2 = P1P2···PrP.1P·2· ··P·s· 
is a proquct of prime numbers. Hence qk is true. 

This proves the 'theorem for positive integers. For a negative integer -n, 
where -n is not a unit, we have 
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n = PtP2· .• pt 
for some prime numbers pl'p2, ... ,p

1 
by what '!'e· proved above (possibly 

t = 1). Hence 
"""'n = (-p1)P2· · ·Pt 

is prime· or is a product of prime nqmbers. 0. 

After reading ~he proof of this theorem, it will be clear to the reader 
that. an abbreviation _of the phrase "prime number· or a product of prime 
numbersl' will be. very useful. When, we speak. of a product, we mean a 
product of two, three, or more terms. We now extend this . to one factor. 
A single term will be called a product of one factor (or of one factors). A 

prime number is also ·a product of prime numbers with this convention. 

Our th~orem reads now more shortly as follows. 

5.13 Theorem: Any nonzero integer, which is not a. unit, is. a product of 

prime numbers. 0 

Now that we know any integer, which is not zero or a -unit,· can be ex-· 

pressed as a product of prime numbers, we ask if it can be written· as :i 

product of prime numbers in. different ways. By way of example, let us . 

begin decomposing 60 into prime numbers as in the proof of Theor,em 

5.13. We can begin from any decomposition of' 60. into factors. For 
instance, 

60 lj).6 '60= 15.4 . ' 
Now we are to decompose each one of the factors 10,6,15,4 into srrwller 

factors until we . get prfme ·nuwbers. WiH we reach. the same · Rrime 

numbers if_ we. use the· two different decompositions as our starting 

point? We k.now of course that further decomposition 
60 = (2.5)(2.3) ' 60 = (3.5)(2.2) 

yields the same prime, numbers 2,2,3,5 (aside from order)~ Nev.ertheless, 

our question should not be taken lightly. It is a very pertinent question. 
We remark ·that Theorem 5.13 , says nolhing in thi.s 'regard. Theorem 5.13 

says that, after enough factorizations, the f~ctors will be prime. As it is, 

the prime numbers we obtain may very well be distinct if ~e · start with 

different factorizations. Indeed, if you ·start with different things, why 
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on ·earth should you e11d with· the. same things? ··If 60 can be written as a 
product or factors in~ two different. ways, as above,_ why should it not be 
written as a .a product of prime factors in two different ways? The 
readers . experience with the uniqueness of prime factors of integers 
should not mislead him (or her) to believe the uniqueness is obvious. It 

.. is anything but obvious ... 

Let us clarify what we mean by uniqueness .. The two de~ompositions 
2.5.2.3_ 3.5.2.2 . 

of 6Q involve the same ·prime I}Umbers. Their order in the two decompo- . 
sitions are different, but nobody would consider these decompositions as 
very distinct. After all, multiplication of integers is commutative, and we 
can permute the factors without changing the value of the product. It 
would be foolish to regard two factorizations as . different when they 
consist of the . same prime numbers in. different orders. 

Moreover, we have ( -2)(5)(2)( -3) :::: 2.5.2.3, where the numbers appearing . . . 

are prime. These decompositions of 60 are not essentially distinct, of 
_ course. Given two_nonzero integers a, b, we say a is assoCiate to ·b if a = b 

or a =-b. Then b is associate to a as· well. Hence we may also ·say that a 
·and b are associate. · This means ·alb and b Ia. It is clear from the 
definition that, whenever p and q are associate and p is prim~; then q is 
a prime number, too. When we say uniqueness, we shall mean that the 
prime. numbers iii the decompositions of an' integer'' are . associate; we 
shall not· mean that they aie identical. 

With this understanding, we will prove that any integer (7'! 0;1,-1). has a 
unique decomposition into. prime numbers. We need some lemmas. 

5:14 Lemma: Let a b.e an integer and p be a prime number. If p-ta, th~n 
(a,p).;. 1. 

Proof: Let d = (a,p). Then dip~ Since p is a prime number and-.d > 0, 
eith~r · d = ±p or d = 1. From dla, p-ta, we conclude d 7'! ±p . . So d.= L o 

Our. proof will depend· heavily on the followiit~ corollary to Theorem 
5.12. It is Proposition 30 in Euclid's Elements, Book VII. We shall tefer to 
it as Euclid's lemma. 



5.15 Lem'ma (Euclid-'s lemma): Let a,b,p be integers. If p is prime 

and plab, il!en plaor plb. 

Proof: Ifpla, the lemma is proved. If p{a, then (a;p} = 1 by Lemma 5.14. 
and, since plab, we get plb by Theorem 5.12 (with p,a,b in place of a,b,c, 

respectively). 0 

5.16 Lemma: Let a1,a2, ... ,an,pbe integers.lfp is prime and pla1a2 •• • an, 

then pla1 or pla2 or : .. or plan. 

·,-

_Proof: .This follows from Euclid's lemma by a routine ·induction 
argument. The details are left . to the reader. o 

We can now prove uniqueness· aside from trivial variations;·· 

5. I 7 Theorem (Fundamental theorem of a'rithmetic}: Every 
integer, wllich is not zero or a unit, can be- expressed as a product of. 

prime numbers in , unique way,apart from the order of the factors and 

amhiguity of associate numbers. 

Proof: Let n E. l, · n ;;e 0, n. ;;e ·unit. By Theorem 5.13, n can be expressed as. 

a product of. prime numbers. We must show uniqueness. This will be 
done by induction on In I E N. Given two decompositions 

P1P2· .. pr n = qlq2 ... qs 

of 11 into prime factors, we have to show that 

r=s 
and that 

pl'p2, ... ,pr are, in some order, associate to q1,q2, ... ,qs. 

Assume first In I = 2. Then n = 2 or n = ""2 is prime and n = + 2 Is the 
unique representation of /n as a product of prime numbers (having only · 
one factor). So the theorem is true for n if In I = 2. 

Now we .make the inductive hyi?othesis that lnl > 2 and that the theorem 
is true for all k E l with 2 < lkl <: n - I, and prove it for n. 
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If n. is a prime number and 
p1p2 ... pr=n =q1q2; .. q

5 
(r,s E N;p's and q's ·are prime),_. 

then necessarily r = 1, s = 1, lp11= lnl = lq11, so p 1 = "'Q1• So p 1 and q1 are 
- associate and the decomposition is unique. 

Assume now that 
P1P2• .. pr = n =.= %Q2 ... q5 

(r,s E N; p's and q's. are prime); 
and that n is not a prime number. From prlp1p2. ··Pr' we get Prlq1q2 ... q5

• 

By Lemma 5~16, prlq1 for SOf':le-j =~1,2, ... ,s. _Changing the order ofthe q's 
if necessary, we may assume prlq

5
• The divisors of q

5 
are 'fl, "'Qs· Since Pr 

is prime, so not a unit, and_ since_ prlq
5

, we -obtain Pr='q
5 

or Pr = -qs. Let Pr 
= eq

5
, with. the. appropriate unit e= "'1 E Z. Then we get 

eplp2 . .. pr = ~-n = ql Qz· .. (eqs) 

= q1q2 •.. qs-Ipr·, 

SO ep1p2 ... pr-l = en/pr = q1q2. ·~qs-1 
as two decompositions o~ en /pr into prime numbers: Since. n is not a 
prime number and. lprl > 1, we have 1 < lell!Prl < 'n~ The induction 

hypothesis tells us t.hat the . two decompositions . 

ep1p2'··Pr-l =q1q2 ... qs-1 

of En/pr are ·essentially' the same: 

r-1 s- 1 

and epl'p2, ... ,pr_1 are, in som~_order, associate' to ql'qz, ... ,qs-r Then 

r = s · 

and_ p l'p2, ••• , p r-I are, in some order,- associate to q l'q2, • • • ,q 
5
21; and Pr is 

associate to qs. This completes the proof. . a 

5.18 Remarks: Collecting the same prime divisors of n E N (n > l) in a 
siqgle prime power, we can write 

n _ p alp a2 p a, (*) 
- 1 2_ ••• r ' 

where 0 <: p 1 < p 2 < ... < .P r are the distinct prime divisors of n, and 
a1 ,a2, ••• ;ar positive integers. T~en ( *) is called the canonital decomposi­

/' 
tion of n into prime numbers. 



Sometimes.· it is convenient to relax the- condition that the exponents. aj 
'• 

be all posith:e -to the condition that . they be nonnegative. For ·example, 

the divisors of n E N, whose canonical decompositio-n is ( • ), are exactly 

the numbers 

.where 0 ,;;;; b. ,;;;; a. for all i. = 1,2, ....• r. If m and n are two n_atural 
I ,1 

numbers and 
,n _ p c1p ci · p c, 

- I 2 : •• r ' . 

where p 1, p 2; ••• , Pr are distinct prime numbers and ci ;;;;. 0, ei;;;;. 0 for' all 

i = 1,2, .. .',r, then (m,n) is given by. 

with ti = min{ci,ei} for all i = 1,2, ... , r. Here min{x,y}. denotes the smaller 

(minimum) of X and y when X~ y and denotes X when X = y. 

It can be shown that ((a,b),c):;::: (a,(b,c)) for any _a,b,c E l, provided a,b 

are not . both equal to·. zero and b ,c are· not "both· cqmil to zero. The 

positi vc. number ((a ,b ),c) is called the greatest common divisor of a )J ,c, 

and is denoted 'shortly by (a,b,c). One proves easily that (a,b,c) is the 

unique integer d such that 

(i) dla,/dlb, die, 

(ii) for all d 1 E l, if d 11a,Aih,d11c, then d 11d, 

(iii)d > .(),. 

and that there arc inicgcrs x;y,z satisfying 

· ax + by + cz = (a,b,c). 

Inductively, if the greatest common divisor of n-1 integers a 1,a2' .... an-I 

has already been defined and denoted as (a 1;a2 , .. : • an-I). then· the 

grcatcsl.common divisor (a 1,a2: ••• ,an-·l'an) of'!. integers a 1 .u2 ~ •••• an~l· a,. 

is dcfin.cd to be ((a 1,a2, ••• , an-I), an). One can show· that their great-est 

common divisor· (a 1,a2, • .. ,an-l.' an) is the unique integer d. such that 

(i) dla 1, dla 2, ••• ,dla 11 ~ 1 , dian . 
(ii) for all d 1 E 1,- if d 11a 1, d 1ia 2, ••• .'d1lan"l'.d1lan:. then d 1!d . 

. (iii)c/ > 0. 
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In addition,. one proves that there ·are integers xl'x2, ••• ,x,_l' x, such that. 

a1x1 + a2x2 + ··· +a,_ 1x,._1 + a,x, = (al'a2, ~ .• ,a,.., I' a,). 

If (al'a2, ••• ,a,_1, a,)= 1, we say_ that a1,a2, ••• ,a,_1, a, are relatively prime. 
In this case, there . are integers x 1 ,x2 , ... , xn-l, x, · satisfying 

The proofs of these assertions· are left to the reader.-

Ou.r final topic in this paragraph will be the least common multiple of 
tWO nonzero integers. If a,b E Z and alb, we say that b is a multiple of a. 

5.19 The_orem: Let a,b E Z, neither of them zero (i.e., a ;t! 0 ;<!b). Then 
there is a unique integer such that 

(i) aim and blm, 

(ii) for all m 1 E Z, if alm1 ,andblml' t~en mlm 1, 

(iii) m > 0~ 

Proof: The. proof will be similar to that of Theorem 5.4. We consider the 
set V'=_{n EN: aln and bin}. This set is not empty, since, for ·example, 
Ia b I is in V (here we use the hypothesis a ;t! 0 ;t! b). We choose the 
smalle.st positive integer in . V. Let it be called m. Thus m > 0 and m 
satisfies (tii). ·Also, a lm and b lm since m E V, and m satisfies (i). It 
remains to show that m satisfies (ti). 

Suppose m 1 E Z, and a !m 1 and b lm 1• We divide m 1 by m and get,· say, 
m 1 qm + r, where q,r E Z and 0 ~ r < m. Since aim, aim 1 and blm, 
blml' the equation m 1 = qm + r yields that, air and blr. Hence r E V. We 

-know 0 ~ r m. If r were not zero, then r would be. a natural number 
in V ·smaller than the smallest natural ·number m in V, .whi'ch is absurd. 
Thus r = 0, so m

1 
= qm, and mlm 1• This shows that in satisfies (ri). 

Now the uniqueness of m. Suppose m'satisfies the conditions (i), (ii), (iii), 
too. Then aim', blm' by (i), and so mlm' by (ii). Also, aim, blm by (i), and 
so.m'lm by (ii). Hence mlm'and m·lm. By Lemma 5.2(12), we obtain 
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lml fm·l. From (iii), we have~ > 0, m'> 0,. which yields m = m·. Thus m 

is unique. 0 

5.20 Definitio~: Let a ,b € Z, neither o-f them zero. The unique integer 
m in Theorem 5_.19 is called .the· least common multiple of a andb. 

The least common multiple of a and b .will be .denoted by [a,b). From the 
proof of Theorem 5.19, we see that [a,bf is' indeed the 1>mallest of the 
positive multiples of a and b ([a :b] 'is the smallest number in V)~ From 
the fact that aim and ~aim are equival~nt,_ and .likewise. that blin and 
-blm are equivalent, if follows that the defining conditions (i)~ (ii), (iii) do 
not change ·when we replace a by -a orb by -b. Therefore, [a,b] = [-a,b] = 

. -~ . ' . ' . - . . ' 

1-a,-b] = La .~b ]. In the: same way, the condit!ons (j); (ii), (ii_i) in Theorem · 
5.19 are syinmetric in a an.9 b,- and -this -gives ~a,:b] = tb~ti].. ·· 

The greatest common divism: and tbe . least common multi_ple ·of two 
·integers will be connected in ·Lemma 5.22. We need a preliminary result. 

5.21 Lemma: Let a,b;m be integers and a 7! 0, b 7! 0.1f a lm ,blm and 

(a,b) =I, then ablm. 
. .1' • 

Proof:· This follows · i111mediately fr~m the fundamental theoretll of 
arithmetic (Theorem. 5.17), but we give another proof. Since aim and 
blm; there are integers a-1 ,b 1 such that aa1 = ni ::::: b b1• Hence alb b1• Since 

. (a,b) = I, Theorem 5._12 yield~ al~ 1 • So b1 = ac for some. integer c and m 
_h b1 bac = abc, so ablm, as claimed. o 

5.22 Lemma: Let a and b be integers, 1leitlzer of them zero. Then we 

have [a~h) = fabl/(a,b). 

Proof: As neither [a,b), nor (a,b), nor lab! changes when we replace a 

and b by their absolute values; we assu~re, without loss .. of gcneraliry.' 
that a > 0, b > 0. We put d = (a,b). We show that ab(d satisfies the 
three conditions (i), '(ii), (iii) in Theorem 5.19. Let a a1d, b b1d, so that , 

(a1,b1) = I by Lemma 5.11. · 
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We have alab!-' so ala(b/d); and bla 1b, so bl(a/d)b. Thus a divides ab/d 

and b divides ab/d. Hence ab/d. satisfies (i); Clearly ab/d > 0, so ab/d 

. satisfies (Iii). We nov:,: show that ab/d satisfies {Ii) as well; i.e., we show 
that ab/d divides m 1 whenever alm 1 and blm 1• Let m 1 E Z and alm 1, 

blm 1• Then dlm 1 and in fact a 1 divides mtfd and b 1 divi4es m 1/d. By 
Lemma 5.21 (with a 1,bl'm/d in place of a,b,m, respectively), .we get 
a

1
b1divides m 1/d, so ablm1d, so ab/d divides m 1• Thus. ab/d satisfies-(ii)' 

and ab/d = [a,b] o 

It can be. shown that [[a,b],c]= [a,[b,cJ] for a'ny a,b,c E Z, provided a,b,c 

are all distinct from zero. The positive number [[a,b],c] is called the least 

common multiple of a,b,c, and is denoted shortly by [a,b,c]. One proves 
ei.'.sily that [a,b,c] is the unique integer m such that 

(i) aim, blm, elm, 

(ii) for all m 1 E Z, if almv blm I' elm I' then m lml' 
(iii) m > 0. 

Inductively, if: the least common multiple of n - 1 integers al'a2, ... , a
11

_
1 

has already been defined and denoted as [al'a2, ••• ,'an_1], then. the least 
common ni1,1ltiple [a1,a2, ... ,a

11
_l'an] of n integers al'a2, ... ,an-l'an is defined 

to be [[al'~' ... ,an_1], an]. One can show that .their least common multiple. 
[a1,a

2
,-... ,a

11
_l'an] is the unique integer m such lhat 

(i) a11m, ~lm, ... ,a
11
_i!m, anlm, . 

(ii) for all m1 E if a11m 1, a2lm 1; •• :,an_11ml' anlml' then mimi' 

(iii) m > 0. 

· Exercises 

1. Find (10897,-16949) and express it in the form 10897x + I6949y, where 
x and y are. integers. 

2. Assume m,n EN and m ;z: n. What is (22"' + 1,22" + 1)? · · 

3. Let a ,b € Z, neither of them equal to zero, and assume (a ,b) = 1. Let 

x0 ,y0 be integers such that a lO + b Yo == 1. Prove that all integer pairs x,y 
satisfying ax +by = 1 are given by 
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X =x0+_~t; y_=y0 - dt 

as-1 runs through all integer~. 

4. Let a ,b ,e be integers, none of them equal to zero, and· let (a ,b) = d. · 

_Prove that there are integers x,y satisfying ax + by = e if and only if die. 

Moreover, if die a~d x0 ,y0 are integers' such that a .XU + b y0 = ..£, prove that 

all integer pairs x,y satisfying ax +by = e are given by 

·x = x0 + (bid)t, y = y
0 

- (a/d)_r· 

as t runs __ through all_ integers. 

5. Prove the assertions in Remark 5.18. 

6. Lef m and n be two natural numbers and 

nl . = p c1p c2 p c, 
I 2 · .. r ' 

. . 

where pl'p2, ... , pr are distinct prime numbers arid :ei;;;;;. 0, ei;;;;;. 0 for all 

r = 1,2, ... , r. Show that 

[nz,r~] =plu1p2u2···P/'. 

with ui _= max [ ei,ei} for all i = 1,2,:.: .. , r. Here max [x,y} deno.tes . the greater 
- " . . 

(maximum) of x and y when x ;e y and denotes x when x = y. 

7. Prove _ordisprove: (a,fh,e]) = f{a,b),(a,e)] for all a,h,e E: N. 

8. Let a,h E: 1., b > 0; and a = qb + r, 'with q,r E: l, 0 .;;;;; r < b. Prove 

directly that (a,h) = (a,rr 

9. Let a,b E: l and (a,h) = 1. Show that (a- b,a +h)= I or 2. 

10. Let a,m,n be natu(a! numbers. Show that (am- 1,an- 1) = a<m:n>_. I. 
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§6 
Integers Modulo n 

In Example 2.3(e), we have defined the congruence of two integers a,b 
with r~spect to a modulus n E N. Let us recall that a ..; b (mod n) _means 
nla -b. We have proved that congruence is an equivalence relation on Z. 
The equivalence class_es are called the congruence classes or residue 
classes (modulo n). The congruence· class of a E l will be denoted by a. 
Notice that there is· ambiguity in this notation, for there is no reference 
to the modulus. Thus T represents the residue class of 1 with respect to 
the modulus 1, also with respect to the modulus 2, also with respect to 
tile modulus 3, . in fact with respect to any modulus. However, the 
modulus will be, usually fixed throughout a particular discussion and ii 

· will represent the residue class of a with. respect. to that fixed modulus. 
The ambiguity is therefore harmless. 

By the division algorithm (Theorem 5.3), ·any integer k can be written as 
k qn + r, with q,r E Z,O .s;;; r <b. So_any integerk is congruent (mod•n) 
to one of the numbers 0, I ,2, ... ,n - 1. Furthermore, no two distinct of the 
numbers 0,1,2, ... ,n I are congruent (inod n), for if rl' r2 E (0,1,2, ... , n -1} 
and r 1 r2 (mod n), then nlr1- r2, son .s;;; lr1- r21 by Lemma 5.2(11), and so 

n .s;;; (n 1)---'0, ·which is impossible. Thus any integer is congruent to one . 
of the numbers 0,1,2, ... , n - 1, and these numbers are pairwise incon­
gruent. This means that 0,1 ,2, ... ,n - I are the representatives of all the 
residue classes. Hence there are exactly n . residue classes (mod n), 

namely 

U = {x e: Z:x:s 0 (mod n)] 
T = {x E Z:x= 1 (mod n)} 
! = (x € Z: x= 2 (mod n)} 

= { nz E l: z E l } =: nl 

= (nz + 1 E Z: z E l} =: nZ +I 

= {nz+2e:Z:ze:Z] =:nl+i 

.................................. " .............. ~ .................................. "' ..... .. 

n::-l= {x E Z:x=n-1 (modn)} = {nz+(n-.1) E Z:z e: Zl =:nZ+(n-1). 

The set [D,l,!, ... ,n=-n of residue classes (mod n) will be denoted by ln. 

An element of l , thas is, a residue class (mod n) is called an integer n 
modulo n, or an integer mod n. An integer mod n is not an integer, not 
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an. element of Z; .it. .is a subset of Z. An. integer mod n is not an integer 
with a property "mod n". ~is an object- whose name -consists of the three 
\vords ·"integer"; ''mod(ulo)", "n". 

6.1 Lemma: Let n EN, d.,a 1,b,b1 E Z.lfa a1 (mod n) and b b 1 (mod n), 
then a+ b =·~1+ b1 (mod n) and ab a1b 1 (mod n). 

Proof: If a . a 1 (mod.n) and b = bi (mod· n), then nl a '-a 1 and nl b - b1 . 

Hence: n I (i:l:... a1) + (b b1) by Lemma 5.2(5), which gives 

n l(a +b)-:- (a1+ b1), ·so a+ b = a1+ b1 (mod n) ... Aiso, n I b(a a 1) + a1(b ~ b 1) 

by ~emma 5.2(7), which gives n I ba- a1b1, so ab = a1b1 (mod. n). · o 

' . We want to define a· kind of addition e and a kind of multiplication 0 on -
ln. We put. 

a-e·o = 
a 0 T5 =ali 

for all a,o .€ ln (for all a,b E Z). This i.s a very natural way of introducing 
addition· and. m~ltiplication on ln. 

(*) and'(**) seem quite inf!ocent, but we must eheck that e and 0 are 
really' binary operations on Zn. The reader might say at this point that ED 

arid .0 are Clearly defined on l and that there is nothing to check, But 
. . n . 

yes, there is.· Let us remember that ·a binary operation on-Zn_ is a 

function from.Zn x ln into ln (Definition 3.18). As such, to each pair (a,D) 

in lr. X Zn, there .must correspond a sing'/e element a ED o and a 0 5 if ED 
and 0 are to be binary operations on l (Definition 3.1) We must check n . . . 

·that the rules C•) and. ( * *) produce .elements of l n that . are uniquely 

determined by a, and o. 
. . 

The rules (*) and (**)· ab~ve convey the wrong· impression that a ffi o 
and a ® 5 are uniquely determined by a and 5. In . order· to perietr;~tc 

into the inaner, let us try to evaluate X ffi Y,, where X, Y E l arc not . . . ~ . . , . . , •. n . 

given directly as the 'residue classes of integers a ,b. € Z. (We. diScuss ffi; 

the -discussion· applies equally well to 0 .) How. do we fino X ffi Y? Since 

X,Y E Z , there are integers a,b, € l with i!i =X, o ~ 'y. Now add ~ and /J in n . . 

l- to get 0;+b € l, th~n take. the residue class of a+b. The result is X ffi. Y. 
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The result? The question is whether we have only one result fo justify 
the article "the". We summarize telegrammaticaily. To find X 9 Y, 

I) choose a E l from X, 

2) choose b e.l from Y, 

3) 'find a + b in l, 
4) tak~ the residue class of a + h. 

This sounds a perfectly good rs:cipe for finding X 9 Y. but notice that we 
use some auxiliary objects, namely a and b, to find X $ Y, which must be 

determined by X andY alone. Indeed, the resulfa-+iJ depends explicitly 

on -the auxiliary objects a and b. W.e can use our recir.e with different 

auxiliary objects. Let us do it. 1) I choose a from X !:. l and you choose a 1 
from X. 2) I choose b from Y .~: l and you choose b1 from Y. 3) I compute 

. a + b and ~ou compute a 1 + bj. In general, a + b ;r. a 1'+ b1• Hence our recipe 

gives, generally speaking, distinct elements a + b and a 1+ b1• So far, both 

of us followed the same recipe. I cannot claim that my computation . is 

correct and yours is false. Nor can you claim the contrary. Now we carry 

out the fourth step. I find the residue class of a + b as X $ Y, and you 

find the residue class of a1 + b1 as X $ Y. Since a + b ;r. a 1 + b1 in l? it. can 

very well happen that a:+D ;r. a1 + 6 1 in l ,.· On the other hand,. if $ 

is to be a binary operation on l,., we must have a+7J =:::: a1 + b 
1

• This is 

the -central issue. In order .that 9 be a binary operat}on on l,., there 

. must work a mechanism which ensures ,a+Jj = a1 + b 1 whenever a = 
~.51 = n, even if a+ b ~ a

1 
-1: b

1
• If there is such a mechanism, we say 9 

is a well_ defined operation on l,.. This means 9 is really a genuine 

operation on l ,: X $ Y is uniquely determined by X a}ld Y alone. Any 

dependence of X ED Y on ;mxiliary integers a E X and b · E Y is only 

apparent. We will prove that 9 and 0 are well defined operations on ln, 

but before that, we discuss more generally well definition of functions. 

;\ function f: !l - B is essentially a rule by which each element a of A is • 

associated with· a unique element of f(a) b of B. The. important point is 

that the rule produces an element f(a) that depends only on a. 

Sometimes we consider rules having the following form. To find f(a), 

I) do this and that 

2) take an x related to a iq such and such manner 

3) do this and that to x 
4) the result is f(a). 
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A rule of this type uses an au~iliary object x. The result then depends on 
a .and x. At least, it seems so. :This is di!e to the ambiguity in the second · 
step. This ·step states that we choose an X with such and such property, 
but there may· be many objects x,y,z, .. : related to p jn ·the prescribed 
manneL The- auxiliary objects x,y,z, ... will, in general, pr~duce different 
results, so we should. perhaps that the result is f(a,x) (or f(a,y),f(a,z), ... ): 

In order the. above rule to be :a function, it must produce: the same . 
result. Henc-e we must have f(a,x) f(a,y) = f(a,z) = .... -The rule must be 
so -constructed that the same result will obtain ·even if we. use different 
auxiliary objects. If this be the case, the function is said to be well 
defined. 

This terminology is somewhat unfortunate. It sounds as though there 
are two types. of functions, well defined functions and not well defined 
functions (or badly . defined functions}. This is d~finitely not the .case. A 
well -defined function is simply a function. Badly defined functions do 
not exist. , Being . well defined is· ·n~t a property, such as continuity,. 

- boundedness, differentiability; integrability etc. that a function might or 
might .nof possess .. That a funct~on f: A _, B is well defined means: 1) the 
rule o(evaluating f(a) for a E A makes use of auXiliary, foreign objects, ... 

2) there are many choiCes of these foreign objects, hence 3) we have. 
reason to suspect . that applying the rule ·with different choices inay . 

· produce different results, which would imply ·that our rule does not 
determine f(a) uniquely and I is not a function in the sense of Definitiqn 
3. I, but 4) our suspicion is not justified,· for there is· a. mech~nism, hidden 

1_mder the, rule, which .ensures that same result will obtain even if we 
apply the rule· with different allxiliary objects. The question .as to 
whethe·r a "function!'. is well defined arises only . if that .:'function" uses 

objects not uniquely· determined by the element a in its "domain" in· 
order t~ evalu~te f(a).__We wrote "function" in quotation marks, for· such 
a thing may not be a furiction in the sense of Definition 3~ 1. Given such a 
"function", which we want to be a function in the sense of Definition 3.1, 

we check whether f(a) is uriquely determined by a, th~t is, we check 

whether f(a) is independent of the auxiliary objects that we use for 

evaluating J(a).lf this be the ca~e,' our supposed "function" f is in_deed a 
function in the sense of Definition 3.1. We say then that f is well defined, 
or/ is a well defined function; This· means I is a function. In fact, it is 
more· accurate to say . that a function is defined instead of saying that a 

function is well defined. 
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6.2 Examples: (a) Let L be the set of all straight lines in the Euclidean 

plane, on which we have a cartesian coordinate ·system. We consider the 

'~function" s-: L - IR u {co},. which assigns the slope of the line I to I. How 

do we find s(l)? As follows: 1) choose a point, say (xl'y1 ), on I; 2) choose 

another ·point, sa~ (x
2
,y

2
), on I; 3) evaluate x2. x 1 and y2 - y 1; 4) put s(l) 

(y2 - y 1 )/(x2 :... x1) if x1 ;: x2 and s(l) = co if x 1 Xz- Clear.Iy we can choose 

the points in ~any ways. For example, we might choose (x1',y1');: (x1,y1) 

as the first point, (x2',y
2
');: (x

2
,y2 ) as the second point. Then we have, in 

general, x2'- x{;: x2 .x1 and y~· -y1';: y 2-y1, so we might suspect that 

(y2 '-y1 ')/(.x2'-x1');: (y
2
-y

1
)/(x2-x1). It is known from analytiC geometry 

that these two quotients are equal, hence s(l) depends only on l, and not 

on the points we. choose. Thus s is .a well defined function. U.lt'imately, 

this is due to the fact that tnen~ passes one and only one straight line 

through two distinct points. The next e~ample sho~s that well definition 

·breaks down if we modify the domain a little. 

(b) Let C be the set of all curves in the Euclidean plane. We consider the 

''function" s: C - IR u {co}, which assigns the ••stope" of the curve c to c. 
How do we find s(c)? As follows: 1) choose a point, say (xl'y

1 
). on l; 2) 

choose another point, say (x
2
,y

2
), on l; 3) evaluate x2 x 1 and y

2 
- y

1
; 4) 

put s(/) = (y2 y 1)/(x2 - x 1) if x 1 ;: x2 and s(l) co if x 1 = x2 • This is the 

same rule as the rule in Example 6.2(a). Let us find the "slope" of the 

curve y = x 2
• I) Choose a point on this curve, for example (0,0). If you 

prefer. you might choose (- 1, 1). 2) Choose another point on this curve, for 

example (1,1 ), If you prefer, you might ~hoose (3,9) of course. 3) Evaluate 

the differences of coordinates. 'we find I - 0 and 1 0. You find 3 -(-1) 

and 9 - I. Hence 4) the slope is 1/1. You find it_ to be 8/4. So s(c) = I and 

s( I'} = 2. This is nonsense. We see that different choices of the points on 

the curve _(different choices of the auxiliary objects) give rise to 

different results. So the above rule is not a function. We do not say "s is 

not a well defined function". s is ~imply not a function at all. s is not 

deli ned. 

(cl Let F he the set of all continuous functions on a closed interval [a,b]. 

We want to "define" an integral "function" I: F -·IR, which assignes the 

rt:al .number J: f(x)dx tof E: F. So I(j) J: f~x)dx. I is a "function" 

whose "domain" is a set. of functions. How do we }ind I(/)? As follows~ I) 

Choose an indefinite integral of J, that is, choose a function F on [a ,b J 

such that F'(x) = f(x) for all x E:. [a,bl (we take one-sided derivatives at a 
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and b). 2) Evaluate F(a) and F(b). 3) Put I(j) = F(b)- F(a). There. are 

. r~any functions F with F'(x.) = f(x) for all x E [a,b ]. For two different 

choices F 1 and f 2, we have F 1(b) ~ F2(b) and F 1(a) ~F2(a) )n general. So. 

w~ may suspect that F1 (b)-F1 (a)~F2(b) .F2('a).In order to show.thatl 
is a well defined function,. we must prove F 1 (b) - F 1 (a) F 2(b) - F 2(a) 

whenever F
1 

and F
2 

are functions on [a,b] such that F 1'(x) f(x) F 2'(x) 

for all x E [a ,b·]. We know from the calculus that, .when F 1 and F 2 have 

this property, there is a constant c such ·that F 1 (x) F 2 (x) + c · for all 

x E [a,bJ. So F
1
(b):. F

1
(a) = (F2(b) +c)- (F2(a)+ c)= F

2
(b)- ·F2(a). ·There­

fore, I is well defir_1ed. 

After this lengthy digression, we return to the integers mod n and to the . . 
"operations" e and 0: 

6.3 Lemma: e and 0 are well defined operations on l.n. 

Proof: We are to prove a IDb =a· eli' and a 0b =a· 0 lj· whenever a =a 
and li = li' in l. (different names for identical resid-ue classes should not . n . . 

yield differerent results). This follows from L~n1ma 6.J. Indeed, if a a.' 
and lf li', then a a· (mod n) mid b.~ b' (mod 11) by definition, s'o we 

obtain a+ b""' a'+l/(mod lJ) and ab. a'l/(mod n) by Lemma 6.1, hence 
a + b = a'+ b' ·and ap = a'b', ·which gives a <D lJ a + b a+t;~- = 

(i' (f) fi. 'and a 0 fj = (i]j = (i'fi'. = {i' 0 .fi ·. 0 

Having .proved that (f) and 0 arc well defined operations on Z n' w.: 

pro~eed to show that ID and 0posscss many (but not all) properties (lf 

the usua_l addition and multiplication of integers. First we simplify our 

notation. From now on, we write + and · instead of (f) and 0. In fact, we 

shall ev~n drop· and use ·simply juxtaposition to d.cnote ~~ prodtKt, of· two 
integers mod n. Thus we will have ii + lJ ::;: a-+1T and· a.]} ·,ai· or . . 

simply a o ~. The reader_ should note that tlie same sign "+" is used 

to denote two very distinct operations: (f) in the .old notation. anti the 

usual addition of integers .. If anything. they arc defined on distinct sets 

·z n and l. The same remarks apply to multiplication. 
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6.4 Lemma: For all a,o,c € ln' the following hold. 
(1) a+ o € z ; , n 

< (2) (a + o) + c = a + (0 + c); 

(3) a+ u ==a; 
(4) a+ -a = U; 
(5) a + o = o +a; 
(6) a•O € ln;, 

(7) (a·o)·c = a·<o·c); < 

(8) a·T= a; 
(9) if (a,n) = 1, then there is an x € l such that a·x = T; - n , 

oo> a·o = o·a; 
(11) a·(o + c} = a·o + a·c and (0 + c)·a = o·a + c·a; 
(l2)'a:o n. 

Proof: ( 1) is obvious. (2) follows from the corresponding property of 
addition in l. We indeed have 

< (a + o) ;t- c == (a + b ) + c < 

< = (a +b) + c 
=a + (b +.c) 

a+ (F+C) 
< =a+ <b+ c). 

The remammg assertions are proved in the same <way by dra,wing bars 
over integers in the corresponding equations in l. We prove only. (9); 

which is not as straightforward as the other claims. If (a ,n) =:' .1. Then 

there are integers x,y with ax -.ny = 1 (Lemma 5.10). Using (3) and (12), 

< we get T =ax ny:=ax- ny = a·x- nji = a·x- u:y = a·x- U =a o 

Exercises 

1. Determine whether the ','function" .g :Z 13 - N is well. defined, if g is 

defined as follows. 

(a) g(a) = (a, 13); . 

(b) g(a) = (a,26); 

(c) g(ii) (a, 169); 

(d) g(a) (a2, 13); 
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(e) g(a) (a\ 169); 
·(f) g(a) =:: (a,6); 

(g) g(a) = (a2,65); 

where. a E l
13 

and a E 'z. 

2) Let f: Z12 x l -Z12 be such that (a,b) L a2+ab+b2. Is f well defined? 

3) For an integer a, we denote by a .the residue class of a .(mod 12), by ii 
· the residue class of a (mod 6), and. by a the residue class of a (mod 5), so 

that a E l j-2 , ii E Z 6 and a E Z 5 • Determine . whether the fo.llowing 

"functions" are well defined . . 
(a) zl2- l6, a -ii; 
(b) z6 - z12, a -a; 
(c) ll2- l5, a -a; 
(d) z5 ,..... z6, a -a; 

(e) z5 -z6 , a -a+t. 
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'§7 

Basic Definitions 

·Before giving the formal definition of a group, we would rather present 
some c9ncrete examples. 

· 7.1 Examples: (a) Consider the addition of integers. From the .numer­

ous properties~. of this binary operation, we single out the following ones. 
(i) · + is a binary operation on l, so, for any a,b E Z, we have 

a +bE Z. 
(ii) For all a, b, c E Z, we have (a+ b)+ c::: a+ (b +c). 

(iii) There. is an integer, namely 0 E l, which has the property 

a + 0 =a for all a E Z. 
(iv) For all a E l, there is an integer, namely -:-a, such that 

a+ (-a)= 0. 

(hl Consider the multiplication of positive· real numbers. Let llt be the 
' ~ ~ ' " 

set of positive real numbers. Here the multiplication enjoys properties 
apalogous to the ones above. 

(i) · is a binary operation on llt, so, for an'y a,b E llt; we have 

a·b E: W. 
(ii) For all a, b, c E: W, we have (a·b)·c = a·(b·c). 

(iii) There is a positive real number, namely 1 E: llt, which has 
the property 
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such that 

a· I a for all a E Hr. 
(iv) For.all a E or, there is a positive real number, namely 1/a, 

1 
a·- =1.· 

(l 

(c) Let n be a natural nun~bcr and consider the addition in ln' which we. 

introduced in §6. 
(i) + is a binary operation bn l ' so, for any a' E E l n' we . n. 

have a + 0 E ln. . 

property 

that 

(ii) For atl a,Ti, c E l , we lnive (a+ o)·+ c a+ (D +c). n . 
(iii). There is an integer mod n, nar.nely U E ln' which has the 

•(i + u 
· {iy) For al! a E 

{i for all a E l. . • . n 

there is an integer mod iz, namely -;(l ' such 

a+ (-a)= U. 

(d) Let X b~ a no.ncrnpty set ·and .let S x be the set of all one-to-one 

mappings from X onto X. Consider the composition " of mappings in Sx. 
(i) o is a binary operation on Sx, for if cr and r arc one-to-one 

mappii]gs from X onto x', so is o "r by Thcor~m·3.13. 
(ii). For all cr, r; 11 e..:Sx, we have (cr ·: r) "11 cr.,·( rn 11) (Theorem 

3.10). 
(iii) There is a mapping in Sx, namely tx E Sx, such that 

o"lx::::: o for all cr E Sx . (Example 3.9(a)). 

(ivfFor aii.<J € Sx, there is a mapping in Sx, namely o- 1, such. 

that 
·o "o-1 ::::: tx· 

/(Sec Theorem 3.14•and Theo[cm.3.16. That.o-IE·Sx folltJ)VS frpm:Theo.fcm 
'',·" 

3.17(1).) •. 

These are cx:tinples· a f. groups. In :each case, ~c ; liavc ·ii 'n~iu.:lllpty s~t and 

a ·binary oper<ltioti ... (Q.i(~ihpt set . \yhich e_njoy~ ··~~~·~~e :!~p~~htl .r.ropcr.ti~s: 'A . r. ',' 

group will be .. dcfi~J.ed.~.as a, .not1c.mpty · sc.! ;a!id ·:~1 ·· bii1~1~~: '<ir;c·~,~~i{ii.~> on. tl~<!l 
set having the samf.'propertics ~is in thc''cx:tiiJfllcs;(bovei ';\- fniup· ~(·ill. 
thus· consist of two, pa.rts: a set and· a .bin~ry. oi)L-.rati()IJ'. ·Formally. a 
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group is an ordered pair whose components are the set and the opeta­
tion in- question. 

7.2 Definition: An ordered pair (G, •), where G is a nonempty set and o 

)s a binary operatiorl on G, is called a group provided the following hold. 
(i) o is a- (well defined) binary operation on G. ·Thus,. for any 

a, b € G, a o b is a uniquely determined element of G. 
(ii) For all a,b,c E G, we have (a•b)oc=ao(boc). 

(iii) There fs an element. e in G such that 
a o e = a for all a € G 

and which is furthermore such that 
( iv) for .all a € G, there is an x with 

a ox= e. 

When (G, o) is a group, we also say that G is (or builds, or forms) a group 
with respect to • (or under • ). Sine~ a group is an' ordered pair, two 
groups ( G, o) and (H •*) are equal if and only if G = H and the binary 
operation o on G is equal to the binary operation • on G (i.e., o and • are 
identical mappings from G x G into G). On one and the same set G; t)lere 
·may be distinct binary operations . o and • . under which G is a ·group. In 
this case, the gr()ups (G, •) and (G, •) are distinct. 

The four conditions (i)-(iv) of_ Definition 7.2 are known as the group ax­

ioms. The ·first axiom· '(i} is called the closure axiom. When (i) is true, we 
say G is closed under 0 , 

A binary operatio!l o on a nonempty set G is said to be associative when 
( ii) holds. The associativity of o enables us to write a • b o c without ambi­
guity. Indeed, a o b • c has first no meaning at all. We must write either 

_(a • b) o c or a • (b o c) to denote a meaningful element in G. By associa­
tivity, we may arid do make the convention that a • b • c will mean 
(a • b) • c a o (b o c), for whether we read it as (a o b) • c .or a o (b o c) 
does not make any· difference. This would be wrong if o were not 
associative. For instance,··: (division) is not ari associ;nive operation on 
0\{0) and (a:b):c ;r. a:(b:c) unless c = I (here a,b,c € 0\(0}). Thus a:b:c is 
ambiguous. 

An element e of a set G, on which there is a binary operation •, is called 
a right iden-tity element or simply a right identity if a o e a for all a in 
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·.G. The third group axiom (iii) ensures . that group G has a· right. identity 
element. We·· \Viii sh.ow presently that group has precisely one. identity 

element, but we have not proved it· yet and we must bt: careful not to · 

use the uniqueness of the right identity before we prove it. All we know 
at this.: stage is that a group has at least one right identity for which (iv) 
holds. As it is, there may be many right identities. 1n additio~. there· 

may be some right identities for which (iv) is true and also. some for 
which (iv) is false. For the time being,. these possibilities are not. 

excluded. 

They will be excluded in Lemma 7.3, where we will prove further that 

our unique right identity is also a left identity. A left identity element or 
a left identity of G, where G is a nonempty set with a binary operation " 
on it, is by definition an element If of G such that f 0 a = a for all a E G. 

·· . The group axioms say nothing about left identities. If (G, a) is a group, 
we do not yet know if there is a left identity in' G at all, nor do. we kno~ 
any relation between right a·nd left· identities. For the time being, there 

may be no or one or many left i_dentiti!is in G. If there is only one left 
identity, it may or may not be right identity. If there are- many left 

· i,dentities, some or one or none of them may be :right identities. 

We mention all these possibilities s~ that the reader does not read m the 
axioms more than what they really say. The group axioms· say nothing 

about left identities or about the uniqueness. of ·the right identity. 

The group axioms do say. something about right .inverses. If G is a 

nonempty set with a binary operation ·• on it, and if e is a right identity 
in G; and a E G, an element ~ E · G is called a right inverse of a. (wiih 

respect to e) when a • x = e, The group· axioms state th;lt, in case ( G:") is 
a group, there is a right identity e iri G with respect to which each 

element of G has at least one right inverse. Until we . prove Lemma 7 .3, 

there may be many right identities with this property. Also, some of the 

right ·identity elements may and some of the right identity .. elements 

may not have this property. Furthermore, ·some (or all) o.f the· clements 

may have more than one right inverses with. respect to some (or all)· of 

the right identities. The. group axioms make no, uniqueness assertion 

about the right. inverses. 

Before we lose ourselves in chaos,· we had better prove· our lemma. 
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7.3 Lemma: Let ( G, o) be a group and let ·(! be a right identity element 

of G such that, for all a € G, there exists a suitable x in G with a ox = e. 

The existence of e is assured by the group axioms (iii) and (iv). 
(1) Ifg € G is such that gog =g, then g =e. 

(2) e is the unique right identity in G. · 
(3) A right inverse of an element in G is also a left inverse of the same 

element. In ot~er words, if a ox= e, then x o a= e. 
(4) e is a left identity in G. That is, eo a= a for all a € G. 
(5) e is the. unique left identity in (}. 

(6) Each element has a unique right invers.e in G. 

(7) Each element has a unique left inverse in G. 
(8) The unique· right inverse of any a € G is equal to the unique left 

inverse of a. 

Proof: (1) Let g E.G be such that g o g =g. We choose a rig_ht inverse of g 

with respect to e. This is possible by the axiom (iv ). Let us call it_ h. Thus 
g o h = e. Then . 

{gog)-oh =go·h·· 

g 0 (g 0 h) = g 0 h 

g o·e = e 

g =e 

(by associativity), 
(since g o h =e), 

(since e is a right identity). 
This proves part (1 ). 

(2) The claim is that e- is the unique right identity in G .. This means: if 

f € G ·is a right identity, that is, if a of = a for all a E G, then f = e. 

Suppose f is a rjg~t identity. Then a of= a for all a E G. Writing- f for a in 
particular, we see I of =J. Hence f = e by pari (1 ). · 

(3) A right inverse x of an arbitrary element a € G is also a left inverse 

of a. This is what we are· to prove. So we assume a ox = e and try to de­
- rive x "a= e. We use part (1). If a ox= e, then· 

(x o a) o (x o a) = 1 (x a a) a x ] a a 

= [x a (a ox)] a a 

· = [x o e]" a 

= x a a. 

(by· associativity) 

(by associativity) 

So g :=.(xoa) is such that gag =g. By part (1), g =e. Soxaa'=e. · 

( 4) We are to prove that e is a left identity. So we must show e o a = a 
for all a € G. Let a E G and let x be a right inverse of a. Then 
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a oX =Xu a 

(a ~ x) • a = (x ·• a) o a 

a o (x o a) = (x o a) " a 
a 0 e e oa 

a = e • a.· 
Therefore, e is a left identity as well. This proves part (4). 

(by part (3)) · 

(5) The claim is that e is the unique left identity in G. This means: if f is , - . . . . 

a left identity in G so that f" a =a for all a €. G, then f e. We know that · 

the right identity e is a left identity (part (4)),":and that cis the unii:1ue 

right identity (part (2)). So we conclude that e is the unique left identity: 

Is this correct? No, this is wrong. This wo'Uld be correct if we knew that 

any left identity is also a right identity (and so the. unique right identiiy 

by part (2)), which is not what part (4) states .. For all we proved up to 
l . . . 

now, there may very well- a. unique right identity- and many left ilkn-

tities (ari1ong them the right identity). We are to show in part (5) that 

this is impossible .. 

After so· much fuss, now ·the correct proof, which is very short. Suppose 

f" a =a for all a € G. Write in particular f for-a. Then f "f f and part (I) 

yields/ e . . 

(6) The claim is 'that each clement a € G has a uniquc·right inverse in G. 

We know that a has at least one right inverse, say x. We hav..: u "x c. 
We are to shqw: if a·~ y = e, then y = x (here y E G). Suppose th,·n 

a ox e and a •)'_;= e. We obt;1in. 

This proves part (6). 

xoa e 
x.oa)oy=euy 

x" (a .. y) = e .. y 
xne c(•y 

x = e u y 

X = )' 

'(by part t3)) 

(by ~part (.JJ). 

(7) and (8) Let a € G; and let x be the unique right inverse of tl. Frn111 

part (3), we know that x is a _left inverse of a, so that x "a = e. We muq 

prove: if x ··a = e and y " a = e, then y = x. _Suppose then. x o a ::.c c aud , 

y "a e. Then. 



y o (a o x) = y .. e 

(y?a)ox !::y 

e.o X = y 
X =y. 

This completes the proof. 0 

·According to Lemma 7.3, a group (G, o) has one and only. one right 
identity, which is also the unique left identity. Therefore, we qn refer 
to it as the identity bf the group, without mentioning right or left. Simi­
larly, since any. a € G has. a unique right inver_se, which is also the 
unique left inverse of a, we may call it the inverse. of a. The inverse of a 

is ·uniquely determined by a; for this ·reason, we introduce a not!ltion 
displaying the fact that it depends on a ·alone. We write a -1 for the 
inverse of a (read: a inverse). Thus a:-1 is t~e unique element of G such 
that a o a-1 = a-1 o a.= e, where e is the identity of the group. 

The gro~p axioms, as presented in Definition 7 .2, assert the existence of 
a right identity, and a right inverse o( each. element. We proved in 
Lemma 7.3 that a . right .identity is also a left identity and a right inverse 
of an element is also a left inverse of the same .. element. One could give 
an alternative definition of a group by so modifying the axioms·· that 
they assert the existence .. of a left identity. and a left 'inverse of each 
element. A lemma analogous to Lemma 7.3 would prove then that there 
is a unique left identity, which is also a unique right identity .and that 
each element has a unique left inverse, which is also. a unique right 
inverse of that element. Thus. the existence of a right identity plus right 
inverses lead to the same algebraic structure (group) as the existence of 
a left identity plus left inverses. 

However, existence of a right identity and the existence of left inverses 
do not always produce a group. For example, consider the set l. X l. For 
any (a,b), (c,d) E l. x l, we put(a,b)"' (c,d) =(a, b +d).' Let us .check if 
(Z x l, fi) is a group. 

(i) /',. is a binary operation On z· X l since a € lr, b + d € .l 

whenever a,b,c,d E Z. So l x l is closed under "'· 
(ii) Is"' associiltive? For any (a,b), (c,d), (eJ) E-l x l, we ask 

' ? . • 
{(a,b)"' (c,d)l "'(e,{) = (a,b) 6 [(c,d) t,. (eJ)] 

? 
(a,b +d) D. (eJ) = (a,b) t,. (c,d +f) 



(a, (b + d) +f) h (a, b + (d +f)) 
Yes, this is true since + is a-n associative operation on 7L. Hence t:, -is asso­

ciative. 
(iii) Is there an ele~ent in 7L x 7L, (a 0 ,b0 ) say, such that 

(a,b) t:, (a(pb0) = (a,b) for all (a,b) E 7L x 7L? 

Well, this is _true if and only if (a,b + b0 ) = (a,b), which is equivalent to 

b
0 

= 0. There is no condition on a0 . For example, 

- (a,b) t:, (0,0) = (a,b + 0) = (a,b) 

(a_,b) t:, {1,0) =_ (a,b + 0) = (a,b) .: 

for all· {a,b)~E Z X Z, so {0,0) and {1,0) are right identities. In fact,- any_ 

(n,O) E 7L x 7L is a right identity. 

_ rrom Lemma 7 .3, we know ~hat a woup has one and only one right 

identity. so 7L X 7L is not a group under "'· On the other hand, with respect 

to {0,0) for example (in _fact, with respect to any Tight ideniity), each 

eJe11_1ent (a,b) Of 7L X 7L has a )eft inverse {0,'-b): 

(0,-b)t:, (a,b) = (0,-b +b) = {0,0) 

(with respect to (n,O), a left inv?rse _of (a,b) is (n,-:-b)). 

So (7L X 7L, t:,) is a system in which a right identity exists, plus- a left 

inverse of each element; nevertheless, it fails to :be a g_roup. Likewise, 

fulfilling the cxistc;nce of a left identity :ind right inverses is not enough­

for building a group. 

We could define a group by including the claims of Lemm:i 7.3- directly 

into the- definition. Then we would have 

and· 

. (iii)' there is a unique e E.G such that 

a " e = e o a = a for all a E G 

(iv)' for all a E G, there is ·a unique a-t E G 'such that 

a o a-t = e = a- I ~ a 

111 place of (iii) atid (iv) of Definition 7.2. Some textbooks define ~roups in 

this way. This would. save us fr~m the trouble of. proving Letmna 7 .3. 

Why, then, did we not use this_ definition? Because we do ~ot w:int to do -

unnecessary work. If we defined groups- by .. (iii)' and (ivJ instead of <iiil_ 

and (iv),- then, each ·time :when we wanted. to show that a set G builds a 

group under a binary operation " on G, we had to check 

I) that there is an e E G such that a .. e = a for all a E (;, 

2) that this e is also such that e " a = a for all a E: G . 
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· . 3) that e is _the unique element of G with these two properties, 
4) that. for each a E G, there is an a-1 E G. such that .a 0 a-1 e,. 

5) that a-1 o a = e as well, 
6) that this a-1 is the . unique element of G with a o a-1 = e = a-1 o a, 

"which. more than doubles our work. With our 'Definition 7 .2, we need 
check only 1) and 4). The other items 2),3),5),6) follow from 1) and .4) 

automatically. We pay for our comfort by having. to prove Lemma 7.3, 
but,. once this is ·over, we have less work to do in order to se~ whether a 
given set G forms a group under a given operation· • on it, as in the 
following examples.· 

7.4 Examples: (a) For any two elements a,b of 0\{1], we put 
a o b = ab - a - b + 2. We ask if 0\{ 1} is a group under o, Let us check lhe 

group axioms.. . 
(i) For all a,b E 0\{l }, we observe a o b = ab- a- b + 2 € 0, 

but this is not enough. We must prove a ob ;::! 1 also. Let a,b € Q, a ;::! 1 ;::! b. 
We suppose a o b =1 and try to reach a contradiction. If -a o b =1, ·then 

ab- a- b + 2 =1 
ab- a- b + 1 0 
(a- l)(b - 1) = 0 

a - 1 = 0 or b - 1 = 0 
a := 1 orb I, 

a contradiction. So a • b € Q\{ 1} and o .is a binary operation on Q\{ 1}. 

(ii) Foralla,b,c € Q\{l},;we ask ir'(a•b)oc:ao(b~c)~ 
? ' . . . 

(ab - a b + 2) o c =a • (be - b - c + 2) · 
'} ' 

(ab a-b +2)c-(ab -a -b +2)-c+2 :=a(bc-b -c+2)-a (bc-b -c+2)+2 
' .· . 7 . . . 

abc-ac-bc+2c-ab +a+b 2-c+2 =abc- ab -ac+2a-a -bc+b +c-2+2 
The answer is "yes.'' So • is associath-:e. 

(pj) We are looking .for an e E Q\{1} . such that a o e = a for all 

a £ Q\{ 1}. Assuming such ari e exists, we get . 
ae a- e+ 2 =a 

ae-a=2a-2 
(a - 1 )e = 2(a - 1) 

e = 2 (since a '- I ;::! 0). 

We have not proved that 2 € 0\{ 1} is a right identity element. We 
showed only that a right identity e1e~ent, if it exists at all, has to be 2. 
Let us see if 2 fs rea1ly a right identity. We 'observe 
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a o 2 = a2 - a ,... 2 + 2 = 2a a a 

far all a e: iQl\(1}. Since 2 e: I(Jl\( 1}. 2 is indeed a right identity in iQl\( 1 } . 
(iv). For all a € i(Jl\( 1},. we must. find an X € iQl\( I} such that 

a ox = 2. Well, this gives 
ax-a x+2 =2 
ax a--x+ 1 =1 

I 
(a- l)(x- 1) =1 

x -J = 1/(a - 1) 
x=a/(a-1), 

which is meaningful since a ;r. 1. We have not proved-yet that a/(a- 1) is 
a right inverse of a. We showed only that a right inverse of a e: iQl\{1}, if 
it exists at all, has to,be a/( a - 1). We must now show that a o a/(a - I)'= ·2 · 
for all a e: i(Jl\(1} and also that a/(a- 1) e: i(Jl\(1}. Good: We have 

a o a/(a - 1) a(a/(a- 1))- a- (a/(a 1)) +.2 
(a-, 1)(a/(a- 1))- a +2 

and alsoa/(a- 1) ;r. l,.fora/(a 1) € I(Jl and a/(a 1) 1 would .imply that 
a =a - 1, hence 0 1, vvhich is .absurd .. 
Since all the group axioms hoi~. I(Jl\( f} is a group ·under o. 

(b) Let us define an operation * on l by putting a + b = a + b + 2 for all 
a,b e: l. Doesl form a group under •? · 

(i) For any a,b e: , a • b =a+ b + 2 is an int.eger. So l is 
closed under •.· 

(ii) For:all a,b,c e: Z, we ask if (a* b) • C· a* (b *c). We 
have (a•b)•c=(a+b+2)+c 

So * is associative. 

= (a + b + 2) + c +. 2 

=a + (b + 2 ;-c) + 2 
· = a + (b + c + 2) + 2 

=a+ (b • c)+ 2 
· = a * (b • c). 

(iii) Is there an integer e. e: ·z such that a * e a for all a e: l? 

Well, this gives a + e + 2 · a and! = -2. Let us check whether -:2 is ·n~ally 
a right identity element. We observe that a * -2 = .. a + (-2) + 2 = a for all 
a € Z. So -:-2 is a right identity· element. 

(iv) Does each integer a have a right inverse ~in l? The 
· condition a + x = -2 yields 

a+x+2=-2 
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x = -4- a € Z. 
--4- a is indeed a right inverse of a since a"' (-4.- a)= a+ (-4- a)+ 2 -2. 

Therefore Z is a· groul? with respect to *· 
. ' 

(c) Let A be a nonempty set and let ·.2, be the set of all subsets of A. The 
elements of .2, are thus ~ubsets of A. Consider the· forming of symmetric 
differences (§1, Ex.7) . .%is a group under l'l: 

(i) Forall S,T e: .2,, S 6 Tis a subset of A, soS 6T e: .2, and .2, is 
closed under 6; 

(ii) 6 is associative (§1, Ex.8}. 
(iii) 0 is a right identity (§I, Ex.8). 
(iv) Each· element S of .2, has a right inverse, namely S itself, 

asS 6_S = 0 for all S € .2, (§1,·Ex.8). 
So .2, is a group under. 6. 

We have seen many examples ·of groups. In some of the groups (G, a), the 
underlying set G is infinite, in ~orne finite. The number of elements of G, 
more precisely the cardinality of G, is called the order of the group (G, •). 
We denote the order of (G, •) by .IGI. A group (G, •) is called afinit.e group 
if IGI is·finite, and an infinite group if IGI is infinite. One might distinguish 
between various· infinite cardinalities,· but we will not do· so. in this book .. 
When. the order of_a group (G, •) is infinite, we write lGI = ro. The symbol 
oo will stand for all types_ of infinities. 

A. Cayley (1821-1895) introduced a convenient device for investigating 
groups. Let (G, a) be a finite group. We make a table that displa:ys ~ o b 

for each a,b € G. We divide a square into IGI 2 parts by dividing the sides 
into I G 1· parts. Each one of 'the rows will I?e indexed by an element of the 
group, usually ·writte_n. m1 the left of the row. Likewise, each one of t~e 
columns will be indexed· by an element of the group, usually written 
above the column. Each element will index only one row. and only one 
column . .It is customary .to . use/ the same ordering of the elements to 
index the rows _and columns. Also, the first row. and the first column are 
customarily indexed· by the identity element of the group. In the cell 
where the row of a E G and· b e: G 111eet', we write down. a • b. This squ·are 
is known as the Cayley table or the operation table (multiplication or 
addition table, as the case may be) of the group (G, o). 
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As an illustration, we give the addition table of (Z4,+) below. (Z4 ,+) is a 

group by Example 7.l(c). We drop the bars for convenience.· . 

+ 0 2 3 

0 0 1 ,2 3 

I I 2 3 0 

2 2- ·3 0 I 

3 I 3 0 1 2 

We observe in this table that every e.lement of appears once in each 

row and also in .each column. This is a general property of groups: if (Go) 

is a group, then every element _b of G appears .once and only once irt ... the 

row of any a E G. say in the cell where the. row of .a and. the column of' 

x E G meet. A similar' asserrion holds for columns. This is the content of 

the next lemma. 

7 .S Lemma: Let (G, •) be a group and a,b E G. 

(1) There is one and only one x E G sitch that a ox b. 

(2) Tl1ere · i.~ one and only one y E G such that y o a b: 

l)roof: (1) We prove first that there can be at most :one X € G such that 
a •X =b. Let a ox b =a oxl. We prove X= XI •. We have 

a oX =a nx
1 

a-lo (a ox)= a-1 ° (a ox) 
. I 

(a-l• a) •X = (a-1 o a) •x1 
e • x := e • x 1 

x =x1 

by Lemma 7.3. So there can be at most one x with a ox =b. 

The. existence of at least o_nc such x is easily seen when we put x = rr 1 " /J. 
·Indeed, a o (a-t ·b)= (a ·a-l)'ab = e ob =b. 

So there is one and only one clement x of G, namely x a-J·. b, such that 

a ox . b. This. proves (1 ). 

The proof of (2) is similar and is left to the reader. o 
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We give an application of Lemma 7.5. We determine the Cayley table of 
groups of.order 3. Let (fe,a,b}, •):be a group of order-3, where e is the 
identity: The Cayley tab!~ of this group contains the information given in 
Figure 1. Now we fill the remaining fo~r cells .. What is a • :a? ·The cell * 

cannot contain -a,, for a would otherwise appear more than once in the 

e a b e a b e a b 

e e a b e e a b e e a b 

* . 
a a b a b e a a a 

'b b b b b b e a 

Figure I Figure 2 Figure 3 

second row (or. column). So the cell * contains e or b. If it contained e, 
then the third entry in the second row had to be b and b would appear 
at least twice in the third column, contrary to Lemma 7.5. This leaves 
only the possibility a • a =b. Then we have the table in,Figure 2. The 
remaining cells are necessarily- filled.in as in Figure 3. 

We did not prove that Figure .j is a Cayley table of a group of order 3. At 
this stage, we do not everi know whether a· group of order 3 exists. We 

proved: if there is a group of order '3 at all, then its Cayley· table is the 

table of Figure 3. We now. prove the existence of a group of order 3. We 
use Figure 3 .. Let- { e ,a ,b} be a set of 3 elements, and let the binary 

operation o on this set ,be defined as in Figure 3. It is easy to check the 
group' axioms (i),(iii);(iv). It remains to check associativity .. We must 

verify 33:3 27 equations (x•y)•z=x•(y•z), wherex,y,z E{e;a,b}. An 
cqu;\[ion of this type is _true when one of x,y,z is equal to e. So we are 
kft with 2.2.2 8 equations 

' · (a o a) • a ::;; a • (a • a) 

(a•a)•h =a•(a•b) 

(a•h)•a =a•(h•a) 

(a•b)•b =a•(h•h) 
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(b•a)•a b•.(a•a) 

(h o a 'j o b = b • (a • b) 

(b•h)•a =o•(b~a) 

(b•b)•b =h·(h•b) 



and these are verified easily. Hence· ({e,a,b }, o). is a group. There is a . 

group of order 3. Any two ·groups of order 3 have essentialy the. sam~ 

·Cayley table, namely .tbe .table .in ~igure 3; This stateme.nt will be made 

. precise in §20. 

The Cayley. tables of (Z 4 ,+) and ({·e,a~b}, o) are symmetric about the 

principal diagonal (that joins the upper-left and lower-right. cells). What 

does this signify? The symmetry of the Cayley table of a group (G, o) 
' .~ ' ' . . ~': 

·means. that the cell where the i ~th row and j-th column meet has the 

same entry as the celL where· the j-th row ·and i-th column meet, and 
. . ' . ' 

this for all ij =:= 1,2, ... , IGI. Assuming the i-th row is the row of a E G ~and 
the }-th column. is the column. of bE G ,(and assuming we index the rows 

~and columns by the elements of G in the same order), this means: a ., b = 

b o a for all a,b E G. So the group. is commutative in the following sense .. 

7.Q Definition: A group (G, o) is called a commutativ~ group or an abel­
ian group, if, in addition .to the groue axioms (i)-(iv), a fifth axiom 

(v)aob=bna foralla,b E.G 

·holds. 

A binary operation on a set. G is called committative when a o b = b o a 
for all a ,6 E G. So a commutative group is one where the operation is 

commutative. The term ."abelian" is· used in honor of N. · H. Abel,~ a Nor­

wegian mathematician ( 1802-1829). 
. ~ 

We close this paragraph with some comments on the group axioms.· The 

.. reader might ask why we should study the structures· (G, o) where .,· 

satisfies the axioms (i),(ii),(iii),(iv) .. Why do we not study structures ( G, ") 

where ~ sat_isfies· the axioms ·(i),(iii),(iv),(v) or (i),(ii),(iii),(v)? ·What is the 

reason for prefer.ring the ax} oms (i),(ii),(iii),(iv) to some ~ther combination 

of (i),(ii),(lii),(iv),(v)? There is of course no. reasoit why other. comh!nations · 

ought to be excluded from study. As a matter of fact, all combinations 
' • . . . - I • . 

have a proper. name and there are theories about them. However, they 

are very far from having. the same ·importance· as the combinatidn (il.(ii); 

. (iii),(iv ). 
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A mathematical theory, if it deserves to be considered 'important, ha·s to 
possess both generality and informative ·significance. Clearly, a theory 
whose axioms are· too restrictive to hoid in a variety of cases is bound to 
be insignificant for those· who cannot fulfill them in their area of study, 
and the theory will have limited interest. An interesting theory is a gen­
eral one. But generality costs content. When we wish that .the axioms. of 

. a theory be • fulfilled in diverse areas and in ·many contexts, we must also 
re;tlize that the theory can only deal with what is commo!l in these di­
verse areas, and this ·might be nil. There we have the danger that the 
theory will. degenerate. into a list ·of uninformative paraphrases of the 
axioms wit~out substance. Imposing restric~ions on the axioms dimin­
ishes the use and interest of a theory, and lifting restrictions 'tends to 
make the theory void. The balance between g~nerality and content is 

. v.~ry delicate. Group theory is· one of the cases where this balance· is 
att'lined successfully. Group theory has applications in literally every 
branch of mathematics, both pure and applied, as well as ·in theoretical 

·physics and other sciences, and it is a· theory full of deep,. interesting, 
beautiful results. Thi's is why the choice (i),(ii),(Jij),(iv) is judicious. Other 
combinations of the axioms are not as fruitful as (i),(ii),(ili),(iv); 

Exercises 

1. Determine whether the following sets build groups with respect to the 
operations given. In each case, sta~e which group !lxioms are satisfied. 

(a) ~ under subtraction, multiplication and division. 
(b) ~\[0}, Q\{0}, C\{0} under multiplication. 
(c) {0,1}, {-1,1} under multiplication. 

· (d) {z E C: I zl .s:;; 1} under multiplication. 
(e) {z·E C: lzl = 1} under multiplication. 
(t} SZ === {Sz E Z: z E l} under multiplication and addition. 
(g) {x} under •, where x • x x. 
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(h) {(l,u)·E ll x /l:t2 -5u2 =4} ut:~der<where * is~defined by 
.( ) ( )·. _ (II 12 +5 Ill 112 , ltctz+l2U1 ). 
~It ,ul * 12•112 - 2 . - 2· · · 

for all (tl'u1),(t2 ,u2) in this set. 
(i) Z6 and Z8 under multiplication. and addition .. 
U) and Z

7 
\ {'0}· under .multiplication., 

(k) {J,g} under the composition of mappings, ~here f: x _,. x and 
g:x-+1/(1 x).are functions from ~\{ll into ~\{1}. · 

(I) {f,g,h} under the composition of mappings, where'/: x ..:.. x and 
g: x- 1/(1 - x) and h:x- (x.,. 1)/x are Ju~ctions' from ~\{1,0} into 
~\{ 1,0}. 

(~) lfa.b: a ,b E ·~; a ;:t. 0} under the composition of mappings, 
where J: b is' defined by f b(x) ~ ax+ b a.s a function.· from .. ~ into ~. a, a, _ 

2. For which m E N is· the set /lin \{0} ·a ·group. under multiplication? 

.. -

77 



§8 
~Conventions and Some Computational Lemmas 

In our study of groups, we are interested in how a o b depends on a and 
b; not in the name· or sign of the operation. For this n~ason, we ··suppress 
the . operation . sign altogether and use juxtaposition. Henceforward,· we 
will write ab (and also occasionally a·b) for a o b. We will refer to the 
(5peration as. multiplication. Thus "multiplicatio.n" will be used in a broad 
sense. It can mean the usual multiplication of numbers, ·but also the 
composition of mappings, the taking of symmetric differences of ·two 
set:;, or some rather artificial operation likt? those in Example 7 .4. With 
this convention, there is no need to refer .to the operation all the time 
when we discuss groups. So we call the set G. a group, instead of the 
ordered· pair (G, o) (we keep in mind of course that there can b~ many . 

. groups on the same set). We say then that the group is written muliipli­
catively or that G is a multiplicative group. Conforming to this, we call a b 
the product of a and b. Also, we 'Write, I for the identity element of the 
group .. Thus I is· not necessarily the number one. It is perhaps the 
identity mapping, perh~ps the empty. set, perhaps some other object. 
What it is depends on the group we are investigating. But a warning: .we 

wiii not write .!. for the inverse a-1 of an element a in a group. • a 

This is the multiplicative notation for groups. Sometimes, we shall use 
the additive notation, t~o, . especially when the group is commutative. 
Then the operation is denot~d by "+" and is called addition. Like "multi­
plication", "addition" is used in a general sense. We call a + b the sum of 
a and b. When we have an a~ditive group, the identity element of the 
group will be written as 0. So 0 is not necessarily the number zero .. Also, 
we write ;.a for the. inverse of an element a in an additively written 
group. We call -a the opposite ·of a. 

8.1 Lemma: L.et G be a group and·let a,b,c e: G. 
(I) If ab = ac, then b = c 1 (left cancellation). 
(2) If ba = ca, then b :;;;: c (right cancellation) .. 
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Proof: (1} If ab = ac, we multiply by a-1 on the left and get a-1(ab) 

a-1(ac). Using associativity, -we obtain (a-1a)b-= (a-1a)c. So 1b = lc. Since 1 is 
• . ! .- • 

the identity element of G, we finally gef b = c. 

(2) The proof· of, (2) ·is similar and is left to the reader. D 

. . 
We must be careful when we want to use Lemma 8.1 to. make cancel- -
latidn. If the group is not commu'tative: left multiplication by an element · 
and right multiplication by the same element give in general differen.t 
result~. )n the proo( of Lemma 8.l, w<< multiplied by a-1 on the same 

side. , We can'not conclude b = c from ab = ca,· for instance. Indeed, we 
have -

ab = ca = a-1(cib) a-1(ca) = (a-1a)b ~ (a-1c)a = · b = a-1ca. 

and this· is all we can say; In general/a-1ca ;r. c, sob ;r. c. You must always 
·make sure that you cancel on the same side. 

Cancellations are multiplications by inverse elements. We now evaluate 
the inverse· of an ipverse, and the inverse of a product. 

8.2 Lemma: Let G be a group and let a,b E G. Then 

(I) (a- 1f 1= a, 
(2) (ab r1 = b-la-1• 

Proof: (1) aa-1 :::o.l by the· definition ~f a-1• So a· is a left inver~e of a-1• So a 
is the inverse of a-I(Lemma 7.3). 

· (2) (ab)(b.-la-1) = a{b(b-la-1)) = a((hb-1)a-1) = a(la-1) = aa-1 1, and so b-la-1 . 

is the. inverse of a b. o 

Therefore, the inverse of the inverse of an element is the clement. itself. 
Also, the inverse of· a ·produ'cr is the product -of the inverses, but m the 

reverse order. Do nol write (ab/"1 = a-lb-1. This is wrong unless 
a-l~J-! ;, b~ 1 a-1 , which is equivalent to ab .ba (why?~ and which is not ·· 

true· in general. 
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* 

* * 

We defined the product of two elements. The product of a and b is a b. 
We now want to define the product of n elements and prove that the 
usual exponentiation rules -are valid. The rest of 'this· paragraph is 
extremely dull. The reader may just glance at the assertions and skip 
the proofs if she (or he) 'Yishes. 

By the product of three elements a ,b,c in a group G, we understand an 
element abc of G. Let us recall we agreed to denote by abc the element 
(ab)c a(bc). So the product of a,b,c in this order is. evaluated 'by two 
successfve multiplications. Either we evaluate ab first, then multiply it 

'by c, or we evaluate be first, then multipLy a by it. In either way, we get 
the same result by associativity and this result is denoted by abc, with­
out parentheses. 

Now let us· consider the. product of four elements a,b,c,d. Their product 
in this order will be defined by three successive multiplicatiQns 9f two 
elements. This can be· done in five distinct ways: 

a(b(cd)), a((bc)d), (ab )(cd), ((ab )c )d, (a(bc))d, 
but these five products are all. equal by associativity. The first two 
products· are equal since b(cd) = (bc)d. The last two products are equal . 
since (ab)c = a(bc). Further, we have a(b(cd)) = (ab)(cd) [put cd e, then 
a(be) = (ab)eJ and (ab)(cd) ((ab)c)d [put ab =f, then f(cd) = lfc)d]. So 
the· five products are equal. This renders it possible to drop the 
parentheses and write simply abed. This is the product of a,b,c,d in the 
given order. 

More generally, we want to define the product of n elements a1'a
2
,. · •. ,an· 

in a group G (n > 2). The product of a 1 ,a2, ••• ,an will be defined by n - 1 

successive multiplications of two elements. By inserting parentheses in 
all possible ways, we obtain many products (their exact number i~ 
2.4..{4n- 6)/n!), but associativity assures that these products are equaL 
Now we prove this. In view of some later applications,. the following 
lemma is stated more generally than for groups. 

8.3 Lemma: Let G be a nonempty set and let there be defined an 
associative binary operaNon on G, d_enoted by juxtaposition. Let 
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. . . 
a

1 
,a

2
,·· . • ·.,an E G. Tlzeri tlie products of a1 ,a2, •.•.• ,an are independent of ·the· 

mod~ .·of putting par:enthe.(e:v. This 1izeans the fiJ/lowing. We define 

Pia 1-,a2) =; (a1 a2} 

P3(c1 1:a2,a3) = ((a1a 2)a3 , a 1(a2a 3)} 

.. ~ (xy: x_ EP; (a1 ), y E P ia2,a3) or x E P iai ,a2), y E Pj (a3) } · 

P4(a1 ,a2
,a3,a4) = (a1 (l2/a3~4)), a1 ((a2a3)a4), (a 1 a2)(a3a~), ((a~a2)a3)a4 , (a1 (a2a3))a4 } 

·= (xy: x E P 1{a1); y E P3 (~12 ,~13 ,a4 ) or x E P ia1,a2), y E Pia3,a4 ) or 

···················i······················· 

Pk(a 1,a2, ... ,ak) = ( xy:x EPi(a1,a2, ... ,ai),y E Pk-i(ai+l'~···ak) forsome 

i = 1,2,. ·~·k } 

for k = I ,2, ... , 11. Thus Pk .are .subsets of G whose elements are the 

products of ·a1 ,a2, ••. ,ak' reduced to k - I s'uccessiv~ multiplications of two · 

elements in G. 

Claim: For all n E_ N cmd foralla1,a2, ••• ,an E G, the set P/a1,a2, .•• ,an) 

contains one and only one element. 

Proof: Th_e proof will be by induction· on · 11 (in the form 4.5). For 11 = I ,2.~ 

it is evide.nt' that P 
1 
(a

1 
), P 

2
(a

1 
,a

2
) each have exactly one clement'. For 11 = .. 

3, the claim is just the associativity of _multiplic;iti-on. For .. 11 = 4, the. 

argument ·preceding .the . tcmma proves the cl;iim .. Notice that we usL'd 

- only t~c associativity" of multiplic:qiol1 there. 

Suppose n? 5 and the :lemma is proved .for I .2: ... ,11- I: Let 

u,v EPn(a1,a2, ••• ,cln). We_. arc to prove 11 = v. By the dcfinitimt of 

Pn(a 1,a2,_ •• ,an)' we have 11 = xy, v =st .. where 

x E Pi(a 1,a2, ... ,ai)' y E.Pn,_;(ai+ 1, ... ,an); i.E N .• I<;;; i <;;; n-l, 

s E P}d1 ,a2, ... ,aj), / E P n-/aj+l , ... ,an)' j E N, I' <;;; j <; 71.:. I. 

We prov~ u ;= v first under. the assumption i = j. By inducti(in, the set 

Pi(a 1,a2, ••. ,a) contains 'one and only one c.lcmcnt. lienee .r = .s. :\l~~i. · 

j 
I 



.applying the induction hypothesis to n- i, with_ the elements a;.f.p· .. ,an, 

we . conclude that P .(a.+1, ••• ,a ) has. one and only one elem_ ent. This n-J 1 n . . T" 

gives y = t. Then we get" u = xy = sy = st = v. So the claim is proved in 
case i =j. 

Now s,uppose i-;: j. Without losing generality, we a.ssume i < j. We put 
j = i + h, with h e: N. Now apply the induction hypothesis to j, with the 
elements al' . .. ,a .. There is a unique element in P .(al' . .. ,a.), which we 

1 • J J 
called s. Also by induction, applied to i with the elements al' ... ,ai, there 
is a unique .element in Pla1,a2, .•• ,ai), namely x. Again by. induction,· 
applied to h with the elements ai+l'' .. ,aj there is. a unique element in 

Ph(ai+l''"'aj), say b. By the_ definition of P/a1, ... ,a), we have 
x:, e: P/al' ... ,aj), so xb s. · 

We have n - i = h + (n - j). By induction, applied to n with the ele-
mems ai+l'' .. ,an, the set P n-i(ai+l'' .. ,an) has one and only one. element, 
which we called y. Also by induction, applied to h with the elements 

ai+l'". ,ai, there is a unique element in P h(ai+l'' .. ,aj), namely b. Again by 
induction; applied to n j with the elements ai+l'' .. ,an, the set 

Pn-/ai+l'' .. ,an) has a uniqu~ element, namely t. By the definition of· 

pn-i(ai+l' ... ,ai+h'aj+l'" .,an)' we have bt € p n-i(ai+l; ... ,an),. so bt = y. 

Thus xb = s and b(=y. This gives u = xy = x(bt) (xb)t = st v. This 
completes the proof. D 

8.4 Definition: The, unique element in P n(a1 ,a2, ••• ,an) of Lemma 8.3. is 
called the product of a1,a2, ••• ,an (in this order) and is denoted by a

1
a

2 
•• 11n 

n 

or by IT a;~ 
i=d 

So the product of n elements in a given order can be written without 
parentheses. This simplifies· the notation enormously. 
Using the notation of Definition. 8.4, we· can reformulate Lemma 8.3 as 
follows. If G is a nonempty set with an associat.ive multiplication on it, 
and -if aJ:, a2 , ... ,an € G, then· 
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We. write an for a1ar .. an in case a 1, a2, ••• , an are all equal to a ·E G, n E N. 

· In particular, a 1 =a. We have an = an-tJ = aan-1• More. generally·, th~ above . ' 

reformulation of Lemma 8.3 gives 

(+) 

In particular, (am)2 = amam am+m = a2in ~ am2• We prove more generally 
(amy• = amn by induction on n. The case n ;, 1 is trivial and the case n ;, 2 

_- has just been shown. Assume ~ow n ~ 3 and (am)n-l = am(n-l) for all 
a E G: We want to show (am)n = amn for ,all a E G. We have (am)n = 

. (a~)t+(n-l) = (am)1(a:n)'1-l = am(am)n-l by(+), with am,1,n- 1 in place of a,m,n, 
respectively; Then we get (am)n = amam(n-l) = amamn:,;m = am+(mn-m> by (*), 

with a,m,mn-.~ in place of a,m,n, respectively. This gives (am)n amn. 
Thus we· proved the 

8.5 Lemma: ·If there is , an associative multiplication on a honempty set 
0, d~noted ·.by juxtapositiol,l, then_ 

'aman am+n and: (a11.1)n = amn for all a E G and m,n E N. 0 .• 

'' 

Lemma 8.5 can be exten.ded. to- arbitrary integral powers in the case· of 
groups. We give the relevant definitions. 

8.6 Definition: Let G be a group, a E G, m E. N, We· put 
a 0 = 1 identity of G, and a-m = (amrl =·'in_verse of ~m . 

. 
8.7 Lemma: Let G be a group. Then 
(1) aman = am+n; . 
(2) (a-1 )m a-m; 
(3) (am)n. = amn; 

for all a E G and m,n E: l. 
· Proof: (I) We prove a man am+n. lfm ~ 1, n ~ I, Lemma 8.5 yields the 

result. If m = 0, then a0an Ian= an = a0 +n foralltz E l; and if n 0. · 
then a maO = am I.::: am . am+<i for all m E l. So we. have 
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We must. prove this relation also when m > 0, n < 0; m < · 0, n > 0; 
m·< 0, n < 0. Changing our notation (replacing m,n by lml, lnl) we must 
prove (i) a ma-n = ain-n ; (ii) a-man a-m+n; (iii) a '-ma-n = a-m-t{-n) for all m ,n > 0. 

(i) Let m,n > .0. If m :> n, then am-nan am by (e). Multiplying ·by 
(ant1= a-n on the right, we get am-n = ama-n if m > n. Taking the inverses 

of both sides of this <;:quation, we get, · in case m > n, .an a-m = 
[(anf!T!(dnt! = [am(anrlrl = (ama-nrl = (am-n fL== a-<m-:n> == a-m+n . . Interchang-

. ing· ·m and n, we get a ma-n= a-n+m = am-n in :case n > m. So am a-n =· am-n,. 

irrespective of whether m > n or n > m. 
(ii) Let m,n > 0. If n > m, then ama-m+n =an by {e). Multiplying hy 

(amrl =a-m on the left, we get a-m+n =a-man if n > m. Taking the inver~es 
. Of both sides of this equation, we get, in cas~ n> m, a-nam= a""11[(amr1r1 

= (a11f 1(a-mrt = (a-man)-1 = (a-m+nrJ (an-:mrl = a-'<n-m)"" a-n+m·. Interchanging 

n and m~ we get a-man= a-m+n in case m > n. So a-man = t(m+n, irrespective 
of-whether m. > n or n;;;;. rn • 

. (iii)-Let m,n > 0. We have aman am+n by (e). Taking the inverses 
of both sides of this equation, we get a-ma,-n = (amy-1(a 11t 1 "" (anam)-1 = 
(am+nrl = a-<m+n) = a-mf{-n) for all m ,iz. > 0. 

Thus aman = am+n ·for all a ·€ G and m,n € Z. 

(2) We prove (a-t)m = a·-m. This' is true if m '= l, since (a-1)1 "" a-1 = (al)""1• 

Suppose now m € N, m > 2 and (a-l)m-1 = a-<m:-1). Then (a-l)m ~ (a-i)m-l(a-1) 

.:: a-<m-l)a-1 = a-m+la-1 = a-m+l-1 =a-m. So (a-l)m =a-m for ai.I m € N by induc­

tion. It is also true when m ;;;;:: 0, as ·(a-1 )0 "" 1 = a0 a-0. Now we ~ust 
prove it for m < 0. With a. slight change in notation, we are prove (a-trm 
= am for all m E N. We have indeed (a-1)-m = [(a-l)~r1 = (a~mrt = [(am)-1r1 

am. The first equality in this chain follows from Definition 8.6, with a-1 In . 
place of a, the second from the fact that (a.; I )m =a-m for ali m E N; which 

we just proved and the third from Definition 8.6 .. 
So (a-l)m a-m for all m € Z. 

(3) 'We prove (am)n:::;; amn. If m > 1, n > l, Lemma 8.5 yields the result. 
If m = 0; then (a 0 )n = 111 =· 1 a 0 = a 011 for all n E l; and if n = 0, then 
(am)() = 1 a0 amO for all mE z. So we have 

(e') 

We must prove this relation also when m > 0, fl < 0; m <. 0, n > 0; 
m 0, n < 0. Replacing m,n by lml, In! we must prove (i) (amrn = am(-n); 
(ii) (a-m)n = a<-m>n; (iii)(a-m)-n a<-m)(-n) for all m,n > p. 
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Writing (e') with a-1 in place of a and using (2), we get (amr" == [(amr1J" = 
(a-m)~= [(a~1 )m1" = (a-l)m" = a-<mn) = am(-n)_ This proves (i). We also get (a-in)"· 

= a-(mn) a-(m)n. This proves (ii). Finally, we have· (a.,-m)-n = [(am)-1r'1 = 
([(amr.1r 1)" = (am)" :::am" = a(-m)(-n>. This proves (iii). . 

Thus ·(a171
)" am" for all m,n E l. 

The proof is complete. .. 0 

Proof: By induction on n. If n = 2, the assertion is true by Lemma 8.2(2). 
Suppose ll~W n E N, n;;;. 3. and (ala2 ... an-lr1 :::::: a,;]: .. a2-lal-l .. Then. 

(ala2: .. an_la~r1 = ((a!a2 .. ; lln-1)a,)-l 
- -1( )-1 -an· a1a2. ··an-I 
_ -i( I -1 -1) 
-an arrl ... a2 at . 

-1 -1 -1 -1·, 
a11 an-1 •• ,a2 a1 '· 

as w~1s to be proved. o 

Lemma 8.8 gives an alternative pr~of of (a-1)m = (amr1• When our group 

is comn1utative,., we have additional results, for example ambn = b11am. 

1:.9 Lemma: Let G l~e a gr(wp a111i a.h E G. l{ab ha. !ll!.·ti 

(I l a/J" = h"a; 
( ~) ,1m;Jn = ';",1m. 

. ~-· . " I ~~ ' 

for all m,n E l. 

proof: (l) We prove abr. = b'1 a: :fhe case n = 0 is trivial. Also, ab 1 = tih 

.?a ~ b ia by· hypothesis . and the claim is true for 11 ; ·I. Suppose. now 

n .E N, n > 2 and the claim is proved for n I, so that abn-J =bn-la. Then 

abn a(b~- 1 b) (t!bn-l)b:::: (bn-la)b = b11- 1(ab)::: bn-l(ba) = (b"-1b)a = hna. By 

induction, ab" :::: b"a for aiL n € f<l. 
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We. multiply this relation by b-" on .the left and on the right. This gives 

b-"a = ab-" for n £ N. So ab" b"a is .true also when n .;;;; -1. So· ab" = b"a 

for all n £ Z. 

(2) We have b"a ab" by (l ). W,e. use this as a hypothesis and apply p) 
with a,b;n replaced by- b",a,m, respectively. Then we obtain ambn = b"a"' 

forall m,n £ Z. EJ 

If G is not a group but merely a nonempty set with an associative 

multi plication on it, the proof remains valid for the case IIi ,ri £, N; and 

also for the case in = 0 or n = 0, provided there is a unique identity. e in 

G and~we agree to write a 0 e for all a £ G: 

8.10 Lemma: Let· G be a nonempty set with an associative. rt]Ultiplica­
tion on it.Let a,b E G. 

(I) If ab = ba, then amb" = b"am for. all m,n € N. 

(2) If, in addition, there is a unique e E G such that ce = ec for all c £ G, 

and lj we put c0 = e for all c € G, then· ambn b-"a_m also_ whim m 0 or 

n=O. o 

· 8.11 · Lemma: Let G be a nr)nempty set with an associative multiplica­
tirm on it. For any'm E Nand for any a1,q2, .•• , am,b E.G such that 

a1b ,;, b a1 for all i = I ,2, ... , m 

there holds (a1 a2 . .'. a,;,)b b(a
1
a2; . . am). 

Proof:. By induction on 1n. The ca-se m = I is. included in tlie hypothesis. 

Suppose now m ;;;;. 2· and the claim is true for m - I. Then 

= ((a1a2 . . . a _
1
)a )b . m m . 

(at a2 .. . am-I )(amb) 

= (ala2 . . . am-l)(bam) 

= ((ala2 .. . am-l).b)am 

= (b(ala2 .. . am-l))am 
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as was to be proved. 

-=:= b((a1tJi: .. am-~)am) 
= b(alti,. •.. am-lam), 

Lemma s:u gives a riew proof of Lemma 8.10 when we choose_ 
a1 = Gj, = · · · = am = a and replace b by bn~ 

c 

We proved in Lemma 8.3 that the product of n elements in a group (or 
in a $et with_ an associative multiplication on it) is_ independent of. the 
mode of putting parentheses. When the elements commute, the product 

' . . . 
is ~lso independent of the order of· elements. 

8.12 Lemma: Let G be a nonempty set with an · associative multiplica­
tion. on it. For all n € N,for all al' a2, ••• , an € G such that 

a,.aj = api whenever {J =' · 1,2,. ~. ,n,_ 

there holds 
a I: I al:2 . .. ak~ =_al a2 •• .an 

for each arrangement kl' !c.z, ... , ~n of 1,2, ... ,n (i.e.,for each t..k2, ••• ,kn 
·.such that {kl' k2; ••• , kn}= {1,2, : •. ,n}). 

Proof: By- induction on n. The case n = 1 is trivial. No~ assum~ .n ;> 2 
and the claim is proved for n - 1, for all pai~wise co~muting elements 

' / ', ·. ,· 

bl' b2, ... , bn-l ofG, for all arrangements of 1;2, ... ,n- 1. Let a~.~· •.. , an be 
. n arbitrary pairytise commuting elements . of G and ·let kl' k2, ••• , k:

11 
be 

an arbitrary arrangement of 1,2, ... ·~· Then n = kj for somej € {1,~~. ; . ,n). 

We have . . . 
al: a;; ... ak = (ak ... ak. )a~:(ak .•.. a~:-) 

1 2 A 1 _,.t 1 r•l • 

- = (ak ... ak )(a~:.(ak .... ak )) -
I . J-l I f+l A 

=.{ak· ·-~.t. j((l.l.t: ..:~ .)a.t) 
. . I . t-1 . • t+l • I 

= ((at .. . ak )(a~: .•• • ak ))ai:.-
1 j-1 r+l • .., 

::;: (ak ..• ak ak .. :a~:.)a 
.· 1 . 1-1 J+l . • n · 

and here k P" ~ k j-. 1 ;kj+ 1'"·. ,k n, are simply the numbers 1 ,2, ... ,n - l. in some 
order. By the inductive hypothesis, applied to the. elements al'a2,: .. , an_1 
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and the arrangement k 1, ••• kj-!'kj+l' ... ,kti of the numbers 1,2, ... ,n- l, we 
have ak .. . ak: ak . .. . ak = a1a2 ... a _1; therefore 

1 rl J+l A /1. 

ak ak .. . ak = (ak .. . ak. ak . .. . ak )a 
1 - 2 • ,.. 1 . 1 .. 1 1+1 " n 

= (a1a2 ..• an._ 1)an. 

= a1·~· • • an-tan 

and the induction · argument goes through. In the chain of equations 
above, the term. (ak .•. ak ) is absent if j = 1 and the term (ak . ... ak ) is 

. I j-1 J+l A 

absent if j = n. The argument remains valid in .these cases. D 

8.13 Lemma: Let G be a commutative group and let al'a2, ... , an be ar­

bitrary elements of G. Then 
aks ak2· .• akA= ata2 ... an. 

for all arrangments ~ ,k2, ... ,kn of the indices 1,2, ... ,n. 

Proof: This follows iinmediately. from Lemma ·8.12. ..D 

8.14 Lemma: Let. G be a nonempty set with an associative multiplica-
. tion on it and let a,b e: G. 

(1) If ab = ba, then (ab)n. = an.bn. f.or all n e: N. 

(2) If, in addition, there is a unique e e: G such that ce = ec for all c e: G, 
and if we put c0 = e for all c f: G, then (ab)0 "= a0b0 • . 

(3) If, in addition, G is a group, then (ab)" = anbn for. all n £ Z. 

Proof: (1) The claim is trivially true when n = 1. Suppose now. n .:> 2 and 
assume (ab )n.-t = an.-tbn.-t. Then 

(ab)n. = (ab)n-1(ab) = (a~-lbn.-t)(ab) 
= an-1(bn.-la)b 

= a.n.-l(abn.-t)b (by Lemma 8.10) 
= (an.-1a)(bn.-lb) 

= a"JT' 
·and the claim is true for n. So (ab) 11 = a 11b" for all n e: N. 

(2) Writing e for c, we get ee =e. Thus (ab)0 = e = ee = a0e = a0b0• 
I 

(3) That (ab)" ~ an.b" is proved for n ;;.. 0. We are to .prove it also when 
n <:; -1. Replacing n by - n, we are to prove that (ab rn = a-n.b-n for n e: N. 
We note that ab = ba implies b-1a-1 = (abr1 = (ba)-1 = a-1b-1, so the 
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hypothesis, of (1) is satisfied when we replace a by a-1 and b- by b-1• Using 
. (1) with a~1 ,b-1 in place of a,b, respectively,· we obtain 

(abrn = [(abr'r ~ [(bar1ln =·(a-1b-t)n = (a-1)n(b-1)n = a-nb-n 

. . -- -

for n e: N. Thus (ab)n = anbn is valid also wh~n n ~ -1. So (ab )n = anbn foT 

all n e: l .. · o 

8.15 Lemma: Let G be a commutative group. Then (ab )n =: anbn for all. 
a,b e: G and for all n e: Z. _ 

Proof:· This follows immediately from Lemma 8.14. 0 

So far, we dealt . with multiplicative groups. For additive groups, there 

are so~e modifications. In the case of an ~dditive group,· the unique ele­

m~nt in Pn(a 1 ,a2, •.• ,an) of Lemma 8.3 is called the sum of a1 ,a2, .•• ,an and 
·n 

is denoted by a1+a2+···+an or by I,a;.We write na fora 1+a2+···+an 
. i=l 

in. case n e: N and a
1 
,a2, ••• ,an are all equal to a e: G. Also, we define Oa = 0 

(the first 0 is the integer 0, the ·second ci is the identity element of G) 

and (-m)a =-(ma) forme: N. Thus we definedna foralln e: l,-a e: G. 

8.16 Lemma: Let G be an additively wrilten commutative group. Then . 
·(I) ma + aa = (m + n)a; 
(2) (-m)a = m(-a); 
(3) n(ma). = (nm)a; 
(4) _'!(a + b) =· na + 11b 

for all m,a E l,.Q,b E G. 

Proof: (l},(2);(3) follow from Lemma -8.7 and \4) from Lemma -8.15. 

Notice. that c?mmutativity is essential for (4). o 

Exercises 

I. Let G be a group. such that a 1k .• = I forall a e: G. Prove that G 1s 

commutative. 
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2. Justify each step in the proof of Lemma 8.11. 
I , , 

_3. Let G be a group and a,b,c E G. Suppose ab:::: ba. Prove that (ambncrrl = 
c-r a-mb-n for all m ,n,r € l, just~fying each detail. , 

(4) Let G be a nonempty set. with an associative multiplication on it and­
let a 1 ,a2, ••• , an be pairwise commuting elements of G. Sh,ow that 

(ala2 . .. an )m ata2m ... anm 

for all m E N .. 

(5) Show that, if G is ari additive commutative group, then 
-'(a+a..+ .. ·+a) (-a)+(-'a)+···+(-a) I -l. n I . 2 · n 

for all: al'a2,; .. ,an in G. 
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§9 
Subgroups 

A group is a set with a binary operation on it which has some nice · 

properties. Being a set, a group has subsets. Naturally, we are . more 

interested . i~ those subsets whiCh reflect the algebraic. structure of· the 
group than in the otheF subsets. They he.lp us understand the structure 

of the group. Fo~emost among them arc the sets which are groups .. them­

selves. We give them a name. 

9.1 Definition: Let G be a group. A nonempty subset II of G is called a 

subgroitp of G if II itself is a group under the operation on G . 
. . 

We write H .;;;; G to express that H is a subg_roup of G. Clearly, G is a 

subgroup of G, so G .;;;; G: If H is ·a subroup. of G and a proper subset of G, 

i.e:, if fl .;;;; G and fl c G, we call H a proper subgroup of G. In this case, . 

we write H < G. The notations II ~ G and H <1:.. (; ~dn that II 'is m)t ;I 

subgroup respectively not_ a proper subgroup of G. 

Given a group G and a nonemp~y ·subset H of G, we must check the group 

ax.ioms for II in order to determine ·whether II is a subgroup· of G. \Vc 

now discuss each one of these axioms. It turns out th'at we can do with-

. out some of them. 

First of all, there mus.t ~e a binary operation on 11. The operation on II 1s 

the operution on G. More precisely, the ·operation on II is the restriction 

or' the operation on G to fl. lienee, for ajJ E II, the clement a/J. is com­

puted as the product of a and b in G. In order to· have a binary operation 

on ll, given by {a,/J) _. a/J :Is in G, it is necessary nnd suiTicicnt' that. ab E II 

' for all a ,b € 1/. I icm;e II must he. ch?scd under ·the multiplication on. (;. 

Then and. only then is there a. binary opt!ration on II tlwt ·is .the restric­

tion of the multiplication on G. .. : ~ 
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In the second place, we must check associativity. For all a,b,c e: H, we 
must show (ab)c a(bc). But we know that (ab)c ~ a(bc) for all a,b,c e: G. 

Since H s;;; G, we have all the more so (ab )c = d.(bc) for all a,b,c e: H. 
. - . . 

Indeed, if all the elements ·of G have a certain property, then all the 
elements of H will_hav~ the same property. Thus associativity holds in H 
automatically, so to speak. We do not have to check it. 

In H, there must exist an identity, say lu e: H such that a l H a. for all 
a E H. In particular, the identity .lu of H has to be s~ch that lulu;, 111 • 

Since lu e: H r;;; G, Lemma 7.3(1) yields lu = lc = identity element. of G. So 
the identity element of G is also the identity element of H, provided it 
belongs to H.· Then we d.o not have to look for an identity element of H, 

we must only check that the identity element of G does belong to H. We 
write I for the identity element of H, since it' is the identitY element of G. 

Findly; for 'each a e: H, there must exist an x E. H such that ax ;, I. Read­

ing this equation in G, we see x a:-1 = the inverse of a in G. We know 
that the inverse of a exists. Where? The inverse of· a exists in G. We 
must also check a-1 e: H. Th.us we do not have to look for ·an inverse of a. 
We must only check that the inverse a-1 of a, which we know to be in G, 
is in fact an element of H. ' · 

Summarizing this discussion, we see ·that a non empty subset H of a 
group G is a subgroup of G if and only if 

(1) abE Hfor all a,b E H, 

.(2) I e:H, 
(3) a-1e: H for all a E H. 

Moreover, (2) follows from (1) and (3). Indeed, if a e: H (remember that 

H ;;t. 0), then a-1E H by _(3) and hence aa.fe:H by (1), which gives I E H. So 
(1 ),(2),(3) together is equivalent to (1 ),(3) together. We proved· the 
following lemma. 

9.2 Lemma (Subgroup criterion): Let G be a group and let. H be a 

nonempty suk_set of G~ Then H is a subgroup of G if_and only if 

(i) for all a,b E H , we ·have ab e: H (H is closed under 
multiplication) and 
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,·, 

(ii) for all a € H, we 'hav.e a.:.1 e: II (II is closed under the 

forming of inverses): 

So we can dispense with checking € II whl'm we know II ·;z! 0. On the 

other hand, when we do: not know a priori· that II ;z! 0, the easiest way to 

ascertain H ;z! 0 may be to check that 1 € II . 

.. When our subset is· finite, . w_e ca·n do even better. 

9.3 Lemma: (1) Let G be a group and let II be a nonempty.finite subset 

of G. Then H is a subgroup of G if ~nd ~nly if II is closed under 

multiplication. 
. . ' -

(2) Let G be a finite group arid let II be a nonempty. subset of G. Then II, 

'is a subgroup of G if and only if II is closed ·under multiplication. 
. . . - - -

Prohf:. (I) We p·rove that 9.2(ii) follows from· 9:2(ir when II is .finite, so 

that 92(i) and 9.2(ii) are together equivalent ~to 9.2(i), which is the claim. 
So,. for·all a € H; we must show that a-1 €. H' under the ~s~u~pti.on. that H 

is finite and closed. under multiplication. 

If a € II and II is closed under multiplication, we have aa ~2 e: II, a2a ::::: 
a3€ II, ... , in general an e:· H for alln £ N. ·The i.nflnitely many elcn1ents 

· a,a2,a\ ... ,an, ... of H cannot be all distinct, because II is a {inite set~ thus . 

am= ak. for some m,k e: N, m ;z! k. Without loss. _of generality, let us as·sumc 

m > k. Then 
am-k'-la am-k ama-k = am(akrl = am(amrl·= I, -

so that a-1 = am-k-l € 1/. So II is. closed under the forming of iilverses. 

(2) This fol.lows from. ( 1 ), since any subset of a finite set is finite. ·. o 

9.4 Examples: (a) For any group G, the subsets (I} and G arc subgroups 

of G. Here (I} is cal hid. the trivial subg.roup iif G: 

{b) If K .< II and II.,;;;;;. G, then K is ~!early a subgroup of G. 
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(c) Let 4Z {4z E: Z : z E: :l} = (u E: Z : 41u} ~ Z. Now Z is a group under 
addition (Example 7.l(a)), and 4Z is closed under, addition and under the 
forming of ,inverses by Lemma 5.2(5) and Lemma 5.2(1 ): 

(i) if x,y E: 4Z, then 41x and 41y, then Alx + y, sox+ y E: 4Z, · 

(ii) if x E: 4Z, then 41x, then 41-x, so -x E 4Z. 
Hence 4Z < Z. 

(d) The additive group Z is a subwoup of the additive . group 0. Also, we 
have 0 <.Ill < C, where the group operation is ordinary addition. 

(e) Under multiplication, !W := (x E: 0: x > 0} is a subgroup of Oi\(0},' 
since 

(i) the .product .of two positive rational numbers is a positive 
rational number, and 

(ii) the reciprocal, that is, the multiplicative inverse 1/a of 
any positive rational number a is a positive rational number. . ' . 
(0\[0} is a group under multiplication by §7,Ex.l(b).) Also, ((It .;;:;;; ~ (see 
Example 7.l(b)) and 0\(0) < IR\(0}. We ltave in fact ((It = (0\(0}) n ~ .. 

' ' 

(f.) If H r and H 2 are subgroups of G·, then H 1 n H 2 is a subgroup of G. 
Indeed, H 1 n H2 -;z! 0 since 1 E: H 1 and 1 E: H2• Also ' 

(i) a,b E: H 1 n H2 ~ a,b E: H 1 and a,b E: H2 ~ ab E: H
1 

arid. 
ab E: H2 ~ ab E H 1 n H 2, 

(ii) a E H
1 

n H 2 ~ a E: H
1 

and a E H 2 ::::} a-1 E H
1 

and a-1 E: H
2 

-~ a-I E: HI n Hz. 

Thus H 1 n H2 < G. More generally, if Hi are subgroups of. G, where i runs 
through an index set l, then·n

1
H

1 
. .;;;; G. Indeed, n

1
H,-;z! 0 since 1 EH. for 

' . 1€ ' 1€ • l 

all i E: I. and 
(i) a,b E: n H. ~ a,b E: HI. for all i E: I ~ ab E: H. for all i E: I 

. IE I l _ l . 

~ ab E n1 Hi' 
1€ ' 

(ii) a E: n H. ~ a E: H. for all i E I ~ a-1 E H. for ail i E: I 
1€/ l . l : 

~ a-1 E n H .. 
IE I l 

(g) Let S[O,IJ he the set of all one-to.-one mappings from.[O,l} into [0,1], 

which is a group under the composition of mappings· (Example 7 .I( d)). 
Consider 

T == [ o: E S [0, tl : Oo: 0}. 

Then T is a subgroup of S[o,IJ. for. T is not empty (why?) and 
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(i) a,~ € T ~ Oa = 0 and Of! = 0 O(afl) = (Oa)fl ='Of!= 0 

~ afl E T, 
(ii) a € T ~ Oa =·0 ~ · Oaa-1 = Oci-1 ~ Ol = Oa-1 

/ 

O=Oa-1 ~ a-1 ET. 

(h) Let U = (1,"3,3,7.} ~ Z 8 
and consider the multiplication in ::z; 8 . We ~ee 

11 1"3 ~"3 13 =3. 11 =7 

31.="3 3"3;::::1 .3 3 =7 3 7 =3. 

51 =3 5 "3 =7 53,;1 57 ="3 

71=7 7"3 =.3 73 ="3 77=·1 

so U is closed under multiplication. Since Z 8 is a .finite·. set, U is a 
subgroup of z

8 
by Lemma· 9.3. Right? No, this . is "wrong. This would be 

correct if z8 were a group under multiplication, which it is not (for 

. instance, '0 has .no inverse by Lemma 6.4(12)). z8 i~ a group under addi-

tion, but this is something el.se: When we want .to use Lemma 9.2 or 
'Lemma 9.3, we must make sure that .the, larger set is a group; 

Nevertheless, U is a group under multiplication: 

(i) U is closed under multiplication· by the calculations above. 
(ii) Multiplication on U is ass·oc!ative since itis in fact assoCia­

tive on Z 8 (Lemma 6.4(7)), 

(iii) 1 € U and a 1 = a for all a E U. This follows from OUT' 

_calculations or from Lemma 6.4(8). So 1 is an identity element of U. 
(iv) Each element of U has an inverse in U. This follows from 

the equations ·TT = 1, 11 1, 3 3 = 1, 7 7 ~ 1 and from 1,"3,3,7 E: U .. 

· So U is. a group. Let us find its subgroups. Now we can usc Lemma <J.J. 

This lem~a 'shows that {1,J),{1,3],{T,7] :tre -subgroups of U since they arc 

closed. under multip,lication. The reader will easily see that these arc 1h~·' 

only nontrivial ·proper subgroups of U. · lienc·e the subgroups of U have 

orders I ,2,4, which_ are all divisors of I he l~rdcr I UJ 4 of U~ 

(i) £:= { 1,-1 ,i,-i} £:; C\[0] is a subgroup of 1hc group 1:'\(0) of llllll/l'fll. 

coinplex n~mbcrs ·,under muliiplicatior1 by ~Lcr~una' 9.3 as it j..; c.f,,..,,·d 

under mu~tiplication. The same. lcmina '\hm~s 1hat {I.-I)' !s a ,uh~:HHIP ul 

. (j 5. 



E. Also, E ·has· n,o other. nontrivial proper. subgroup, for any subgroup of E 
that contains i or - i must contain i2 ,il,i4 or ( _.i)2 ,(- i)3 ;(- i)4 and thus must 
be E itself. So E has exactly· three subgroups, one of order 1, one of order 
2,one Of order 4. Here, too, the 9rders of the subgroups are divisors of 
the order lEI = 4 of the group E. 

(j) Lemma 9.3 may be false 'if the subset is not finite. For example, Z is 
a group under addition, N is a subset of Z and N is closed ~ith respect to · 
addition .. Still, N is not a subgroup of Z since there is no additive identity . 
in N (0 £ N). 

Exercises 

1. Let G he a group and l~t H be a n~nempty subset. of G. Show that H is a 
subgroup of G if and only if ab-1 £ H for all a,b e: H. 

2. Show that nZ := {nz e: Z: z e: Z} = {u e: Z :,nl~} ~ Z isasubgroup of Z 
{under addition), where n is any natural. number. 

3. Let M = {a e: Sro,1J: Oa = O.or la = 1}. IsM a subgroup,of S[o,l]? 

. ' 

4. Let L = {1,2,4,'3,'7,"8} ~ ~· ~how that L is a group. Find all subgroups of 

L. Do the orders of the subgr~ups divide the orde~ ILl = 6 ·of the group L? 

5. Let a· be a group and let H <;; G, K· <;; G. Show that H u K is not a 
subgroup of p unless H u K = H orH u K = K. {The Uf!ion of two sub­
groups is (generally) not a subgroup.) · 

6. Give an example of a group G and subgroups H,K,L of'G such that 
H u K u L <;; G. (The union of three subgroups can be a subgroup~) 

-
7. Let G be a group and let a . be a fixed element of G. Determine whether 
the subsets 

· C = {x e: G: ax =xa} .and iJ = {x e: G: ax =xa or ax'=xa-1} 

of G are subgroups of G. 

8. ·In Example 9.4(h), why cannot we use Lemma 6.4(9) to prove that the 
axiom (iv) holds? 
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§lO 
l:..ag:range's. Theorem 

The order of any subgroup of U in Example 9;4('h) divides the_ order of lJ. 

The same thing is true· for the group E in Example 9.4(i). Likewise; the 
. reader verified that ~he order of L in §9", Ex:4 ·is. divisible. by the order of .· 

any subgroup of L. The.se are speciat instances of a general. theorem· 
named after J. L. Lagraf!ge (1736.-1813); which' asserts tnat the order. of a 
subgroup .divides the order of a group, previded, of course,_ the group 
has finite order so that we can meimingfully speak about divisibility. It 
is the first important . theorem Of group .theory, that We come across. 

The proof of ·Lagrange's theorem requires the notion of cosets, which 
plays ari important' role in· group theory. 

10~1 .Definition: Let G,be a group, H ,(;;;, G and a e: G. We put 

· and call Ha a right coset of H in G. We put 
. . 

· aH := {ali E G: hE Hl!: G 

and call aHa left:coset ofH in G. 

Right a11d left cosets of H'.are subsets of q: When the group is written. 
additively, we write H +a= {h+a E a: hE H) and a+ 11 = {a+h E G: hE li} 

fo;·the rlg~t and left cosets of H. A right cos~t is no~ necessarily a Jcft 
coset and a. left coset is not necessarily. a right coset. However, whc.n the 
group is c·ommutative,. the right and left cosets ~oincide, as is evident 

. ~ ' ' ' - .. 
from the definition. During a particular·' discussion, we usually fix a sub· 
group H of a group G and consider its. various (right or left) cosets. Then 

.we refer to II a as the right coset .of a E G, or as the right cose( (if II 
· determined by a. We use similar expressions fqr all. 

97 



Cosets are subsets of ,a group, so the equality of two cosets is defined by 

mutual inclusion. We. ask when two cosets are equal. The next lemma 

gives an answer. 

10.2 Lemma: Let G be a group, H,;;;;;; G and a.b € G. 
' ' ,• 

(l) The right coset Hl =the subgroup H =the left coset l_H. 

(2) Ha =H ifaizd only ifa€ ll;aH=H if and only ifa € H. 
(3) Ha = Hb if and only lfa hbfor some h E: H; aH = bH if and only if 
a.= bhfor some h € H: _ 
(4) Ha = Hb if and only if a E: Hb: aH = bH if and·only if a € bH .. 
(5) Ha;;: Hb if and only if ab-1 € H; aH = bH if and only if a-1b € H, 

(6) Ha = Hb if and only if-Hab-1 ='= H; aH = bH ifpnd only if d- 1bH =H. 

Proof: We prove only the assertions for right cosets ·and lea\'e the 

discussion of left cosets to the reader. 

(I) From the definition of H 1 and I, we get 

., Hl = {hl ~ G: h € H}.= {h € G: h E: H} =H. 

(2) If Ha =H, then a;;: la E: {ha E: G: h € H} = Ha = H: so a € H. Conversely, 

if a € H, then 

a €H 

ha €H 

ha €H 
Ha r;;.H 

soHa =H. 

and 

and 

and 

and 

a-1 € H. 

ha-1 
E: H for any h € H, since H 

is closed under multiplication , 
h = (ha-1)a € Ha for all h € H, 

H r;;.Ha, 

(3) If Ha = Hb, then a € Ha = Hb, so a= hb for some h E: H. Conversely, 

assume a = hb, where h € H. Then 

a = hb 
h'a = Jdzb € Hb 
Ha r;;, Hb 

sqHa =Hb. 

and . b h-1a, 

and h'b = h'h-1a € Ha for all k € H, 
and Hb ·~ Ha, · 

(4) This is just a reformulation of (3). 
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(5) H a = H b. if and only if a = hb for some h € H, and there is a unique h 
with a = hb, namely h =··ab-1 (Lemma 7.5(2)); thus a =:hb for some h E H 
if and only if ab-1 e: H. . 

(6) Ha = Hb ifand only if ab-1 ~ H by (5); and ab-1 € H if and ·only if 
Hab-1 H by (2). . 

· .·t 0.3 Lemma: Let H< G. Then G is the union of the right cosets of H .. · 
T_he rfght cosets of H are mutually disjoint. Aitalogous statements hold . 
for left cosets. 

Proof: As Ha ~ G for any a € G, we get a~G Ha ~-G. Also, for any g € G, 

we'have g E Hg, so g_E UG. Ha, thus G !;;; UG Ha. This proves G U Ha. · 
. · ae aE aeG 

. ' . . . 
. Now w~ prove that the right cosep of II are . mutually disjoint. Assum_e 
Han Hb ;r 0_. We are to show H'a. Hb. Well, we take c E Han Hb 1f 

Han Hb ;r 0. Then c E fla and G e: Hb. So Ha He and_ He= H_b by Lemma 
10.2(4). We obtain Ha lib. 

··The left . cosets· are treated similarly~ . D 

1In the terminology of Theorem 2,5, right cosets of H form a partition of 
. ' . t . . 

G. Theorem. 2.5 tells us that the right cosets are . the equivalence classes 
of a certain equivalence relation on . G. BY the proof of Theorem 2.5, we 
see that this equivalence relation.- is given by 

I . . . . 

for all a,b E G: a- b if and only if Ha lib; 

which we can read as . \ 

for all a,b E G: a ~ b if m1cl only if ab-1 € H. 

It· may be 'worth while to obtain Lemma 10.3 from this relation -

instead of obtaining the relation - frotn Lemma I 0.3: 

10.4. Definition: Let II< G and a,b € .G. We write a c=r b {mod II.) and 

say a is right congruent to b modu/r) II if ab-1 E II. Similarly,we write 

a c=1 b (mod II) and say a is left congntent to b modulo II if a- 1/J € 1/. 
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10.5 Lemma: Let H .,;;;; G. Right congruence modu~o H ·and left congru­

ence modulo H are' equivalence relations on G. 

Proof: We give the proof for right congruence only. We check that it is 

reflexive, symmetric and transitive. 
. . 

(i) For all a E G, a =r a (mod H), as this means aa-1 = I E H. So 

right congruence is reflexive. Reflexivity of right congruence follows 

from the fact that I E H. 

(ii) If a =r b (mod H), then ab-1 E H, then (ab- 1r1 E H, hence 

ba-1 E H and b =r a (mod H). So right congruence is symmetric. Sym­

metry of right· congruence follows from· the fact. that H is closed under 

the forming· of inverses. 

(iii) If a '=r b (mod H) and b =r c (mod fi), then ab-1 E H and 

bc-1 E H, then (ab-1)(bc-1) E H, hence ac-1 E H and a =r c (mod H). So right 

. congruence ·is transitive. Transitivity of right congruence follows from 

the fact that H is closed under multiplication. 

Hence right congruence is an' equivalence relation on G. 0 

According to Theorem 2.5, G is the disjoint union of right congruence 

classes. The ri.ght congruence class of a E G is the right coset of a: 

[a]= (x E G:x=,a(mod H)} 

= (x E G: xa-1 E /1}. 

= (x EG: xa-1 = h, whe~e h E If} 

= (x E G:x=ha, where h E·H} 

. = (/za E G: hE H} 

=fla. 

This gives a new proof of Lemma I 0.3. 

I 0.6 Lemma: Let II.,;;;; ·G. There are as ma'!y distinct rig/it cosels of 11 in 

G as there are distinct left cosets of H in G. More precisely, let 'R be the 

set of ri};hl cosets of H in G and let !_ be the' set of left cosets of l/ in G. 

Then 'R and!_ have the same cardinallly: I 'RI =, l.tl. 
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Proof: We must find a one-to-one correspondence betwet<n 'R ·and ;t. 
We put cr: 'R-. .t 

Ha-. a~ 1H. 

/we show that cr . ·is- a· one-to~one, onto mapping. First. we prove it is a 
mapping. We have to do it. Indeed, how .do we find· X cr if X ~ 'R? Well,­

. we write X If a. th~u is,' we choose ,an a E X' then we rind the inverse of 
this a, and "inap" X= Ha to the left coset a-1H offJ determined by a-1

• So 
we must show that X cr is independent of the· element a we choose ·from 
X., i.e., that cr is a well defined function. We are to prove 

· Ha = Hb =} (Ha)cr = (Jfb)cr. 
If Ha =Jib, then ab-1 E H by Lemma 1()~2(5), then (ab-1r 1 E H,.soba-1 € H, 

so a-1H = b-1H by Lc~ma 10.2(5), and (Ha)cr (Hb)cr. Hence d is indeed a 

.. well· defined functio~~ · 

cr is one-tocone. since (f/a)cr (Hb)cr =} a-1H = b-1H =} (b-1f 1a-1 E H . 

=} ha-l E H =} (ba-1r 1 E II a!F.1 E If ~ Ha =Jib, and ~ is onto ~s 
· well, since any bll E .t is ~he image of H b-1 E 'R under cr: 

·(/lb-1)cr =.(b-1f 1H = bfl. 

Hence I 'RI l.tl. D 

I 0. 7 Definition: Let .G be a group and H < G. The (cardinal) number of 

distinct right cosets of II in G, which is also the (cardinal) num_hcr or 
disrinct Jeff co sets of II. in G, is called the index of// in G. and is denoted 

. by IG:HI. 

So I G :HI is a natural number or I c·:/11 ro. Notice that .G is wriuen before II 
in IG:f/1, but when we read, "fl". is pronounced .before "G": index of II i1i (;_ 

Lemma 10.6 st;ites csseotially that we. do· not . have to distinguish 

between "right" and "left" index. 

Note that I G :1/1 = .J. means H = //1. is the only right. coset of II in G. wla.·nl'l' 

a E 1:/a = H for all a _E G and s.o G ~II. Thus IG:/11 = l_if and only if II'=(;;. 

We will be mostly interested in cases where IG :111 is finite. This can 
happen evcfl WIG I is infinite~ For inshmce, .4Z is it subgroup of } 1 under 
addition) by Exiunple 9.4(c) and the left (right) cosets 
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0 + 4l, 1 + 4l, 2 + 4l, 3 + 4l 
of 4l in l are all the left cosets of ·4l in l. Hence ll : 4ll = 4. Inciden­
tally, we see that Definition 10.4 is· a natural generalization of the 

congruence relation on 

We need one more. lemma for the proof o( Lagrange's theorem. 

10.8 Lemma: Let G be a group and H < G. Any right coset of· H ·and any· 
left coset of H in G have the sam'e (cardinal) number of elements as H. In 
fact, I Hal laHI = IHI for all a € G. 

Proof: We prove tlie lemma for right cosets only. For any a € G, we 
must find a one-to-one correspondence between H and Ha. What is more 

aatural than the mapping 
rp: H-..... Ha 

h-..... ha 
from H. into H a? Now q:> is indeed a mapping H into H a. It is one-to-.one, 
for hrp h"tp (h,h' € H) implies ha ~ h'a, which gives h =,lz' after cancelling 
a (Lemma 8.1(2)).Aiso, it is onto by the very definition of Ha. Sowe get 
lila! =IHl. 

1 
· 'o 

I 0.9 · Theorem (Lagrange's theorem): If H ":' 'c, then I G I = I G :f/1 IH l. In 

particular, if G is a finite group, then IHI IIGI. 

Proof: From Lemma 10.3, we know G = U H a and that the H a . are 
. aEG · 

mutually disjoint. Avoiding :redundancies, we write 

·G=:: U Ha 
· 1/aE'R. ' 

where 'R is the set of distinct right cosets of H in. G. Since H a are disjoint, 
we obtain 

IGI = _L!flal 
/lac 'R. 

when we count the elements. Since·l//al = IHI for all Ha'€ 'R by Lemma 
1 O.,H. we get 

IGI= _LIHal= LIHI=I'RIII/I IG://IIf/1 
1/ac'R. itaE'R., 

as IG://1 I 'RI by Definition 10.7. D 
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The basic idea of the preceding proof is simple. We have a disjoint union 
G = U H a and we countthe eleme~ts. Then w~ get I G I = L, I H a 1. In the 

lla€'R · 
· · · Ha€ 'R 

sequel, we will prove some important results by a similar reasoning. We 
will have a disjoint union S = !J T( and, -counting the elements, we will 

. ·. . 1€ I · 

get lSI = L, ITil. See §§25,26. 
i€1 

Here is an application of Lagrange's theorem. 

10.10 Theorem: Let .P be a posiiive prime number and G be a group of 

order p. Then G has_ no non;rivial proper subgroup. 

Proof: We are to show that { 1} and G are the only. subgroups of G, Now if 

H < G, t~en IHI IIGI by Lagrange's theor~m. so IHI I fl. a~d IHI =I or P: If 

IHI = 1, then necessarily H = [1}. I( IHI =p, then IHI = I_GI and.H < G 
·. togeth~r yield H = G. o . 

If G is a. finite group and K < H < G, Lagrange's theorem gives 

IGI . IHI IGI IHI IGI ,. . 
IG:HI = jHj~ IH.KJ = jKj"• so IG:HIIH:KI = jHjjKj"= iRf= IG:KJ~ 

We give· another proof of this result which works also 111 the case of 
inqnite groups and infinite indices .. 

10.11 Theorem: If K < H < G, tlien IG:HIIH:KI = iG:KI.ln particular, if any 

two of IG:HI,IG:KI,IH:KI is finite, then the thjrd is finite, too . 

. Proof: Let 'R = [H a i :. i e: I} be the set of all distinct right co sets of /l in G. 

We have 

G = lJ Ha., ~ith a. e: G, Ha. ~ Ha. fori~ i
1
,1/l = IG:HI. 

1€/ I I • I 11 . · 
(I) 

Let 'R' = [Kb/j e: J} be the set of all distinct right cosets of. Kin//. Then 

H= lJ Kb., with b.e: H,Kb.~'Kb. f~rj~j1 ,iJI =IH:KI. 
1€1 1 1 1 • 11 . (2) 

103 



We must prove IG:Kr= 111111. Since 1/ x 11 = J/1111, this will be accomplished if· 
we can find a. onecto-one correspondense between I X 1 and the set of 
right cosets of K in G. How we find this 'Correspondence will be clear · 

when we observe 

{ha. e: G: h € H}:::: {ha
1
. e: G: he: !J

1 
kb

1
.} 

I . . . J€ 
= {hai e: ·G: there are j € 1 and k € K with h = kbj} 

= {kbpi e: G:j e: 1, k e: K} . 
U {kb.a. e: G: k e: K} = U Kb.a

1
., 

jtl J l . j€1 J 

so that G = U Ha. = U ·u Kb.a. U K b.a;. This suggests 
. j € I . I j €1 j,€1. ) I_ (i J) € I x J J l 

(iJ) ..... K b.a. 
, J I 

as a mapping from I x 1 into the set of ·right cosets of K in G. Let us check 

if it works. 

For each (iJ) e: I x 1, bpi is an element of G; hence K~.ai is a right coset of 

K in G. Thus the. above correspondence is indeed a mapping from I x 1 

into the set of right cosets of K in G. 

It is onto, for if Kg (g e: G) is any right coset· of K in G, then 
g E (iJ)~I x 

1 
Kbjai by our observation, so, by the definition of union, 

there is (i0j 0)• E I x 1 with g € K b
1
. a .. Then Kg = K b. a.· and Kg is the· 

. 0~ h~ 

image of (i0J0) e: I x 1 .. 

It is one-to-one: if K ba. = K b. a. , then b .a. k b. a. for some k E K !.;;; H by 
. . · · J I Jt II . · J I Jl 11 

I . . I . . · 
Lemma 10.2(3), then a. = b.- k b. a. with b.- k b. E H, so H a. = H a. by 
· I J. Jt 11 . J )J I 11 

Lemma 10.2(3), so i = i 1 by (1). ·Thus a. =a. and w~ get K b.= K b: a.a.-1 = 
. · I · l1 · , ' J J I I 

Kb.a.a.·1 =Kha.a.-1 =Kb. by Lemma 10.2(6), which yields j=j
1 

by (2) .. 
lJ. l1 I }J I I . }j . · · . 

Helice K ha. = K h. a. implies (iJ) = (i 1 J 1 ). ·The mapping is on.e-to-one. 
J I }J II . 

Thus IG:KI =I/ x 11 = 1/1111 = IG:HliH:Kl. 0 

Exercises 

I. Find the right cosets of all. subgroups of U (Example 9.4(h)), of E 
(Example .9.4(i)) and of L (§9,Ex.4). . 
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2. Let T be the ·subgroup of SJO,I] that we discussed in Example 9.4(g). ~ 

Show that {a € Sro.ll: Oa = 1} i~ a right coset ofT in Sro,J]· Is it a left coset 
of T? Would your answer be different if we wrote the functions· on. the 

left? What is IS ro.l]:TI ? 

3. Find all cosets of Ill in Z'. What is- I Z : nZ I? 

4. Why do ~e not ilse the "mapping" 'R. - ,t in the proof of Lemma· 

10.6? Ha-aH 
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'§ 11 
Cyclic Groups 

Let G be a group and a E G.· Consider the set {an E G: n E l } of all integral 
powers of a. We desfgnate this subset of G ·sh9rtly by <a>. It is not empty 

and is in fact ,a subgroup of G: 
(i) if am,an E <a>, then aman am+n E <a>, as m + n E Z when 

m,n E Z, 
(ii) if am E <a>, then (amrl =a-m E <a>, as -m E l when m E z. 

11.1. Definition: Let G be a· group and a E G. Then <a> = {a11 E G: n _E l} 
is called the cyclic subgroup of G generated by a. If it· happens that <a> 

G, thenG is called a cyclic group and a is-called a generator of'G. 
. . 

. Any cyclic group is· abelian. Indeed, if G is a cyclic group, generated ,by a, 
then any two elements am,an (m,n € Z) of G commute: 

aman = am+n = an+m = anam. 

The converse is false. There are abelian groups. which- are not cyclic.. For 
example, the group U . of Example 9.4(h) is abelian but not cyclic since 
the cyclic 'subgroups generated by J ,1,"5,7 are all. proper subgroups .of U. · 

11.2 Examples: (a} Consider the subgroup·. <i> of C\{0} under multipli­

cation. We have 
i0=1,i1 i,P= l,a3 -i 

and· other powers of i do not give rise. to other complex numbers. To see 

this, let n E l and divide n by 4 to get n = 4q + r, 0 < r <;; 3, q,r E Z. 

Then 

1'11 l·4q+r = l·4ql·r = (!'4}ql·r = 1. 4l·r l·r c_ { 1 t' 1 • } •.• - ,-1 • 

lienee <i> = {.1 ,i,-1 ,-i} is a cyclic group of order 4 . 
... 

(b) In §9, Ex.4, the reader proved. that L = {J,1,4,"5,7,1S} is a -group under 

multiplication (mod 9). Let us find. tht~ cyclic subgroup of L generated by 
1. We have 
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2° J, 2 1 = 2, 2 2 = 4, ·23 . "&, 2 4 =I, 2 5 = 3, 
. . '-:= (1,2,4,3,/,]} = (2n€ L: n = 0,1,2,3,4,5} !:= {Zn€ L: n € Z}~ <2>, 

thus L <2>. SoL is a cyclic group and 2 i~ a generator of L. We see 

,<4>:::: (1,4,7),<"&>= {1,"&,},<1>= (1,/,4} 

' \ 

are proper subgroups of L In particular, 4,/,-s· are not generators of L. 
On the other hand, · 

<)> = (1,'5,/,"&,4,2} L 

and 3. is another generator ·of L . 

. A·. cyclic group has many ·generators: The number of generators of a 
cyclic group will be determined later in this paragraph: 

11.3 Definition: Let .G be.·a.group and a € G. The orderd<a>l of. the cyclic 
subgroup of G generated by a .. is called the order of a and is denoted by 
o(a). 

Thus o(a)' is either a nat~ral .nuinber .or oo. Of course, if G. is a finite 

. group, then every element a of G will have finite order, in fact o(a)IIGI by . I 

Lagrange's theorem. An ·infinite group, on the other. hand, has in general, 
elements of finite order as well as elements of infinite order. 

ll.4 Lemma: Let G be a group and a € G. Then o(a) is finite if and only 

if there is a natUral number n with an =·l.lfthis is the ca.~e. then o(a) i.i: 
.the smallest natural number s such that as I. 

Proof: We put A = { 11 E N: an = 1}. Ti1e claim is that o(a) is finite· if and 

only if A is not empty. First we suppose o(a) is finite and prove that A is 
not empty. If o(a) is rfni~e, then <a>, is a finite subgroup of G and the 

. infinitely many elements 
. . . 

a1,a2,a3,a4 , •.• 

of<a> canriot be all distinct'. 'so ak am for some k,m E N with. k ~ 111. 

Assuming k < m without loss· of generality, we obtain am·k = a"'a'1 

· am(a*r' = ~m(amr' I, so m- k E A and A;:! 0. 
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Suppose now there arc natu'ral numbers n with an = 1, that is, suppose 

that A ;: 0. We prove that o(a) is finite, and is in fact the smallest natur­

al number in -A. To 'this end, let s be the smallest natural number in A .. 

We show first s < o(a) and then o(a) < s. 

Consider the s clements a 0 ;a 1 ,a 2 , ... ,as-I of< a->. These are all distinct, for. 

if ai = aj, i;: j, 0 < iJ < s- 1 

say with- i < j, then 

cJ-i = 1, j- i < (s - 1) - 0, j- i E N, 

j-iEA, j-i<tS"-l, 
contradicting that s is the sm-allest natural number in A. So there arc at 

least s distinct elements in <a>. This gives s < l<a>l = o(a). 

Next we show that there are at most s distinct elements in <a>. If 

a" E <a>, where h E l, we divide It by s to get 

h = qs + r, -q,r E l, 0 < r < s- 1', 
ah = aq.rfr = asqa' = (as)qa' =Jqar =a', 

. <a> ~ {a0 ,a 1;a2, ••• ,a.r-J), 

l<a>l < l{a0,a 1,a2, ••• ,as-I)I, 

o(a) < s , 

since the clements a 0 ,a 1,a2 , ••• ,as-l are all distinct. 

f-rom s < o(a) and o(a) < s·, we get o(a) = s. 0 

11.5 . Lemma: Let G be a group and a E G. Then o(a)--= co if and only if 
powers of a with disti'nct exponen_ts are distinct, i:e., if and only if 

am;: ak whenever m;: k (m,k E l). -

Proof: If am ,:_ak whenever m ;: k, then the infinitely many elements 

-1 -2 -1 0 I 2 3 ... ,a · ,a ,a ,a ,a ,a ,tr , . ~ . 

'>I ,, ;uc all distinct. So <a-> is an infii1ite group and o(a) = co. 

Suppo\c nc'Jw the condition in the lemma docs not hold. Then there an: 

mJ, '~c_ with am = 1/, Ill ;;<! k. Assume Ill > k without loss of, gcn~rality. 
Then Ill - k E ': and am-k = I. There lS a natural number II, namely II_ .. 
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= m - k, withan = l. Then o(a) is finite by Lemma 11.4. Hence o(a) = ro 

implies that am ;r. ak whenever m ;r. k (m ;k € Z ). . o 

11.6 Lemma: Let G b.e a group and let. a e: G be of finite order. Let n .e: l .. 
Ti1en an ) if and "Only if o(a)ln. 

Proof: We puts;= o(a). If sin, then n = sq for some q e: l, hence an =asq 

= (as)q = 1q = 1 since as = l by Lemma 11.4. Conver_sely, suppose a" = 1. We , · 

divide n by s and get 

n = qs +r, q,r e: 0 < r <: s- 1, 
I 

If r ;r. 0; then r would be a . natural number. smaller than s with a' = 1,. 

contradicting Lemma 11.4. So r = 0, n = qs and sin. , o 

11.7 Lemma: If G is a finite group, then alGI= 1 for all a e: G. 

Proof: For any a e: G, o(a) = l<a>l divid6s IGI by L~grange'~ theorem. So 
.a·JGI = 1.-by ~mma 11.6. o 

Next we show that subgroups of cyclic groups are also cyclic. 

11.8 Theorem: Let G be a cyclic group and let H <; G. Then II is cyclic. 

Mortf informat-ively, let G <a>. Then (I} ='=<band if If ;r. {I}, then II <1h. 

where t is ihe smallest natural number in the set { n · e: N: a" e:. II} • 

Proof: The subgroup (I} . o( G = <tl>·. is clearly the cyclic subgroup of G 

gene.ra~ed 'by I, hence [ 1}. =· <1 > is cyclic. Suppose now {I} ~II < G. We 
prove that H is cyclic, and in fact II= <a 1> as stated in the theorem. Since 
H ;r. {I} by assumption, there is a non identity element in H, say .Pm! f. II. 
with m e: Z\(0}. Then a-me: II since II is closed under the forming of 

inverses. So am,a-m .e: II, m ;r. 0. So there is a mitural number tr" such that 
' an e: H, for instance n = ltn I. Thus the set ( n e: N: an e: 1/} is not empty.· 
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From the natural numbers in this set, we choose the· smallest one and 

call it t. 

Now a1 E H. Also a-1 = (a1r 1 E. II. Since H is closed under multiplication, 
we obtain a"1 (a 1)" = a 1a1 ••• a1 E H and a·kt (a-1l a-1a-1 

••• a; E H for all 

k E N. Since a01 =I E H, we see am1 = a 1m E fi for all mE--l. Thus we have 

· <(h = { a1
m € G: m € l} l: H . 

. Assume next b E H, where b E G =<a>. We write b =a" with a suitable n 

in l and divide n by t. This gives 

n tq + r, q,r E 0 < r < t l, 
a' =a"-zq = a"(a-1)q E H, 

since a'\a-1 E H. If r-;: 0, then r would be a natural number smaller than l 

such that ar E H, · contradicting the definition of t. So r = 0, n = tq ,. tl n and 

b =a" aVf E <a1:::,. This holds for all b E H. Hence H l: <a1>. 

I 1.9 Lemma: Let G be a group and a E G. Let k E l, k-;: 0. 
(I) f{o(a) =en, then o(a") oo. 

f2) If' o(a) n E N, .then o(ak) n/(n.,k). 

0 

I' roof: (!) Suppose o(a) = oo. If'o(a") were. finite, say o(a") = m E N, then 

(aA)'" = I, so a*m::: I = a 0 , although km and 0 are distinct integers, 

contrary to Lemma 11.5: So o(a) = oo implies ;J(a") = oo. 

12J Sow let us suppose o(a) = n EN. Then <a">< <a> andsoo(a*)is 
f1nitc. By LL:nHna.ll.4, 

o( a>. J =· smallest natural number s such that ·(ak)s = I 
smallest natural number s such that· aks = I 

smallest natural number s such that. nl k.\' (Lemma. II .6) 
n ·k 

smallest natural number s such that (n,k) I (n,k) s · 

ll 
srnitllest natural number s such that-( k I r 

tl, . ) • 
(Lemma 5.11 

and Theorem 5.121 
ll 

= (n,k) · 0 
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From Lemma 11.9(1), we infer that any nontrivial- subgroup of an infinite 
cyclic group is infinite. Using Lemma 11.9(2), we can find the number of 
generators of a finite cyclic~group. Let G =<a> be a. cyclic group of order 
n E: N. Which ·elements: are the generator's of G? Any element ak genera­

tes a subgroup <a"> of <a> and a" is a generator of <a> if and only if <a"> 
= <a>. We know <a"> ..;;; <a>. SO; since I <a>l: = n is finite, a" is a generator of 
<a> if and only if l<a">l = l<a>l. Thus a" is a generator of <a> if and only if 
o(ak) = o(a ), that is, if and only if n = n/(n,k), and so 'if and only. if (n,k) = 
1. There are n distinct elements. a0 ,a1,a2, ••• ,an-l in<a>, and among these, 

(ak: (n,k) =I, 0..;;; k < n- I}= (al: (n,k) = 1, l ..;;; k..;;; n} 
is the set of ge!lerators of <a>. Hence the number of generators of <a>is 
the number. of positive integers smaller. than (or ·equal to) n ··and 
relatively 'prime. to n. This number is traditionally denoted by cp(n) .. For 
exam pte 

cp(i) = ), 
IP(6) = 2, 

cp(2) = 1, 

cp(7) = 6, 

cp(3) = 2, 
cp(S)'= 4, 

cp(4) = 2, 

cp'(9) = 6. 

cp(S);, 4, 

cp(lO) ::= 4 •. 

The function cp: N .... N is known as Euler's. phi junctiorz or Euler's totient 
funclion (L. Euler, a Swiss mathematician (1707.::1783}). 

Lagrange's theorem a~serts that .m fiG I when _there is. a subgroup H of 

order IHI = m (provided G is a finite groqp). The converse of Lagrange's 

theorem is false: if G is a finite group and m ll.G 1, then it is· not: nec~ssarily 
true that G hasa subgroup oforder m (see §16, Ex.7). However, for cyClic 
groups, the converse of Lagrange'~· theorem is true. 

11.10 Lemma: Let G = <a> be a cyclic group of order IGI = n. For any 
positive divisor m of n, there is a unique subgroup H -of order 1111· = m. 
namely <anlm>. 

Proof: o(a) = n by hypothesis. We write n = mk, Consider the subgroup 
<ak> of <a>. We observe l<ak>l = o(ak) = n/(n,k) = mk!(mk,k) = mk!k m, 
so <ak> is a subgroup of order m. . - . . . 
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We now show that <ak> is the unique subgroup of G of order m. Let L be 
a subgroup of order m. We want to prove L = <ak>. Since. ILl = l<ak>l = m 
is finite, it will suffice to prove that. L < < ak>. This is certainly true if 
L ~ {1), that is, if m = 1.. When m ;z!- 1, we have, ,by Theprem 11.8, L <a1>, 
where t is the smallest ]latural number such that a1 € L. In order to 
show <a1> = L < <ak>,- we need only prove a1 E.<ak>, i.e., WI( need only 
prove kit. This is easy: since o(a 1) l<ak>l =ILl = m, we get (a 1)m = 1 by 
Lemma 11.6, so a1m = I, so nltm by Lemma 11.6 again, which gives kmltm, 
hence kit. 0 

Lemma 11.10 implies that a finite cyclic group G has, for any positive 
divisor · k of I G I, a unique subgroup -of i~dex k. This reformulation of . 

Lemma 11.10 extends immediately to infinite cyclic groups. 

11.11 Lemma: Let G <a> be a cyclic group of infinite order. For any 
m E N_, there is a unique subgroup H of G of index IG :HI = m, namely 
H =<am>. Any nontrivial subgroup of G has finite index in a: 
Proof: We have G =<a>, o(a) = ~ .. The elements of G are the symbols ak, 
where k runs through the set of integers. By Lemma 11.5, ak ;z! ai fork ;z! j. 
Two symbols are multiplied by adding the exponents: ak·ai = ak+i. Also, 

a0 is the identity and (akrt is the symbol a-:k. Essentially, we have the 

group of integers under· additi.on, but the integers are written as expo­

nents. 

First we prove· that a nontrivial subgroup of G has finite index in G. Let 

L < G <a>, L ;z! ( 1 }. From Theorem 11.8, we know L = <a1>, where t is the 
smallest natural number such that a1 € L. Any- element an of G <a> can 
be written as atq+r, with some uniquely determined integers q,r, where 

0 < r <· t - I. Thus any clement an of G belongs to one and only one of 
the subsets 

(a1q: q E l}, {a 1q+l: q E l}, {a1q+2 : q E l}, ... , [a1q+(t-l): q € lJ, 

which are just the right cosets 
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of L. The uniqueness of q and r" implies that these· co sets are distinct. 
Alter~atively, one cari-.show that these cosets are distinct by· noting that 
Lai = Lai (0. <. ij ,;;:; t 1) implies, when i 7- j, say when i < }, that L = 
Lai-i and thus (Lemma 10.2(2)) ai-~ E: L, where 0 <j- i ,;;:; t- 1, contrary 

to the definition of t as the smallest natural number such that a 1 E: L: So 
there are exactly t distinct ~ght cosets of L in G and I G :Ll = t is finite~ · 

We proved in fact that IG:<a1>l = t when t E: N. Thus, for any m E: N, there 
is a subgroup of G of index m, namely <am>. We proceed to show that 

·<am> is the unique subgroup of G of index m. Assume K,;;:; G withiG:KI = 
m E: N. We are to show K <am>. Now K ~ <ak>, where k is the smallest 
natural number such that ak E: K (as IG:KI is finite, K 7- { 1 }): So m = IG:Kl 
IG :<ak>l =k and am= ak, which yields K = <ak> =<am>. Therefore <am> is 
the unique subgroup of G of index m. o 

We learned the structure of cyclic groups quite well, but we had. only a 
few examiJies. We have not seen ariy cyclic group of order 5 or 7. For all 
we know about ~yclic groups up ·to now, it is feasible that there is no . 
cyclic group of order 5 or 7. We show next that-there is a cyclic grollp of 
any order. Incidentally, this shows that there are. groups of all orders. 

11.12 Theorem: There is a cyclic group of infinite order. Also, for any 
il E N, there is a cyclic group of order n. 

Proof: We give examples of cyclic groups -in additive n·otation. In this 
notation, <a> is the group {na: ii E: l }, the group operatipn being na + ma 

·= (n + m)a, the additive counterpart of the rule a 11am = a 11+111
• 

l (under addition) is a cyclic group of infinite order as z = (ml : m c .~ j 

= <1> is generated by 1 E l. 

l (under addition) is a cyclic 'group of order n as l = { m 1 : m' E: i 1 "' · n n -. 
is generat~d by 1 E: Z

11
• · o. 

11.13 Theorem: Let p he a priiue number./]({ is a ~roup o( nrda f'· 
then G is cyclic. 
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Proof: Since p is prime, IGI = p;:! 1 and so G does not consist of the iden-­
tity element OQly. Let. a be any element of G distinct from the identity. 

·Then {1} ;:! <a><: G and l<a>l is a positive divisor of IGI = p by Lagrange's 

theorem. Since <a>;:! .[1}, ~e have l<a>l;:! .1, and so l<a>l p = IGI. This 
forces G =<a>. Thus G .is a cyclic group. (In fact, any rionidentity element 
of G is a generator of G.). o 

Exercises 

1. Let G be a group_ and let a b~ an 
ti1at, for all m ,k E Z, the equality am 

. m = k (mod n). 

element of finite order n in G. Show 
ak holds if and only if 

· 2. Find all subgroups of a cyclic group of order 8, of a cyclic group of 
' order 10, and of a cyclic-group of order 12. 

3. Let G be a group, a .E G and o(a) 36. What are the orders of a2 , a 3, a4, 

a?, al2, a15, 'al7? 

4. Let G be a group. and a E G. Let n,k E N and let m [n,k} be the least 
. common multiple of n and k. Prove that <a11>n <ak> =<am>. 

Let G be a group and a E G with o(a) = n.]n2 E N, where nl'n2 are 
relatively prime natural numbers. Show that there are uniquely deter­

mined clements a 1 ,a2 of G such th~t 

a1a2 a= a2a1 
and o(a1) = n1, o(a2) n2. 

6. Let G be a group and a,b E G. Assume that o(a) E !';J; o(b) E N and that 
o(a),o(h) are relatively prime. Prove: if ab = b·a, then o(ab) = o(a)o(b). 

Prove also· that o(ab) = o(a)o(b) is not necessarily true when the hypo­
thesis ab = ·ba is omitted. 

7. Show that, if p,n E N and p is prime, then cp(p 11
) p 11 

- pn-1. 
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§12 
Group of Units Modulo n · 

-
Let n be a natural number- and consider ln. ·we defined_ two. op~rations. 
on this .. set, namely addi.tion and multiplication· (Lemma· 6.3}: With . 
respect to addition, !n forms a gro~p. What about multiplication? With 
respect to multiplication, ·ln is not a group unless n. l. This can be 
_easily seen· from the fact that "0 has no multiplicative inverse in l 

11 
· 

(Lemma 6.4( 12}; note that' "0 ;r T when n ~ 1 ). However, as. in Example 
9.4(h), a suitable subset of' . is a group under multiplication. 

12.1 Lemma: Let n € N and a,b € · l. If a = ]j in l
11

, then (a ,n} = (b,n ) . 

.Proof:. If a ~-]j in l
11

, then a.= b (mod n), so nib- a, so nk·= b- a for 
~orne k e:' l. We put d1 ~ (d,n) and d2 = (b,n}. We have d11n andd11a, thus 
d11nk +a, thusd11b. Fromd11n .and d1lb, we get d1 1(b,n),sd'd1 1~. Likewise 
we obtain d

2
1d

1
• So ld1J ::::_ld21 by Lem.ma 5.2(12} and, since d

1 
,d2 are 

positive, we have d1 d2. · o. 

The preceding lemma tells ·that the mapping l n -. N is well defined. The . 
· _·a- (a,n} 

c!aim of the lemma is not ·self-evident and requires proof. Compare it _to 
the apparrently similar but! wrong assertion that a :::: o . implies (a,n2) = 
(b,n2). By Lemma 12.1; the;fo1t'owing definition is mea~ingful. 

·12.2 D_efinition: Let n e: N'-and a e: l
11

, where a e: l. If (a,n) 1, then a is . 
called a unit in ln. Tlte set of all_ units in Z

11 
will be denoted by l=. 

The reader will observe .that U in Example 9.4(h} is exactly l8. We see· . 
. 'l~ (l,Z,"3,4,"5,o). More generally, .l; :::: (T,Z, ... , --p::r) for any priine 
number p. So I Z"l p- L When n I, l' consists of the residue classes 

p n . . . ---
of the quinbers aniong 1 .~,3 .... ~n - 1 ,n ·that are relatively prime to n. By 
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the definition of Euler's phi function, we conclude IZ~I = ~:p(n). So ~:p(12) = 4 
and in fact z1; = {1,3,/,fl}. Also, ~:p(l5) = 8 and z;; = {T,'!,4,/,IU1,f3,f4} . 

. 12.3 Lemma: Let n e: Nand a,b e: Z.lf(a,n) = (b,n);:: 1, then (ab,n);:: I. . 

Proof:, This follows from the fundamental . theore~ of arithmetic (Theo­
rem 5<17), but we give another proof. We put d = (ab,n) and assume, by· 
way ·of contradiction, that· d > 1. Then pI d for some prime number p 

(Theorem 5.13). So 

plab and pin 

pia or plb and pin• (Euclid's lemma) 

pia and pin or plb and pin 

pl(a,n) or pl(b,n), 
' 

·contrary to the hypothesis (a,n) = 1 :;::: (b,n). So (ab,n·) = d = 1. 0 

· 12.4 Theorem: For any n e: N, Z~ is a group under multiplication. 

Proof: (cL Example 9.4(h).) We check the group axioms. 

(i) Is Z • closed under multiplicatioq? Let ii,o e: ZX, so that a ,b . · n . n 
are integers with (a,n) = 1 =.(b,n). We .ask whether ii7i e: ZX, i.e., which is n 
equivalent to asking whether (ab,n) = 1. By Lemma 12.3, ab ·is indeed 
relatively prime to, n and so Z~ is closed under multiplication. 

, (ii) Multiplication in Z~ is associative sirice it is in fact asso­

ciative in Zn (Lemma 6.4(7)). 

(fu}1 e: l~ as (l,n):;::: 1 and a 1:;::: aT= a for all a e: z:. Hence T 
is an identity element of Z~. 

(iv) Each elemen~ in Z~ has an inverse in z:.' This follows 
from Lemma 6.4(9). Letus recall its proof. If a e Z~. with a e Z and (a,n) 

= 1, then there are integers x,y such that ax + ny = 1. From this we get 
'ax = T, so x is an inverse of a. Yes, but this is not enough. We must 
further show that x e: l", or equivalently that (x,n) 1. This follows from 

. n 
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the equation. ax+ ny ='1, since d = (x,n) implies dlx, din, so dl ax+ ny, so 
dll, sod= 1. 

Hence Z~ is a group under multiplication. ·o 

l~ is a finite group ~f ()rder ,P(n). Using ,Lemma 11.7,, we obtain q'~'(n) =l 
. for all a e: z;. Writing this in congruence notation, we get an important 

theorem ,of number theory due ~o L. Euler .. · 

12S Theorem (Euler's the()rem):Let n e: N. For all integers that are 
relatively prime to n, we. have 

,- a'P(tt)=l(modn): 1 0-

The case when n is a· prime number had -already been observed. by 
Pietre de Fermat· (1601-1665).: The result is known as Fermat's theorem 
or as Fermat's ·little 'theorem.-·· 

12.6 Theorem (Fermat's theorem): If p is a positive prime number 
the'n 

aP~1 = 1 (mod p) 

for .all integers .a that are- rel(ltively- prime to p (i.e., for all integers a 

such that p-ta. o 

. Multiplying both sides of the congruence aP:-1 = 1 (mod p) by a, we get 
aP a (mod p ) .. The latter congruence is true also without the hypothesis 
(a,p) = l, since both aP and a are congr~ent to 0 (m()d p) when (a,p) ;;t! l. 
This is also knows as Fermat'i (little) theorem:: -

-12.7 1_'heorem (Fermat's theorem): If p 'is a prime number, then · 
aP =a (mod p) 

for all integers a.· 
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Exercises 

-
1. Prove that l~ is an abelian group u~der multiplication. 

2. Construct the multiplication tables of l~ for n 2,4,6,10, 12. 

3. What are the orders of '2: in z;, '2: in z;, 1 in z;, '2: in l~l' '2: in z;3, "3 in 
l~7 , '2: in Z~9 , 3 in z;_3? What do you guess? . 

4. Show that z;, l{2, z;3, z;4 are cyclic. 

5. Assume p is prime, z; is cyclic, and m e: N, m ~ 2. Prove that zp•"' is 
cyclic by establishing that, if a in z; is a generator of z;. then either a or 
a+p in zpx"' is a generator of .l p· ... 

6. Find the order of 3 in Z8, in Zt6• in z.;2. in ZM. 

7. Prove or disprove: if a € Z and a = 5 (mod ·s), then the order of a in 
z2· .. is 2m-2 for all m ~ 3. 

8. Show that .lp~ is not cyclic if p and q are positive odd prime numbers. 

(Hint: What is <p(pq) and what is a(p-t)(q-l)/2 congruent to (mod pq) if a is 

an integer relatively prime to pq?) 
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§ 13 
Groups of Isometries 

.• 

For any nonempty set X, the set S x of all one-to-one mappings from X 

onto X is a· group under the. composition of mappings (Example · 1: 1 (d)). 

In · pardcular; if X happens to :be the EuClidean plane E, then E. is the set 
of all points. in· the plane and S E is a group. W,e note that E is not. merely 
an ordinary set of points. An important feature of E is -that there is a 
measure of distance' betwe~n tl,ie points of E ~ Among. the mappings in SE, 

we .• examine those· functions ' which. preserve the distance between any 
two points. Cl.eaily, . such functions wiH be, more important . than other 

on~s in SE, since 'suc'h mappi'ngs respect an important structure· of the 
Euclidean .plane E. 

We· choose an arbitrary but fiked cartesian coordinate system on E. Each 

point P in E will then be represented . by the ordered pair (x,,y) of. its 
coordinates. We will no.t distinguish between the . point P and. the. 
ord~red pair (x,y). So we write (x,y)o: in ·place of Po:, where o: E S E. The 

. distance betw~en ·two points P,Q in E is given by" {xcx2) 2+(y1-y2) 2, if P 
'and • Q have coordinates (x1 ,y1)',(x2;y2), respectively. This distance will be 

de~oted by d(P;Q) or by d((xpy1),(x2;y2)). 

13.1 Definition: A mapping 0: .E s E i~ called an i.sometry (of E) if 

d(P._o:,Qo:}'= d(P,Q) 1 · 

for any two points P,Q in£. 

' . 
This word· is derived from "isos" and. "metron";· meaning "equal" and 

"measure" in Greek. The ser of .all isometries of E will be denoted by 
Isom E. Since the identity mapping zE: E -+ E is evidenJly an isometrr. 

l;oliz E is a nonempty subset of S E' In fact, Jsoin E <;; S E' 
. ' . 

13,2 Theorem: Isom E is a subgroup of S E' 
.I 
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Proof: We must show that the product of two isometrics and the 
inverse of an isometry are isometrics (Lemma 9.2). 

(i) Let o:,[i E lsom E: Then, for any two points P,Q in E 

d(Po:[i,Qa:[i) = d((Po:)[i,(Qa:)ti) 
= d(Pa:,Qo:) 

= d(P,Q) 

(since fi is an isometry) 
(sir1ce· o: is an isometry), 

so o:fi E lsom E. Hence lsom E is closed under multiplication. 

(ii) Let a: E lst?m E and let P ,Q be any two points in E. ·Since 
o: E S E' there. are uniquely determined points P',Q· _in E such that P' a: = P, 

Q'o: = Q.Thus P' = Pa:-I, Q' = Qo:-1• Th~n. 

d(P',Q') = d(P'a:,Q' a:) 
d(Po:-1,Qo:-1) = d(P,Q) 

o:-1 E Jsom E. 

Hence Is om E .;;;;; S E" 

(since a: is an isometry) 

D 

We examine some special types of isometrics, namely translations, . rota­
tions and reflections. 

Loosely speaking, a translation shifts every point of E by the same 
amount iri the. same direction. In more detail,· a tran[!!lation is a mapping ' 
which "moves" any point (x,y) in E by a units in the direction of the 

. x-axis and by b units in the direction of the y-axis (the directions being 
reversed when a or b is negative). See Figure 1. The formal definition is 
as follows. 

13.3 Definition: A mapping E- E is called a translation if there are two 
real numbers a,b such that 

(x,y) _,. (x + a,y +b) 

for all points (x,y) in E under this mapping. 

The translation (x,y)- (x + a,y +b) will be denoted by -ra,/J· 
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(x+a,y+b) 

(0,0). 

Figure 1 

13A. Lemma: Let. •a,b and •c.itbe arbill;ary translqti~ns. 

(1} 'a,b'c,d == 'a+c,b+d' 
(2).r0,0 :=IE I. -. 

(3). '-a ~b 'a b .1 = '. a,b '-a,-b· . . . 
Proof: (1) We have (x,y)(ra,o•c;d> = ((x,y)ra,bhc:d 

. ;, (x + a,y + b)rc,d 

= ((x +.a)+ c,(y +b)+ d) 
= (x +(a+ c),y + (b +d)) 

. = (x,y)ra:..c b+d 

for all (x,y) E E. Th~s •a,b •c,d'== 'a+c,b+d' · . , . 
, I 

(2) We have (x,y)r0 0 = (x + .O,y + 0) == (x,y) = (x,y)z for aU (x,y) -~E. Thus. 
. ·' ' . . . . . . ~ 

'o.o 1
•· 

(3) From (1) and (2) \ve get •-a,-b'Ia,b = '<-a)+a,(-b)+b •o.o = 1 and· likewise. 

ia,b '-a,-b = 'a+(-a),b+(-b) = 'o,o = 1• . D 

13 .. 5 Lemma: Any translation is an· isometry. 

Proof:. First of all, we must show· that any translation belongs to S E' Let 

· r a b be an arbitrary translation .(a ,b e: It!). There is a mapping 1p: E - E 

su~ll that •a,b'P = I = ~·a.b• namely 1p = '-a,-b by .Lemma I3.4q). Thus •a.b is 
one-tb-one .and onto by Theorem 3.17(2). Hence. •a,b e:SE . . 
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Next we show d((x1'y1),(x2,y2)) = d((xpy1)t0 ,b, (x2,y2)t0 ,b) for any two 
points (xl'y1),(x2;y2)in E. We have 

d((xl .Yt>•a.b• (xz,Yz)~a,b) = d((xl + a,yl +b), (Xz + a,y2 +b)) 

= ...j[(x1 +a)- (x2+a)] 2 + [(y1 +a)- (y2+a)]2 

v . 2 2. = <x.-xz)+(yt-Yz) 

= d((xl ,y.),(xz,y2)) 

and so •a,b E lsom E. 0 

13.6 Theorem: The set .T of all translations is a subgroup of lsom E. 
,. 

Proof: Let T = { t a,b: a ,b e R } be the set of all translations. T is a subset 
of lsom E by Lemma 13.5. From Lemma 13.4(2), 1:::: r0,0 e T, soT ;z1. 0. Now 

we use our' subgroup criterion (Lemma 9.2). 

(i) The· product of two translations •a,b and •c,d is a translation 
'a+c b+d E T by Lemma 13.4(1). So T is closed under multiplication. . . 

(ii) The. inverse of any translation ra,b e T is also a translation 
r_a,-b E T by Lemma 13.4(3). So T is closed· under taking inverses. 

Thus T is a subgroup of lsom E. 0 

Next we investigate rotations. By a rotation about a point C through an 
angle <p, we want to understand a mapping from E into E which sends the 
point C to C and whose effect on any point P ;z! C is as follows: we .turn · 
the line segment CP about the point C through the angle ;:p into a new line 
segment, say to C Q; the point P will be sent to the point ·Q (see Figure 2). 
We recall that positive values of <p .measure counterclockwise angles and 
negative values of <p !lleasure clockwise angles. / 

Rotations are most easily described in. a pqlar coordinate system. We 
choose the center of rotation, the point C, as the pole. The initial ray is 
chosen arbitrarily. The point P with polar coordinates (r,e) is then sent 
to the point Q whose polar coordinates are (r,e +' <p ). If C is the origin and 
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.the initial ray is the positive x-axis ·of a · cartesian coordinate system, 

then the·. polar. and cariesian coordinates of a point p are' co~nected' by' 

x ::::: r cosa y ::::: r sine. 

· Figure 2 

In our fixed cartesian ~oordinate system, the image. of any point P = (x,y)· 

can: be found as follows .. If p; has polar coordinates (r ,a), then its image 

will have polar coordinates· (;
1
;8 ·+ rp ), so the cartesian coordinates x',y' of· 

Q :h (r,e + ~) are 

x' = r cos( e + rp) = r( cos~ cos~ - sine sinrp) 

(~cose) cosrp- (rsine) sinrp 

= x cosrp - y sinrp, 

f = r sin(e + rp). r(si'n'e cosrp + cose sinrp) 
·I ~ . • '\. 

= (r sin· e) cos~ + (r cos e) sinrp 

= y cosrp + x sinrp 

= x sinq) + y cosrp. 

This suggests the following formal . definition • 

. , ' 

13.7 Definition: A mapping E '..... E is called a rotation about ,·the origin 
through an angle rp if there is a real number rp such that 

(x,y)- (x cosrp - y sinrp, x sinrp + y coscp) 

for all points (x,y) in. E under this mapping. 
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The rotation (x.y)-+ (x coscp- y sincp, x sincp + y coscp) will be denoted by 

p . We have an anah:lgue of Lemma 13.4 for rotations. cp 

13;8 Lemma: Let p ·and P .. , be arbitrary rotations about the origin. cp ., ' 
(I) P'PP'I' Prp+~p" 
(2) Po= IE 1. 

(3) p_cpprp = l = PcpP-rp· . 

Proof: (I) We have (x,y)(P,..P'~') = ((x,y)pcp)p'~' 
= (~ cos<p y sincp, x sin<p + y coscp) p '!' 

((x cosq:;--y sincp)costp -(x sincp-~:y cos<p)sintp, (x cosq:;--y sincp)sintp +(x sincp-~:y coscp)costp) 

""(x(coscp costp- sin<p sintp).., y(sincp costp + coscp sintp), 

x( coscp sintp + sincp costp) + y(- sincp sintp + coscp costp)) 

= (x cos(cp + tp)- y sin(IP + tp), x sin(cp + tp) + y cos(cp + tp)) 
= (x,y)p <t>+'!' . 

for all (x,y)E E. Thus P,..P'~' pcp+ljl' 

(2) We have (x,y)p 0 (x cosO y sinO, x sinO+ y cosO).= (x- 0,0 + y) 

= (x,y) .= (x,y)1 . 
for all (x,y) € E. Thus Po = 1 •. 

(3) From (I) and (2) we get P_,..P"' = p(-cp)+rp =Po 1 and likewise PrpP:..,.. = 

P,..+(-cp)=p0 =z. o 

Lemma 13.8 was to be expeCted. When we carry out a rotation through 

an angle cp · and then a rotation through an angle tp, we· have in effect a 

rotation through an angle <p + tp. This is what Lemma 13.8(1) states. Also, 
I 

when we carry out a rotation through an angle cp and then a rotation 

through ,the same angle in the reverse direction~ the final result will be: 

no net motion at all. This is. what Lemma 13.8(3) states. 

13.9 Lemma: Any rotation about the oiigin is an isometry . . 

Proof: First of all, we must show that any rotation about the origin 

belongs to S E" Let p 'P be an arbitrary rotation about the origin (cp € I!{). 

There is a mapping tp: E -+ E such that p tp = 1 = tp p ., namely tp p by cp cp -cp 

Lemma 13.8(3). Thus P,.. is one-to-one and onto by Theorem 3.17(2). 

Hence pep € SE. 
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·-
Now we prove that p;> preserves distance. For any -two points (x,y),(u,v) 

in£, we have d2((x,y)p ·,(u,v)p ) 
'I> ,'1> . . . • 

. = d 2((x cos~ - y sincp, x sincp + y coscp ),(u coscp - v sii1cp,-u sincp + v coscp )) 

. = rex- u)c~scp"" CY- v)sincpf +~[ex- u)sinCJi + .CY"'" v)coscp] 2 

= (x- u) 2cos2cp- 2(x- u)(y !..c v)co~cp sincp + (y- v)2sin2cp 
-~(x- u)2~in2cp + 2(x- u)(y- v)cos(p sincp + (y- v)2cos2cp · 

= (x- ~) 2(cos2cp + sin2cp) +-(y- y)2(si~24> + cos2cp) 
= (x - u)2 + (y - v).2 . . ; 

= d 2((x,y),(u,v)), 

hence d((x,y)p ,(u,v)p .) = d((.i,y),(u,v)). Sop is an isometry .. 
'I> 'I> ' . • 'I> 

0 

13.10 Theorem: The set R of, d/1 rotations about the origin is a -subgroitp 

of lsom E. / , , 

Proof: Let R = {p : cp E· ~} be' the set of all rotations about the origin. R is 
. . • 'I> : . ·: . ' 
a subset of lsom E ~y Lemma 13.9. By Lemina·13.8(2), 1 =PoE R, soR ;z:! 0. . . . ' . ' 

~ow we use our subgroup criterion •(Lemma 9.2). 

(i) The product of two rotations p and p · about the origin is 
. . . 'I> ~ 

a. rotation. p op+op E R about· the: origin' oy Lemma 13.8(1). So R is closed. 

under multiplication. 
. ' 

(ii) The iriverse~ of any rotation p 'E R about the origin is also 
. 'I> • . 

a> rotation p E R .about the origin by ~emma 13.8(3). So R •is closed 
-op ' . 

under taking inverses.' 

Thus R is a subgroup of Isom £.. 0 

So far, we have been dealing with rotations about the ongtn. What about 

rotations about an arbitrary point C, whose coordinates are (a ;b), say .. A 

rotation about c through an' angle cp will map a point p with coordinates. 

(x + a,y +b) to a poi~t Q with coordinates (x' + a,y' +b), where (x',y') is 

the point to which (~.y) is mapped -under a rotation about . the. origin 
through 'an. angle cp. So the image of (X,)!)•a,b will be (x:y)'p;>•a.b· See Figure 
3. This suggests the following formal definition. 
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13.11 Definition: Let C = (a,b) be a point in E. The mapping 
(ra,vf1p<Pra:o: E-+ E is called a rotation about C through an angle cp. 

(x+a,y+b) 

Figure 3 

We put (ta,/Jr1Rta,b:= {(ta,bf1p"'ra,b: piPe: R}.~ This-is the set of all rota.tions 

about the point (a,b). It is a subgroup of Isom E. The proof of this state­
ment is left to ·the reader. 

Now we examine reflections. The cartesian equations of a reflection are 
very cumbersome. For this reason, we give a· coordinate-free definition 
of reflections .. We need some notation. Let P ,Q be distinct points in the 
plane E. In. what follows, P Q will denote the line through P and Q, and P Q 

will demote the line segment 'between P and-Q. SoP Q is the set of points. 
R in E .such that d(P ,R) + d(R,Q) = d(P ,Q) . 

. The geometric idea of a reflection is that there is a line m and that each 
point P is mapped to its "mirror image" Q on the other side of m. SoP Q is . . . 
perpendicular to m and d(P ,R) = d(R ,Q), where R is the point of intersec-
tion of m and P Q. See Figure 4. 

m 

p R Q 

Figure 4 
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.}3.12 Definition: Let m be a straight lin~ in. E and let er m: E-+ E be the 

mapping · defined by 
Per = P ifP is-on m · m . . 

and 
Per = Q if P, is not on m and if m is the perpendic~Jar bisector .of P Q. . m . 

· er is called the reflf!ction in the line m . 
. m . .· . . 

· ·The perpendicular bisector of ·p Q is· the line · tha~ is perpendicular to P Q 

a~c;l that' intersects P Q at a poiht R such that d~P,R) = d(R ,Q ). It is also. the 
locus of all points in· E which are equidistant from P and Q. So it is tile set 
{R_€ E: d(P)?) d(Q,R)). We.\will 'make use of thjs.de~cription of the. per-

, pimdicuhir bisector in the: sequel without explicit .mention. 

· p.l3 Lemma: Let er be the ~eflection in a line m. The~ er m ;i z =: er; . 
. m - : i· . . . , 

· Proof: Per -;z!.. P if P is not on 1he line m and so er -;z!. '· Now we prove that 
· :. : - m ~ .· - l . • _ _m - -- . . _ · ·. 

er2 = 1. We have Per 2 = P(er o;) =(Per )er = Pa . P when Pis a point on 
m . _ - m ~ _m.~ m . m ~ . . . . . . 

m by definition. It remains to ~·how ·P':''?n = P. also when P is not on m .. Let 
· P be a point not on m and let Q: Pa , P 1· =:= Q a . Then Q ·is not on m and · 1 . m.:.. m . _ _ _ 

m is the · perpendicular bisecto( of P Q as well as. of Q P1 • So PQ and Q P1 
are :·parallel lines. Since they have a point Q in. common, they are 
identiCal lines: Let R be the point a:'t which m and P Q intersect. So P ( -;z!. Q 
and P 1 . is that point on PQ for ¥thich d(Q,R) = d(Pl'R). Since Pis on PQ and 
d(Qfl.) =' d(P,R),.we obtain P = P1 , as was _to be proved. . '·D 

13.14 . Lemma: Any reflection in a line is an isometry. 
i. 

Proof: Let m be a line, cr m the reflection in m and Jet P ,Q be arbitrary . 

points in the plane .. We put P 1 =,= P cr m' Q1 = Q cr m· We. are to show d(P ,Q) 
d(Pl'_Q

1
) • . We distinguish. several cases. · 

Case I. Assume both P and Q are on m .. Then P 1 =P · ~nd Q 1 = Q. So d(P,Q) 

= d(Pl;Ql). 

Case 2. Assume one of the points is. on. m, the other is not. We suppose, 
without loss oLgenerality, that .P is on m and Q is n'ot o,n ·m. Let Q Q1 
intersect m at S. Then d(Q,S) d(S,Q 1), d(P,S). = d(S,P

1
). since P P1 and 
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the angles L.PSQ and L.P1Q1S are both right angles. By the sid.e-angle-side 

condition, the triangles t::.QPS and D.Q/> 1S are congruent. So the 

corresponding sides PQ and P1Q£ have equal length. This means d(P,Q) = 
d(P 1,Q1). 

From now on, assume that neither P nor Q is on m. Let m intersect P P
1 

at 

Nand QQ1 at S, 

m/d_ .. 
p Q p 

N s m m m 
·. I s !>=:J' i 

, \,, I 
Q \'1 

\lQ p Q p p 
Case 2 Case 3 Case 4 Case 4 

Figure 5 

Case 3. Assume that PQ is parallel tom. Then the quadrilaterals oNPQS 

and oNP1Q1S are rectangles. SooPP1Q1Q is a rectangle and the sides PQ 
and P1Q1 have· equal length. This means d(P,Q) = d(Pl'Q1). 

. I 

Case 4; Assume that P Q is not parallel to m. Then P Q · inter~ects m at a 
' \ . ' 

point T. As in case 2, t::.PTN and D.P 1 TN are congruent, and t::.QST and 

t::.Q1ST are congruent, so d(P,T) = d(PpT) and d(Q,T) = d(Q1,T). Also, .t.STQ
1 

= L.STQ L.NTP = L.NTP1, which shows that P 1 ,T,Q 1 lie on a straight line. 

Then we obtain · d(P l'Q
1

) = d(PpT) +d(T,Q1) 

= d(F\,T) +d(Ql'T) 

= d(P,T) +d(Q,T) 

= d(P,T) +d(T,Q) 

= d(P,Q), 

where the upper or lower sign is to be taken according as whether P ,Q 
are on the same or on the opposite sides of m. 0 

13.15 Theorem: Le: m be c linr: in E. Then [ 1,0 m) is a suhJiroup of is om E. 
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. Pr.oof: [1;o m) i~ a finite nonempty subset of lsom E by Lemma 13.14 .. It is 

closed under multi~licat~on by Lemma 13;13. So· it _is a subgroup of /somE 
by Len1ma 9.3(1k . o 

Translations, rotations and -reflections are. isometrics. Thus tile products.·. 
of ·any number of these mappi~gs, carried out in any order, will be iso- . 

. metries, too .. We show • in . the rest. of, this .yaragraph that all isometries 

are obtained in· this way. We need some lemmas. 

. . 

13.16 Lemma:LetP,Q;R be arbitrary points in·E. 
(1) There is a unique translation that maps P to Q . 

. (2) If d(P ,Q)'= d(P,R): there is a rotation about P that maps Q to :R. 

· Proof: ·(1) When P = (a,'b) and Q = (~,d), say, _then ·~· n rriaps P to Q if arid 
. . I ·. . . . . . ' , . 

only if (a+ m,b + n) = (c,d), i.e., if and only ifm = c-:- a, n = d b:. So 

'c-a.d-b_is the unique translation that maps P to Q. 

· (2) We draw the circlf? who_se center is ·at p and whose radius. is equal to . 
. d(P ,Q ). This circle passes through R by hypothesis .. Letlp be ;the angle 
which the circular ate QR subtends at the center P. Then a rotation about 

· P througii an angle lp rriaps Q to R. · o 

· · The. next lemma states that an: isometry is completely determined by_ its, . 
. effect on. t~ree points not lying on a line. 

13.17 Lemma: Let P,Q ,R be three. distini:t .points in E that do not lie on a 
·straight line. Let a,jS be isometries such that Pa =PIS, Qa Qts, Rex = RjS. 
Then a ts. 
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Figure 6 

Proof: We put a.(S'"'1·= y. We suppose y ~ ·' and try to reach a contradiction. 
If y ~ 1, then ther~ is a point N in~ such thai N ~ Ny. Since Pa. = Pts by 
hypothesis, Py = P and soP~ N. Similarly Q ~ N and R ~ N. Now r is an 
isometry, so d(P,Ny) = d(Py,Ny) = d(P ,N) and likewise d(Q,Ny) = d(Q,N) and . ' 

d(R ,N y) = d(R ,N). So the circle with center at P and radius d(P ,N) and the 
circle with center at Q .and radius d(Q,N) intersect at the points N and Ny. 
Then PQ is the perpendicular bisector of N Ny. Here we used N ~ Ny. But 
d(R,Ny) = d(R_,N) apd R lies therefore on the per;pendicular bi.sector of 
N Ny. te" k lies on PQ, contrary to .the bypoihesis that P,Q;R do ·not lie on 

a straigh.t line. Hence necessarily y = 1 and a = IL b 

13.18 Theorem: Let P,Q ,R be three distinct points .in E that do not li~ on 

a straight line and let P',Q',R' be three distinct points in E. Assume that 
d(P,Q) = d(P',Q'), d(P,R) = d(P',R'), d(Q,R) = d(Q',R'). Then there is a 
translation T, a rotation p (about a~ appropriate point and through a 

suitable angle) and a reflection cr such that 

p· = Pf), Q' = Qts, K = Rf), 

. where fS denotes TP or TP<J. 

Proof: By Lemma 13.16(1), there is a translation T that maps p tor. We 
put Q1 = Qr and.R1 = Rr:. Since r is an. isometry, d(P,Q) = d(Pr:,Qr) = d(P',Q

1
), 

so d(P',Q1) = d(P',Q'). By Lemma 13.16(2), there is a rotation about P' that "' 
maps Q1 toQ'. Let us denote this rotation by p. ThenP'p =P'. PutR

1
p=R

2
. 
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Here it may happen that -R2 = R". Puttil}g ~· = Tp in this case, we have P' = 

P~. !:i' = Qp, R: = R~. as claimed. 

Suppose now R2 ;t.!'R' •. From d(P",R') '=d(P,R) = d(Prp,Rrp) = rj.(P',R2) and 
d(Q',R') = d(Q,R) =-d(Qrp,Rrp) = d(Q',R 2), we deduce that both P' and Q' lie . 

. on the .. peipendicular bisector of. R' Rz· Denoting . the· reQection in· th~ line 
P Q by a, we get P' a = P', Q' a = Q' andR2 a =. R'. Putting· ~ = :rpa in .this case, 
we have P' ~ Pp, Q' = Qp, R' =RP, as claimed~ 

The proof· is summarized. schematically below. 
I 

T p a 
p ...... p· ...... .P'.· ...... P' 

'Q ...... C?t ...... Q' -~ Q' 

R - Rl ...... ·~ ....... R' [J 

' 

13.19 Theorem: Every isometry can be. written as a product of transla­
tions, rotations and reflections. In fact, if a·is a~ arbitrary. is~metry, then 
there is a translation T, a rotation p and a reflection a such that · 

·.a= Tp or Tpa. 

Proof: Let a· be ·an. arbitrary isometry~ Choose any three distinct· points 
P,Q;R in E n~t lying on a·straight line. Then d(P-,Q) = d(Pa,Qa); d(F_;R) = 
d(Pa,Ra), d(Q,R) = d(Qa,Ra). So.lhe ·hypotheses of Theorem 13.18 are~ 
satisfied with r· = Pa, Q' := Qa, R' = Ra. and there is a translation T, a 
rotation p and a.:reflection a such that 

Pa = P~. Qa = Q~. R~ ::::= R~, 
where·~~ TP. or rpa. By Lemma 13.17, a= p. Thus a= Tp or Tpa. · r:i 

Exercises 

l. Let.m.btHhe,Jine .in .E .whose car~.~n .-isc;{lX~by+c = 0 .. 
Show that the reflection am in the line m is given by · _ 

· . ·· · . 2a · · . ·· 2b' 
(u,v)a =(u- 2 bz(au+bv+c),v- 2 b2(au+bv+c)). 

m a+ a+· -

2. Let m .and n be two distinct ~ines intersecting at a point P. Show that 
a man .is a·rotation about P. Tliroug_h which angle?' 
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3. Let,m and n be parallel lines. Show that a ~an is a translation. 

4. Prove that every rotation and every translation can be written as a 
product of two reflections. 

5 .. Pr~v!' that every, i~om~tzy ,9an pe written as a product. 9.L!.e.fJ~t,ipns,..- .. · . ·, .. 

. 6. A halfturn a~= a (a.b) about a point P = {a,b) is defmed aS the mapping 
given by · 

(x.y) .... (2a - x. 2b - y) 

for all points (x,y) in E. Show that any halftum is an isometry of order · 
two. Prove that the product of three halftums is a halftum. 

7. Prove that a halftum a P is the proquct of any two reflections in lines 
intersecting perpendicularly at P. 

8. Prove that a product of two halftums is a tni~sl~tion. 

9. Show that the set of all translations and halftums is a subgroup of 
/somE. 

10. Prove that the product of four reflections can be· written as, a· product 
of two reflections. 

' 
11. Show tha~. (! 2•/n generates a cyclic subgroup or order n of I som E. 

12. Prove that every nonidentity translation is of infinite order and that 
p 

91 
is of finite order if and only if (P }s a rational multiple of 2r. 

/ 
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§14 
·- Dihedral Groups 

In this paragraph, we exall'!ine the symmetry groups of regular p"olygons. 
. . 

Let F be any nonempty subset of the Euclid'ean ·plane. E. Here F might be . 
a set with ~-single point, a line, a geometric figure or an arbitrary· subset 
of E. Let~ ESE~ We put 

Fa .=-{xa: x E F} = {y .E E: y =xa. for some x E F}. 
. . 

Fa is 7alled the image.of F under a. Clea~ly, 

· F1 . [x1: x E F} = {x:X'.£ F) =F. 

and we have F(a~) = [x{a~):x E F} {(xa:)~:x E.F} 

;, [ (xa)~: xa E Fa J =. {y~: y E Fa} =(Fa:)~ 

foralLa,~ ESE.- We ;ecord this as a lemma. 

14.i Lemma: ·-Let F ~e a nonempty subset of E a;;d Jet ~ ,(3 E .s E Then 

·FJ F . 
and F(a~) =(Fa)~. o 

Let P be a point in E and a E SE. We say a: fix~s P if P a: ::; P. We also say P 

is· a fixed point of a:: in this case. Let 0 ~ F 6 E. We say a fixes F (as a set) · 
if Fa= F . . This. means of course'Fa:: 6 F and F 6 Fa, so Pa. E F for all P E F. 

and also, ·· for every Q E F, there is a P E F such that Q ": P a. The reader 

should not confuse. this with a fixing F pointwise; We say that afixe~> F 

pointwise ifP a ;:::; P .for all P E F •. i.e., if a: fixes every point. ofF .. As an 
example, let A be the x-axis { (x~O): x E ·Ill ] . The. translation t I,O fixes A as 

· a set; but not pointwise. On the other hand, .the reflection ·o :(x,y) _; (x.-y) 
. i 

in the x-axis· fixes A pointwise. . ' 
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This terminology is meaningful for all elements of S£. but we consider 

only isometries in this paragraph. 

~ 14.2 Definition: Let F be a nonempty subset of E and let o: E lsom E. If 
Fo: = F, then o: is called a symmetry of F. 

So a symmetry of F. is an isometry that .fixes F as a set.· A symmetry ofF 

is not a property of F. It is a mapping. 

14.3 Examples: (a) Let F _= {(0,0)) be the subset of E consisting. of the 

origin only. Any rotation p q> about the origin is a symmetry of F, since 
.. any rotation about the origin is an isometry and fixes the origin (or, 

equivillently, fixes F). 

(b) Let F = {(x,y) E E: y = mx} be the line whose cartesian equation is y 
mx (where m E ~ ). Then the translation ·, l,m is a symmetry of F since 

Fr 1,m = (fr1,m € E:f E F} 
· = {(x,y)r1 · € E: y mx] 

,m . 

= {(x+l,y+m) E E:y = mx} 

= {(x+l,(x+l)m) € E:x E ~} 

= {(u,v) E E: v == mu) 
-:::;F. 

Similarly, all translations of the form •a,am is a is a symmetry of F. We 

note that such translations form a group. In fact, the symmetries of any 
nonempty subset of E form a group. 

14.4 Theorem: Let F be a nonempty subset of the Euclitiean plane E 

and let Sym F be the set of all symmetries of F, so that 

Sym F == {o: E lsom E: Fu. = F}. 
Then Sym F is a subgroup of Jsom.E. 
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Proof: We have Fr =F by Lemma 14.1,·so.r e:_Sym F and Sym F'is not 

empty. Now we use Lemma 9.2. 

(i) If a.,l3 e: Sym F, then Fa.= F and F13.~ F, so F(a.13) = (Fa.)13 F13 
=F by Lemma 14.1. Thus a.l3 E Sym F; · . . 

.. (ii) If a. e: Sym F,.then Fa. =:= F, so F(a. '"1) = (Fa.)a.-1 :: F(a.a.-1) =; Fr ::: 

F by Lemma 14.1. Thus a.·-1. E Sym F. . 

It follows. that Sym F ~ lsom E. -

14.5 Definition: Let F be a nonempty subset of E. Then 

Sym F {a. e: lsom E: Fa = F} 

is calied the symmetry group of F. 

0 

W~ . now. study the symmetry groups of regular polygons. For our pur­

poses, it . will be convenient .to define regular polygons as follows. Let K 
be a ~ircle and let !rP;;_::_ .. ,Pn b~ points on· this circle K such that each · 
one of- the arcs P 1P2,P2P3, ... ,Pn_1 P~ subtends an· angle of 2rr IIJ radians at 

·the center of K (where n > 3).So the po!nts P_ 1,P2; •• • ,Pn divid~ the circle 

K into n circular arcs. of equal length. The union of the· line segments 

r>;P;.J73 .. :. ,Qn.'Pj'; is called a regular n-gon. The circle K i~ callc~ 1 he. 

circu1nscribing circle of this .regular n-gon. This. is justific~l /sin~·c a_ 
regular n-gon has a· unique circumscribing. circle. The center or the 

circumscribing circit? _is called the center -of the regular n- g on ami the 

points Pl'P2, ••• ,Pn are called the vertices of the regular n,gon. 

!--et F be a regular n-gon: We want to determineSym F. It is gcomctricall;.. 

evident that any a. in Sym F maps a vertex to a vertex and fixt•s tilL· 

ccn_ter of F. We usc this fact wi,thout proof. A proof is outlined In the· 

excrcis.es at the end of this paragraph. Lel P l'P2 • ••. • Pn be the wrticcs 

and let C be the center of F . . We assume the notation so cho~en that 

Pl'P2 , ••• ,fn are consecutive vertices as 'we trace the regular· n ,. l!·u 11. 

counterclockwise. In the following discussion, P~+ 1 will stand Jor P 1 '.I'".'.' 
for P 2 , i~ ge11eral P n+k for P k' In other. words, the indice:s will he r<.'ad 

modulo 11. 
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Figure. 1 
Now let a € Sym F., Then a is .'completely determined by its· effect on. three 
distinct points not on .a straight. line (Lemma 13.17), For example, a is 
determined by Ca,P 1 a,P 2a. W~ have .already remarked that Ca = c: Also~ 
P 1a =Pk for soine k € {1,2, .•. :n}. What about P 2? Since a: is an isometry, 
P 2 a will be a vertex . whose distance from P k is equal to the· distance 
between P-1 and .P 2• Thus P2r~. will be adjacent to P k: it is either Pk_;1 or P k+l" 

We see that there are n choices for P;_a and,. one~ the choice for P 1 a has 
been made, .. there are two choices for P 2 a. Hence there are at most n.2 ·= 2n· 

isometrics in Sym F. We. exhibit· 2n symmetries of F and this will prove 
ISymFI,;2n .. 

Figure 2 

First. \\fC examine the special case n = 3, when F is an equilateral triangle. 
Consider a ~rotation about the center·of F through an angle of 21r/3 radians, 
which we denote by,· p. Under· p, the vertices P 1,P2,P3 · take. the places of 

P2,P3,P4 = P1 . respectively. It is seen from Figure 3 that p2 maps. P I'P
2
,P

3 

. respectjv~ly to P 3,P2,P1 and. that p 3 fixes P I'P2,P3, which implies p3 = z. We 

. found th~ee symtnetries of F, namely 1,p,p2• Since p 3 ::"', ;;z! ~.'we see that <p> 
._ ' ' ? ' 

is ·a cyclic subgroup of order 3 of Sym F. · · 
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Figure 3- · 

Now consider the refiec;tion in the -perpendicular bisector· of ~· which 
passes through f> 1·• We designate this reflection as_ a:. Under a, the vertex. P 1 
remains fixed ·and the vertices P ~ and P 3 exchang!!. ·their ·places. We know 

a 2 = ·, (Lemma· 13.13). Fro~ Figure 4,- We r~ad offa p ..:., = a p2_ a. Using p · 

and a, we obtain two new symmetries of F, nam~ly pa and p2a. The reader 
may check that p a is the reflection in the· perpendicular· bisector of ~ 

and that p2 a is t'he refle~tion in the perpenditular bisector of P?;_. From 
the geometric meaning of thes~ mappings, or from their effect on Pl'P2.P3• 

we infer thilt r,p ,p 2:a ,p a ,p 2 o are distinct. Thus 'hey form 'the symmetry 
grC?UP of F: Sym F = { 1,p,p2,a ,pa-,p2a}. I~ particular, (Sym Fl is equal to 6. 

' . . . . . 

6
, 

6
1 . 2 _D3 . . a - P . 

. ___,.... . . . ___,.... -

2 3 3 • 22 ·. I 
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The discussion of a general regular polygon follows much the same lines. 
Consider a rotation about the center.. of F through an angle o(21r/n radians, 
which we denote by p. Under p, the vertices P 1_,P2 , ••• ,P

11 
are mapped · 

respectively _to P 2,P3 , : •• ;P
11
,P1• It~ is seen that p k_ maps P 1,P2 , ••• ,P~ 

respectively to Pk+l'pk+Z' ••• ,Pk+n' where k is any integer. Thus pk = 1 if and 
only if Pk+i = P1, that is, iJ and only if k + i;;; i (mod n) for all. i, so if and 

only if nlk, from which we obtain o(p) = n.; In -this way, we found n · 
symmetries ofF, namely l,p;p2, .... ,p 11

• Here <p> is a cyclic subgroup of~order . . . . 
n of Sym F. 

' ·. 1 . . . . ... 

30n-l-~ 
4 ·. . . . 0

1 n nl··_. 

2 n-2 
. 

3 

Figure 5 

Now consider. the reflection a in the angular bisector· of the angle L.P,,P
1
P

2
• 

The bisector of this angle passes through P (n!Z)+ 1 if n is even an~ through 
the· midpoint of P (n+I)/Zp(n+3)/Z if n is odd. One reads off from Figure 6 that 
Pka = Pn+Z-k fork = t,2; ... ,n. 

n-1 ~ 

Figure 6 

. . 
Thus we have, for any j = l ,2, . ; . ,n, 

pj ap.= pn+2-jP = p{n+2-/)+l = pn-j+3' 

~- P '"lo_ = Pj.;l a ::: p{n+2)-(j-l} = P n-j+3' 
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so cr p = p-I cr, as can be seen from Figure 7 too. 

3~,-~~n~nn 
4 · . · . s · · . · · . n-1 . · · . · · 

Figure 7 

Using. p and cr, .we obtain n- new symmetries pcr ,p 2cr, ..• ,pn-:-Icr of F. These 

are reflections in certain lines.· The reader may verify this assertion in the 

case of .. squares, ·regular pen tagcins, regular hexagons. and regular 

heptagons. In partic~lar, we have (pmcr) 2 ·~ I fo~ any m 1
= 0,1, ... ,ti- I. This 

follows also from the lemma below. 

14.6 Lemma: Let G be a. groitp mid let p ,cr E G be such that cr 2 = I wid cr p = 
p-1cr. Then crpn = p""flcr for all n E: l.. 

Proof: The claim is certainly true-when n = 0, and also when 11 ~ I hy 

hypothesis. We. prove cr.pn = p-ncr for all n E N hy induction on ;1. Suppi.>se 

we proved· it f~r n = k E N, so that cr pk =.. p -kcr, then it is true for ti. = k + I, 
.sin.ce ;pk+l =cr(pkp) = (crpk)p = (p~kcr)p:::: p-k(crp) = p-k(p.:1cr) =: (p-kp-1)o = p-;<k.tila. 

This shows cr pn = p-na for al! n ~ 0. We must further show this when 11 < 
• 0; or, equivalently, that a p"n = pncr for all n E N. This will· follow from what 

we proved above, with p-1;cr in place of p,cr. Observe that a 2 =' l,.op =p-1a 

implies ' ocrp =·crp-1cr 

. p = crp-1cr. 

pa = ap-1aa 

13Q 



.p6 =-crp.:.1 

and, taking inverses, cr p-1 =. (p-1f 1a, .. . . 

so the hypothesis is valid with p-1,a in place of p,a, Then we get 
. cr(p -l}n = (p-lfna · for aUn e: N\ 

and ·thus a p-11 = pna for all n e: N. This completes the proof. 0 

W f d 2 · · f 'F. 2 . n'-1 2 n-1 · Th e oun n symmell1es o . r,p,p , .•. ,p . ,a,pa,p a, ••• ,p cr. ese are 
distinct ·(why?} From ISym Fl ~ 2n, we get.!Sym Fl = 2n and-

s F { . 2 n-1 2 · n-1 } ym = r,p,p , ... ,p ,a,pa,p a, ... ,p a. 

Every element in Sym F can be written as a product of a suitable power of . 
p by suitable 2ower of· cr, which· remark we· summarize by saying, that p 

and a generate Sym .F. We also say Sym F is generated by· p and a, 'and 
.that p .and cr are generators ofSym F. The notation <p,cr> denotes a group 
with two generators. Including the relations pn = 1, cr 2 = z and ap_= p-1o-, we 
write 

14.7 Definition: Let G be a group having elements a,b. such that 

o(a) = n, o(b) = 2, ba = a-1b, 

G = {akbr:k = 0,1, . .. ,n- l,r = 0,1}, 

where n ;;;;. 2. Then G is called a d(hedral group· of order n. 

It is easily seen from o (a) = n and o (b) = 2 that th.e elements !-lf G 

displayed i~ Definition 14.7 are indeed distinct. Using Lemma 14.~ 

products in G can be brought to the form akbr. Hen~e G is rea}Jy of order n .. 
· In a dihedral group of order 8, for example, we h;1ve . 

a2bab3a5a1b-1 = a2baba12b = a2.bab.a4b = a2.a-1.a4b:= asb 

· with the foregoing notation. {The exponent · of a .changes. sign when b 
"passes through" a to the other side.) 



....... 

·. 'We see that . symmetry groups of regular polygons are dihedral· groups. . . 
We write D2~a for a .dihedral group of order 2n. (Warning: some authors 
write D

11 
for a dihedral group of order 2n;) Henceforw-ard, we w~te D

211 

instead of Sym F (F being a regular polygon ~ith n. sides). The _ambiguity 
in "D

211
" (whether it de~ignates an arbitrary dihedral group or the par..: 

ticular dihedral ·group Sym F)' is harmless. 

Some people use· Definition 14.7 only when n > 3. They do not consider D 4 
as a dihedral group. This is consistent with the fact ·that D 4 is not the 

symmetry group of any regular polygon {see_ however ~x.lO). · ~ut then 
·· they have ·to formulate the following theorem of Leonardo da Vinci (yes, 

of Leonardo da Vinci {1452-1519)) less b~autifu'ity. . 

14.8 Theorem: A finite subg'roup oj lsom E is either a cyclic group or a 
dihedral group. 

This theorem will not be used in the sequel and its proof is left to the­
reader. 

Exercises 

1. Let a be an isometry and Fl' F2 nonempty subsets of E. Show that 
(F1 u F2)a =F1a uF2a and (F1 n F2)a =F1a n F2a. Generalize to ~rbitrary 

unions and 'intersections. 

. -2. Let a be an. isometry and P ,Q two distinct points in E. Show that (P Q)a . 
=Pa{9<nto.(PQ}a :.Pa(Jx; {Hint: :PQ ={R E £-:il(P;R)+ d(R,Q)-= d(P,Q)} ;) 

3. Let a be an isometry and R the midpoint of E'Q. Show that R a is the 
midpoint of Pa(b.. 

4. Let. a be an isometry and D. P Q R a triangle (i.e., the union of the 
segments PQ ,QJ?.,PR). Show that.(D.PQR)a = D.PaQa.Ra. (By the· side-side­
side condition, th~ triangles D.PQR and D.Pa.QaRa are congruent, hence 



L.PQR und ~Po.Qo.Ro. are equal: isometries preserve angles; In particular, 
isomet.ries preserve perpendicularity and so also parallelity.) 

5. LetP
1
,P2 ,· ••• ,P" be the vertices of a regular n-gon. Prove thatthe center· 

C of the regular n-gon is uniquely determined. (For instance, if n happens 
to be· even; C is the midpoint of P ;P i+(n/2}. · As· the radius of .a circumscrib­
ing circle is equal to d(P 1;C),. this shows that a circumscribing circle is 

· completely determined by the· vertices. Hence th~re is a unique. Circum­
scribing circle of a regular n-gon.) 

6. Let o. be an isometry and M. a regular n-gon. let C be the center of the 
regular n-gon .. Prove the following · assertions. 

· (a) Mo. is a regular. n-gon with cenier Co.. 

(b) If o. isa symmetry of M, then Co.= C. 

(c) If o. is a symmetry of M, then {P 1.P2 .... ,Pn}o. = {P1.P2,. :·.Pnh 
. (Under a symmetry of M. a vertex is mapped to a vertex. Hint:. A point P 
·on M is a verteidf and only if d(P,C) = radius of the circumscribing Circle.) 

7. Let m be a real numbe!. Prove that lTa,am: o. € R} i~ a subgroup of 
lsom E without appealing to Theorem 14.4. · 

8. Let P be a point and in a line. Find all isometries that ,fix P, all isomet-. 
ries that fix m and all isometries that fix~m .pointw~se. Show directly that 
these three sets are subgroup of lsom E. 

9. Let F be a nonempty subset of E. ts· {o. € lsom E: Fo. !;; F} necessarily a 
subgroup of lsom E? 

10. Find the. symmetry group ·of a rectangle thai is not a square. 

11. With the notation of Det:Jnition 14.7, what is ID2n:<a>l? 

12. Prove Theorem· 14.8. 
. - . -

13. Let r: R -+ R, a: R-+ R • ..P...rmrr~Ahe :ioUowing assertions .. 
x..;...x+ 1. x.- -x 

' (b) lx- yl = IXT- ytl = lxa- yal. (Sot and a preserve distance in R. For 
this reason, they are said to be isometries of R . ) . ·. 

(c) o('r) = oo and o(a) = 2. 
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(d) en ,-tcr. (Thus r,cr .·satisfy the conditions an a,b iq Definition i4.7 ,. . . . 
except n is replaced by ro here. A dihedral. group of infinite .order is a 
group D"' having ~Iemen! a,b such that o(a) = ro, o(b) '= 2, ba '= a-1b and 

. G = [akb': k E r 0,1}. 

The group generated by r ,cr is an example of a dihedral group of infinite 
orde.r.) 

14: Prove that a group generated by two distinct elements . . a ,b such that 
o(a) = 2 = o(b) is a dihedral group (of finite or infinite order). 

15~ Let n ·be any natural n·umber or ro. Find a group G and a,c E G such 
that o(a) = 2 = o(c) ana o(ac) = n. (So o(ac) cannot be determined from 
o(a) and o(c) alone.)· 
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§1.5 
Symmetric . Groups 

For any nonempty set X, ·the set Sx of all one-.to-orie mappings from X 

onto X is a group under the composition of functions (Example 7.l(d)}. 
In particular, choosing X to be 'the set { 1,2, .. ; ;n} of the· first n natural 

- ' . . . 

numbers, we get a ~oup s0 .2, .•. ,nJ· We abbreviate this group as S
11

• 

15.1 Definition: Let n € N. The group. of all one~ to-one mappings from 
; 1,2, ... ,n} onto (I ,2, ... ,n J. is called the symmet~ic group (on n letters) and 
is written sn. The: elements of sn are called permutations. (of 1,2, ... ,n). '' 

The reader should not confuse the symmetric group with the symmetry 
group of ~ figure in the Euclidean plane. 

15.2 Theorem: S
11 

is a group of order n!. 

Proof: Let ;r € Sit be a permutation of 1,2, ... ,n. Then b is one of the 

numb~rs I ,2, .. ! ,n. Since 1f . is one-to-one, b ;t! 2;r, so 2Jt is one of the 
reriuiining n - 1 numbers among 1,2, •.. ,iz after h" ha:s been determined. " 
Since rr is one-to-one, ~;r~;t! 31r and 211' ;t! '3rr, so 3rr is one of the remaining 

n - 2 numbers among 1,2, .... ,n afterl1r and 2rr have been determined. 

Proceeding. in this way; we see that, for any k = 1 ,2, ... ,n, the number krr · 
must be one. of the numbers among 1,2, ... ,n which are distinct from 
hr,211', . .. ,(k- I)ll'. Hence there are n ch~ices for b; and .n- 1 choices for 21r; 

... ; and n.., (k- 1) choices for krr; ••• ; and n .- (n -, 1) choices for nrr; and all 
these choices give a permutation of 1,2, ... ,n. Therefore ~~·ere are: 

n.(n.- I).(n- 2) .... >.2.1 = n! 

permutations in Sit. D 
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We introduce a notation for permutations.' Let n E N and rr, E S . Theri. rr - , . . . . n. . 
is a:mapping rr: (1,2, ... ,n} ·.:.... {1,2, . ; . ,n rand can be exhibited. by 
associating any number iri {1,2,, ... ,n} with its image by. an arrow. Thus­

rr E: sn for_which. lrr. 3; 2rr :;:;J?3ll' = 2, 41f = 5, 5rr = ·4:'can be displayed as 

1'-3 
2 -t 
3 _,. 2 

'4 ...... 5 

.:; ~ -4. 
:'t' . 

. or. in order tQ sa~e ~pace, as ::; ,, 
.;i 

12345 
--~'l~~~ 
31254 

,·: 
1 

!i 
We simplify this . notation furt~er by deleting the arrows and· enc_losing 
·the· two rows of numbers in p~rentheses. Thus we arrive, at· 

. ''! 
~ ( 1:!2 3 4 5) 

' 3it2 54 ,· 
' ;;j 

for our ll' .• In general, we write ~ny cr E Sn as 

(
L a ... )· 
;j . ,,, acr ... 

. j. 
In this· notation, there are two rpws of n elements and n columns· of two 
elements, The.rows consist of t11e numbers 1,2, ... ,n._'The image. under cr 

. . -.. ··. 
of any a E [1 ,2, ... ,n} is written just below a in the second row. This nota-
tion is due to A.- Cauchy (p89-~857): 

The ·order of the columns .is immaterial· in this notation. For example 

( 
1 2 3 4 5 6) (2: 3 5 4-6 1 (5· 3 2 16 4) 

' 6 1 4 2 3 5 ' 14 3 2 5 6) 3 4 1 6 5 2 ' 

are all equal. permutations in 's6. ' . 

The identity permutation r E S
11 

maps any a to a, so the rows will be· 

identical. Thus 
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e 2 3 ... n) 
z= 123 .. ; n · 

The inverse of any CJ E sn is found easily. By definition, cr-1 is the .function 

(permutation.) that maps acr to a, for all a E { 1·,2, ...• ~}. Let cr be (:: :cr ::). 

Then, under: cr-1, any ele'ment in the second row is mapped to the number 
just above it. cr -1 is therefore . obtained by Interchanging the rows of cr. 
For· instance, in S7 , we have 

I 2 3 4 5. 6 7 )-I . ·( 7 6 3 5 4 I 2) . . 
(7 6 3 5 4 1 2 ~ 1 2 3 4 5 6 7 ,wh1ch may also be 

1234567 
written as ( 6 7 .j 5 4 2 1). Two permutations_ in Sn, say rr and _cr, are 

multiplied as follows. We have rr = C: :; :) and cr = (:: :cr :.:::J. What is 

rr.cr? By definitipn, rrcr is the permutation. that maps a to (arr )o-, for all a in 
{1,2, ... ,n}. To evaluate (arr)cr, we_ locate a in the first row of~. then read 

the number below it, which is arr' and locate. this arr in !he first row of CJ. 

The num,ber below it is (arr)cr. We do this for a =- 1,2, .. ,. ,n and in each 
ca:se, write the number we obtain below a. Enclosing this configuration in 
parentheses; we get rrcr in· double row notation. Here is an example.· 

( I 2 3 4 5) (I 2 3 4 5) _ ( 12 3 4 5) 
53214 21534- ????? 

In the first p_ermutation, below 1, 'we see 5 anp in the second permuta­

tion, below 5, we see 4. So, in the product, below I, we write 4. Then, in 
the fiist permutation, belo..y 2, we see. 3 and iri the second permutation, 
below 3, we see 5. So, in th~ product, below 2, we write 5: 

12345 12345 12345) 
(5 3 2 1 4) (2 I 5 3 4) = {4 5 ? ? ? · 

The remaining entries are found by tlie same metl}od and ·we get 

12345 12345 (12345) 
(5 3 2 1 4) (2 1 s 3· 4) = 4 s 1 2 3 · 
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The product of three or more- permutations is evaluated in the same 

way: 

I 2-3 4 5 6) (I 2 3 4 5-6) (I 2 3 4 5 6 ( 1 2 3 4 5 6) 
(6 12 3 4 5 24 5 3 I 6 6 4 2 5 1 3) = 3 4 5 I 2. 6 · -

We now introduce a more efficient notation for permuta!ions. The per-
- I234567) 

mutation o = ( 4 5 1 3 6 2 7 in S7 is a mapping given explicitly as 

I :_.4 

.2 --+5 

3 -+I 

4 --+3 

5 -:-+6 

6 --+2 

7 --+ 7. 

A more compact description of o can be given as 

1--+4--+3----: I; 2 --+ 5 ~ 6 --+ 2; 7--+ 7, 

or as 

L --01 4 

-\_) 
3 -

We drop the arrows and enclose the. numbers in a -"cycle" within 

parentheses, in the order indicated by the arrows in a "cycle". Thus we 

get 
(143)(256)(7) 

after juxtaposing the parentheses. The meaning of this symbolism is as 

follows. Each number a is mapped, under o; to the number that follll\\'S it 

in the parenthetical ex pression ("cycle':) which contains a. I r a happl'll s 

to be the last entry in a "cycle", then the first numher in that "cyck" i' · 

• considered to follow a. For example, 

(I5234)(6897) E s
9 

is the permutation by which I is mapped to 5, 5 to _2, 2 to 3, 3 to 4, 4 to I. 

6 to 8, 8 to 9, 9 to 7, 7 to 6. Thus 



1 5 2 3 4 6 8 9 7 1 2 3 4 5 6 7 8 9) 
(15234)(6897) ~(52 3 4 1 8 9 7 6).= (53 4 1 2 8 6 9 7 · 

Here (15234) can also be written as (23~15) or as (34152), (41523), 

(52341). Similar remarks are valid for (6897). 

An· arbitrary permutation rr E_Sn is written as follows. We. open a' paren­

thesis and write down· an arbitrary number a E { 1 ,2, ... ·. ,n). If arr = a, we 

close the parenthesis. and obtain the expression ((l). ~f arr = b i a, we 

write b after a. Now we have (ab 0 H~re brr ~ b, because brr ~ arr (rr is one-' 
to-one). If brr = a, we close . the parenthesis and. obtain the expression 

(ab). If brr = c ~ b, we write c after b .. Now we have (abc . Here err.~ b,c,_ 

because rr is· one-to-one. We evaluate err. If err =.a, close the parenthesis ' 

:md obtain the expression (abc). If err = d ~ a, we repeat our procedure, 

each time- writing down the image of a number after. that .number. Since 
we hav·e n numbers at our disposal, ·we meet, after at most n steps, one 

of the numbers for a second time. If this happens when we have the 

expression 
(abc. · .. g 

where a,b,c ,. 0 0 ,g are all distinct, but grr is one of them,. we conclude th'at 

grr ~ b,c, ... ,g, since b = arr, c = brr, ... and rr is one-to~one. Hence grr =a. We 
close the parenthesis and obtain the expression (abc., .g). 

If a,b,c,_. .. ,g exhaust all the. numbers 1,2, ... ,n, we are done. Otherwise, we 

select an arbitrary· number from 1,2, ... ,n that is distinct from a,b,c, ... ,g. 

Let us call it h. We open a new parenthesis st~rting with h and repeat 

our procedure: After finitely many steps, we get an expression of the 

form 
(abc ... g )(lz .. . ·k) ... (t ... x), 

where {a,b,c, ... ,g,h, ... ,k, ... ,t, . .. x) = {1,2, ··~·n). We call each one of the 
expressions .(abc ... g),(h .. _.k), ... ,(t ... x) a "cycle". 

We will presertly give a rigorous definition of a cycle and prove that 

every permutation can be written as a product of disjoint cycles. But let 

us consider some examples first. 
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: 123456789) 
Let us write ( 2 6 7 1 5 4 9 8 3 · in cycle notation. This is done in the 

following steps,_ which are carried out mentally at once in practice. 

(1 

(1264) 
(1264)(379) 

( 1264 )(3 79)(5)(8 

(12 

(1264)(3 

( 1264)(379)(5 

(1-264 )(379)(5)(8) 

(126 

(1264)(37 

(1264 )(379)(5). 

(1264 .. 

(1264)(379 

In this notation, the order ·of the· cycles is not important. We can write 

the ·permutation above also as 

(5)(379)(8)(1264) or as (379)(5)(1264)(8). 

Besides, one can start a cycle with any number in that cycle. Our permu­

tation can thus be written as 

(5)(793)(8)(6412)' or as (937)(5)(264 i )(8). 

The identity permut~tion is given by (I )(2)(3 ) ... (n ). For obvious reasons, 

we prefer to write 1 i~stead of (I )(2)(3) ... (ri) for the identity. permuta­

tion. 

The inverse of a permutation is found easily. ,Let a e: Sn, a,b G ( 1,2, .... 11}. 

In ·the cycles of a, the number a a follows a. By definition, ba - 1 is that 

number a for which aa b. lienee ha- 1 is the number which is followed 

by b. Stated otherwise, ba 1 is the number that comes just before b in 

the. cycles of o. So o -t con:sists of the same cycles, but the entries bl.'ing. 

written in the reverse order. For example, 

I02)(357)(64)r1 (21)(753)(46), 1(326)(15)(4)r1. (623)(51 )(..J). 

Two permutations in S , say .rr. and a. arc multiplied as follows. We ha\·c· 
. n . - . . 

rr ( ... aarr.:.) and a (. .. aao ... ), What is rro'? By definition. ;r·o is the 

permutation that maps tr to (ilrr )a. for all 11 e: ( l,2. , . : .ll}. To evaluate (a :r k. 

we locate a in the cycle .of rr containing u, then read the number th;ll 

follows it, which is arr,. and locate }his arr in the cycle of a. The numhl-r 

that follows it is (arr)o. Opening. a pa~en!hcsis with an· a'rbitrary numher 

a, we find (arr)o. = a(rro.) in this way. and ~rite it after ·a. S(> we ~et an 

expression (ah, say.'We ffi1d /J(rro) =c .. We write (ahc. We rcp;:at thi' 

process until we get a. Then we close· our cycle: At this ~t~p. Wl' h;!\L' 
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(abc.· .. g), say. If there are numbers among· I ,2, ... ,n not used up in this 
cycle, we select an arbitrary one. of them and o.btain a second cycle 
starting with that number. We continue in this ·fashion-until all the 

.·numbers 1 ,2, .•. ,n are used up. 

Let us compute the product (125'6)(347).(157)(24)(3)(6) in Sr We start 

with the smallest number 1, for example. We write (1 . Now 1 is followed 
by. 2 in the first perrimtation and 2 is followed by 4 in the second per­
mutation. Th!JS we get {14 . Now 4 is followed by 7 in the first 

. permutation and 7 is followed by 1 in the second permutation. We close 
·our first cycle. We have (14). We open a new cycle-with 2, for example. 
Now 2 is followed by 5 in. the first permutation . and 5 is followed by 7 in 
the second permutation. We have (14)(27 . Continuing in this way, we 
find (1256)(347).(157)(24 )(3 )( 6)' = (14 ){273 )(56). Another example: 
(152)(3476).(1724)(563) = (1654273). 

We make a convention. Whenever there appears a cycle consisting of a 
single· number, we suppress- it. Hence, whenever a number j does not 
appear in the cycles of a permutation a, we understand ja = j. With this 
convention, we write shortly 

(123)(47) for 
(245)(3876) for 

(123)(47)(5)(6) in S
7

, 

(245)(3876)(1) in S8. · 

This convention simplifies multiplication: if a number does not appear in 
the cycles of one or more of the factors, it is mapped· to itself by the 

·permutations in question. For example, 
(123).(12) = (23) 

(254).(12)(34)::: (25341). 

The way we multiply permutations, either in double row or in cycle 
notation, reflects the facJ that we write functions to the right of the 
~lements. If we had written functions ort the left, then rrc;; would mean: 
first a, then rr. A· product would be evaluated in double row notation bY. . 
reading the permutations from right to left. In· the cycle notation, we 
would be reading .the cycles from right to left, but the number~. in the 
cycles from left t? right. Writing our functions on the 'right, we avoid 
backward or inconsistent reading. We read everything in the correct 
order. 

The alert reader will haxe noticed that the same symbol in . cycle 
notation stands. for many different permutations. Thus (123)(45) stands 
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for (123)(45) in S
5

, for (123)(45)(6) in S6, for (123)(45)(6)(7) in S7 , etc. So 
an isolated symbol (123 )( 45) is ambiguous: Also, our. thumb rule for· 
finding inverses in ·the cycle notation :works only when the · ~ycles afc 
disjoint. It is ~time. that we discuss these points rigorously. 

15.3 Definition: Let 'o _E sn and m _€ {1,2, ... ,n}.·When mo m, )Nesay 
that m is )ued by o' or that a fixes m. When m cr ~ ·m, then m is said to be 
mo~ed by o or (r._.is said to move m:. 

15.4 .. Definition: Let rr,a E Sn. If the· set of numbers moved hy rr and the 

set' .of numbers moved by a _are disjoint, then lT and a.. arc called 'disj(Jillt 

permutaiions. We also say rr is disjoint -from a in this case. 

15.5,Lenima: Let cx,IJ € Snandk € {1,2 •... ,11}. Assume cx,IJ are disjoint. 

(I) If k is moved by ex, then kcx is also nzo~ed by a . . · 

(2) If k is moved by a am/fixed by IJ. tlzen ka is fixed by fl. 

Proof: (I) If k were fixed by a, so that (ka)a ,;_ ka, we would apply o:~ 1 to· 

both. sides of this equation and gc.t ka = (k a )a a .,.r = kuo: :., k, contrary. to 

the hypothesis. that· k is moved by o:. So ka is moved by a. 
. ' 

(2) ka is ·moved by a according to part (1). Ir ko: were moycd by. t>'. thl.'ll 

kq. would be· moved both 'by 0: and by t>. contrary to the hypothesis. thai 

a and fJ are disjoint permutations. Thus kq. is fixed by f). . rJ 

We can now prove that disjoint permutations always commutl.'. 

15.6 Theorem:/f.a, r € S arc disjoint permutations, then or ro .. 
. ..,n 

Proof: We must show nl( d ;) .= ni( ro) for all 111 € {I .2, ...• 11}. Since o and r 

arc disjoint, for each m € { 1,2, ... ,TI}, there arc three possibilities: 

I. m is moved by. o, fixed. by r. 

II.. m is fixed by cr, moved by r. 

III. m is fixed. by o, fixed by r. 
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In case. I, mo fixed by T by Lemma 15.5(2) (with m,o,,T in place of k,CI,f)), 

hence (mo)t = mo and 

'so m(oT) m(To). 

m(oT) = (mo)T = tno, 

tn('ro) = (tnt)o ==mo. (as tn is fixed by :C}, 

In case II, tnT fixed by o· by .Lemma 15.5(2) (with tn,T,o in plate of k,cx,f3), 
hence (tnT)o =mT and 

so tn(oT) = tn(To). 

In case III, ·we have 

so m(oT) = m(«i). 

tn{oT)= {tno)T =tnT· 

tn( To) (mT)o = tnT, 

. m(oT) = (tnoh =tnT= tn, 

tn(To) = (nn)o = tno = tn, 

(as m is fix!!d by a), 

In all three cases~ we have ni( 0 T) = m( TO). Since this holds for all m in the 
set { 1 ,2, ... ,n}, we conclude o T = To. . o 

In order to prepare our way for a ·formal definition .of cycle, · let us 
examine the permutation 

(
12345678 9 10) 
4 l 2 3 6 7 5 8 10 9 

in Sw Informally, we write this as (1432)(567)(8)(9,10) and call (1432), 

(567), (8), (9;10) "cycles" (we use a comma to avoid confusion when we 
have a number with more than one, digits). The idea is to consider (1432) 
etc. as a permutation by itself. Then 

(1432)(567)(8)(9, 1 0) 

is a product of four permutations. We observe that {1432}. {567}, {8}, 
{9,10} are. pairwise disjoint subsets of {1,2,3,4,5,6,7,8,9;10} and yield a 
partition of {1 ,2,3,4,5,6,7 ,8,9, 10}. So there is an equivalence relation on 
{I ,2,3,4,5,6, 7 ,8,9,10} with these subsets as equivalence classes (Theorem 
2.5). We want to find· this equivalence relation. 
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15.7. L·emma: Let rr be a permutation in Sn; We put,for a,b £ {1,2, .. '.,n}, 

. a lr·b 
if and only if there is an integer k £ Z such thcu arrk =b. Then..:! is an 

equivalence relation on { 1 ,2, ... ,n}. 

Proof: (i) For all a E {1,2, ... ,n), we have arr 0 =a, witp. 0 E z.~so a'Z a for 

alC a and Z is reflexive. 

· (ii) If a 2!" b, then arrk = b for some k £ ;l, s~ brr-k =a with -k E Z and 
therefore b 2!" a •. So!-. is sym~etric:-

. (iii) If ~~2!" b-and b 2!" c, then arrk = b and brrm c for some k,m € Z, then 
airk+m arrk1rm ·=)Jrrm = c, with k + 1n £ Z aQd therefore a 2!" c. So '.l! ·is 

transitive. o -

The reader will check easily that { 1432), {567),, {8), {9,10) are the equi­
valence classes of Z in {1,2,3,4,5;6,7 ,8,9,10) if -rr denotes· the permutation 

( 
1.2 34 ~ 6,7 8 9' 10) .. 
4 1 2. 3 6 7 5 8 10 9 

we ·treated above.- So . the equivalenc·e relation· of .Lemma 15.7 seems 

promising. 

lSJ~ Lemma: Let rr £ Sn mid let A 5:: {I ,2, ... ,n} be ati equivalence c/qss 

under .the equivalence relation. of Lemma 15,1. We define rrA by _ 

{ 
brr if h £ A 

hrr A . b if b ~ A 

· fnr b £~{ 1,2, . :. ,n}. Then; A is li peniiutation ins: an£1, whc1icver- .r and y 

are moved by rr A, there is an integer k sucli thcll xrr~ = y .• 

Proof: ~y'definition of 2!", ther6 holds x 2!" xrr for all x ~ {1,2, ... ,II J and .rrr 

belongs to the equivalence ·class ~f x. So the .. equivalence cJass of .r and 
the equivalence class of .xrr are identical. Hence xrr £ A if and only if 

X E: A. 



Using th,is remark,- we prove, for any n E N, that xrrn = xrr~ for all x E A. 

This -is true when n = I. If it is true for n = k - I, we have, for any x .E A, 

xrr~ = (xrr A)rrk;;:l 

= (xrr)rrk;;:l 

= (xrr )rrk-l 

= xrrk, 

and it is true for n = k. Thus it is true for all n E N. 

-
In particular, it is true for m o(11') and 

{ 
xrr m if x _E A 

Xrr ;r . - X i f X <l A X, 

hence rrmi1rrA = 1 = rr Arrmil· By Theorem 3.17(2), rr A is one-to-one and onto. 

Thus lf A E sn. 
-

·Finally, if x and y are moved by rr A, then necessarily x,y E A in view of 

the definition of rr A, so there is an integer k E l with X11'k = y and thus 

x(rr Al = y by what we proved above (since x E .A). This complet~s the 

proof. 0 

15.9 Theorem: Let rr E S n. and let· A1 ,A2 , •• : ,Ah be the equivalence 

classes of {1,2, ... ,n) under the equivalence relation 2!: in Lemma 15.7. Let 
11'A ,rrA, .•• ,rrA be the associated permutations as in Lemma 15.8. 

1 2 h 

(1) rr A ,rr A , .•• ,rr A are pairwise commuting permutations in Sn. 
1 2 II 

(2) rr 11'A1rrAz ... rrA.· 

Proof: (1) The equivalence classes A 1 ,A 2 , •.. ,A h are pairwise disjoint 

sets, Now rr A. either moves no number at all (this happens. if and· only .if . 
A i has exactly one element), or moves only the numbers in A i· There­
fore, the numbers moved by iA. and rrA. make up disjoint sets whenever 

' J . . 

i ;r. j. So the permutations rr A ,rr A ; ••• ,rr A are pairwise disjoint permuta-
1 2 h 

tions (Definition 15.4) and they commute by Theorem 15.6. 
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. {2)lWehave'rrArrA·-.,.rrA =rrA rrA ... rrA ·for any arrangement 1',2'; . .'.,h' 
· t · 2 A I' · r A' 

of the numbers 1,2,-~ ..• h. (Lemma K12). We want to show .. _ . 
brr=brrArrA ... 1rA forallbe: {1,2, ... ,n} A1 u.A 2 u ... iJAh:Soletbbe 

,1 2 , It J I ( - _ ,. 

in (1,2, ... ,n}. Renumbering Al'A2, ••• ,Ah if need be, \l{e may assume, 
without .loss of generality that b e: A h. Then be: A1, b _ e: A2, ••• , b e: Ah-l 

and thus b rr A = b rr A = · · · = b lf A b. by · the defirii tion of these 
t 2 . A·l 

' functions. Thus blfA lf A ~ • • lf A. = b A arid the proof will be complete when 
t 2 h h . ' 

we sho:v b'lf = bAA' But. this follows immediately fr'om _the definition of 

'lfA since b E: Ah. o 
A 

.... 
In our example, the associated permutations are 

(1432)(5)(6)(7)(8)(9)(1 0) = {1432) 
(567){ 1)(2)(3 )( 4 )(8)(9 )( 1 0) (567) 

{8)(1)(2)(3)(4)(5.)(6)(7)(9)(10) (8) (= 1) 

. (9,10)(1)(2)(3)(4)(5)(6)(7)(8) ;;: (9,10). 
In view of this, we define cycles as the associated permutations. Cycles 
will be distinguished from. other . permutations by the _property stated in 
Lem'ma 15.8. 

15.10" Definition: A penriutation rr e:_ S
11

- is called a cycle if, for all x,y in 

{1,2, ... ,n) that are moved by 'lf; there is an integer k such thatxlfk =y. 

The identity permutation is vaci:u:msly a cycle. Lemma 15~8 states that lf A 

is a cycle when ~ is an equivalence class under the equivalence relation . 
in Lemma 15.7. Since the cycles are disjoint,- we may reformulate 

· Theorem 15~9 as follows. 

15.9 Theor~m: Every permutatfon 'lf_ in S
11 

can be written as a product of 

disjqint cycles. These cycles a~e completely determined by 1f, and they 

l;omn'lUte · fn pairs. o 
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Let (1 be a cycle in sn 'distinct from I. Let al'a2, ... ,am· be the riumbers 
moved ·by cr. Since cr is one~to-o~e, a1 cr ,o.zcr, ... ,am cr are all distinct, and we 

may assume the numbering . so chosen· that 

In this case; we write (a 1a2 ... am) for cr. Then r,n is called the length of the 

cycle (a1a2 • .. am) and (a 1a2 •• . ·am)= cr is called a~ m-cycle. The identity 

·permutation is called a 1-cycle ~ 

With this notation, we have 
· · 2 · m-1 a1 cr = a2 ;:eal' a1 cr a3 ;:e a1, ••• , a1 cr am ;:e a1 

and so cr ;:e 1, cr 2 ;:e 1, •• , , crm-l ;:e 1. On the other hand, 
a

1
crm=a; and akcrm=a

1
crk-lcrl1!::;:;a1o:mcrk-l=a

1
&k-l ak 

for all k = 1,2, ... ,n. So crm fixes· al'a2, .•• ,am. But cr. fixes the numbers 

among 1,2, ... ,n which are diStinct from al'a2, . , . ,am, and then cr m fixes 

them, ioo. Hence b cr m = b for all b € { 1 ,2, .... ,n}. Thus m. is the smallest 
natural num~er such that crm = 1. Using Lemma 11.4, we obtain the 
following Tht?orem, which is also true when m = 1. 

15.11 Theorein:· The order of a cycle is its length. In other words, if cr 
(a1 a2 ... am)' then o( cr) = .m. o. 

15.12 Remarks: (1) The inverse of a cycle cr = (a1a2' .. am) E Sn' for which 

a1 cr =a2, a2cr. a3 , .•. , am_1cr =·am' amiJ = a1 and which fixes any other 
number in { 1,2, ... ,n} (if imy) is by definition the mapping rr whose effect 

on al'a2, ... ,am is given by. amrr = am~l' ... ,~rr = a2, i12rr = al' a 1:r am and 

which fixes th~ other numbers (if any). Thus cr-1 = :r is the cycle 

(amam-1 ... a2a1); 

(2) Let rr E sn be written as :r. = rr A l1' A •. ; rr A with the notation of Theorem 
. I 2 A 

15.9. A cycle rrA. is the identity if there is only one number in Ai; Theil-
• 

the cycle rr A. may be deleted from the product. · 
. I . 

(3) If n: = rr A rr A . • :. rr A is the representation of rr as a product of disjoint 
1 . 2 h • 

cycles, then rr rr A •• .'rr A :r A and so :r-1 .= rr Al rr At ••• rr AI ; But this is true only 
h 2 I · . 1 2. A· 
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when· A i are disjoint. In any case, it is safer to reverse the order. of the ' 

cycles as well as the ordering· of. the numbers· in each cycle when we 

want to. find the inverse of a product of cycles, as this is valid also.in the 

case the cycles arc not pairwise. disjoint and is a more· consistent pro­
cedure: you reverse everything. For example, 

.1(15)(243)(687>r1 = (786)(342)(51). 

(4) The ambiguity iri cycle ·notation is harmless, as it will be either clear 
_. from the context which symmetric. group ~e _a're ·working in: or the. 

results will be independent of the symmetric' group .. 

In the rest of this paragraph, we determine 'the' order. of a permutation 

·written as a product of disjoint cycles. We start with a general lemma. 

15.13 Lemma: Let G bq. a group and a,b E. G. Suppo.\'e ab ba a//(/ 

assume that o(a) and o(b) are finite. Supposefurther tliat <'a> n <h> .= {! ). 
Then o(ab) is finite. In fact, o(ab) is tlze least common milltiplc of o(a) 

and o(b): we have o(ab) = [o(a),o(b)]. 

Proof: First we show that (abi = I if and ollly if o(a)lk and o(hlJk· 

·(where k.E Z).Indeed, if o(a)lk and o(b)lk. then ak =I andhk = I (Lemma' 

> 11.6) and so (abl .. {hi = I. t' I (Lemma 8.14(3 ); here we use ah = /1,1) .. 

Conversely, if (ab)f = I, then akli = J, soak= b-k E. <a> n <h> = { 11: Sn we 
have ak = I b-k, and ~~k 1 . bk,. and· thus ·o(a)lk and o( I> )lk. Thcrdnrl· 

(ab)k = I if and only ifo(a)lk and o(h)lk. 
1 

Then, by Lemma 11.4, · 

o(ab) = smallest number in (k E: H: (a/>)~ It. 

provided this set is 1101 l'lllilt \. 

= smallest numhcr ·in { k E N: ti( a )lk and· o( h 1!kl: 

providl·d this· set is not l'tllply. 

= the least common multipk of o(ll) and o(/n. a-. 

lhe set i~ 1101 eltlpiJ.. 

=-t'o(a l.o(/J)j 



Generally speaking, we cannot determine the order of a and b from o(a) 

and o(b) alon~. o(ab) depends: ahm on the role the elements a,b play in 
the group, (See ·§14, Ex.15.) Lemma 15.13 is on~ of· the rare situations 
where o(ab) is determined in terms of o(q) and o(b). 

Lemma 1.5.13 ·will be used to fiiid the order of a product of disjoint per­
mutations~ We need the following result. 

15.14 Lemma: (1) If a 1 and r, as well as a 2 q.nd rare .disjoint permuta­

tions in Sn' then a 1a2 and Tare disjo[nt. 

(2) If a i•a2, .•• ,am are disjoint from T, then a l a2 ... am and T are disjoint. 

(3) /fa and-rare disjoint, then a-1 and rare disjoint. 

(4) If a and rare disjoint, then· i:Jm and rare disjdintfor all m E 1. 

(5) If~- and rare disjoint, then am and r'. are disjoint for all m,r e 1. 

· Proof: (I) By hypothesis, any k € { 1,2, ... ,n} that is moved by r is fixed 
by a 1 and a 2 • So_kT ;e k implies ka 1 =If and ka 2 = k. Soh ;e k implies 
k(a 1a2 ) = (ka_ 1)a2 = ko 2 = k and ,a 1a2 fixes every number that r moves. 
Hence a 1 a2 and r are disjoint. (The argument is valid also when r = 1.) 

(2) This follows from (I) by induction on m. The details are left to the 
reader. 

(3)Letke {1,2, ... ,n} be moved by.r. We wish to show thatk is fixed by 
a-1• Since a and r are disjoint, k is fixed by a. So ka = k. Applying a -l to 

. both sides, we get (ka)a-1 =ka ... 1, hence k =ka-1 and k is fixed by a-1• 

Therefore a-t and r are. disjoint.. 

· (4) Let m € N. Choosing al'a2, ••• ,am all equal to a in _(2), ..ye deduce that 

cr m and T are disjoint: Now applying- (3) with am. T in place of a. r, we get 
that a-m= (anl)-1 is disjoint from r, for any m € N. As r0 = 1 is trivially dis­
joint from r, we conclude that am and r ·are disjoint' for all m € 1. · 
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(5) When o and r are disjoint and m,r E Z, then om and r are disjoint by 

(4); and using (4) with r,r,om respectively. in place of m,o ,r; we deduce 

ti1at r" al)d om are· disjoint. Hence om and r" are disjoint for all m ,r E Z. o 

15.15 Theorem: Let o and r be disjoint permutations in Sn.Then 

o( or)= [o(cr ),o( r)). 

Proof: We use Lemma 15.'13: Since o and r are disjoint, o ·r = r o by 
Theore~ 15.6. Also, o(o) .ario o(r) are finite since S,j is a finite group by 

Theorem 15.2. We must al~o show that <o > n. < r> = { 1}. /When we do this, 

the hypotheses of. Lemma 15.13 will be sa:tisfied and it will yield o(o-r) = 
!o(o);o(r)]. So we show <o>.n<r>.,;; (1}. 

Suppose <o> n <r> <:, {I}. Then there i~ an-a E <o> n <r> with a. ;:e i and a 

om= rr for some integers m,r. Since a. ;:t I, there is aj E { 1,2, . ' .. n} such 

·that ja. ;:e j. So j is moved by _om and also by rr. On the other hand, om and 

rr arc disjoint by Lemma 15.14(5) and there cannot be any number in 

{ 1,2,' ... ,n} which is moved' both by ·am and by rr. This· is a contradiciion. 

Thus < o > n < r> .,;; · {!}. As remarked above, this completes the proof. o 

15.16 Theorem: Let cr 1,o 2, • .. ,om be pairwise disjoitii pamlllations in S,;. 

·Then o(o 1cr 2 ••• o ) = !o(cr 1),o(cr.,), ... ,o(o )1. m. ; ... , m 

Proof: By induction on m. The case m = 2 is treated in Thcorcl11 I 5.1 :'i. 
The inductive step. is left to 'the reader. rJ 

15.17 Theorem: The rmler of 0 E sn is the least CO/Illll(l/1 111/lltiplt' uf .tlic 

lengths of tl!e disjoint cycles in. the ·rc~flresct;t(ztion of .o as a product of 

disjoint cycles. 

l'ruuf: The Jisjoint cycles arc pairwise disjoint and the order of a lyd~..· 

. is its· lcng~h . (Theorem 15.11 ). The claim fvllows now inuncdiah: ly fro Ill . . 
Thl'Uid)l 15.16, [1 

'.r"' 
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For instance, (134)(275698) has order 6, (124)(3756) has . order 12 and -
(34)(79)(12586) has order 10. -

Exercises 

l. Evaluate ( 1 2 3 4 5 ). ( 1 2 3 4 5) . ( I 2 3 4 5 6) (I 2 3 4 5 6) ·and 
53124 21354 • 612345 24653 I 

{ 1 2 3 4) ('1 2 3 4)-1( 1 2 3 4) 
\4 1 2 3 3 1 2 4 3 4 I 2 · 

· 2. Evaluate (1253)(24315), (1542)(376)(1754) and 
< 1243 )(345)(265)(1452)( 135r1<3 246 ). 

3. Write the permutations in Ex. 1 ·in cycle notation. Carry out the multi- · 
plication in cycle notation and compare the results .. 

4. Write the permutations in Ex. 2 in double row notation. Carry out the 
multiplication in double. row notation and compare the results. 

6. Construct multiplication tables of S pS2.~~S4 • 

7. Find the orders of all elements in S3 and S4• 

8. Show that V4 ::= {1,(12)(34),(13)(24),(14)(23)} is a subgroup of S
4

• 

9. Show.that D := (r,(l3),(24),(12)(34),(13)(24),(14)(23),(1234),(1432)} is a 
subgroup of S 4 . Prove that it is a dihedral group in the sense of Defini-

tion 14.7. 

10. Find all subgroups of S3 and S4 • 

11; Let H ·~· S n· For a,b E G, put a!!. b if and only if there is a o- E /:1 such 

·that ao-·=b. Show that!!. is an equivalence relation on (1,2, ... ,n}. '(Lemrna 
15.1 is a special case when H = <n:>.) 
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I . 

12.Let al'a2, • ::.,am be _pairwi~e commuting .elements of finite order in a 
group. G. such that <a1>. n <ap ~ {1} wheneyer i -¢ j. Sho~ that o.(a1 ar ... am) = 

. [o(a 1 ),o(~) .... ,o(am)]. · Th!s giyps an alternative proof of Theorem 15.16: 
' · .. · . . ·. q · .... ·. ·. . •. . . 

B~ror cr e: S4 ; we put crV4 := fo:ll':'ll' e: V4 } and V4 cr := {ll'a: ll' e: V4 } (Ex. 8). 
Fin~ cr V4 and V4a when a.= 1, #.l = (12), a = (~23), a = (12)(34), a = (1234). . 
. I . . . · . · ii " . . 
14. ForH'!: s4. C1 e: S4, we put ;{I:= {all': ll' e: H} andHcr := {ltcr: ll' e: li}. Thus 
aHj and Hcr are subsets of S4• HI . . . · · · . · · . . · 

I Let H1 = {1,(13M24),(12)(~4)}. Check whether (12)H1 =H1(12), (13)H1 :. · 

. ?1(13), (123)H1 =Hp23), (12)<3;~)H1 =Ht<12)(34), (1234)H1.=H1(1234). . 
•! . Let H2 =·{t,(12),(34),(12)(~4)}. Check whether (12)H2 =H2(12), (13)H2 = . 

. H 2(,3), (123)H2 = H2(123), (12)(3.f)H2 =Hp2)(34), (12~4)H2 =; H2(1234) .. ·.. . 

i Compare to Ex. 13. :ll .. 

·15. !show that~ for any cr e: S ,:ilthere holds ;-1(123 )a =(abc) with suitable 
l ' "•il . - . 

a,b~c. How are a,b,c r~lated t? cr.? (Work out some specific examples.) 
Generalize your conclusion. to ~-1 ll'a. · 

'!! 
.;; 

. ;i' 
''i 

161 



§16 
Alternating Groups 

In this paragraph, we examine an important subgroup of Sn, called the 

alternating group on n letters. We begin with a definition that. will play 
an important role throughout this paragraph. 

16.1 1Definition: A cycle of length 2 in Sn (wnere n ~ 2) is called a 

transposition. 

A transposition is therefore a permutation of the form (a b) and has 
order 2 (Theorem 15.11). We remark that (ab) = (ba). 

16.2 Theorem: Any permutation irt Sn (where n ~ 2) can be writlen· as 

a product of transpositions. 

Proof: Since any permutation in Sn can be written as a product of 

(disjoint) cycles (Theorem 15.9), it su~fices to prove that any cycle can be 
written as a product of transpositions. This follows from (abc . .. e) = 
(ab)(ac) ... (ae) for cycles of length > 1. Also 1 = (12)(12) is a product of 
transpositions. This completes the proof. 0 

There is no uniqueness claim in Theorem 16.2. A permutation can be 
written as a product of different transpositions. For instance, 

(12345) = (12)(13)(14)(15) = (45)(41)(42)(43). 

is written as a. product of different transpositions. Nor is the number of 
transpositions is unique. The. permutation (132546) can be written as a 
product of five or nine transpositions: 

(132546) = (13)(12)(15)(14)(16) '= (24)(12)(14)(23)(46)(14)(16)(45)(16). 
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In\ fact, we can attach a product of two transpositions (ab)(ab) = _1 at -will 
·ari~ increase the number o( tra~spositions by- 2. Hence· a product/ of n 
tra'nspositions can be written·:also as a product of n + 2, ·n + 4, n + 6, .. ~ · 
transpositions~ We note that ·t~is do~s not. change the parity of the num::. 
ber of transpositions., The /parity of the number of transpositions is 
unique. If a permutation can be written as a product of an odd (even) 

' ·- - ; -
number of transpositions, then, in any representation of this permuta-
tion as a product of transpositions, the number of transpositions is odd 

·(even). ·A permutation cannot; be written as a product of an odd number 
of tra~spositions and also as, a product of an even number· of transpo­
sitions. We proceed to prove': this as~ertion. We need the notion of inver-

· · sions of a :permutation.. ·;; · 

i 
Le~ a € Sn. We write a . in double. row notation,· where, in the first row, 
the numbers 1,2, . .. ,n are in 'their natural order: :;; . 

Corresponding to the 
i 

1<:2 

1: 

(·1 2- ... n ). 
· ,,1a2a ... na 

correct::iinequalities 
.•1 
·I 

1 < 3 'l 
2<3 i: 

1< n 
·2< n 

.. -. ................. . 
'·' 

n-1< n 
; ~ ; 
jj 

among the numbers in the fir~t row, we obtain the inequalities 
I . 

1a <2a 
di ,, 

1a < 3o: 
:1 

2a < 36-
1a< n_a. 
2a < na 

...................... 
,·i . 

(n- 1)a_< na 
i ., 

amqng the· numbers in the se:cond row when we replace each k by ka . 
(k ~ 1,2, ... ,n ). These inequaliti;s will be referred· to as the Inequalities of 
a . In general, some of the ind1uatities of a will be correct, some will be 

L • • , 

wropg (if a ~ I, there 'will be a\ wrong inequality of a). A wrong inequality 
ia -f: ja of a means: i < j but! ia > ja i.e., the natural order of i and j is 
inv9rted in the second row (t~at is, the larger· one precedes the smaller 

i I 

i 

' ~ i 
! 

i 

163 



one). We call each wrong inequality of cr an inversion of o. For example, 

(
123456)', 

o == 2 5 6 3 1 4 . has the inequalities 

2 < 5 2< 6 2<3 2 < 1 2<4 

5< 6 5< 3 5 < 1- 5 < 4 

6 < 3 6<1 6 < 4 
3 < I 3< 4 

I< 4, 

eight .of which are wrong, namely 2 < I, 5 < 3, 5 < I, 5 < 4, 6 < 3, 
6 < I, 6 < 4, 3 < 1. Hence there are eight inversions of. o. 

The main work of this paragraph is done in the n'ext lemma. 

16.3 Lemma: Let n > 2, o E S
11 

and let (ik) be a transposition in Sn. If o 

has an .odd number of inversions, then . (ik)o has an even number of 
inversions. If cr has an even number of inversions, then (ik)o has an odd 
number of (nversions. 

Proof: Since (ik) = (ki), we assume, without loss of generality, that i < k. 

We have 

(
I ... _i ••• k ... n) 

0 = lo. . . io . . . ko . . . ncr ' (ik)o ( I . . . i ~ . . . n ). 
}o. . . kcr . . . IO ••• , /lO 

Tne second rows of o and (ik)o are identical, aside from the locations of 

io and ko. Here o gives rise to the inequalities 

I. hcr < io, 

ia < ja, 

ia < kcr, 

2_ • . ia<ma, 

ho < ko where h € (1, ... ,i- I}=: H, 

whereje: (i+l, ... ,k-I};:::;:J, 

where m e: [k + 1, ... ,n) =: M, 

jo < ka, where j E J, 

3. ka < mo, where m € M, 

and to certain other inequalities that do not involve ia or ka. And (ik)a 
gives rise to the inequalities 

1. hcr <·ko, 

ka < jo, 

ka < ia, 

ha < ia 
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where h E H, · 

where j E J, 



·3. ka < ma, 
ja < ia, 

2. ia <: ma, 

·where mE M, 
where j € J, 
where m E .. M, 

I 
j 
I 
I 

, I 

I 
··I : '" ,' ,"j • 

and to certain other inequalities that d() ,not involve ia Qrka; 

In the cases· i = 1, k:= i + 1, k.~ n,·there holds respectively ll 0~-J '=ct21, M <I 
.· ~-- ~·-~nd_t~-~ co?'epo~dirig.·_ii/-.:F_qualities __ should· be del~ied·. ·.This d~es no~. . -~~ 

tmpatr the argumen.t below. '! · · • 
. ' ' . ''·' . . '' : ., . ' ,·_:~ ~ ·~ 

We, ~re lo show that the nuf.Pber()L,i~v.;:rsi~ns qf cr -~!la th. ~.·, nu. _m, l,l.e·r -~f · : .:·.' ·. __ J 

)nve!si,~ris pC(!k)q: qi.ffer by ~n oddnumber~ '. ... . . ... I 
' ,: ·. : I' • •, j 

}be:;ineq~aiiti~s"o~· ~'.an~ .or'·{!t)<i :th9,f~ ,no_t,involve· .;(f~'dr.~_~)re.idepti-=.:~ __ · .. ~1 
.•bal~-~~~i',t~e .~~~u.~~~~~s_ l;, 2~-~· .of.~ •. a11d (~k)O: jlfe;t~~~~e. ~r. a,g~~fi,~);_:('>':;J 

:do7 ilie ~::r:. ~-t~- -j~~·~~ •••... · ...•.•.•...• ·.. • • . ': ;:· •• ~x· 
·.II.: 'krs:<.,fo{'· k.a <:i~ ;~·Jri~dtf ·(wb,ei~-1 €. J~.of(i~)a.:~.~. · ·· ·.· ··~: 'j 

~.:·'at~' 4Jtfereqt; :We' ~ust pr~v·e fthat tit~. n~~~;· .. ~f~ ~r~rig,-,;~·equ~fi~i~~~:.i~ ~F- -~ •• :· · .:_ 

'.,. ~~.n;:f;;l~'~r:;~~::~~:.k~~ o~er,ii:hro~:.;:j~:~:('; '"!' 
',-.provec,ohly~ that the..:'· number ,of: wr()llg ·inequalities; it}' ' . . .. 

' ;· an_ :dt!r .. _i:.. : ia < id:, :, : . '~~~r<k~.: • .. . : (whe~ }.€· :]) ·. '' 
_. . ~~ . 

. J -R -ka·. <_ja, . . iaJ~'< ia . (where I~ J): 
· .: diff~r by ari even 'number> :, · · 

i -· ' . _;; 

Suppose. there ate s wrong in~qualities ·;a < ja and) wrong inequalities 
ja..!: ka in A, where IJI> s ;>:o and JJI .;;;. t > 0 (inc'tu~ing the case J:: 0, 

. IJI ~ 0). Then there are s+ t wfong inequalities and t,here are · 

(III t s) + (IJI - t) = 21JI - (s .+ t) :correct inequalities in A. Since B consists of 
the ~egations of the inequaliti~s · in A, there are 21 iJ (s + t) wrong in­
equa~ities in B. So 

I 

(no. of wrong inequalities i,n A) ·(no. of wrQng inequalities in B) 

= (s + t) - ~2111:- (s + t)) = 2(s + t- IJI) = an even number. 

This i completes~ the proof., D 
i ' 
i 

165 



16.4 Definition: Let n € N and let a € S n· If cr has an odd number of 

inversions, then o is called an odd permutation. If a .has an even number 
of inversions, then a is called an even permutation. 

As the number of inversions of a permutation is uniquely determined, it 
is· clear that a pe~mutation cannot be both odd and even. With this 
terminology, Lemma 16.3 reads as follows. 

16.3 Lemma: Let n ~ 2 and a € S 
11

• Let (ik} be a transposition in Sn. If a 

is odd, then (ik}cr is even. If a is even, then (ik}o is odd. 0 

Applying Lemma 16:3 r times, we have 

16.5 Lemma: Let n ~ 2, a' E Snandlet '1''2• ····'r be transpositions in sn. 
If r is odd,t'hen a and r 1 t 2 ••• t,.o have the. opposite "parity" (i.e., one of 
them is odd, the other is even}. If r is even, then a and r 1r 2 •.• ·-'ra have 

the same "parity". 0 

16.6 Theorem: Let n ~ 2, rr E Sn·· Then rr is an odd (even} perm~tation if 

and only if rr can be written as a product of an odd (even} number of 
transpositions. In particular, rr cqnnot be written as a product of an odd 
number of transpositions and also as a product of an even number of 
transpositions. 

Proof: We. use Lemma 16.5 with a = t. Let.rr be written as a product of 

transpositions, say rr = r 1 t 2: .. 'r· Lemma16.-5 tells us that rr = t 1t 2 ... 'r' and 
1 have opposite or same "parities" according as whether .r ·is odd or even. 
Since t has 0 inversions, t is an even permutation. So rr = t 1 r2 

••• r r is an 
od(_permutation or an even permutation accord.ing as :whether r is an 
odd number -or an even number. The. other assertion follows. froni 'the 

remark made after Definition' 16.4. 0 



w~ describe the "pari~y" of a product. 

16.7 . Theorem: Let n ;> 2. The product of two permutations in §n has 

the ·''p~ri~y" given by the following law. 

(odd)( odd) = (even)· 
(even)(o"dd) = (odd) 

(odd)(even) = (odd) 
(even)(even) =(even). 

' ' 

ProOf: Let o,rr € sn. ·we want: to find the "parity'; of orr. Let a = 't'z· .. 's' 

and rr = t}r;_ ... r;, where tl' r2, ••• , 's•r}, 'z• ... ,r; are transpositions (Theorem 
16.2). Then orr= r1r2 •• ·'s't'z· .. T; is a product of s + p transpo~itions. 

. ' 

If a is an odd permutation and rr is an odd permutation, then s is an odd · 
number and p is an odd ntimber ,(Theorem 16.6), .so s + p is an even 
number, so orr is an even pe~mutation (Theorem 16.6): Thus-c(odd)(odd) = 
(even) .. The other cases are proved similarly; · o 

The assertion of Theorem 16.7 resembles the rule for finding the sign· of 
a product of two real number~: the product of a negative number by a 
nedative number is positive, 'etc. In order to exploit this analogy, we 
.. i < ..... 

tntroduce a new term. 

16.8 . Definition: Let n € N and a € Sn. The sign of a is the integer l or .., 1. 

We' write t( a} for the sign of a, and define ~t as follows. · 

{
. 1 i(o is an even permutation 

'&(a)=· -1 if a is an od~_permutation. 

Wit~ this definiti~n, the content of Theorem 16.7 can be expressed more 
sucCintly; 

16.7, Theore~: For any a,rr in Sn,there holds &(orr)= e:(ci)t(rr): 0 



16.9 Theorem: Let n > 2. The number of odd permutations in S is . n . 
equal to the number of even permutations in Sn. This number is n!/2. 

Proof: We must find a one-to"'one correspondence between the set of 
odd permutations and the set of even permutations in S n· Now 

T: ( 0" E S n: E( 0"} = -J } -+ { 0" E S n: E( 0") = 1 } 
0" (12)o-

is a one-to-one mapping (by Lemma 8.1(1)) from the set of odd permu-, 

tations in Sn into the set of even permutations in Sn (by Lemma 16.3),. 
which is ·in fact onto, since any even permutation rr is the image, under 
T, of the odd permutation (12)rr (Lemma 16.3). So T is a one-to-one corre­

spondence between these sets and they contain equal number of ele­
ments, say k elements. Since these sets are disjoint, . and their union is 

Sn, there are 2k elements in Sn, whose order is n! by Theorem 15.2. Hence 

k = n!/2. ,o 

Theorem 16.7 asserts that the set· of even permutations in Sn is closed 

under multiplication. So it is a subgroup of Sn ~y Lemma .9.3(2). 

16.10 ·Definition: The subgroup of even permutations in Sn (n > 2). is 
called the alternating group (on n letters) and is written as A . 

n 

16.11 Theorem: For n > 2, An is a group of order n!/2. 

Proof: Theorem 16.9. 

Exercises 

1. Find the sign of (13524) and of (153462). 

0 

2. Show that a cycle of length m is od~ (even) if and only if m is even 
(odd). 
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-·j • 

' 3. Prove that e(cr 1 crr .. o
1
) = e(o 1)e( o 2) ••. e( cr 

1
)' for all permutations ol'o 2, ••• cr 

1 

- in S n" . 

4. Find the sign of (143)(1245)(243} and of (1435)(25643) without 
evaluating these products. 

5. Write all elements in A2,A3 ,A4 : 

. 6. Construct multiplication'tables of· A2 ,A
3

,A4 •. 

7. Find all subgroups of A4• Does A4 have a subgroup of order 6? 

· 8. Verify Lemma 16.3 by going through ./the argument in its proof in the 
specific cases below. 

. ( 1 2 3 4 5 6 7) . . ' . . ' 
0' = 3 1 5 7 2 4 6 , (lk) = (12), (14), (23), (26), (27), (67). 

h 
' 
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§17 
Groups of Matrices 

In this paragraph, . we · examine some groups whose elements are 
matrices. The reader probably knows matrices (whose entries are real or 
complex numbers), but this is not a prerequisite for. understanding this 
paragraph. We give an elementary account of the theory of matrices as 
far as· needed here. Matrix theory will be taken systematically in 

Chapte~ 4, §43. 

We allow the entries to be elements ?f any field. Fields will be formally 
introduced in Chapter 3, §29 (Definition 29.13). Until then, we shall be 
content with the following definition. 

17.1 Temporary .Definition: Afield is one of the sets Q, ~. C and lP, 

. where p is a prime number. 

After having learned about fields in Chapter 3, the reader may check 
that the theory in this paragraph carries over to the more general situa­
tion where the term "field" is used in the sense of Definition 29.13. 

We note that K is a commutative group· under addition, whose id~ntity 
element we shall denote by 0 (so that 0 is the number 0 in case K is one 
of Q, IR, C, and it. is the residue class U = 0 + p l in case K is l for some 

- p 
prime number p ), and that K\{ 0} is a group under multiplication. This 
will be used many times in this paragraph. 

17.2 Definition: Let K be a field. A matrix over K is an 'array 

' 

(~ ~) -

of four elements a,b,c,d ofK, arranged in two rows and two columns, and 
enclosed within parentheses. (The plural of "matrix" is "matrices".) 
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. ( 1 2) Thus· _4 0 is matrix over C ·(and also over ~ and IC ), ( ~ ~~) · is a 

! "3 . . 
matrix over ~ (and also . ':>Ver IC ). In addi,tion;_ ( :5 4} is a matrix over Z 7 , 

when bais mean residue classes modulo 7. 

·. The set of all matrices o~er a field K will be denotded by Mat 2(K). The 

: subscript- 2 signifies that there a,re 2 rows and 2 columns in_ a matrix (in 
' th<; sense of Definition 17 ;2). 

If K is a field and A,B are matrices from Mat 2(K): we say A is equal to B 

provided the corrsponding entries in A and B are equal. More exactly, 

A (a~) . (a' b') 
: c d 1s equal to Q: c' d' · 

if and only if· a =a', b = b', c = c', d = d'. In this case, we write A =B. 
A .single matrix equation' is -equivalent to four equations between the 
elements' of the. und~rlying. field. It is clear that matrix equality is an 

equivalence relation ·on Mat 2(K). In particular, it is legitimate to say that 
A and B ·are equal when A is equal to B. · 

In this definition of matrix equality, the location of the entries are taken 
i . , 5 1' ·.. 2 5 
J into account. Thus ( 0 2) and ( 1 0) are different matrices, I although they 

i are made up of the same ; numbers. 
' 
~We introduce two binary operations on Mat~(K), addition and multipl~ca-
:tio~. Addition is defined i~ the most obvious way. 

17.3 Definition: Let K 'be a field. For any A = (~ ~). B ;:;; (~ {,) in 

i • 
lM at2(K), we define the sum_ of A and B as the matri.lt 

' (a+e b+f) 
. c+g d+h · 

. . 
The sum· of A and B will be denoted by A +B. Taking sums in MatiK) 

~ill be called addition (of ;matrices). 
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Addition of. matrices is essentially the addition in the undeilying field, 
carried out four times. Not surprisingly, inany properties of addition in 
the field are reflected in matrix addition. For example, just like a field is 
a group under addition, matrices over a field form a group under 
addition, too. 

17.4 Theorem: Let K be a field. Then Mat2(K) is a commutative group 

under addition. 

Proof: We ·check the group axioms · 

(. · . (a b) (e f) . 
1) For any matnces A = c d , B = g h m Mat 2(K), we have 

a + e, b + f, c + g, d + h e: K since a,b,c,d,ej,g,h e: K and K is closed under 
addition. Hence 

( a+e b+f) 
A + B = c+g d+h e: K 

and MatiK) is closed under (matrix) addition. 
(ii) Associativity of addition in M at 2(K) follows from associati-

vity of addition in K. Indee~, for any A = (~ ~). B = (; {), C = (! ;) in 

M atiK), we have 

· [(a b) (e f)] (k m) (a+e. b+f) .+ (k m) 
(;\ +B) + C = c d _+ g h + n p ~ c+g d+h n p 

_ ((a+e)+k (b+f)+m) 
- (c+g)+n (d+h)+p _ 

_ (a+(e+k) b+(f+m)) 
- c+(g+n) d+(h+p). 

= (a b) + (e+k f+m) 
c d g+n h+p 

=A+ (B ·+C). 

(iii) What can be the identity element? Well, probably the 

( 0 0) -matrix · 0 0 , where 0 denotes the zero element of the field K (for 
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l· 

instance, when K is l P for some prime number p, 0 is the residue class TI 

= pl). Indeed, ~e ha~e. for any A = (~ :} E Mat2(K), 

·cOo). Ca.b) Coo) Ca+o b+O) 
A + 0 0 = c d + 0 0 = c+O d+O 

00 00 .. 
' and Co o) is a right identity of Mat 2(K). The matrix Co o) wi!~ be called 

/ 

.. the zero matrix .(over K) ::and will be designated by the symbol 0. This 
should not . be confused with the zero element of the underlying field K, . 

·a b 
(iv)_ Any matrix A = C c d) E Mat 2(K) has a right invers~ 

' c-a ~b) ~ 
·:{opposite) -Ain Mat2(K), hamely ,-c -d. (since -a, -b •. -d £ K): ·. 

. c· a b)~ ·c-a -b) . ca+(-a) b+(-b)) . ·co 0)··.:... 
· · c d t· -c .:..d = . c+( -c) d+( -d) 0 0 - 0· 

' . 

Thus Mat2(K) is a group under addition. We finally check commutativity. 

(v) Commutittiyity of addition in , Mcll i(K) follows from : 

. . (a· b) Ce f)· · · commutativity of addition in K . . Indeed, for any A = c d , B = . g.h in 

Mat 2(K), we have 

' 

( a b)' . (e f) ca+e b+f) ·c·e+a f+b) ce f) ·cab)' . 
:A+ B = c d + g h = ctg d+h. = g+c h+d = g h + c d = f! +A. 

So Mat 2(K) is ~ commutative group under addition .. D 

(fhe additive· group Mat 2(K) is somewhat dull. It is just four copies of the 
'additive· group K. More. iitteresting matrix groups arise when the. opera: 
tion is multi'plication. We introduce· this operation now. 



( ab), (ef) 17.5 Definition: Let K be a field. For any A = c d , B = g h ·in 

Mat lK), we define the product of A and B as the matrix 

(
ae+bg af+bh) 
ce+dg · cf+dh · 

The product of A and B will be denoted· by A ·B or simply by AB. Taking 
products in M at2(K) will be called multiplication (of matrices). 

This definition looks bizarre. One would expect the product of A and B, 

with the notati~n of Definiti?n 17 ,5, to be (~; ~{). Some motivation for. 

~ (ac bd) Definition 17.5 can be gained as follows. With each matrix (over ~, 
/ . 

. say), there is associated . a coordinate transformation 

x =ax'+ by' 
y ex' +.dy' 

of the Euclidean plane. Carrying . out the transformations associated with 

(a b). (e f) su.ccessively, we obtain 
c d ' g h 

which gives 

· x =ax'+ by' 
. y =ex' +dy~ 

x' = ex" + fy" 
y' = gx" + hy", 

x = a(ex" + fy") + b(gx" + hy") = (ae+bg)x" + (af+bh)y" 
y = c(ex" + fy") + d(gx" + hy") = (ce+dg)x" + (cf+dh)y", 

so the product of the matrices is the one which is associated with the 
successive application of the transformation. 

If matrix multiplication ·'is new to you, you are urged to write down 
matrices over ~ and multiply them in order to acquire dexterity iri 
performing this operation. 
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We· colle~t some . basic properties of matrix multiplication in the nexf · 
theorem. Let l!s recall that K\{0} is a group under multiplication. The 
identity element of this group will be denoted by 1. Thus 1 is the number 
1 when K is one of 0, Ill, C, and the residue class 1 = 1 + pZ when K = Z . .. p 
for some prime. number p. 

17.6 Theorem: Let K be a field, whose zero element ·is 0 and whose 

idell(ity element is I. 

(I) Mat 2(K) is closed under matrix multiplication. 
(2) (AB)C = A(BC)for aUA,B,C .e Mat2(K). 

I 0 . . . 
(3) Let/ ( 0 1). Then AI= lA =.A for all A e Mat 2(K). 

(4) A(B +C)::: AB+ AC and (B + C)A = (BA+ CA)Jor all A;B,C e MatiK). 

· (a.b) (ef)· (km) be Proof: Let A = c d , !J =. g h' , C = 11 P . arbitrary elements of 

Mat 2(K). 

(I) Since a field is closed under addition and multiplication, a e + b g, 

af + bh,ce + dg, cf + dh E K whenever a,b,c,d,e,{,g,h E K. So AB e Mat 2(K) 

for all A,B e MatZ(K) and Mat 2(K) is closed under multiplication. 

(2) This is routine ca:Iculation. We evaluate (AB)C and A(BC): 

(AB)C =[(a b)(e f)](k m) = (ae+bg af+bh)(k m) 
c d . g h . n p ce+dg · cf+dh n p 

_ ((ae+bg)k + (af+bh)n 
- (ce+dg)k + (cf+dh)n 

(ae+bg)m + (af+bh)p) 
(ce+dg)m + (cf+dh)p 

_:_(aek+hgk+afn+bhn 
- cek+dgk+cfn+dhn 

aem+bgm+afp+bilp) · 
cem+dgm+cfp+dhp ' · 

A(BC) ( a b)[(e f)(k m)] ·((l b) (ek+fn em+fp) 
c d g h n p = c d gk+hn gm+hp 

(
a(ek+fn)+h(gk+hn) 

· = · c(ek+fn)+d(gk+hn) 
a(em+fp )+b(g m+hp ))· 
c(em+fp)+d(gm+hp) 
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:::(aek+afn+b_gk+bhn 
· cek+cfn+dgk+d~n 

aem+afp+bgm+bhp) . -·· 
cem+cfp+dgm+dhp · 

Since addition is commutative in K, the. matrices (i) and (ri) are equal. 

Hence (AB)C = A(BC) for all A,B,C € Mat2(K). 

( a b) (1 0) (a1+b0 a0+b1) (a b) 
(3) We compute AI= c d . 0 1 = cl+dO cO+d1 = c d =A, 

· : ( 1 0) (a b) (1a+Oc 1b+Od)· (a b) 
/A = 0 1 c d = Oa+1c: Ob+1d = c d =A, · . 

as claimed. 

{4)Wehave A(B+C) =(~~)[(;{) +(:;)] 

= (a b) (e+k f+m) _ 
c d g+n h+p 

_ (a(e+k)+b(g+n) a(f+m)+b(h+p)) 
-: c(e+k)+d(g+n) c(f+m)+d(h+p) . 

_ (ae+akf.bg+bn af+am+bh+bp) 
- ce.+ck+dg+dn cf+cm+dh+dp 

_ (ae+bg+ak+bn af+bh+am+bp) 
- ce+dg+ck+dn cf+dh+cm+dp · 

_ (ae+bg af+bh) · (ak+bn am+b p) 
- ce+dg i:f+dh + ck+dn cm+dp 

·=(a b)(e f)+ (a b)(k m) 
c d g h c d .n p 

=AB+AC.-

The proof· of (B + C)A = (BA + CA) follows similar lines and is left to the· 
reader. · 0 

Theorem 17:6 .seems promising. Three of the group axioms are satisfied, 
with I as the ident-ity. It ~emains to· investigate whether every Il)atrix 
over a field has a right inverse. 
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(
a b) . · 

Suppose K is a field and A= e d e: Mat 2(K). Then A has a right inverse 

X ~ (: ~) in Matz(K) if and only if AX I, which is equivalent to 

(1) ax+bz=1, · 
( 3) ex + dz = 0, · 

(2) ay + bu 0, 

(4) ey+du=l. 

We multiply· the equation (1) by d, (3) by -b af\d add them side by side. 
Using associativity of addition in K, distributivity of multiplication; over 
addition, and eominutat_ivity of ri)ultiplication in K, we get 

(ad- bc)x =d. 

We multiply (2) byd, (4) by. -b and add them. We multiply (1) by -c, . 
(3) by. a and add them. We multiply (2) by -'e, (4) by a and add them. 

We get 

(ad bc)y -b, (ad- be)z = -e, (ad - be)u = a. 

We emphasize again that commutativity of multiplication in K. is used 

crucially to derive these equations. 

The element ad:... be appears in each one of these equations. In view of· 

its importance, we give it a name. 

_ 17.7 Defini~io.n: Let K be a field and A = (~ ~) e: Mat 2(K). Then· tlK· 

element ad-:- be in K is called the determinant of A, written as det(t\ 1 or 

asdet A. 

We· have shown:· if K is. a· field and A 

in Mat 2(K) is a right inverse· of A, then 

(det A)x =d. 

(det A)z -c. 
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(det A)y = -b 
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. These· equations impose certain conditions on a matrix_ having_ a right 
inverse; We cannot expect that 'every IT!atdx has a_ right inverse. Those 
having a right inverse are characterized very simply as the matrices 
with a nonzero determinant. 

17.8• Theorem: Let K be a field and A (~ ~) E MatlK). Then A has a 

right inverse if and only ifdet A ;z! 0. If this is the case, then (here .·is a 
unique right inverse of A, namely .the matrix 

· (det A)-1d · -(detA)-1b) 
<-(det Ar1c (det A)-1a 

where (det A)-1' is the in·verse of det A E K\{ 0} in the_ multiplicative 
group K\{0}. 

Proof: First we assume det A = 0 an~ show that A has no right inverse. 
Indeed, if det A = 0 and A had a right inverse, then the equations (D) 
would become 

d =0 b = 0 
c ~ 0 a = 0,. 

. (a b) (0 0). and A = c d would Q.e the zero matrix 0 0 . The existence of a ri_ght , 

. X y . . .· 
inverse X = (z u) would yield 

( 1 0). . (0 0) (x y). ·. (Ox+Oz. Oy+Ou)· _ (0 0) 
0 1 =I= AX = 0 0 z u = Ox+Oz Oy+Ou - 0 0 ' 

. . 

hence 1 = 0 in K, a contradiction.' Thus A has no right inverse if d~t A = 0. 
,· - ' ' -

Now let us assume det A ;z! 0 and show that A _has a· unique right inverse. 
Since det A E K\{0} and K\{0} is· a gn;>Up under multiplication,.det A has 
a!l inverse ifl K\{0}, which we denote by (det A)-1• This· is the nonzero 
element of the field K such that (det Ar1(det _A)= (det A)(det A)-1 = 1 = 
the identity element of K\{0}. So we can solve for x,y,z,u in (D) by 
multiplying the equations in (D) by (det Ar1. We get. 

x =. (det Ar1d, 
z =-(del Ar1c, 
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---------~-------·· 

Thus, if A has a right inverse :at all, this right inverse must be the· matrix 
written in the enunciation of the theorem (in particular, A has. a unique 
right inverse). It is easy to check that ·this matrix is indeed a right 

inverse of A: 

(
a b) ((det A)-1d · -(det. A)-1b) 

. c d . -(detA)-1c (det Ar1a 

( 
(df!t A)-1(ad-,.bc) (det A)-1(-ab+ba)) 

= -(det A)-1(Cd-dc) (det A)-1(-cb+da) 

( 
1 0 

= 01)=! .. 

Hence A does have a unique right inverse and it is the matrix given in. 
this theorem·. 0 

We will prove presently that the . matrices with right inverses form a 
· group under -multiplication. From Lemma 7.3, it will then follow that the 

unique right inverse of a matrix with a nonzero determinant is also the 
unique left inverse o( the .same matrix. We shall refer to is as its inverse.-

( ac. bd) . . The rule for fiftding the inverse of A is simple: interchange a· and 

-z J)>::: (;_ .~) £ J J .:> · since the deter-

minant Is equal to 18' = 4 and 4-t :::2. 

17.9 Theorem: Let ·K be a field. 

(I) det (AB) == (det A)(det B) for. all A,B € Matz(K). 

(2) det I ::::: 1 ( € K). 

(3) 1/AX =/,then detX (det A)'-1, 
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Proof: (1) We use the notation of Definition 17.5. We get 

det (AB) = (ae + bg)(cf + dh)- (af + bh)(ce + dg) 

= aecf + aedh + bgcf + bgdh - afce - afdg - bhce - bhdg 

= aedh afdg +. bgcf- ,bhc~ 
= ad(eh - fg)- bc(eh .- fg) 

= (ad- bc)(eh - fg)' 
= (det A)(det B). 

(2) det I = 1.1 - 0.0 = 1 - 0 = 1. · 

(3) This follows from (1) and (2): if AX =I, then 
l =.det I= det(AX).,; (det A)(det X), so det X= (det Af1• D 

The formula det . AB = (det A)(det B) is known as the multiplication rule 
of determinants. Loosely spea~ing, the determinant of a product is the 
product of the determinants. By induction .on n, ·it is extended to n 
factors; det (A 1A 2 ... A 11

] (det A 1)(det A2 ) ••• (det A~s)· 

We fi~ally have a group of matrices under multiplication. 

17.10 Theorem: Let K be a field. Then 

{A € Mat2(K): det A ;t! 0} 

is a group under matrix multiplication. 

Proof: We check the group a;'(.ioms. Let us call our set G for brevity. 

(i) For A ,B . € G, we have_ det A ;t! 0 ;t! det B. In the field K, 

product of nonzero elements is nonzero (K\{0} is a group, and clo~ed 

under multiplication). So· det AB = (det A)(det B) ;t! 0 by Theorem 17.9(1) 
and consequently AB € G. Thus G is ylosed urider multiplication. 

(ii). Associativity of multiplication in G follows froni Theorem . 
17.6(2). 

(iii) I is a right identity eleinent of G, for det I = 1 ;t! 0 by 
Theorem 17.9(2), so I e_ G; and AI= A for all~ e G by. Theorem 17.6(3). 

180 .. 



(iv) Any A.- € G has a right. inver~e,· in G. Indeed, if A € G, then 
det A~ 0, so A has a righf inverse X in Mat

2
(K). As det X= (det A)-1 ~ 0. ~ 

(Theore~ 17.9(3)), we see X € G. Thus A has a right hrver~e i~ G. 

Therefore, G is a group. .. 0 

-
17.11 Definition: Let K be,a field~Tbe group ofTheorem 17.10 is called· 
the general linear group (ofdegree 2) over K; -a~d is written-as GL(2,K) .. 

· . 
. 

· Since G L(2,K) is a group, the unique right invers.~ of any. matrix A in 
GL(2,K)- is also the unique left inverse of that matrix (L,emma 7.3). II will 
. be called the inverse of A, and will be .written as A -l, in conformity ~ith 
the usual terminology and notation. The matrix J will be calied the ide n· 
tity matrix. Elements of GL(2,K) are called invertible matrices or regular 

·.matrices:- Matrices whose. determinants are zero are called singular . . 

The ·next theorem ·furnishes another IT!atrix group. 

17.12 Theorem: Let K be a field. T lz im 

{A € MatiK): det A = I} . 

is a group· under matrix inultiplication. 

Proof: Let us call this setS for brevity. As/1 ~ 0 inK, we getS<;;;, GL(2.K) .. 

We use the subgroup criterion (Lemma 9.2) to check that S is a subgroup 
of GL(2,K) . .. . ; 

. . (i) For A,B € S, we have det A = I = det B, therefore det :W = 
(det A)(det B)= 1.1 = I by Theorem 17.9{1) and consequently AB E !{ Thus 
s is closed under multiplication. 

(ii) For any A E S, we have det A = 1, so det (A -I) = (det 11}~ 1 = 

.. 1-1- = by Theorem 17 .9(3) and A -I € S. Thus S is closed under the f(mnin!! 

of inverses. 

', Therefore, Sis a subgroup of G/.(2,K). 0 
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17.13 Definition: LetK be a field. :rhe group of The~rem 17.12 is called 
the special linear group (of degree 2) over K, and is written as SL(2,K), 

We close this- para~raph with a group that plays an important_ role in 
.number theory and in .complex analysis: 

17.14 Theorem: The set 

. {(~ ~) E Mat2(10): a~b,c,d E Z, ad.- be~ 1} 

is a group under matrix multiplicatfon. 

Proof: Let us call this set H for brevity. Clearly 0 -;r.·_ H ~ SL(2,Q). We 
check that H is a subgroup of SL(2,11)). 

(i) Suppose A = (~ !) and B = (; {) are element~ of H. Then 

- (ae+bg .af+bh) _ . · · 
-· AB = ce+dg. cf+dh • Here the entnes of AB, namely ae+bg, ce+dg, af+bh, 

cf+dh are integers, because a,b,c ,d,e J,g ,h are .integers. Also, det A = I = 
det B, therefore det AB = (det A)(det B) = -1.1 = I by Theorem 17 .9(1) and 
AB E H. Thus H is closed under multiplication._ 

(ii)Let A:::(~~) E H. Then det A= I and so A-1 ::: ·( ~c -:) 

by Theorem 17.8. The entries d. -b, -c, a-of A-1 are integers, because a, b, 
. c, dare integers, Also, we have det A-= 1, so det·(A-1) = (det A)-1 = r 1 =I 

by Theorem 17.9(3) (or det (A-1) = da- (-b)(-c) =ad- be= 1), So K 1 E H 
· and H .is closed under the fo~ing of inverses~ 

Therefore, H is a subgroup of SL_(2,0). 

17.15 Definition: The group of Theorem 17.14 is called the special linear 
group (of degree 2) over l, or the modular group, and is written as 
SL(2,Z) or asT. 
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Exercises 

1. Let K be a fielq~ Show that GL(2,K) is not an abelian group.· 

2. Fin·d all elements. of GL(2,Z 2). What is the order of GL(2,Z2)? 

3. Write down t~e multiplication table. of GL(2,Z 2). Compare it (eventual­

ly. after reordering the rows and columns) with .the multiplication table 
of s3 .. 

4, Find all elements of SL(2,Z 3); What .is. the order of SL(2,Z 3 )? 

5. Writ~ down the multiplication table of S.L(2,Z 3) 

· : · · . a b · - · 
. 6; Let K be a field ~nd let A =(~d) E Mat2(K). When a = 0 = b, we have 

det A = 0. In case -(a ,b) ;z!. (0,0), prove that det A·= 0 if and only If there 

is an element k in K such t)lat c = ka; d = kb; Use this result and show 

that IGL(2:z )I = (p2 - l){j; 2
- p). 

. p . . 

7. ·Determine how many elements in G L(2,l P) have the same determi: 

nant. Find the order of SL(2,lP). 

I 0 · · 
8. Show. that { (ti b) E Ma9K): b;: 0} is a subgroup of GL(2,K). 

9. Prove that { (~ ~) E Mat 2(K_!= (ld;: 0} is a group under multiplication. 

Its elements are called trianguhir matrices: 

· (a b 
I 0. Let K be a field. For any A = c d) E Mat 

2
(K), we defiiic ·the· iran' 11/ 

A to be the element a + d of K (sum of the entries in the upper-ldt 

lower-right · diagonid) .. Show that the trace of AIJ is equal to the fran: of 

IJA for all A,IJ E Mat 2(K). 
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ll.Let K be a field. For an:y A=(~~) "e: Mat 2(K), we defin~ the tran.spose 

ofA to be the matrix (~ ~) e: Mat 2(K), which is written A1• Show that 

det A1 det A and (AB)1 = B1A 1
- for all A,B E Mat2(K). 

·. - · a.b · · 
12. Let m > 2 and put Ma( 2(lm) = ( (c d): q.,l:J,c,d E lm}. Show that the 

' 
theory in the text,. until Th~orem. I 7 .8,. remains valid for the .elements· of 

Mat2(Zm)' which are called matrices over lm. 

In place of Tll'eorem 17 .8~ prove that A. E Mat 2( l m) has a unique right 

inverse if and· only if det A e: l ~-

Put GL(2,lm) = {A E Matilm): det A € l~}. Show that GL(2,lm) is a group 

under ·multiplication. 

Prove that Theorem 17.12 remains true if "K'.' is replaced by "lm"· 

13. Develope a theory of matrices over l by modifying the theory of 

matrices over l. How do you define GL(2,l)? 

14. Let H = { (_: ·~): a,b'e: C} i: Mat 2(C), where x is the ~o~plex 

conjugate of x E C. Prove that H is closed under addition and multiplica­

tion. Show that H\[ 0} is a group under multiplication. 

(a b) > (-a -b) 
15~ If K is a field and A= c d E Mat2(K), we write.~A = -c -d . Let 

(·10) .. (j 0) .• (0-1) (0-i) ' 1 = 0 1 ' 1 = 0 -:i • 1 = 1 0 ' k = -i 0 e: Mat2(C). 

Thus l is the identity. matrix ~ver C .. Show that ij = k, jk = i, ki = j. Prove. 
that {1,-1,i,-ij,-j,k,-k} is a group under multiplication,_ called a quaternion 
group of. order 8 and is denoted as Q 8 .. Show that Q 8 has exactly one 
element of order 2. Find all subgr~up~ of Q8. 
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§18 -~ 
Factor 'Groups· 

In rhis paragraph, we learn .. a way of constructing new groups from- a 
given one~ This construction is a genera-lization of obtaining the additive 

group Zn from the additive-group Z. We recall thatthe elements.·of .zn 
are certain subsets of namely the cosets of. the subgroup . ( nz: Z E 1 } in . 
~Z (cf. §10, Ex. 3). Addition in is induced from. addition in Z (see §6);. 

·we want to do the same thing with an arbitrary. group G. we· start with· 
a group G and a subgroup H of G. On the set of cosets of H in G, we wish 
to define a binary operation which reflects the operation on G and which 
makes the set of cosets into a group. 

' . 
Two questions present themselves immediately.· First,· we have· a set 'R 

of right cosets . of H in G and a set !.. of left. cosets of H .in G. If G is. an . 
abelian group, the right cosets. and tl;e. left cosets coincide: However, in 
general, the- right. cosets of H in G .. are differel)t from the left cosets of H 

in 'G. Thus we have two differ~nt sets of cosets: 'R ;: !.. ; Do we want to 
make . 'R into a group or !.. ? Is it possible to make both 'R and !.. into 
groups? If so, how are these groups related? If not, why not? 

Another question is about the operation, The central issue i·n §6, where 
we 'intr-oduced·. t.he. operations on Zn' was whether these operations were 
well defined.· Once we knew that addition in ·z n is a ·well defined opera­
tion, it was straightforward to prove that· Z is a group. Not surprisingly, · 

. n ,. -

we have the same problem here. The_ main point of the following 

discussion is to show that "':3 have a well defined operation CTheorem 
18.4 ); Once .we know it, it is easy to show that our set of cosets is a group 
(Theorem 18.7). 

It turns out that these questions are intimately connected andc they will 

be resolved simultaneously .. · 

18.1 Suggestion: Let G be a. group, H a subgroup of G, and !et 'R be the ' 

set (Ha: a e: G) of all right coset.<> of H in G. We suggest .that we define· a 

binary operation on ~, to be denoted by . or by, ju.xtaposition, accord in!;.· 

to the "rule" 
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Ha.Hb =Hab 

for all a,b E G • 

.This is . the most natural way of defining a binary operation on 'R . Now 
we have to ask whether this is a well defined operation on 'R , for the 
"rule" of evalutating a product Ha.Hb makes use of the elements _a,b of G, 
which can be chosen in many ways. The "rule" says, in order to evaluate 
the product X .Y of X and Y in 'R, that we (1) take an a E X so that X = H a; 
(2) that we take an bEY so that Y =Hb; (3) that' we evaluate ab in G; (4) 

that we find the right coset H ab E · 'R of this a b. The right· coset Hab is 
supposed to be the. product X .Y. ·we must make sure that we get the 
same right coset at the end, even if we choose different elements from. 
the right cosets X and Y. We investigate . when this "rule" yields a . well 
defined operation ·on <R. 

The operation suggested ill 18.1 is well defined if and only if the 
implication 

is valid. Using Lemma 1 0.2, we write this in the equivalent form 

which simplifies to 

Using Lemma 10.2 again, we ca~ write this as 

for all a € G,h1 E H, ah1 EHa 

or as 

fOr all a € G, aH!: Ha. (o) 

Thus the operation sugested in 1 K 1 is well_ defined if and only if H is a 
subgroup of G such that aH !: Ha for all a E G. This is not true for every G 

and for every subgroup H of G. After we ,give other. descriptions of such 
subgroups, we will see some examples. 
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18.2 .Lemma: Let H.;;;;;; G. For a-E a: tel a-1Ha be .the set 

{a-1ha E G: hE H} = {b E G: aba-1 E H}. 
The following_ are- e_quivalent, -~ 

(1) a-1ha E H for all a € G, h E H . . 
(2)a-1Ha!;;; H for all a E G. 

(3) a-:lHa = H for _all a E G. 
(4) Ha := aH for all a E. G.· 

(5) aH !;;Hafor all a E G: 

· Proof: (1) ~ (2) This follows from. the definition of the ~et a-1Ha. 

(2) "'7. (3) Suppos~ a.:.1Ha!: H for all a E G. Then, for ~ny ~ E G·, it is true 
that (a-1r1Ha!: H. Hence, for any hE Ji, a E G, we haveaha-1 E H.. soh. 
a-1(aha-1)a E a-:1Ha. Since this holds for all hE H, we obtain H!;;; a-1Ha, for 
ail a. E G. Together with the hypothesis a-1H a !: H for all a E G, this yields 
a-1Hq =H for all a E G. . 

(3) ~ (4) If a-1Ha = H, tJlen Ha.= {ha £ G: h EH} 

(4) ~ (5) This is triviaL 

,;, {a(a-1ha) E G: h E H} 

= {a.X E G:x· Ea-1fial 

={axE G:x EH} 

=aH. 

- . 

(5) ~ (1) Suppose aH !: if a f<?r all a E G. Then a-1H: r;;; Ha-1 for all a E G.-
Keeping· a fixed, we see .a-1 h E H a-1 for all. h E H. Tlius, for all h E H, there 
is an h

1
- E H_ such that a-1h = .h

1
a-1• So_a-1ha = h

1 
E H. So a-1ha E H for all h 

in H_; and this hOlds for .all ·a E _ G. 0 

18.3 Definition: Let H .;;;;;; G. If H satisfies one (and hence all) of the 
conditions in · Lemma 18.2, then H is called a normal subgroup ·of G, or 
normal in -G. 
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We employ the symbol H ~ G to denote that H is a normal subgroup of 
G. Also,. H ¢:! G means that H is not a normal subgroup of G. If H is a 
proper and normal subgroup of G, we write H <l G. Finally, H <tl. G means 
that H is not a proper normal subgroup of G. 

18.4 Theorem: The operation suggested in 18.1 is well defined if and 

only if H~, G. 

Proof: This follows from (o), Lemma 18.2(5) and Definition 18.3. o 

By Lemma 18.2(4), any right coset of H in·G is a l~ft coset of H in G if and 
only if H ~- G. So the set 'R of right cosets of H .is equal to the set !.. of 
left cosets of H if and only if H ~ G. Theorem 18.4 shows that we have a 
well defined operation on 'R if and only if 'R !.. . This answers our two 
questions. We do not have to bother about the distinction between 'R 

and !.. : if (and only if) the operation is well defined, there is . no 
distinction between 'R and !.. . See also Ex. 1 at the end of this paragraph. 

18.5 Examples: (a) For any group G, it is clear that G ~ G. Also, {I} ~ G, 
since a-11 a e: { 1} for all a e: G: We make a convention here. The trivial 
subgroup { 1 } will henceforward . be ·written sir_nply as 1. It wiil be clear 
from the context whether 1 stands for the identity element or for the 
trivial subgroup. Thus I ~ G and G ~ G. 

(b) Any subgroup of an abelian group is normal in that group. Indeed, if 
G is abelian and H <;; G, then hg = gh for all h E H, g e: G, hence Hg gH 

for all g e: G. Thus H ~ G by Lemma 18.2(4). 

In the abelian group case, H g = gH is satisfied trivially, 'for hg = gh for all 
h e: H, g e: G. You should notice, however, H g gH does not mean that g 
c·ommutes with every element of H. This. is an equation between certain 

sets, so is equivalent to the im~lusions H g ~ g H and g H ~ H g. The first 

inclusion means 

for all he: H, there is h 1 e: H such that hg =gh 1• 
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Here h
1 
-~ h- In general and therefore· hg = gh 1 ~ gh. -The. second inclusion 

has a similar meaning .. 

H g = g H · means that, when __ we multiply the- elements of H by g on the 

right- and on the _left,· we get the same collf!ction of elements~ It does not 
IJlean that, when we multiply any element of H by g on the righf and on 

the .left, we get the same product. 

Many beginners misunderstand- this point. Be careful not to read more­

than set equality in H g = g H. Compare this with an isometry fixing a 
subset F of the Euclidean plane E and one fixing F poif!twise (§ 14). 

(c) Consider th-e subgroup A3 = {i,(l23),(132)) of S3 .. There are IS3:A 31 :;::; 

IS31/IA31 = 6/3 = 2 right cosets and 2 left cosets of A3 in s3. These are 

A3 and A3(12) = {(12),(23),_(13)) 

A3 and (12)A 3 = {(1~),(13),(23)) 
and so an~ right coset of A 3 in S 3 is also a left coset _of A 3 in S 3. Thus -

A3 <!_ s3. 

(d) The result in Example 18.5(c) can be generalized. Let H .,;;;, G of index 

. I G :HI = 2. Then there are two right cosets of H in G and two left cose~s of 
H in G. Let H and X be the right co sets, H and Y the left cosets. From the 

disjoint unions 
G = H u·x and. (; = H u Y, 

we read-off 

X = G \ H = Y, , ··-
so the right cosets- H ,X of H in G coincide with the left cosets H ,X of H inG. 

Hence_ H ~ G: if H' has index two in (], then H is normal' in G . 

. (e) Consiler the subgroup H := {1,(12)) of S3. N?w IS3:HI = 6/2 =_3. The 

three right cosets of _H and the three left cosets pf H are 

H = { 1,(12)) _ 
H(l3) = {(13),(123)} 

H(23) = {(23);(132)) -

H = {1,(12)) 
(13)11 = {(13),(132)) 

(23)H = { (23),(123)) 

and the right coset {(13),(123)) is not a left coset. So II -tJ· S3 ~In the same 
way, {1,(13)) and (1,(23)} are not normal subgroups of S

3 
•. 
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(f) Let/:l = {1,(12),{34),(12)(34)}. It is easy to see that H <~s4 • Jsl:l normal 

in S4 ? We compare th_e right and left cosets of H in S4 . Aside from H, we 

see that the right coset 
1:1(13)(24) = {(13)(24),(1423),(3241),(14)(23)} 

is a .left coset: 
(13)(24)/:l = {(13)(24),(1324),(1423),(14)(23)} 

since (3241) = (1324). This is of course not enough to conclude H ~ S4 • 

We must examine the other cosets also. We see 

1:1(13) ,; {(13),(123),(341),(1234)} 

(13)/:l = {(13),(132) 

and we stop here. This shows 1:1(13);: _(13)/:l. Hence H ~ S4 • 

(g) Let V4 = {1,(12)(34),(13)(24),(14)(23)}. It is easily seen that V4 < S4• 

The subgroup V 4 is known as Klein's four group (after 'the German 
mathematiCian Felix Klein (1849-1925); Vierergruppe, whence V

4
). The 

cosets of V 4 in S4 are 

v4 v4 
V/12) = {(12),(34),(1324),(1423)}, (l2)V4 = {(12),(34),(1423),(1324)} 

V4(13) = ((13),(1234),(24),(1432)}, (13)V4 = {(13),(1432),(24),(1234)} 
V4(23) = {(23),(1342),(1243),(14)}. (23)V4 ={(23),(2431),(2134);(14)} 

V4(l23) ;{(123),(134),(243),(142)}, (123)V4 = ((123),(243),(142),(134)} 

Vi132) ={ (132),(234),(124),(143)}, (132)V4 { (132),(143),(234),(124)} 

and since each right coset is a teft coset, V 4 ~ S4• For a more conceptual 
proof of this result, see Ex. 5 at the end of this paragraph. 

(h) Consider K = {t,(12),(13),(23),(123),(132)} ,;;;: S4 . Is K normal in S4? We 

observe (14f1K(14) = (14)K(14) = {1,(42),(43),(23),(423),(432)} ;: K and so 

K'lil S4 . 

(i) Normality is not an intrinsic property of a s·ubgroup. It is meaninglcs 

to speak about norr:qality of a subgroup H itself. It is only meaningful to 

sp'eak about normality of H in a group G. We have to specify the group G 

as well as the subgroup H when we speak about normality. It is possible 

that fi ~ G1 and H qJ G 2 for two groups G l'Gz containing H. Here is an 

example. Take 
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C'z <p2,cr>= {l~p2,cr;p2cr}.;;;; Gl 

H <cr>= (l,cr}. 

Then H .;;;; G1 arid H ~ G2. Now IGi:HI = 2, so If Q G2 :by Example 18.5(d) 

above. However · 
- p-tf/p= {(p-tcrp}= {l,p'"lp-lcr}={l,picr} ';;!.H 

and thus H 'iQ .G 
1
• . · -

Incidentally, G2 Q G1 since IG1:Gzl ~- 2. This shows that normality is not a 
·. transitiv~ relation. It is ~ossible that H .;;;;;) . G2, G2 Q Gl' yet H 'iQ G 1• 

(j) For any field K, we have SL(2,K)-Q GL(2,K). Indeed, if s. € SL(2,Kf, 

then det S = 1 and, for any G E GL(2,K), 

det (G-1 SG) = det (G-1.SG) "=.det G-1.de,t (SG) = (det Gr1.(det S)(det d). 
· · = (der Gf1I (dei G) = I, · · 

G 1SG E SL(2,K) for all S € SL(2,K), G. € GL(2,K), 
. ! 

and so SL(2,K) ~· GL(2,K) by Lemma l8.2(1). 

(k) If H Q G and K_.;;;;;) G, then H n K .;;;;;) G. More generally, if Hi ·G.· 

• (where i E: I, an index. set), then fJ I Hi .;;;;;) G. We show this. Put (I fJ I IIi 
for brevity. From Hi.;;;; G, it follows th~t H.;;;; p (Example. 9.4(f)). Also, for. 

any h € II and g E G, 

· · · h E fl; for all i E /, 
'. 

g-1hg € H. for all i € /, 
. I . 

g-1izg E II 

·. and H .;;;;;) G by Lemma 18.2(1 ). 

(I) If H.;;;;;) G and K.;;;; G, then H.n K .;;;;;) ·K. Indeed, lethE 1/.n K, k e: K. · 

Then k-1M. e: H since h e: II and II is normal in G. Also, k"1Jzk € K because 

· H e: K and K is closed under multiplication. Tpus k-1 hk E .. II ':. /( for all · 
h e: H n K and for all k E K. Thus II n K .;;;;;) K by Lemma 18;2(1). · 

18.6 Definition: When H Q G, the set of all right coset~ of H in G. which 
is also the set of all left cosets· of- H in G by Lemma 18.2(4), 'will l1e 

denoted by G/H, read G by 11, or G rnodulo II, or G moc/11. 
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Most authors do not insist on the condition H 'iQ G when they write· G /H. 

The.y write G I H for the set 'R. of right co sets of H in G (or for the set of 

left cosets, especially when they write functions on the· left) and employ 

some other symbol for the the set of left cosets (or for the the set of 

right· cosets). Throughout this book, whenever we write G IH, .it will be 

tacitl,y supposed that H 'iQ G. The notation G /H is meaningless if H ~ G 
and will not be used in this case. 

18.7 Theorem: Let H 'iQ G. Then GIH is a group under the operation 

suggested in 18.1, by which 

Ha.Hb = Hab for all Ha,Hb € G!H. 

Proof: We check the group axioms. 

(i) The operation on G/H is well defined by Theorem 18.4 and 

the product of two right cosets is again a right coset. So G /H is closed 
under this operation. 

(ii) For all Ha,Hb,Hc € G/H, we have (Ha.Hb)Hc = Hab.Hc = 

H(ab.c) = H(a.bc) Ha.Hbc = Ha(Hb.Hc) since ab.c a:bc for all a,b,c € G. 
The operation is therefore associative. 

(iii) H = HI € G /H is a right identity element of since 

Ha.Hl =Hal = Ha for all Ha € G/H. 

(iv) Any Ha € G/H has a right inverse in G/H, namely Ha-1: 

HaHa-1 =Ha.a-1 = Hl = H =identity e.h;:ment of G/H. 

Therefore G /H is a group. D 

18.8 Definition: Let H E;l G. The group G/H of Theorem 18.7 is called the· 

factor group of G with respect to H, or the factor group G by H, or the 

factor group G mod(ulo) H. Instead of the term "factor group", the term 

''quotient group" is also used. The group operation is. called multiplica­

tion (of cosets). 
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Please .notice that G/H is not a subgroup of G .. The elements of' G /H are 

. subsets· of G, not'elemepts of G. 

Since the multiplication on G /H is based Of! the multiplication· on G, we 

expect that· some proP-erties of G are inherited by G /H. Here are some 
. . . I 

properties that are taken over by the factor .groups. 

· 18.9 Lemma: Let H ~ c: 
'(1) IG/HI = IG:HI. In particular, ifG is finite, so isG/H and IG/HI =I Gill HI. 

(2) If G is abelian, so is GfH, 
(3) If G is cyclic, so is G/H. · 

Proof: .(1) The elements of G)ff are the cos_ets of H in G and there· are 

I G :HI cosets of H in G· by Definition 10.7. So the order of G[l·j is the .index 

of H in G. The second assertion follows from Lagrange's theorem. . 

(2) If G is abelian:. then. ab ·ha for. all a,b E G and Ha.Hb =/lab =flba ·~ 
lfh.Ha forallHa,.flh E Gff/. Thus G/11 is abelian, too. 

. . . 

(3) Assume ~hat G is cyclic, say G = <g>. Then any elcmentx of G is of the . 

. · Jorm gn. where iz E: Z. Hence any coset of II in G is of the' fo~m //.{ =llgn = 
(Jig)~. This shows G/1/ =<Jig>_.· o 

The converses of the claims in Lemma 18.9 are false. The factor group 

. G/11 can be finite (abelian, cyclic) witlu)ut G being finite (abciian. cyclic). 

We close this paragraph with some _examples of factor. groups, 

HL-10. Examples: (a) Let G tic :~group and II= I= 111. ThctJ// ~ (; 

(Exainplc. (8.5(a)); The coscts of II = I the ~ubscts of G ·havinl! nul} om· 

element: 

· If a { l}a = {a} for all a E G 

a\1d n\ultiplication in G /II = G /I is given hy 
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{a}{b} = {ab}. 

The factor group G /1 is governed· by the same operation as G. Thus G /1 is · 

almost the same group as G. The only difference is that the elements of G 

are enclosed within braces in G /1 .. 

(b) Let l be the additive group of integers and let nl = {nz E l : z E l} · 

be the subgroup of l consisting of integers divisible by n. Since l is 

abelian, nl ~ l and l/nl consists of the n cosets 

nl, nl + 1, nl + 2, ... , nl + n - 1 
which are usually abbreviated as 

0,1,2, ... ,-;z-=-'T ' 

(see §6; we write the cosets additively _of course). Thus l /nl = l n as 

sets. 

In the factor group l/nl, the operation is given by 

(nl +a)+ (nl +b)= nl +(a +b) for all a,b E l 

which can be written shortly as 

a+ 0 = 7i"+7J for all a,o E l/nl. 
This is the definition of addition in l ,.· So the operation in l /nl coin­

cides with the operation on l n that we learned in §6. Hence l/nl = l,. as 

(additive) groups. 

We understand the real reason why addition on Z n' as defined in §6, .is a 
well defined operation. It is well defined only because nl ~ l. 

(c) Let G,;, C 12 = <g: g 12 = 1> be a cyclic group of order 12 and let H = < g 3> 

= {1,g3,g6;g9} ~G. Since G is abelian, H ~ G and G/H consists of the cosets 

The multiplication table of G/H is given below. 

II llg llg2 

II H llg llg2 

llg Hg llg2 H 

II g~ Hg2 II llg 
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(d)We know V 4 ~- $4 (Example __ 18.5(g)): The eleqtents_ of S 4!V4 .are 
V 4_. V4 (12), V i13 ), V 4(23), V 4 (123), V 

4
(132) and· the multiplication table of 

SiV4 is 

V~(l23) 

· V~(23) 

v. 
4 

.. 
This is almost identical with with the . m~ltiplf~ation table of S 

3
: 

. (12) (13) (23) (123) (132) 

(12). . (13) (23) (123) (132) 

(12) 

(13) 

(12) (123) (132) (13) (23) 

(13) (132) 

(23) (23) 

(I 23) . (123) 

(132) (132) 

("123) (I32) 

(23) 

(13) 

1(12) 

(23) 

(123) (23) . (12) 

(12) (13) 

(13) (132) 

(12) (123) 

Thus S4 /V 4 is almost the. same group as ~s3 • They are not the _same groups; 

of course, for the underlyitlg ·sets ·are different. Nevertheless, it is clear 
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from the tables above that the operations on S 4 /V 4 and on S 3 are closely 
related. This will be made more precise in §20. 

Exercises 

1. Let H .:;;;; G andlet i... be the set of all left cosets of H in G. We suggest 
that we define a binary' operation on i.. according to the "rule" 

aH.bH=abH 
for all a,b e: q. Show that this operation is well defined if and only if 
H <iQ G. 

2.Let H < G. Prove that H <iQ G if and only if Ha ~ c;H for all a e: G. 

3. Prove. that, if H < G, a e: G -and H a is· a: left coset· of H in G, then H a = a H. 

4. Find a group G, a subgroup H of G, and an element a of G such that 
a-1Ha ~ H but 'a-1Ha ;e H. Why does this not contradict Lemma 18.2? 

5. Let {a,b,c,d} = {1,2,3,4}. Show th!lt, for any cr e: S4 , 

' (ab)(cd)cr = cr(c:cr ,ba )(ca ,da) 
and thus cr-1cxcr e: V4 for all ex e: V~. This proves V4 <iQ S4• Compare with 

§15, Ex. 15. 

6. Find all normal subgroups of S~ (cf. §15, Ex.10). 

7. Find all normal subgroups of SL(2,Z 3). 

• 8. Determine whether the following are normal subgroups in the groups 
indicated. 

{g e: GL(2,R).: det g ;> 5} . in GL(2,R) 

{g e: GL(2,R): det g ;> 0} in GL(2,R) 

{g e: GL(2,R): det g > 0} in GL(2,R) 

{g e: GL(2,C): det g = 1} in GL(2,C) 

{g e: GL(2,C): (det g)18 = 1} in GL(2,C) 
{g e: GL(2,Z

11
): det g::::; T or "3 ·or 4 or "5 or "9} in GL(2,Z

11
). 
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9. Let K be a field. Then K\[0} is a group under multiplication. Suppose U 
is a subgroup of K\{0}.· Pro~e that {g E-GL(2,K): det g e:·:u} ·is a subgroup 
of GL(2,K). ·· 

.10. Let n E N and put 

r {(a b) E SL(2.Z): a_ 5 
l, b ~ 

1
° (rnodn)_ .} • 

,. 'c d . c O,d = 

Detemiine if T >:Q SU,2.Z) . ... 

ll. Let H >:Q G and letHa E G/H. Show that o(Ha) = n (n is a natural 
.. nmnber) ·if and only if n is the smallest natural ~umber such that, x~ E H.· 

. . . ' ·_ 

12. Sh()w_by counterexamples that the converses of the claims in Lemma 
18.9 are ·false . 

. ' / 
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§19 
Product Sets in Groups 

In the preceding paragraph, we introduced a ·multiplication on the set of 
right cosets of a subgroup H of a given group G. This involved selecting 
elements from the cosets to be multiplied. Selecting elements from the 
cosets · is an. artificiai ~tep in this ·coset multiplication. We showed in 
Theorem_ 18.4· that the resulting coset is independent of the elements 
chosen when (and only when) H is a normal subgroup of G .. However, 
this does nor. get rid of the inherent artificiality of the coset multiplica­
tion we studied in §18. A more natural multiplication would treat the 
elements of cosets on equal standing, rather than distinguishing (select~ 

ing) one of them (as in Suggestion 18.1) and then showing (as in Theorem 
18.4) that no injustice to the remaining elements has been commited. We 
introduce in this paragraph a natural multiplication of cosets, and in fact 
more generally of arbitrary nonempty · subsets in a group. The new 
multiplication will coincide with the one of Suggestion 18.1. 

19.1 Definition: Let G be a group. For any nonempty subsets X ,Y .of G, 
the produet set XY is defined to be 

XY = {xy E G: x E X, y E Y}. 

' When X has only one element, say when X ;;:; {x}, we write xY instead of 
{x}Y. Likewise, we write Xy instead of X{y}. This is consistent with the 
definition of cosets (Definition 10.1). 

This multiplication is associative. 

19.2 Lemma: Let G be· a group. For any nonempty subsets X,Y,Z of G, 
there holds (XY)Z ;;:; X(YZ). · 

Proof: This follows from the associativity of multiplication in G: 
(XY)Z :::: {uz E G: u E XY, z E Z} 
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. = {(xy)i e:' G: x e: X,y e: Y, z e: Z] 

= {x(yz) e: G: x e: X,·y e: Y,_z e: Z} 

{xv e: 9: xe: X, v. e: YZ] 

=X(YZ). D 

Using .Lemma 8.3, we may and do drop tlie parentheses in any product 
set. involving more than two subsets. For example, we write XYZUV for 
(XY)(Z(UV)). · 

19.3 Examples: (a) Let H <;; G. As we. have' remarked earlier, H{x} =Hx · 

= {hx: h e: H} is the right .coset of H in G containing x e: G. Analogously, 
{x) H = xH. is the left coset of H that contains X. .. . 

(b) Let G be a group, H <;; G and x e: G. Th~n ~-1Hx = {x"'1hx: he: H) ·(see 

Lemma 18.2). is the product of the sets {x-1 }.,.H, {x}.· 

(c) Let· G be a group· and let X be a nonempty ·subset o( G . Then X X 
consists of all products x 1x2 ,- where x 1 and x2 run through X indepen-

dently. Notice th.at XX~ {x2 e: G:.x e: X) in generaL X is a multiplicatively 

. closed subset of G if and only if XX 1: X. In particular, HH !: H for any 

subgroup H .of G. 

(d) Let G be a group and iet X, Y · be nonempty subsets of G . It foll.ows 

from Definition 19.1 that 
XY = U Xy = U xY. 

yEY . .nx 

(e) Let X {t,(l2)L Y= { r,{13)). Now X andY are subsets of S3. Then XY = 
{ l!,r(l3),(12)r,(12){13)} = {i,(l3),(12),(123)}. Notice that X,Y are supgroups of 

. . . 
S3 , but XY is not. So the product of two subgroups is not necessarily- a 

subgroup. 

(f) Let X= {r,(l3)} and V4_= {t,{l2)(34),(l3)(24),(14)(23)}. Then X<;; S
4 

and 

V
4 

<Q S4 (Example 18.10(d)). Here.XV4 
= { ll,r(l2)(34 ),r(13)(24 ),r(l4 )(23),( 13 )r,(l3)( 12)(34),( 13 )(13)(24 )~( 13 )( 1.4 )(23) l 

• •.1 ' • ' • 

= ·{ 1,(12)(34),( 13)(24 ),(14)(23),( 13),(1432),(24 ),(1234)} 

is easily seen to be closed_ unaer multiplication, hence X V4 is a s~hgroup 

of S4 (Le_!Oma 9.3(2)), but not a normal subgroup of S4 , for (13) e: X\·~ hut 
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(12f1(13)(12) = (23) i! XV4 (Lemma 18.2(1)). We see that the product of 
two subgroups is not necessarily a normal subgroup even if one of the 
factors is . a normal subgroup. 

In Example 19.3(f) above, it is easy to see X V4 = V 4X. This is the basic 
reason why X V4 turns out to be a subgroup of S4 . The next lemma 
describes the situation. 

19.4 Lemma: Let H ~ G and K < G . 
(1) HK ~ G if and only if HK = KH. 
·(2) If H <.1 G or H <.1 G; then HK ~ G. 
(3) If H ~ G and H ~ G, then HK <.1 G. 

Proof: Before we present the proof, it will be worthwhile to discuss the 
equation HK = KH .. What does it mean? Well, HK and KH are subsets of G 
and equality of them is equivalent to the inclusions 

HK!:;;KH and KH!:;;; HK. 

The first inclusion means, for any h e: · H and k e: K, the element hk ofG 
belongs to K H, so that there are k1 e: K and h 1 e: H such _that hk = ki h

1
. 

Similarly, the second inclusion means, for any k e: K and h e: H, there are 
h2 e: H and k2 e: K such. that kh = h2k2• 

H K = KH ·does not mean that hk = kh for all h e: H ,k e: K. Of course, if hk 

kh for all h e: H ,k e: K, then trivially H K = K H. However, it does not follow 
fmm HK = KH that hk;;;;; kh for all he: H,k e: K. From HK;;;;; KH, it follows 
only that, for any h e: H ,k e: K, .there are k1 E K, hi E H and li2 e: H, k

2 
E K 

such that hk = k1 hi and kh ;;;;; h2k2• 

I 

Now' the proof. 

(1) We are to show: (a) if HK = KH, then HK ~ G; and (b) if HK ~ G, then 
HK=KH. 

(a) Suppose first HK = KH. We prove that HK is closed under multiplica­
tion and the forming of inverses (Lemma 9.2). 
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· (i) If HK .KH, then HK:.HK = H.KH.k = H.HKX F HH.KK ~HK arid 
so i-1 K is closed under multiplication (see Example 19.3(c)). If you are 
not satisfied with this demonstration, here is another. Let x,y E H K, say 
x = hk, y· = h1 k 1 with h,h 1 E H and k;k1 __ e: K. We wish to. show ~(y E H K. 

Nowxy=hk.h1k 1 =h.kh1.k1 and kh1 E KH-=HK by hypothesis, so kh1 ··,;, 

h2k2 'for some hi eH, ~ E K. So xy = h.kh1 :k1 = 'h.h2k2 .k1 = h 17_.k2k 1 E H K 

since h k,z. E H and k2k1 e: K as H -< G and K -< G. Thus H K is closed under 

multiplication .. 

. (ii) Let x e: HK, say x·= hk with hE. H, k E K:we are to show 
that x-1 e HK. We have _t-t = (h~r1 = k-Jij-J _£ KH = HK, because k-i e K .and 
h -J E H its K and H are subgroups of G. So H K is Clo~ed under the forming 

of inverses. 

This. proves that H K -< G whenever H -< G, K < G and H K = KH. · · 

(b) Now suppose H < G, K < G- and HK-< 9· We want to show HK = KH, · 

that is, H K !:::. K H anq K H ~ H K. These inclusions follow from the fact . that 
HK is ·closed ~nder taking inverses . .Indeed: if x E H K, then x-1 E H K, say 
x-1 = hk with h e H, k e K. Then x_ =·(hkr1 = k-th-1 e KH. s~ HK!:::. KH. The 
other inclusion. is proved in the· same way. ~ 

This ·proves that H <· G, K-< G and HK < .G implies HK =KH. ·. 
The proof. of (1) is complete. 

(2) We suppose fl ..;! G, K-< G and prove that H K . G. According to part 
{1 ), it suffices to show H K K H ~ First we prove H K !: K H. Let II E fi. k E K. 

Then k-1hk'£ Hsince H ~ G(Lemma' 18.2(1))_and hk ·k.k-1hk E KH. This· 
proves flK!:::. KH. Now we prove KH!;;; HK; For any hE ·H, k E K, we have 
khk-1 E H since H..;! G and thus kh = k/zk": 1.k E HK and K/1 !:::.IlK. 

Tlierefore HK = KH andHK .G .. 

The proof of HK-< G under the hypotheses H-< G, K <Q G foll<lws similar 
lines and is left to the reader. · 

(3) We now assume H <Q G, K q G. From part (2), we get HK < G. We arc 
to show" HK ~ G. To do that, we prove g-1xg E HK for:all g' £ G,·x E if K 

(Lemma 18:2(1)). For any x E HK, there are hE /1, k £ K with .t hk and 
g-1xg = g-1/zkg = g~1 hg.g-1kg E HK since g-1hg E H and g-1kg E K as· II .:.Q G 
and K .:.Q G. Hence HK <Q·G. 
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This completes the proof. D 

In Lemma 19.4(3), it would not be ~nough to prove that g-1xg E HK for all 
g E.G,_x E HK. It is necessary to show HK < G also. Generally speaking;· 
"A <Q_ B" summarizes two conditions on A. and B: that A is a subgroup of 

-B and 'that A is normal in B. We must check both of them whenever we 
want to show A <Q B. 

We turn our attention to the product of two right cosets. The product of 
two right cosets, as in Definition 19.1, is a _subset of the group under 

·discussion. When is it a right coset? The next lemma gives the answer. 

19.5 Lemma: Let H < G. The product of arbitrary right cosets of H in G, 
according to Definition 1'9 .1, is always a right coset of H in G if and only if 
H~G. 

Proof: The product of Ha and Hb (where a,b E G) is 
' . 

and ab -= lalb E HaHb. Thus HaHb is a right coset of H in G if and only if 
it is the right coset of H in G to which ab belongs: 

H is the right coset of H in G -~ HaHb = Hab. 

We show that HaHb ""Hab for all a,b E G if and only if H <Q G. 

If H <Q G, then HaHb ""Hab for all a,b E G. Indeed, if H ~ G, then aH ""Ha 
for all a E G (Lemma 18.2(4)), and, for any a,b E G, we have 

Halfb = H.aH.b H Ha.b = HH.ab = Hab. 

Here we use HH H, which follows from HH !: H (Example 19.3(c)) and 
H= 1H~HH. 

Conversely, assume HaHb = Hab for all a,b E G. Then 
HaH = (HaH)(bb-1) ""(HaHb)b-1 = (Hab)b-1 = (Ha)bb-1 ""Ha 

HaH=Ha 
aH 1afl!: HaH Ha 

and so aH !: Ha for all a E G'. From Lemma 18.2(5), we obtain H ,<Q .G o 
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,The product of any two right cosets of H .;;;; ,G, as in Suggestion 18.1, is" 
always a right coset of · H, pr~vided this multiplication is well defined, 

and it is well defined if. and only if H <(! G: On. the other hand;}~e 

product of any two right cosets of H .;;;; G, as in Defi,nition 19.1, is always a 

definite subset of_ G, but ~his subset is a nght''coset of H if and .only if H, 
<Q G:. The relation H aH b = H ab ~n the. proof of Lemma 19.5 shows that 

these two multiplications are identical when H <Q G. 

We know that H K is not necessarily a subgroup of q even if H .;;;; G, K.;;;; Cj. 
It is a subsef of G. We ·now determine the number of elements in it. 

19.6 Lemma:. Let H,K.;;;; G and' assume that Hand K are finite. Then l!K 

. i.~ a finite subset of G, whose cardinality is given by 

iHKi = iHIIKI 
, IH n Kl 

Proof: We list all products hk, where Jz .and k run through H and K, 

respec,tively. In this way, we get IHIIKI· elements of G. These are the 

elements of HK. Nai'vely, we expect IHKito be equal to IHiiKi, but there 

may be repetitions in ,our list: the same element of H K may ·be written 

more than once. We have to keep account -of repetitions. We show that 

each of the IHIIKI products hk appears exactly n times· .in our list, where 

,n := IH n Kl. Thus there are iHiiKI!n distinct elements in the list and IIIKI = 

I HII Klitz. In other words,. the mapping 

.cp:HxK-HK 

(h,k)--+ lzk 

is an n-to-one mapping. By this, we ~nderstand that exactly 11 clements 

in the domain H x K have the same image under cp • . 

To prove that cp is ann-to-one mapping; let us investigate when we have 

f.h 1 ,k 1 )cp = (h 2,k2)cp. Well, (h 1 ,k 1 )cp = (h 2,k 2)cp it' and only if h / 1 = · h l 2 and 

therefore if and only if h 1 ~ 1 /z 2 =k 1k2-
1 =s belongs to II n K. Thus (/z 1,k 1 l 

and (/z
2

,k
2

) have the same image under cp i~ and only if /z 2 = lz 1 s and 
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k2 = s -1k1 for somes € H n K. Denoting by 1 = s 1,s2 , ••• ,s" then= !H n Kl 
elements of H n K, we conclude that the n ordered pairs. 

(h 1 ,k1 ),(h 1 s2,s 2 -lk 1 ),(h 1 s3 ,s 3 '"
1k 1 ), ••• ,(h 1 s n's" -lk 1) 

and only these ordered pairs have the image h 1 k 1 under cp. This proves 

that cp is indeed n-to-one, and' consequently 

IHKI = IHIIKI . 
IH n Ki 

Exercises 

1. Let X ,Y be arbitrary nonempty subsets of a group G and let' g be an 
arbitrary element of G. Prove the f91lowing equivalences. 

Xk Y 

X=Y 

X=gY 

~ gXk gY 

~ gX gY 

~ g-1x Y. 

~ 8-1xg k g-1Yg; 

~ Xg = Yg ~ g-1Xg = g-1Yg; 

2. Let H ,K be subgroups of a group G. Assume that G is finite, IHI ;;;. ,J ]Q 
and IKI ;;;. ..JTG1. Pr;ve that H n K;;: 1. 

3. Let A ,B ,C be subgroups of a group G, with A < C. Prove that 
A(B n C)= AB n C. 

4. Let H ,K be subgroups of a group G and let g € G. Prove that 

iHgKI 
IHIIKl 

(A subset of the form HgK is called a double coset.) 
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§20 
Group Homomorphisms 

In Example 18.10(d), we . have observed that the groups S4/V4 and; s3 
have almost ·the same multiplication table. They have the same struc-

ture. In this paragraph7_ we study groups with the same structure. 
' ' 

20.1 Definition: Let G and G 1 be gr~ups and let cp: G .:..... G 1 be a mapping 

from G into G1• If 
(ab)rp =arp.brp foralla;b e: G, 

the:n cp is called a (group) homom_orphism. 

The equation (ab )cp = arp .brp is paraphrased by saying that cp preserves 

multiplication or that, cp preserves, products .. Loosely speaking, a homo~ 
morphism is a mapping under which the image of a .product is· the 
product of the images. 

Here "products" might refer to different operations. For a ,b e: G, the 

product ab E G is clearly the result of the binary operation of the grqup 

G. whereas acp,brp e: G1 and arp.bcp E G1 is the result of the· binary operation 

of the group G 1• This is implicit jn the equation (ab)rp = arp.bcp which doc's 

~ot make any sense unless ab is the product of a ,b in G and arp .hrp is the 

product o(arp,brp in G1• 

More precisely, if" is the binary operation on G and if * is the binary 

operation on Gl' then rp: G-+ G1 Is a homomorphism provided 

(a ob)cp acp * brp for all a,b E G. 

20.2 Examples: (a) One homomorphism ts very well known to the 

reader. It is the logarithm function 

lo;:: iJ:r Ill: 
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from the group W of positive real numbers (under multiplication) into 
the group IR of all real ·numbers (under addition). The homomorphism 
property of the logarithm function is the well known identity 

log ab ;;:: log a + log b 

that holds for all a,b e: W. 

(b) The ·determinant mapping 
del: GL(2,0)- 0\(0} 

is a homomorphism from GL(2,0) into the group of nonzero rational 
numbers under multiplication, for 

del AB ;;; (det A)(det B) 

for all A,B E aL(2,0) by Theorem 17.9(1). The same thing is true for the 
mapping det: GL(2,K)-+ K\{0), where I( is any .arbitrary field. 

(c) The sign mapping 
e:Sn-+ (1,-1} 

is ·a homomorphism from S n into the multiplicative group { 1,-1} since 
e( cnr) = e( cr )€('n) 

for all cr ,rr E s/1 by Theorem 16.7. 

(d) The absolute value function 
rp:.IR\{0} -. W· 

a ..... Ia I 
is a homomorphism from the group of all nonzero real numbers (under 
multiplication) into the group of positive real numbers (under multi­
plication) since 

(ab)<Jl = labl = lallbl = a<pb<p 

for all a,b E IR\{ 0}. 

(e) The signum function 
sgn: IR\{0}-. {1,-1} 

{ 
1 if x is positive 

x- -1 if x is negative 

is a homomorphism from the group of nonzero real numbers into the 
group {1,-1} . 

. 

(f) ~et G be a group. Then the identity mapping 
1:G-G 

is a homomorphism from G into G since 
(ab)r = ab = arbr 



for all a~b E G. More' generally, let H be a subgroup of G. and let 

11:H- G 
h- h 

be the inclusion mapping (Example 3.2(a)). Then 

(ab)Jl = ab = a11bll 

for all a,b E H. Hen~e 11 is a homom<;>rphism. BoJh- 1 and !i are one-to-one 

homomorphisms. 

(g) Let q>: G- G
1 

be a group homomorphism arid let H ~ G. Then the 

restriction 
<i>u: H _. Gt 

of q> to H (Example 3.2(i)) i~ a homomorphisn:f from H into G 1 since 
(ab)~-11 = (ab)q> = (a)q>(b)ip = (a)q> 11(b)q> 11 

for all a,b E H. 

20.3 Lemma: Letq>: G.- G1 be a homomorplzi~m of groups. 

(I) Iq> = l. . 
(2) (a-1)q> = (aq>r1 for all a E G:. 
(3) (a 1a2 • •• an)q> = (a 1<i>)(a 2q>) ..• (anq>) for all a1,a2, ••• ,an E G, n.E N, n ~ 2. 

(4) (an)q> = (aq>tfor all a E G, n E-:l. 

· (5) If o(aq>) '= ro, :then o(a) = ro. If o(a) = n E N, then o(aq>) divides n; in 
particular, o(aq>) ~ o(a) . . 

. 
Proof: (I) Here we use the same symbol "I" ~ith two 'different meanings. 

In "1 q> ", I is the· identity element of the group G .. On the right hand side,· I 

is the identity element· of the group G 1., A more accurate way of writing· 

the claim is 

(IG)q> = lGt• 

where 1 G is the ide~ti.ty element of G and IG 
1 

is that ·of G 1. ·For the homo­

morphisms in Examples·. 20.2(a)-(e), the assertion means 

log I = 0; dei -(~ ~} = 1; z is an even permutation; Ill = I; 1 is positive 

.respectively. 
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The. proof is easy. We have I'll (l.l)qJ = lqJ.1(!), hence l<p is the identity of G1 
by Lemma 7.3(1). One can also use a(!) I(!)= (a1)(!) = aql with some a E: G to 

conclude 1(!) = 1. 

(2) For any a E: G, we have a(J)(a-1<p) = (aa-1 )cp lcp = I = (aqJ )(a<p r 1, hence 
a-1rp = (a<pr1. 

(3) We make induction on n. The case n = 2 is covered by the very defi­

nition of a homomorphism. Supposing the claim to be true for n = k, i.e., 
supposing (a 1a2 • .. aj)'P = (a 1cp)(a2cp) ... (ak'll) for all at,a2, ••. ,ak E: G, we get 

(ata2 ... akak+t)lp = ((ata2 ... ak)a~+I)(J) 
= (ata2' .. ak.)qJ(ak+t)qJ 

. = (at'll)(azcp) ... (akcp)(ak+t)<p 

:md the claim is true for n k + I. Hence it is true for all·n E: f{, n ;:;;:. 2. 

(4) We prove (a 11)cp = (a'll) 11 for all a E G.n e: l. If n > 0, this follows from 
(3) when we take at :::;: a 2 · · · · = a

11 
=a. If n 0, this follows from (3) 

when we take at a 2 ... a
11

=a-1. Ifn = 0, the claim is proved in (I). 

(5) Suppose o(acp) co. If o(a) were a natural number m, then we would 
obtain am= 1, so (acp)m (am)cp = 1cp = 1 and acp would be of finite order by 
Lemma 11.4, a contradiction. Thus o(acp)·= co implies o(a) =co. 

Suppose o(a) = n € N. Then a11 = 1 and (a'll)ll = (a11)cp = 1<p = 1, so o(acp) In by 
Lemma 11.4 and Lemma 11.6. 0· 

Next we show that composition of homomorphisms is also a homo­
morphism. 

20.4 Theorem: Let cp; G-- G 1 and IJ): Gt-- G2 be group homomorphisms. 

Then the composition mapping 

is a homomorphism from G into G2' 
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Proof: We are to show that (ab)qnp = (a)qnp.(b)cpiP for all a,b E G. This 

follows immediately: 

(ab )cp IP ((ab)cp )IP 

= ( a<P .bcp )IP 
:; (acp )IP.(bcp )IP 

= (a)cpiP.(b)cpiP 

(definition of <PIP) 

(cp .is a homomorphism) 
(IP. is a homomorphism) 

· (definition of cp!jJ) 

for all.a,b € G. Hence 'PIP is indeed a homomorphism. 

20.5 Definition: Let cp_: G- G 1 be a group hom~morphism. The set 

0 

of all images (under. cp) of the elements of G is called the iniage of cp and 

is denoted by Im cp or by Gcp_. The set 

{a E G: aqJ = l} 

of all elements of the- doinain G that are mapped to the identity of the 

range group G 
1 

is called the kernel of p and is written as K e r cp. 

Thus Im cps;; G
1 

and Ker cps;; G. It is immediate from the definition 'of lm ~ 

that I m cp ,: 0, for G ,: 0. Also, I 1 G E. K e r cp 'by Lemma 20.3( I ). so K e r rp ;;r 

0. We prove ~ow that lm cp·is a·subgroup·of G
1

.and that Ker rp is a 
subgroup of G. In fact, K e r cp is a normal subgroup_ of G. This is a very 

· import_arit fact. 

20.6 Theorem: Let cp: G- Grhe a group homomorphism. Then 
lm rp ..;;;; G1 and Ker cp G. 

Proof: First we prove I m cp ..;;;; G 1• We. know I m rp ;;r 0. We usc our sub­

group criterion (Lemma 9.2). 

(i) L~t x,y € '1m cp. We arc to show xy € lm cp. Now x,y C.lm ·p 

means x =acp,y brp for s·omc a,h€ G. Then xy = (wp)(bcp) = (<ih)iJ is the 
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image (under cp) of an element in G, namely of ab E G. So xy E I m cp and 
I m cp is closed under- multiplication. 

(ii) Let x E lin cp. We are to show .x-1 E Im cp. Now .x E Im cp 

means X ~ acp for "some a E G. Then x-:' = (acp r'· = a-1cp is the image (under 
cp) of an element in G, namely of a-1 E G.·Sox-1 E Im cp. and Im cp is closed 

under taking. inverses. 

Thus Im cp < G
1

• 

Now we prove Ker cp -"'J G. First Ker cp < G. We -!cnow Ker cp?! 0. Compare . 
the following with the proof of Theore~ 17 .12. 

(i) For any a,b E Ker cp, we have acp = 1 = bcp, so (ab)cp = (arp)(bcp) · 

=).1 = 1 and ab E Ker cp. Thus Ker cp is closed under multiplication. 

(ii) For any a E Ker cp, we have a.cp = 1, so a-1cp = (acp)-1 = 1-1 = 1 
and a-1 E Ker cp. Thus Ker cp is closed under taking inverses. 

-Therefore Ker cp < G. Now we prove that Ker cp is a normal subgroup of G. 
Compare ~he following with Example 18.50). . 

We must show that g-1kg E Ker cp for any g E G, k E Ker cp (Lemma 

18.2(1)). This is easy: if k E Ker cp, then kcp = 1 and, for any g E G, 
· (g-'kg)cp,;, {g-'cp )(kcp )(gcp) = (gcp r'.Lgcp = 1, 

so g-1kg E Ker cp. Thus Ker cp ~ G. o· 

The elements of a group which have the same image under a homo­
morphism make up a coset of the kernel of that homomorphism. 

20.7 Lemma: Let IP: G _,. G1 be a group homomorphism. For any a,b E G, 

· there holds acp = bcp if and only if (Ker cp )a = (Ker cp )b. 

Proof: Let a,b € G. Then acp = bcp if and only if 

(acp)(bcpf1 = 1, 
(acp )(b-1cp) = 1, 

(ab-1)cp = 1, 
ab-1 E Ker cp, 
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(Ker.tp)a = (Kertp)b 

by Lemma 10.2(5). 

Since Ker· IP <Q G by Theorem 20.6, we alsohave a(K~r tp) = {b e: G: brp =arp}. 

Alternatively, one may prove a _lemma analogous to Lemma 20.7, ·stating. 

th_at a and b have the same image under rp if and only if the left cosets 

a(Ker cp) and b(Ker cp). are equal, and combine it Lemma 20.7 to get 
a(Ker tp) = (Kei cp,)a, thereby proving Ker rp <Q G anew. .. . 

It follows from Lemma 20.7 that rp is a one-to-one homomorphism. if and 

only if Ker cp has only one element. We give a direct proof of this. 

20.8 · Tlieorcm: Let rp: G...:. G1 be a· group homomorphism. Then rp is one­

to-one if and only if Ker rp = L . 

Proof: Here ·1 is the trivial subgroup of G (Example l8.5(a)). We prove cp 

is not one-to-one _if and only if Ker 4> >F 1. 

If rp is ~ot one-to-one, then there ure .a,b e: G with a~ =::= brp and a ;:! .. b. We 

obtain then 1 = acp.(arp)-1 = arp.(hrpr1 = arp.b-1cp := (ab~i)cp, with ab-1 ;:! 1. Thus 

I ;:!ab~1 e: Ker~ ~tnd Kercp ;c· 1. 

Conversely; if Ker cp;:! 1, then there is an a e: Ker cp with.·a;:! 1. Then we· 

have acp = I = ltp_ and a ;:! 1. So If> is not one-to-one. 0 

We can deteni1ine .· whether a homomorpl1isn1 is one-to-om~. by _cxamin­

in~ its kernel. A homomorphism cp is one-to-one if and .only if'K er IP = I. 

A I so, we can determine whether a homomorphism is onto by examining 

its image. A homomorphism If>. is onto if and only if lm cp. is. the whole 

range. Homomorphisms. which arc both one-to-one and onto will have a 

name. 

20.9 Definition: -A group homomorphism cp: G- G~ is called an iso­

morphism :if it _is one-toconc and onto. If· there is an isomorpl{ism from 
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G onto G 1, we say · G is isomorphic to G1, and write G eo G 1. If G is not 

isomorphic to Gl' we write G ;<! G I" 

20.10 Examples: (a) The logarithm function is well known to be a one­
to-one function onto the set of real numbers. Thus 

log: ~R:• _,. R 

is an isomorphism. 

(b ~ For any group G, the identity mapping 
z: G _,. G 

is an isomorphism. 

(c) Let G be a group. Then 
<p: G _,. G/1 

g _,. {g} 

is. an isomorphism from G onto G/1 (see Example 18.lO(a)). Thus G eo G/1. 

(d) The mapping 

<p: S3 _,. SiV4 
a_,. V

4
cr 

(where, on the right' hand side, a is the permutation in S 4 ' that ·fixes 4 

and maps 1 ,2,3 as cr E S 
3 

does) is an homo11Jorphism. This is evident from 

the 'tables in Example 18.10(d). Also, 9 is clearly one-to-one and ·onto. So 
<p is an isomorphism and S 3 eo S iV 4 • 

An isomorphism, being one-to~one and onto, has an inverse mapping. It 
is natural to ask if the inverse of an isomorphism is an isomorphism. 
Also, is it true that composition of· two isomorphisms is an isomorphism? 

20.11 Lemma: Let <p: G- G1 and 1p: G1 ._ G2 be group isom.orphisms. 

(1) The composition <plp: G _,. G2 is an isomorphism from G onto G2• 

(2) The inverse <p-1: G1 _,. G of <p is an isomorphism from G
1 

onto G. 

· Proof: (1) The composition <plp is a homomorphtsm by Theorem 20.4. It is 

one-to-one and onto by Theorem 3.13 .. So <plp is an isomorphism. 
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(2) For any x;y E Gi, we must show (U)rp-1 = xrp-1.yrp-1• Since rp is onto, 

there are a,b E G such that·. arp = x and brp = y. Now a and b are unique 
with this property, for rp is one-to-one, and a= xrp-1, b yrp-1• This is th.e 

9efinition of the inverse mapping. Since rp is a homomorphism, we have 

(ab)rp arp.brp = xy 

Hence, by defiqition of rp-1, we get ab = (xy)rp-1• Thus 

(xy)rp-1 = ab = xrp""1.yrp-1 

and this holds for all x,y E G 1• So rp-1:G1 ~ G is a homomorphism. As it is 

one-to-one and onto by Theorem-._3.17(1), rp-1 is an isomorphism.· o · 

From Example 20.1 O(b) and Lemma 20.11, we see that 
c=.c 

ifG=GI' then G1 =.c . 
. ifG=.·c,and G1 =.c2, then c=.c

2
. 

for any grouP,s c,q.~. We are tempted to ~say that =. is ·an equivalence 

relation on the set of all groups. It is true irideed that =. is an equival­
_ence ~elation, but we must avoid the phrase "the set of all groups". Tliis 
phrase leads to logical difficulties: For more information about this point ... 
the reader is referred to the appendix. 

. -

Since G =. G1 implies G1 ~ G, it is legitimate to say d and G 
1 

are isomorphi~ 
when G is isomorphic to G 1• 

We are not interested in the nllturc of the elements ·in a group. The 

essential thing is the algebraic structure of the group. If G =. G I' then any 
algebraic property of G is .immediate! y carried over to G 

1
• For this reason. 

we do not distinguish between isomorphic groups. For example. :my two 

cyclic groups of the same order arc easily seen to· be isomorphic. By 

abuse of _language, we call any cyclic group of order n E N the cyclic 
··group· of order n; and write C n for it. Likewise, any two dihedral groups 

of order 2n are isomorphic, and we speak of the dihedral :_group of order 

2n; and write D 2n for it. . 

We saw in Theorem 20.6 that the kernel of any honHJI:norphism is a 

riormal subgroup of ·the domain .. We show now conversely that any 
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normal subgroup of G is the kernel of some homomorphism from G. Into 
which group? Since we are given only a normal subgroup of G, the only· 
range group that we can construct out of G and its normal ~ubgroup is 
the factor group with respect to that normal subgroup. 

20;12 Theorem: Let N ~ G. Then the mapping 

v:G.- GIN. 
a-+ Na 

is a homomorphism. It is onto GIN and ~er v = N. 

Proof: vis a homomorphism, for (ab)v = N(ab) = Na.Nb = av.bv for all a,b 
in G, by the very definition- of multiplication in GIN.· Obviously, any 
element N a of GIN is the image of a E G under v, so v is onto. Finally. 

Ker v = {a E G: av =identity of GIN} 
= {a E G: av = Nl} 

. ={a E G:Na=N} 

= {a E G: a E N} . (Lemma 10.2(2)) 
=M· o 

20.13 Definition: Let N <:J G. The-mapping v: G -+.G/N is called the 
a-+ Na 

natural (or canonical) homomorphism from G onto GIN. 

20.14 Theorem: Let N ~ G. Then there is a homomorphism rp: G-+ G1 

with Ker rp =!'f. 

Proof: N is the kernel of the natural homomorphism v:·G-+ GIN by 
·Theorem 20.12. o 

The coincidence of kernels with normal subgroups shows . that normal 
subgroups, factor groups and homomorphisms are closely related. The­
orem 20.12 describes the relation between N <I G, GIN . and the natural 
homomorphism v: G -+ GIN. We prove next. that ally homomorphism rpis 
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connected in the same way to'. Kercp arid G/Ker cp as v is connected to N 
_ and G /N. This is· done by showing that cp . is· essentially a· natural homo~ 

morphism·. 

. . 

20.15 Theo~e"!. (VundamentaJ theorem on homotn.orphisms): Let.. 
cp: .G- G1be a. homomorphism: of groups; Let-N= Kei: !fl)~whfcb iS . 
in. G by. .. TheQrem .20~6. and· let v·: (;, 4' GfN'b.e; tlie<associate.d: natural 

. . . ___ - - . _ . . : . · · · -_- _- ... ,- -. · r - ···._- . . 1 .- • 

ltomoritorphism. · · ~ · ' · -
- "'\ - . - ·- ' .. -- -._-. . I .· ~ - -. ~,- ~· . , . - ' 

. Then· tliere'·is ·a omHo-i:me. hoinomorJ1,hism·1jl.::Cf/N.~ ~i~·~uc!J tfiat .y,i~,~~'; 
. ' ~ . -. . . - -·' :· - . . .- . " . ' .,. ' 

· {This tlle()r~m- .may be sumr~rarized · in a diagram~···The' liypothesis:;is th~>· 
. diagram (a) below~.The daim is that there. is a one~to-one homon1orp~:. ' . 

ism y such that both paths from G' to;G 1 (vII'· and q>) in> diagram Jb}- tia~e. · 
the same effect; 

GIN · GIN 

v/ 
G Gl 

(a) (b) 

The equation v tp = cp can be regarded as a fact.orization of cp. Since the 
path vtppasses through GIKercp, wesay cpfactors throughG/Kercp.l 

Proof: We must find a suitable tp: GIN- G1• We want cp = vtp, so that acp 

a(vtp) = (av)tp (Na)tp. So we defirie ' 

tp: GIN- G
1 

Na: acp 

In order to find the image of any coset of N under tp, we have to choose 

an element a. from that coset, which can be· done; ge~erally speaking. in 
many ways. So we have to make sure that tp is a well defined function. 
Thus we have to show 

for all a,b € G, Na = Nb .· => (Na)ljl :::-JN_h)tp. 
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From the definition of N = K er rp and of 1ji, we see that this implication is 

equivalent to 

for all a,b € G, (Ker cp)a = (Ker rp)b => arp = bcp, 

and this is true by Lemma 20.7. Thus tp is indeed a well defined mapping. 

tp is a homomorphism. This is verified 
? 

(Na.Nb)tp : (Na)tp.(Nb)tp 
? 

(Nab)tp : (Na)tp.(Nb)tp 
? 

_ (a b )cp = arp .bcp 

easily: 

for all a,b € G 

for all a,b € G 

for all a,b € G 

Since rp is a homomorphism, the last line ~is true. Hence tp is a homo­
morphism. 

tp is one-to~one. To prove this, we need only show K er tp = (N} (see 

Theorem 20.8; N is the identity of GIN). We observe 

Ker tp = (Na € G/N: (Na)tp = 1 = 10 } 
I 

= (Na € G/N: acp = 1} 
= (Na € G/N: a E Kerrp} 
= (Na € G/N: a EN} 

:::: (N} 

by· Lemma 1 0.2(2) and tp is one-to-one. 

F~om the definition of 19, we have a( vtp) = (a v )19 = (N a )19 arp for all a € G, 
SO Vtp = rp. 

This completes the proof. 

20.16 Theorem:Let rp: G-+ G1 be a group homomorphism. Then 

G/Ker cp ~ Im rp. 

0 

In more detail: there is an isomorphis,"n rp': G/Ker rp-+ lm rp.siu;h that vrp'J.I 

= rp, where v: G-> G/Ker rp is the natural homomorphism and 11: lm rp-> G
1 

~ . . . 
is the inclusion homomorphism (Example 20.2(f)) . .This means that the 
diagram 
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G _j> q 
v l t 11 

·c;Kercp lm cp 
. I 

can be. so completed with a Jiomomorphism cp' that both paths vcp '11 and cp 

G ._j> q 
'vl. t11 

G/Kercp·-2. lmcp 

have the same effect. 

Proof: We use t~e homomorphism lj): G/N ___: G 1 of Theorem 20.15, where 

N = Ker cp. Obviously, 

1m lj) = {(Na)lj): Na E G/N} = {acp: a E G} = lm cp 

and since lj) .is o!le-to-one; JP is an isomorphism f~om G IKe r·-cp onto I m lj) = 
I m cp. We observe 

a(vljlll) = (av)(ljlll) = (Na)(ljlll) = ((Na)lj))ll = (acp)11 = acp 
for all a E G, as 11 maps any element of lm.cp ·to itself. Hence Vlj)ll = cp. The 

theorem follows when we write cp' in place of lj). o 

According to Theorem 20.16, aoy homomorphism cp: G-+ G
1 

is factored "· 

into, three homomorphisms v,cp ',11: 

G .:!.. G/Ker cp ~ Im cp -~· G
1 

where (a) .Vis onto G/Ker cp; (b) cp' is one-to-one and onto Im cp and (c) iJ 

is one-tq-one. So vcp' is onto and cp'11 is one-to-one (Theorem .3.11). lienee .. 

if cp fails to be onto, it is only due to the fact that 11 is not milo. Also. ii" cp 

fails to be one-to-one,· it is .only due to the fact that v is not one-.to-onc. . . . . . 

We see_ that any . homomorphism cp is essentially an isomorph_isrn cp ·. 

"diluted'; by a natural· homomorphism which (event~aly) accounts for its. 

failure to be one~to-one and by. an incl'usion Tllapping which (evcntualy) 

accounts for its failure to be onto. In fact, cp is one-to-one if and only if 

the associated natural_homom~rphism v:G -+cG/Ker cp is onc-to~or!c and rp 

is onto if and only if the associated inclusion mapping· 11: lm cp ~ (; 1 is 

onto. 
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20.17 Examples: (a) Let <a> = {a 11
: n e: l) be a cyclic group. The 

mapping 

is a homomorphism from the additive group l into <a>, because 

for all m,n e: l. From Theorem 20.16, we obtain 

l/Ker 1j):::: lm 1j). 

The homomorphism 1j) is onto by definition of <a>, hence lm.1j) =<a> arid 

l/Ker 1j):::: <a>. 

We see that any cyclic group is isomorphic to a factor group of Z. In 
order to get more information, we distinguish two cases, where <a> has 
finite or infinite order. 

First suppose that <a> has finite order k e: N .. Then o(a) = k and 

Ker 1j) = {n e: l: n1j) = 1 = a0) 

= { n E Z: a 11 = 1 ) 
= {n e: Z: o(a)ln} (Lemma 11.6) 
=kZ. 

Thus l/kZ ::::<a>. We see that any cyclic group of order k is isomorphic 
to Z/kZ. ,Consequently. any two cyclic groups of order k are isomorphic 
to each other. For this reason, we speak of the cyclic group of order k. 

In the second case, suppose <a> has infinite order. Then 

Ker 1j) {n-e: l: n1j) = 1 = a0} 

(ne:Z:a11 =1} 

(0} (Lemma 11.5) 

and so Z/{0} ::::<a>. From Z/(0} :::: Z (Example 20.10(c)), we infer l:::: <a>. 
We see that ~ny infinite cyclic group is isomorphic to Z. Consequently, 
any two cyclic groups of infinite order are isomorphic. For_ this reason, 
we speak of the infinite cyclic group. 
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(b) The determinant homomorphism (Example 20.2(b)) 

· det: GL(2,Q)-+ Q\{0} 

· (a 0) is onto Q\{0}, because any a E Q\{0} is the_ determinant of 0 I in 

GL(2,Q). Thus 1m det = Q\{0). Also 

ker, det = {A E GL(2;0): det A. I) :::: SL(2,Q).· 

Fr9m Theorem 20.16, we obtain 

. In the same way, 

for any field K: 

GL(2,0)/SL(2,Q): Q\{0}. 

GL(2,K)/SL(2,K): K\{0} 

(c) The sign homomorphism 

is onto c2 when n ;;;;..· 2, because E(l) = I and ~:((12)) =-I. Hence Jm E = c2. 

As K er E · { o E S : ~:( o) = I} = A by definition, the relation · · 
n . n . 

yields 

(d) Consider the absolute value homomorphism 

<p: ~\{0} _,. IR'" 
a -+ lal 

Here lm <p = {lal: a.E ~\{0}} = ui and Ker <p = {a € ~\{0): lal = 1} = { 1,-1} = 
C2• Thus 

S/Ker<p=/m<p n . 

gives 

(e) The mapping 

. <p:~--+C\{0}_ 
X -+ e2rrxi 

ts a homomorphism from the additive group IR into C\{ 0}: 
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(x + y)q> = e2"(ny)i = e2".tie2"yi = X<p .y<p 

for all x,y E ~.We have ~/Ker q> ~ lm <p. The reader may verify that 

As for the kernel, 

Thus 

lm q> {z E IC: lzl = 1). 

Ker <p = {x € ~: e2"xi = l} 
= {x E ~: cos2rrx + isin2rrx=·1} 
= {x € R: cos 2rrx = 1-; sin2rr X = 0} . 

z. 

'f~J..Jl ~{zEIC:Izl=1), 

where ~'/Z is an additive, the right hand side is a multiplicative group. 

Exercises 

1. Show that the mapping exp: ~ IR" is an isomorphism. 
- . 

2. Determine whether the mapping x ....... /og(log x) is 'a homomorphism.· 

3. ·Find an isomorphism from 0\{0} under multiplication onto the group 
of Example 7.4(a) .. 

4. Find an isomorphism from Z under addition onto the group. of Fxam'ple 
7 .4(b). 

5. Let <;>1: G1 ....... Gi+l be homomorphisms of groups, where i 1,2, ... ,n. Show 
that q> 1 <;> 2 ••• q>, is a homomorphism from G 1 onto G n+l' Prove a correspond­

ing result for isomorphisms. 

6. Let q>: G--. G1 be an isomorphism. Prove that o(a) = o(a<p) for all a E G. 

7. Let q>: G _,. G
1 

be a homomorphism. Show that a<p = b(p if and only if 

a(Ker<p) = b(Ker <;>), where a,b are arbitrary elements of G. 

· 8. Prove directly that . any two cyclic groups of the ·same order are iso­
morphic. 

9. Prove that any two dihedral groups 'of the same order are isomorphic. 
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10. Imitating Example 20.17(a), show that any dihedral group is iso-· 
morphic' to a factor group of 0

00
• 

II. Show that a factor group of a dihedral group is .either dihedral or 
cyclic . 

. . Ii L~tn ~ N_and let X b~ a set with n-elements. Prove that Sx::&.:Sn .. 

13. Prove that (IR\[0})/ilt~::&. C2• 

14.Let <p: G-+ G
1 

b<_: a hoinomorphism,--let K be_ a -normal subgroup of G 

such that K ~ K e r <p, and let v: G -+ G/ K be the associated natural 
homomorphism. Show that there is a homomorphism 1p: G/K- G 1 such 
that v1p <p and Ker .1p (Ker <p)/K. What happens when we drop the 
condition K < Ker <p? 
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§21 
Isomorphism. Theorems 

This para_graph is devoted to some very important theorems of group 
theory. 

At this stage, it will be useful to introduce Hasse diagrams. A Hasse 
diagram is a convenient means to visualise· inclusions holding between 
subgroups of a group., Subgroups are represented by points. Two points 
(subgroups) are joined by a line segment if and only if the lower 
subgroup is contained in the upper one. The line segments may be 
vertical or slate. The line segments may be thought of as factor groups 
when the lower subgroup _is normal in the upper one. ·The Hasse 
diagrams of- S 3, C 8 and C 12 are depicted below. 

1 

H= [t,(12)},J {l,(13)},K= [l,(23)}. 

21.1 Theorem: Let <p: G-+ G1 be a group homomorphism frQm G onto Gr 
Then there is a one-to-one correspondence between the set of all sub­
groups of G that contain Ker 'P and the set of all subgroups of' G

1
• This 

correspondence preserves inclusion. The normal subgroups of G that 
contain Ker <p co~respond to normal subgroups of Gl' and conve;sely. The 
factor groups by corresponding normal subgroups are isomorphic. 
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In more detail and more precise language, the claim is the following. 

(1) For e~ery. H < _ G with. Ker q> < H, there is. assoCiated a unique 
subgrouf! pf Gl' which will be denoted by H1• 

(2) If Kerq> < H ~ 1 ~ G, then H1 ~11 • 

(3) If Kerq> ~ H ~ G,Ker q> ~ 1 ~ G and H1 ~ Jl' then H ~ 1. 

(4) If Kerq> ~ H -~ G,Ker q> ~ J ~ G and H1 =11' then H=l. 

(5) 1f S is any subgroup of Gl' then. there is an H ~ G such that Ker q> < H 

and. H1 S. _ . 
(6) For Ker q> ~ H ~ G, there holds H <Q G if and only if H1 <! G1• 

(7) IfKer q> < H <Q G and H1 <Q Gl'then G/H ~ G/H 1• 

The situation is described in the accompanying diagrams. 

G Gt G 

J J, 

H ·H . 1 H 

Ker q> er q> 

Proof: ( l) For each H ~ G with K e r q> .< H, we are to find a subgroup of 

(]
1 
•. How can we find it? Well, the subgroup we are looking for will .be 

first of all a subset of G 1• How can we associate with H a subset of G 1 '! At 

. our disposal, we have· only one means of transportation from G to G 1• 

namely the mapping q>. The only thing we can do, then, is form the set of 
images of the elements of H under q>. Hence ·we put 

We now prove H1 ~ G1: We can d9 it by the subgroup criterion, but we· 

prefer to use Theortrm 20.6, which states that the image of a homo-. 
morphism is a subgroup of its range. We note that the restriction of q> to 
H is a homomorphism (Example 20.2(g)) and 

H1 = (hq> E Gi~ h EH} = {hq>11 E G1: h E. H} = Im q>/1 
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by definition. Theorem 20.6 gives now Im cp H < G I' hence H 1 < G 1• The 
description H 1 = Im cpH will be usefuL 

(2) Suppose Ker cp < H < 1 < G. Under this assumption, we prove H 1 < 1
1
• 

This is easy: for any h E H, we have h E 1, so hcp E Im tpj 1
1

• Since /zrp E 1
1 

for all hcp € H 
1
, we get H 1 < 11• 

(3) Suppose Ker cp < H < G, Ker q> < 1 < G and H 1 < J 1• We want to 
prove H < 1. Now H1 < j 1 means Im cpH < Jm cp1: Then, for every h € H, 
we have hcp .E Im cp 1 : 

. . 
for every h E H, there is a j € 1 such that hcp =h.. 

We ·obtain, when hj are as above 

1 = hcp(jtp r 1 = hcp.r1cp = <hF1)rp, 
hF1 € K_er <P. < 1 

hE 1j=1. 

Thus·. h E 1 for all h € H. Therefore H < 1. 

{4) This is immediate from (3). If H 1 =11' we have H 1 < 11 and J 1 < HI' so 
H < 1 and 1 < H by (3), hence B = 1. (This shows that the corresponde~ce 
H ...... H1 is one-to-one.) 

(5) For, any S < G1, we are to find an H < G such that Ker cp < H and 
H1 S. What can H be? As in part (1), there is only one thing we can do: 
take the preimages of the elements in S. Hence · we put 

H= (a € G:acp E S}. 

·Thus a E H means acp E S. We show that H < G, that Ker cp < H and that 
HI =S. 

First H < G. From 1(;cp = 1a E .S (Lemma 20.3(1)), we get 1 € H. So'H ~ 0. 
. I 

We apply the subgroup criterion. 

(i) If a,b E H, then acp, bcp € S, ·so acpbcp E S, so (ab)cp E S, so 
ab € H. Thus H is· closed under multiplication. 

(ii) If a E H, then acp E S, then (acpr1 E S, then (a-1)cp E S, then 
a-1 € H. Thus H is closed under the forming of inverses~ 
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Thus H is a subgroup of G. 

We. prove next that H contains Ker cp, This is .trivial. I~ a E Ker cp, then acp 
= 1, so acp E S, so a E·H. HenceKercp,;;;; H., .. 

It remains to prove H 1 =:§. We have , 

. H
1 
= lm cp 11 = ( /zcp E G 

1
: h E H) = ( hcp E G

1
: /zcp E S) = S 

as c.laimed. · 

This completes the proof of (5). (Part (5) shows that the cor.resp9ndence . 
H-. H

1 
is onto.) · 

(6) First we assume H ~ G and show that H 1 .~ G1• We are to show that 

x-1lz 1x E H
1 

for all x E G1 and for all 1! 1 E H 1 (Lemma 18.2(1)). If x E G1 and 

h1 E HI' then there are a E G with acp = x and h E H with hcp = h 1• This is 

so because cp isonto G 1 and H 1 is defined as 1m cp 11 ; Then we are to show 

(acpf1(hcp)(acp) E H1• This is equivalent to ;(a-1/w)cp E H
1
• Since f:1 .~ G, we 

know a-1/zaE H, so (a-1ha)cp Elm 'Pa = H
1
• This proves H

1 
~_G1 • 

We assume now H 1 ~ G1. and prove H ~ G. We can give an argument 

similar to the one above, but we prefer to use the fact that normal sub­

gr?ups and kernels coinc'ide. Our method will be used in the proof of 

part (7) as well. I 

The assumption is H 1 ~ G1• By Theorem 20.12, H
1 
= Ker v ', where 

.v':G
1

_;_,.G
1
/H

1 
. 

is the natural homomorphism. We get·. then the homomorphism 

We have 

cpv': G...:... G/H 1 

cp v' c- Gl - GI/HI. 

Ker q:>v' {a E G: a(cpv') = H
1

} · 

=(a E G: acp E Ker v'} 

= {a E G: aq:> E H1} 

(Theorem 20.4): 

,, 

(i) 

So (Ker cpv') 1 =fm IPier~v· {a~ E G1: a E Ker cpv'} = {acp E. G1: acp E 1/1} //1 

and we obtain 
Kerq:>v' · II ( i i) 

by part (4). Theorem 20.6 givcs'fl?J G, as w;,!s to be proved. 
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(7) We saw that any· one of H ~ · G and H1 ~ G1 implies the other. Assume 

that one, and hence both of them ·are true. Then we have the homo­
morphism cp v '. From Theorem 20.16, we obtain 

GIKer cpv':::! /m cpv' (iii) 

We know Ker cpv' H by (ii). As for the image, since cp is onto G
1 

by 

h)'pothesis and v' is onto G /H 1 by Theorem 20.12, the composition cp v' is 
onto by Theorem 3.11(1). Hence /incpv'=G11H1 and (Iii) becomes 

The proof is complet_e. .D 

An important speCial case of Theorem 21.1 is the case of a natural homo­

morphism, recorded. in the next theorem: It gives· a complete description 
of the subgroups of a factor group. The last part of- the theorem is known 
as. the factor of a ·factor theorem . 

. 21.2 Theorem: Let.N ~ G. The subgroups of GIN are the factor groups 

SIN, where S runs through the subgroups of G satisfying N <;; S. More 

precisely, for each subgroup X of GIN, there is a unique subgro~p S of G 
satisfYing N <;; S such that X= GIN. When ~1 and X2 are subgroups of· 

GIN, say X1 S 11N and X2 = S 2IN, where N <;; S 1 <;; G and N <;; S2 <;; G, 

then X1 <;; X 2 if and only if S1 <;; S 2• Furthermore, SIN ~ GIN if and 

only if S ~ · G.1n this case, there holds 

GIN I SIN :::! GIS. 

· Proof: Since N ~ G, we can build the factor group GIN. The natural 

homomorphism v: G '-+'GIN is onto by Theorem 20.12. We can therefore 

apply Theorem 21.1. 

Theorem 21 .1 states ·that any subgroup. of GIN is of the form I m v s for 

some S <;; G with Ker v <;; S (here v s is the restriction of v to S). Now 

Im v s .= {sv € G/N: s € S} 

= {Ns·€ GIN: s € S} =SIN 
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and Ker. v N -by Theorem 20.12 (notice that SIN is meaningful, for N ~ G 
and N < S imply N _S; <;f. Example 18.5(1))·. Thus the subgroups of GIN 

are given by SIN, where N < S < G. By Theorem 21.1(2),(3),(4), 

s ,IN < S21N if and only ,if s, < s2 and s ,IN ;z! S21N whenever s I ;z! s2. 
Fimtlly, S 11N. ~ GIN if and only if S ~ G by Theorem 21.1(6) and in this 

. ' . . / 

case GIN/ SIN·:;;: GIS by Theorem 21.1(7).This completes the proof. o · 

GIN 

IN. 

As an application of Theorem 21.2, we classify the factor groups of cyclic 
groups. We treat infinite and finite cyclic groups separately. 

Any infinite cyclic group is isom~rphic to l -undet.: addition (Example 
20.17(a)), so we need find the factor groups of l. As l is abelian, any 
subgroup • of l is normal in 1 (Exa,mple 18.5(b)) and we ·can build factor 
groups of 1 by any subgroup of l . The subgroups of l are 0 (see 
Example l8.5(a)) andiz1, where nE: N (Theorem 11.8). For each n E: N, 

the subgroup n1 is the unique subgroup of index n (Lemma· II. II). Th'e 
factor group 110 is isomorphic to l (Example 20.IO(c)). The factor 
groups l/n1 are known to be cyclic of order n (Example 20.17(a)). So all 
factor groups of l are cyclic ( cf. Lemma 18.9(3)). For each m E: N·u { oo}. 

there· is a uniqu'e factor group of order m of 1, namely 1/ m 1 if m E: N 

and l/0 :::: if m = ro. 
Now lei C =<a> be a finite cyclic group of order n E: N. As G is abelian, 

n• n . 

we can build factor groups of"C by any subgroup ·of C . We know that C 
n . n . n 

. :::: l/n1 from Example 20.17(a). The subgroups of Zln1 are described in 

Theorem 21.2: any-subgroup of l/nl is oftheform Mln1, where 

nl < M l .. ·Now M < Z. means M m1 for some .m E N or M = 0 (The-
. . " - ' 

orem 11.8) and the condition n1 < M excludes M = 0. Hence M =.ml for 
some m E: N, where furthermore mIn, because n'Z < m Z. So the sub-
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groups of Z In Z are given by m lIn Z, where m runs through all positive 
divisors of n. For the factor group, we know 

Z/nlfmZ/nl :: Z/ml 

; 

from Theorem 21.2. So all factor groups of Zlnl and of C are cyclic (cf. 
il 

Lemma 18.9(3)). For each positive di~isor m of n •. there is a unique factor 

group of order m of C n =<a>, namely <a>/<am>, where <.am> is the 1mique 
subgroup of order n/m of Cn (Lemma 11.10). 

Z/nl 

mZ/nZ 

1 1 

l 

ml 

nl 

1 

I. I Z/nZ I ml/nZ 

l 

We end this paragraph with another important theorem of group theory. 

-
21.3 Theorem: Let H ~ G and K..;; G. Then H n K ~ K and 

1 KlH n K:: HK/H. 
I 

Proof: Since H ~ G, there is a group G/H ~nd a homomorphism 
v:G-G/H 

.(*). 

Let v K be the restriction of v to K. This v K is a homomorphism (Example 

20.2(g)). Hence KIKer vK :: lm-vK by Theorem 20.16. Here 
KervK ={k.EK:kv=l} 

= ('k € K: k E Ker v} 

= K n Ker v 

=KnH. 
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H 

1 

It remains to find lin vK.We claim lm vK =H K/H. First of all, H K_= KH is a 

subgroup of G because H ~ G (Lemma 19.4(2)), lmd H < HK, soH~ HK. 
So HK/H is meaningful. For any k € K, we have kvK = Hk € HI_(/H, which ~ 
shows that 1m· v K 6 HK /H. Conversely, each element of H K /H is of tlie 

f.orm Hhk,- where h € H, k _E K.But Hhk = Hk = kvK Elm ,vK, so 
HK/H 6 lm vK. Thus lm vK = HK/H and(*) yields 

K/.H n K ~ HK/H 
as. was to be proved. 

Exercises 

1. Let A ~ G < G and B <-G. Prove that A n B ~ C n B and 

C nB I A n B ~ A(C n B)/A . 

0 

. 2. Let A ~ C < G, B < G and let tp: G --. H be a group homomorphism, 

· Prove that A tp · ~ Ctp. 'Choosing tp in particular to be. the natural homo­
morphism v: G-+ G/8, prove that AB ~ CB. · 
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§22 
·Direct ·Products 

In this paragraph, we learn a method· of constructing- new groups· .from 
given ones. This method consists essentially in writing the groups one 
adjacent to the other. 

22.1 Theorem: Let H and K be groups. On the cartesian product H x K, 
we define a binary operation by declaring 

for all (h,k),(hl'k1) E H x K. With respect to this operation, H x K is a 

group. 

Proof: Before beginning, with the proof, it will not be amiss to formulate 
ihe theorem in a more precise way. Suppose· (H, o) and (K, *) are groups. 
The claim is that (H X K, ll) is a gro11p, where ll is defined by 

(h,k) ll (hl,kl) = (h 0 h!·,k * kl) 

for all (h,k),(lz 1 ,k1) E H X K. 

The multiplication in H x K is carried ·out componentwise. Since H and K 

are groups themselves, it is natural to expect that H ){ K will be a ·group. 
We check the group axioms. 

(i)-For all (lz,k),(hpk1) £ H x K, we have h,/z
1 

E H, k,k
1 

E K, so 

h h1 e H and k ~ e K as H and K are closed under multiplication, and so 
(h 1!1 ,k ~) E H x K. So we have a binary operation on H x K. In other 

words, H x K is closed under multiplication. 

(ii) Associativity in H x K follows from associativity in H and 
K. For any (h,k),(h1 ,k1

),(h
2
,k

2
) E H x K, we have 

[(h,k)(hpk1)](h2,k2) = (hi~ ,k ~ )(h~,k2) 
= ( (hh 1 )h2,(k ~ )k2) 

= (h(hl h2),k(k1 k2)) 
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(h,k)(hlh2,kl k2) . 
. = (h,k)[(hl ,kl)(h2,k2)] 

and .the operation on H x K is associative. 

(iii) What ca~ be the identity element of H x K'? The only 

reasonable guess would be (1,1) (1 11 ,1K). We indeed have 

(h,k)(l,l) = (hl,kl).= (h;k) 

for all (h,k) e:H x K.Thus (1,1) is a right identity of H xK. 

' . 
(iv) What can be the. inverse of (h ,k) E H x K? Probably 

(h-1 ,k-1). W.e indeed have 

for all (h.,k) e: H xK. 'So any (lz,k) e: H x K has a right inverse in H X K__. 
namely (h,k)-1 ;,. (h-1 ,k-1). · • · 

Therefore, H x K is a group. D 

22.2 Definition: Let H and K be groups. Then the group of Theorem 22.1 

is_ called the direct product of Hand K. It will be denoted by ff x K. 

Thus the .notation "H x K" stands for the cartesian ·product. of the sets II 
and K as well as the direct prod~ct of the groups H and K. This ambiguity 
will not lead to any confusioQ. The reader should be 'careful ·to distin­

guish between HK and II x K. The former is defined only when II and K 
are· subgroups of a common group G, whereas H x K . is a meaningful 

graup regardless of whether II imd K are subgroups .of a group. The 

elements of H K are_ elements of· the group that contains II and K · the 
elements .of H x. K ore ordered· pairs. 

When the groups II and K ~re written additively, we write the group of· 
Theorem 22.1 in the additive form, too. The operation is the·n given by · 
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for all (h,k),(h 1,k1) E H x K. The operation is called addition in this case, 

and the group is called the direct sum of H and K. We write the group as 

H EB K, to avoid confusion with H + K (which is H K in additive notation, 

where H and K are subgroups of a group G). 

22.3 Examples: (a) Consider C 2 x ·{t, where C 2 = {I ,-I} k IR and tJJt is the 

multiplicative group of the positive rational numbers. The elements of 
C 2 x tJJt are ordered pai_rs (+I ,q), where q E tJJt. Multiplication in C 2 x i]Jt is 
carried out according to the rule {E,q)(E',q') = (EE',qq'). We ·observe that 

the . mapping 

([): O\{O} - c2 x tJJt 
q--+ (sgnq,lql) 

is a homomorphism, since (qq ')rp = (sgn qq',l qq 'I) 

for all q ,q 'E 0\{ 0}. Its kernel is . 

= (sgnq.sgnq',lqllq'l) 
= (sgnq,lql)(sgnq',lq'l) 
= (qrp)(q'rp) 

Kerrp = {q E 0\{0}: qrp = {1,1)} = {q E 0\{0},: sgriq = 1, lql = 1} 

= {q E 0\{0}:q > 0, lql = 1} 
= {1}, 

which means that rp is one~to-one (Theorem 20.8). As any (E,q) E C 
2 

x i]Jt 

is the image of Eiql E 0\{0}, the homomorphism rp is onto. Hence rp is an 
isomorphism and 

(b) Consider IR EB IR, where IR is the additive group of real numbers. The 

elements of IR EB IR are ordered pairs of real numbers. The operation on 
IR EB IR is given by 

(a,b) + (c,d) =(a+ c,b +d) 

for all (a,b),(c,d) E IR EB IR. We leave it to the reader to prove that 

1p: ([ --+ IR EB IR 
a + bi--+ (a,b) 
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is an isomorphism (where ([ is the gr_oup of complex numbers under 
addition). Hence 

22.4 Theorem: Let H and K be groups and let G := H x K be the direct 
product of H and K. 'f.hen there are subgroups H1 and K1 of G such that 

HI ~H. 
H

1 
<i:J G, 

H1K1 =G, 

K
1 

9:: K 

K1 <!.G 
H 1 nK1 =·I 

Proof: We put H
1 

= {(h,l) E G:h E H} and K
1 

= {(I,k) E G: k E K}. First we 

·. prove H 1 ,K1 .;;;;;; G. Since 
(i) (h,l)(h',l.).= (hh',I) E H1 for all(h,l),(h',l) E' H1 and 

(ii) (h,l)-1 = (h-1,r1
) (h-1,1) E H

1 
for all (h,l) E HI' . 

il1 is a subgroup ofG. In the same way, K 1 <G. 

11
1 

and K 
1 

are in fact· normal subgroups of. G. To establish K 1 <! G, we 

show that (h,kr1(l,"o)(h,k) E K 1 for aU (~,k) E G, {I,k
0

) E K 1 (Lemma 

I 8.2(1 )) . .We ·indeed have 

(h,kr10,"o)(h,k) = (h-1 ,k~1){1,"o)(h,k) = (h-1lh,k-1k
0
k) ·= o ,k-1 k

0
k) E · K1 

as K is closeq under multiplication. Hence K
1 

<! G. One proves si.miliuly 

H1 <1 G. 

Next .we show H ~ H 1 and K ~ K 1• The mapping 11 1: II ~ HI' h -+ (h,l) is. 
one-to-one (by the definition of equality of ordered pairs) and ontC) (by 
the definition of II 1), and is furthermore· a homomorphism, since 

for all h,h' E H. Thus J.l 1 is an isomorphism and H ~ H 1• An analogous 

argument shows that J.l 2: K ..... Kl' k ..... (l,k) is an isomorphism, so K ::i K1• 

That H
1
K

1 
= G follows immediately from the fact that any (h,k) E G can be 

written as (h,l)(l,k) with (h,I) E. HI' (l,k) E K1
• 
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Finally, H 1 n K1 = 1. Indeed, if (h,k) E H 1 n K 1, then h = I as (h,k) E K1 and · 
k = 1 as (h,k) E H 1; thus (h,k) = (1,1) and. so H

1 
n K 1 ~ ((1,1)} = 1, yielding 

H1 n K 1 = l. 

This completes the_ proof. 0 

22.5 Theorem: Let G be a group and let H,K be subgroups of G. The 
following statements are equivalent . . · 
(1) H ~ G, ~ ~ G, G = HK and H n K = 1. 
(2) Every element of G can be expressed uniquely in the form hk, where 
lz E H and k E K; and every element of H commutes with every element 
ofK. 

Proof: (1) ===:. (2) Suppose H ~ G, K ~- G, G HK and H n K = 1. Since G 
11 K, every element of G can be expressed as hk, with h E .H, k E K. We 
must show that this representation is unique, i.e., when hk h 'k'with 
h ,h' E H imd k,k' E K, then necessarily lz h' and k = k '. This follows 
from H n K = L Indeed, from hk = h 'k', we get kk'-1 = h-1/z' e: H n K = 1, so 
kk'-1 1=h-1h',sok k'andli=h'. . 

It remains to prove that any element of H commutes with any element 
of K. Let.h E H, k E K. We have to show hk = kh, or, equivalently, 
h-1k-1hk"" 1. Now h-lk-l.h.k E. K, since ~z-tk-1h·e: K (because k-1 e: K and 

K <Q G) and h-1.k-1hk e: H, since k-1hk E H (because h E H and H -~ G), so 
h-1k-1hk e: H n K = 1 and h-1k-1hk = I, as claimed. 

. ! 
(2) ===:. (1) By hypothesis, every element of G' can be written in the form 
hk, where hE H, k E K. SoG = HK. We now proveH n K = 1. Let a e: H n K . 

.. If a ~ 1, then Ia a 1 are_ two distinct representations of a e: G with 1 E H, 
a E K and a 6 H, 1 E K, contrary to the. hypothesis that every· element of 
G, in particular a, can be expressed uniquely in the form hk, with h e: H, 

k E K. Thus a = 1. This proves H n K = 1. 

In order to prove H .i:J G, we must show g.:.1hg E H for a1l h ~ H, g e: G 

(Lemma 18.2(1)). Letg E G =liK. Then g h'k' for some·h' e: H,k' e:K. 
Thus 

g-1hg = (h 'kT1h(h 'k') 

= k'-1(h-1hh ')k' 

= k'-1.k'(h-1hh') (h'-1hh' E Hand k' E K commute) 
I 
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and therefore H ~ G. The proof of K ~ G is similar and is left to the 

reader. 0 

22.6 Theorem: Let G be a group ·and H,K be subgroups of G. Assume 
that H ~ G, K ~ G, G = f/Kand H n K 1. Then G ~ H x K. 

Proof: We want to find an isomorphism rp:H X K ....... G. For each (h,k) in 

H x K, this should give us· an element (h,k)rp of G. By hypothesis, G = H K. 

This suggests that. (h,k) hk might be an· appropriate mapping from 

H X k into G. So we put q:>: H xK ....... G. We·sh9w that rp is· a homomorphism, 
(/z,k)-+ hk 

one-to-one and onto. 

q:> is a homomorphism if and only if 

((lz',k)(Jz,k'))tt> (lz',k)rp.(lz,k')rp for all h,lz' E H, k,k' E K, 

that is, if and only if 

h'hkk' h'khk' for all h,lz' ER, k,k' E K, 

which is equivalent to 

hk = kh for all h E H, k E K, 

and this is true by Theorem 22.'5. So rp is a homomorphism. 

q:> is one-to-one, for if (lz,k)tt> = (h'i')rp, then hk h'k'; but every element 

in G can be expressed in the form hk with h E H~ k E K in a unique way 

by Theorem .22.5. Soh lz' and k = k'. Thus (h,k) (h',k'). This proves 

thqt rp is' orie-to-one. 

rp is onto because fl K = G by hypothesis. 

lienee rp is an isomorphism and fl x K ~ G, and also G ~ H x K. 0 

22.7 Theorem: (I) A group G is isomorphic to the direct product of two 

subgroups H and K if and only if (i) every element of G can he expressed 

uniquely in the form lzk, where lz E H an(L k E K and ( ii) every element 
of H commutes with every element of K. 
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(2) Let G be a group and H,K < G. lfG::::! H x K, then G/H::::! K and G/K::::! H. 

Proof: (1) follows from Theorem 22.4, Theorem 22.5, Theorem 22.6. As 
for (2), we observe that G::::! H x K implies H ~ G, K ~ G, G = HK, H n K = 1, 
so that G/H = H K/H :. K I H- n K = K/l ::!: K by Theorem 21.3. The proof of 
G/K H is similar. o 

When the conditions of Theorem 22.7(1) are satisfied, (; is said to be the 
internal direct product of H and K. The direct product of Definition 22.2 is 
called the external direct product of H and K. Theorem 22.5 and The: 
orem 22.6 state that the internal direct. product of H and K is isomorphic 
to the ·external direct product H X K. Fo~ this reason, we will not 
disti~guish between external and internal direct products and refer to 
both of them simply as direct products. 

As an illustration of Theorem 22.7(1), consider 0\{0} = C 2 x 0'" (Example 
\ , 

22.3(a))~ Theorem_ 22.7(1) asserts that every nonzero rational number can 
be written as (+ 1 )q, where q E 0, q ~ 0 in a unique way. This is of 
course well known. to every,body. 

Next we investigate the direct product, ,of two finite cyclic groups of 
relatively prime orders. It will be sufficient to. examine the direct sum of 
l/ml and Z/nl. 

Let m and n be relatively prime natural numbers. For any integer a, we 
denote the residue class of a (mod · m) by ii, and ·the residue class of a ·. 
(mod n) by a*. Hence a E lm and a* e: ln. 

Consider the mapping q>: l - ztit.ID It is easy to see that q> is a homo-
a - (a,a*) 

. morpism: 
(a + b)rp = (ii+7J, (a +b)*) =(a+ 7i, a*+b*) = (a,a*) + (li,b*) = aq> + bq> 

for all a,b e:. l. So q> is a homomorphism and 

l/Ker q> = lm q> 

by Theorem 20.16. Now a E Ker q> if and only if a = '0 and a* = 0*, that is, 
if and only if mla and nla. Since m and n are relatively prime, the latter 
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. '" 
condition is equivalent to ninla. Hence Ker q> = mnl and l/mnl :::: /m ,P, 

where lm .tV is a subgroup of l/thl .ffi l/nl. From 

mn = ll/ri11ill =lim tVI:;,;;; IZ/mZ EB Z/nZI = IZ/mZI!Z/nZI = mn 

we . conclude . . 11m <p ,.· = m n, hence I m q> '= llm Z EB llitl. Therefore_ <p is 

OfltO and l/mnl:::: Z/mZ EBlin?. Writing this multiplicatively, we get 

. 22:8 ·. Theorem: If m ·and n. are relatively prime natural numbers, then 

c ::::c xc mn m n•. 0 

We record an· important result that we .obtained as a bonus. - ·. 

22.9 Theorem: Let m: and !n be relatively prime natural numbers . . Then 
. the mapping 

· q>: Z. 4 Z/mZ EB l/nl 
a ·--'-- · (a,a*) 

is a group homomorphism onto l/ml EB l/nl,. 0 

So far, we have examined the direct product of two groups. The con~ . ' 
struction ,extends immediately to n groups, where n > 2. We shall .be 

content with enunciating thl;) appropriate .theorems. Th~ir proofs consist . 
in writing n-tuples in place of ordered pairs in the proofs above .. The 
only novel point is extension of the previous condition H n K 1. This is 
disc~ssed in Theorem. 22.12, .whose proof. we briefly sketch. 

\ 

22.10 .Theorem: Let H1,H2~ ,Hn be arbitrary groups. On the cartesian · 
product H1 X H2 x . :. x Hn, we define a binary operation by declaring 

-\ ~ 
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for all (11 1,112, .. , ,h
11

),(1z
1
',h2', . •• ,lzn') E f/1 X H2 X ... x HnJVith respect to this 

operation, f/ 1 x H2 X ... x H
11 

is a group. 

22.11 Definition: The group of Theorem 22.10 is called the direct pro­
duct of H1ll2, • :. JI,. and is denoted by 11 1 x H2 x ... x If,!' If the groups arc 

written additively, we call the group of Theorem 22.10 .the direct sum of· 

H1 ,ll2 • ..• /1
11 

and denote is by H 1 ED H 2 ED ... ED II n· 

22.12 Theorem: Let H1,H2,' •.• ,/1
11 

be groups and G ·= /1 1 x H2 x ... 

Then there are subgroups G1, G2, .•• ,Gn of G such that 

q := f/
1 

and G
1 

Q G for all i. = I ,2, ... . n, 

G = G1G, .. .G and c
1
r. ... G. 1 n G.= I for all j = 2, ... ,n. 

-n '-'2 r J 

X H. n . 

Sketch of proof:' Let G1'bc the set'{(l, ... ,x, ... ,l):xEH,J of alln-tupks in 

G whose k-th components arc equal to 1 E Hk whenever k 7'- i. It is easily 

verified that Gi is a subgroup of G, normal in G, isomorphic to.H
1 

and that 

G= G1q ... G
11

• In fact, for all j = 2, ... ,n, 

G1 q .. .Gj-1 = { (/z1 ,lz2, ... ,hj-1' I, ... ,I): h1 E 111 ,h2 E H2, ... ,lz1_1 E Hj-1). 

Finally. to prove G 1G, .. .G 
1 

n G I for allj 2, ... ,n, let - r. J 
( u 1:u2, .•• ,ttn) E G/l2 .• .Gf- 1 n Gp where j E {2, ... ,n }. Here uk = 1 for k 7'- j, 

because (u 1;u2, ... ,ll
11

) 6. c
1 

Thus (111'112, ••. ,ll
11

) =(l, ... ,icr .. ,l). But 

(l •... ,ur .. ·'> "c1q ... c;- 1 

= ( (/11 ,112, ... ,hj-1' 1 , ... , 1 ): h1 E 111 ,h2 E F/2, .•. ,hj-l E I!j-l }, 

hence u. = I and 
j 

0 

22.13 Theorem: Let G be a group and let Gl'q, ... ,Gn be subgroups of G. 

The fol/oll'ii!J.: statements are equivalent.' 

(I)G1 Q G for alii= 1,2, ... ,n,G=G1q .. .Gnand G1q ... cf- 1 n Gj= lfor allj= 

2, .... II. 
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(2) Every eiement of G can be ·expressed wiiquely in the form g1gz- .. g,., 
. where g 1 'e: G l' g1 E G2, ••• , g,. E G ,.: ~nd every element of Gk commutes 

with every element of ~1 (k;: /). · 

22'.14 Theorem: Let G be a group and let G~.~ • ... ,G,. be subgroups of G. 

Asswne that ·G. ~ G for all i ==. i ,2, ... ,iz, G = G
1
r. ... G and G1r. . .. G. 1 n G.; 1 

. 1 · . "'2 n "'"2;-r J 
for all j = 2, ... ,n. Then G ~ G 1 X G2 X •.• X G . · , , n 

If n > 3 and G l'~' •.. ,G,. are normal subgroups of a. group G such thilt G == 

q~ .. .G,. ~nd Gin Gi == 1 whenever i;: j, thenG is need not be isomorphic 
to the direct· product of G 1 .~. , •• ,G,.. By way of example, Jet G = V 4 ·and let 

A.= {z,(l2)(34)}, B = {1,(13)(24)). C = {z,(14)(2J)}. Then A,B',C are norrrial 

subgroups of G, and G =ABC, ~nd A n B =: B .n C =A n C = 1. However, G is 
not isomorphic to A x B x. C,, because, for one thing, G has order 4, 
whereas A X B X C has ord~r 8. Thus the condition . 

·q~ ... G,;- 1 n Gj .;_ 1 for allj = 2, ... ;n 
cannot be relaxed to 

Gj n Gi = 1 for all i ;: j. 

22.15 Theorem: A group G is isomorphic to the direct product of n _sub" 

groups Gl'~··.; ,G,. if and only if (i) every element of G can be expressed 

uniquely in the .{orm g 1gz ... g,.,whereg 1 E G 1,gzE Gz, .. ;,g,. E G,.and (ii) 

·_every element of Gk commutes with every element of G1 (k;: 1). . . 

The last two. elementary results will be needed in §28. 

22.16 Lemma: L(u G!'Gz· ... ,Gri,H!'H2, ••• .H,. be groups and assume that 

. q 9!: HI' Gz.~ Jiz•: .. , G,. 9!: Hit. Then G1 X Gz X ... X G,. 9!: H1x Hz X ... X Hf!.. 

Proof: Letcpi: Gi _,. Hi be an isomorphism (i = 1 ,2, ... !n). The mapping 

1p: G1 x Gz x ... x G,. ....... H1 x H2 x ... x H,. 

(g!'gZ, ... ,g~) (glcpi'gZcpz,·· .. ,g,.cp,.) 
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is a homomorphism, because ((gl'gZ, ... ,gn)(g1 ',gz', · .. ,gn'))tp 

= (gtgl',gzgz'• ... ,gngn')tp 

=, ((g lg; ')cp l'(gzgz')cpz, · · · ,(gngn ')cp n) 
= (glcplgl'cpl'gZq>Zgz'q>z, ... ,gncpngn'cpn) 
= (glq>l'gztPz, · .. ,gncpn)(gl 'cpl'gz'q>z, .. · ,gn'cpn) 
= (gl'gZ, ... ,gn)tp(gl',gz'• ... ,gn')tp 

Ker1p = {(gl'gZ, ... ,gn) € Gl X Gz X ... X Gn: (gtq>l'gziPz• ... ,gnq>n) = (l,l, ... ,l)} 

= {(gl'gZ,. •. ,gn) € Gl X Gz X • •• X Gn: glq>l 1, gzq>z = 1, .. •, gnq>n = 1} 
={<gl'gZ, .•. ,gn) € G1 X Gz X ••• X Gn: g1 =1,gz 1, ... , gn = 1} 

= {(1,1, ... ,1)} 1, 

1p is one-to-one. Also, 1p is onto: given any (hl'hZ, .•• ,hn) € H1 X Hz x ... X Hn, 

there are g 1E Gl'gZE Gz, ... ,gn € Gn with g 1~p 1 = h1, gzq>z hz, ... ,gnq>n = hn' 
thus (hl'hZ, .. :,hn) is the image, under 1p, of (gl'gZ, ... ,gn) € G1 x Gz X ... x Gn. 

So 1p is an isomorphism _and G1 x Gz x ... x Gn!:! H1 x Hz x : .. x Hn. o 

22.17 Lem,ma: Let' G1,Gz; ... ,Gn be groups and H1 Gl' Hz~ Gz, ... ,Hn ~ Gn. 
ThenH1 xHzx.,.-><1/n~ G1 

xGzx ... xG
11

and 

G1 xG2 x ... xGn jH 1xHzx ... xHn !:!G)H1 xGz!Hzx ... xGilln. 

Proof: The mayping q>: G1 x Gz x ... xGn--. Gtf/1 1 X GziHz x ... x GiHn 

(g1,g2, ... ,gn) - (H 1gl'H2gZ, ... ,Hngn) 

is a homomorphism because ((gl'gZ, ... ,gn)(g1 ',gz'• · .. ,gn'))cp 

= (gtgt ',gzgz'• ... ,gngn')q> 

== (Htgtgt',Hzgzgz'· ... ,Jingngn') 

= (HtgtHtgl ', HzgzHzgz'· · · · • HngnHngn') 

= (Hlgl ,HZg2, · .. ,Hngn)(lltgl, .Hzgz'· .. · ,Hngn') 

= (gl'gZ, ... ,gn)q>(gl',gz'• .•• ,gn')cp 

for all (gl'gZ, ... ,gn),(g1 ',g2', ... ,gn') € G1 x Gz x ... X Gn. Moreover, q> is onto: 

any (H 1g 1.Hz!:z• ... ;Hngn) in G1/H 1 X GziH2 X ... X Gilln is the image, under 
q>,of(gpg 2, ... ,g,)eG

1
xG

2
x ... xGn. Thus 

240 



- -
• . '' ' • >_ ' ·-, • ': . ' :. 

To complete the proof, we need only show K er cp = H 1.x H2 x ... X H
11 

(Theorem 20.16). We indeed have 

K~r cp_ = ((gl'g2, ••• ,g
11

) € G1 X G2 X .•• X G
11

: (gl'g2, ••• ,g
11

)rr> = (H1,H2, .-;": ,Hn)} 

= ((g;,g2, · · .,gn) € Gl x G2 X~·· X Gn: H!gl; Hl,H2g2;= H2, ··· .Hitn·= Hn} . 
= ( (gl'g2, •• • ,g

11
) € G1 x Gi x ... X G

11
: g1 _t. .HI' g~ t. H2, ... , g

11 
t. H

11
} 

= H1 X H2 X .. , X H
11

• D 

Exercises 

1. Prove that v4 == c2 X c2. 

2 .. Show that. c mil is not isomorphic to c m X c II if (m ,n) ~. 1. 

3. Find three nonisomorphic abelian groups of order 8 and- three noniso­
morphic ·abelian groups of order 12. 

4. Show th~t G 1 X G2 ~ • :. x G
11

:::: G,
1 
x (j,

2 
x ... X qn for any permutation 

( 
1 2 ... n) · 
i 1• f. inS . 
1 2 ' ' • II II 

. . 

5. Prove that, if ·o is isomorphic to the direct product of its subgroups Gl' 

~· ... ,G11, then G1 ... Gk_1Gk+l"'9n n Gk = 1 for all k = 1,2, ... ,n. 

6. Let H ,K be normal subgroups of G: Find a ~ne-to-one homomorphism 

from G/Hn Kinto G/H x G/K. Prove that HK/H n K:::: H/H n K ><-- K/Hn K. 

, 7. Let rp1: G1 -+ H1 be group homomorphisms (i 1,2, ... ,n). Define IV by 

lp: Gl X G2 X.-': X Gn -+ . Hl xH2 X •.• X Hn . 

(g l'g2, ·~·,g) -+ (g lcpl'g2cp2' .. • ,gncp ,.) 

( lp 'is sometimes denoted by cp l X cp 2 X ••• X cp II). Show that lp. is a homo­

morphism and 
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Ker 1p =Ker cpl X Ker cp2 X ••• X Ker cp
11
,/m 1p = lm<cp 1 X lm cp 2x ••• X lm cp

11
• 

8. For any abelian- group A, let A be the set of all homomorphisms from 
A into C\[0}. Prove that A_ is an abelian group under the multiplication 

for alia € A', cp,1p € A 

.. 
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. . §23 
Center and Automorphisms 

of Groups 

We introduce an important subgroup, of a gro~p. 

23.1 Definition: Let G be a group. We put 
Z(G) {zt:G:zg=gzfoi:allgt:G). 

and call Z( G) the center of G .. 

The center of G consists, therefore, . of the elements of G that commute 
:with every element of G. It i{a ;ubset of G. Since lg g 1 for all g.£ G, the 
identity elemen; belongs tq z'(G), so Z(G)·-;z! 0. Obviously·, Z(G-) = G if and 

only if G is abeli~n. 

23.2 Theorem:Le~ G be ~ gr,oup. Tiien Z(G)"' G.· 

. Proof: We use our stibgrour criterion (Lemma 9.2). 

. (i) tet zl'z2 E z(G)'. We want to sh~w z1z2 E Z(G), Thus we / 
must show that (z1 z2)g = g(z 1z2)fof all g € G. This follows easily from z1g · 
= gzl' z2g = gz2 for all g € G, which are frue since zl'z2 E Z(G): · · 

(z1z1)g = z1(zzg) ~1 (gz2),; (z 1g)z2 =·(gz1)z2 = g(z1z2) •. 

Hence Z(G) is closed under Ihultiplication. 

(ii)Let z € Z(G) .. \Ve want to show z-1 E Z(G). We know 
g-1z? Z8'-t for any g £' G; 

sg, taking inverses, we get ! · · 

z-1g'= gz-1 for any' g € G, 

whic.h means z-1 € Z(G). Hence Z(G) is closed under the formi'ng of 
inverses.·· 

Thus Z(G) < G. 0 
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As any two elements of Z(G) commute, Z(G) is an abelian subgroup of G. 

It is also a normal subgroup of G. We prove a slightly strong~r result. 

23.3 Theorem_: Let G be a group. If H < Z(G), then H .:Q G. 

Proof: We are to show g-1hg E H for all g € G, h .€ H. Now, if g € G, h E H 
then g-1hg = g-1(hg) = g-1(gh) = (g-1g)h = h € H, for h € Z(G) commutes with 
g. Thus H -"Q.:G. 0 

A subgroup of G which is contained in the center of G is called a central 

subgroup .of G. With this terminology, Theorem 23.3 states that any 
central subgroup of G is normal in G. Central subgroups are abelian. 
Elements of. Z(G) are also 'called central elements of G. 

23.4 Examples: (a) Let K be a field and let us put G = GL(2,K) for 

brevity. We want to find Z(G). Let (~ !) € G. Then (~ ~) € Z(G) if and 

. (a.b)(x y) (x Y)(a b)·. ·(x Y) only 1f c d ·z u = z u c d for all z u € G. In particular, 

hence a a +c, a+b b+d and b =c a =d 
c c, c + d = d d =a c = b 

for all (a b) (a b) (a 0)' c d € Z(G), so c d = 0 a , where a~ 0 since det (~ :) ~ 0. 

Therefore Z(G) i:{_(~ ~) € G: a~ 0} 

and conversely the set on the . right hand side is contained in Z( G), for 

( a 0) (x y) (ax a y) (xa ya) (x y) (a 0) for al.l (xz yu) € G. 
0 a z u = az au = za ua = z u 0 a 
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Thus Z(G) = { (~ ~) € G: a.;:: o}. The ~lements ~f Z(G) are called 
1 
scalar 

matrices. 

(IJ). Let D 4n = <a,b: a2n = 1~ 62 = ( bab = a-1> ,be a dihedral group of order 

4n > 4. What is Z(D4n)? W~ll. let x e: Z(D 4 n) .. Then x = al or x = alb for 

~orne j e: -z. 0 .;;;; j < 2n - 1.: Since xa =ax and xb = bx, we get .. 

ala= aai 

alba= aalb 

and· 
·and 

These are equivalent to 

(1) al+l = al+l : 

(2) . . ai-1b = ai+1b 
and 

and. 

alb::::; bal 

albb = baib 

alb =a-lb 

ai ::a-1 

in case X = ai, 

in case x =. aib. 

in case x = al, 

in case x = aib. 

The equations in (1) are s:atisfied· only when nl2j, that is to say, only 
when j = O,n, so only when x = a0 ;dn. The first equation in C2) rs ~ever 
satisfied, for n > 1 by hypothesis. Thus Z(D 4n) !: '(l,an}. The reader will . · 

easily show the reverse inciJsion. Hence Z(D 4n) = ( 1,an} =<ail>. 

(c) Let. us .find Z(S3). It is e~sy to see that .r. and (12) aie the. only permu­

tations in S 3 that commute with (12). Also, 1 an~~ (13) are the only permu­

tations in S3 that commute with (13). Hence i is the only permutation in 
. S3 ~hat commute with both (12) and (13). A fortioq, Z(S3) = L 

23.5 Lemma: Let· H be a central subgroup of G. If GIH is cyclic, ,then G is 
·abelian. 

Pr!Jof: H .:Q G by Theorem 2,3.3 and so G /H is meaningful. By hypothesis, 

G!H = <Hg> for some g € G.1Then, for any x € G, there holdsB~ = (Hg)m 
. . . 

H gm with a suitable m € Z. 'This means that any x € G can be written in 

th~ foffi! hgm, where h .€ H, Jz e: Z .. 
' . 

Lei x,y be arbitrary elements of 6. we· .write them as x = hg'\ y =kg;,., 

where h,k e: H.;;;; Z(G) and m,n e: Z. Then xy = (hgm)(kgn) =;= h(gmk)gn 

h(kgm)gn =~(hk)(gmgn)_ = (hk)(gm+n) = (lzk)(gn+m) (kh)(gngm) = k(hgn)gm = 
k(gnlz)gm = (kgn)(hgm) = yx and G is commutative. D 



The center of a11y group G is normal jn G (Theorem 23.3) and is therefore 
the kernel of some homomorphism .{Theorem 20.14). Now we construct a 
homomorphism whose kernel is· Z(G). We will need the con~ept of auto­

morphisms .. 

23.6 · Definition: Let G be a group. An isomorphism a :G - G from G on to 
G itself is called an automorphism of G. The set of all automorphisms of G 

will be denoted by Aut(G). 

Sine!( any isomorphism is one-to-one and onto, a e: Aut(G) implies a e: SG 
Thus Aut( G)!:; SG. The identity mapping 'c on G is an isomorphism from G 

onto G, so 'c £Aut( G) and Aut(G) ~ 0. We can form the composition a~ of 

any o:,~ E Aut(G). It turns out that Aut(G) is a group. 

23.7 Theorem: Let G be a group. Th,en Aut(G) is a group under the · 

composition of mappings. 

Proof: We can .check the group axioms, but there is a shorter way. We 
make use of 0 ~ Aut(G) ~ SG. Now Sd ·is a g!'oupunder the composition of 

mappings (Example 7.l(d)), so all we have to do is show that Aut(G) is a 

subgroup of s(t 

(i) Let a,~ E Aut(G). Then o:f} is an isomorphism from G onto G 

by Lemma 20.11(1). Thus a~ E Aut(G) and Aut(G) is closed under multi­
plication. 

! 

(ii) Let a E Aut( G). Then a-1 is an isomorphism from G onto G 

by Lemma 20.11(?). Thus a-1 E. Aut(G) and Aut(G) is closed under the 

forming of inverses. 

By Lemma 9.2, Aut(G) < SG. Thus Aut(G) is a group. 0 
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Aut( G) is not a subgroup or .a factor~group of G, of course. The underlying . 
s~t is neither a subset nor a set of cosets of a subgroup of G .. 

• -r ," 

23.8_. Example: Let"G be 'a gro-up. ·We fix an arbitrary element g ·or G. 

With each x _E G, we associate g-1xg. Th.is is· a uniquely d~termined 
elem~nt.of G, so we.have a_.jnapping x- g-1xg, which we denote by·~· So 

'iG- G 
x - g-1x_g 

We chtim r
8 

is a homomorphism." For all x,y,E G • .we have 

_ ·, (xy)r
8 
= ( 1xyg = g-1xg.g'-1yg = _tr

8
yr

8
, 

and -r8 is therefore a homon~orptiism. 

·' 
We can build r

8
_ with any l E G. Let us take the composition of two of 

them, r
8 

and -rh; say, For g,h _€ G, we .have 

x( r
8 

rh) = (xr
8
)rh = (g-1xg)rh ·= k-1(g-1xg)h.= (h-1g-1)x-(gh) (~h).:. 1:x(gh) = xr

8
h 

for all x e:'G. Thus 

for all g,h E G . 

. There holds xr1 = 1:.1xl= x for all x E G. Thus 

(2}_ 

. For any g E G, there holds r;r8.1 = r8w1 r 1 = 1 and r8.1r8 r
8

•18 = r 1 = i by 

(I) and (2). Thus -r
8 

is one~to~one .and onto (Theorem 3.17(2)) and r
8

.1 Is 
the inverse of -r8: 

(rgri = 'g·l 

So -r 
8 

is a~ automorphism of G. 

Such automorphisms deserve a name. 

23'.9 Defin_ition: Let:G .be a g:oup. An .automorp~ism-of G of the fot;n r
8

, 

wtiere g e:G, is called an inn~r automorphism of G. The set 
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{ tg E Aut(G): g E G} 

of all inner autom9rphisms of G will. be denoted by Jnn(G). 

Inner automorphisms of a group form a group. 

23.10 Theorem: Let G be a group. Then lnn(G) < Aut(G). 

Proof: 1 = -r 1 E lnn(G) by (2), so Inn( G) ;z1. 0. Now (i) the product of two 

inner automorphisms is an inner automorphism by (I);_ and (ii) the 

inverse of an inner automorphism is an inner automorphism by (3). So 

· Jnn(G) <:: Aut( G). 

The relation (I) has a deep significance. It states that the mapping 

-r: G ..... Aut(G) 

g ..... 'g 

is a homomorphism. Theorem 20.16 gives G/Ke·r t ===' lm t. 

ll~re lm t = {tg E Aut(G): g E G} = lnn(G) by definition and 

Ker t = {z E G: <
1

=·1} 

= {z E G: gt
1 
= g for all g E G} 

= {z E G: z-1gz =g for all g E G} 
= {z E G: gz = zg for all g E G} 
= Z(G). 

Thus Z(G) is the kernel of -r: G ..... Aut( G). We proved 

23.11 Theorem: Let G he a group. Then G/Z(G) ===' lnn(G). 

Next we prove that /nn(G) is a normal subgroup of Aut(G). 

23.12 Lemma: Let G he a group. Then ln[l(G) ~ Aut(G). 
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Proof: We know lnn(G) ,;;; ;'\ut(G) from. The01;:em 23.10. We are to show 
cr-1rgcr E Inn( G) for any r

8 
E Jim( G), cr· E Aut( G). For· any x € G,. ~e have 

x( cr -\cr) = (xcr-1 X Vi) 
( (xcr -1 )r

8
) cr 

(g -1 (xcr -I )g )a 
= {g-1 cr)((xo~1 )cr)(gcr) 
~ (gcr r1x(gcr) 

· =xt
80

;· .. 

-
thus cr-1t cr =·r . and cr-1r cr· E Jnn(G). This proves lnn(G) :Q A_ ut(G). o g go g. 

_, 
Let G ·be a group and let H :Q G. According to Lemma 18.2(3), H ~ G if 
and only_ if Htg _H 'for all tg Elnn(G). T~is suggests a way of strengtlfen-

ing the normality concept: Instead of requiring Hcr = H for all cr E 1nn(G), 

we pre~cribe this to hold for all.cr E Aut(G). 

23.13 · Definition: Let G .be a group. A subgroup H" of. is said to be a 
characteristic subgro_up of d or to be characteristic in G provided H cr = H 
for all cr. E Aut(G). 

Here H cr means the set {hcr: h. E H} J; G as usual. The equality H cr =H is a 
set equality, of course. It does not mean· that h cr. = h for all h E H.· It 

'· . . ~ . ' 

·means that, hcr E H· for any h E· H, .and, ·far· any h E H, there is. an h' E H 

such that h'cr = h.-Cf. Example 18.5(b). As1nn(G},;;; Aut(G), any charac­
teristic subgrbup of G is normal in G, but the converse is not true in 
general. 

Being characteristic is a transitive relation, a good property not shared 
br norm~lity (Example 18.5(i)). 

23~14 Lemma: Let K H -~ G. If K is characteristic in H and H is 

characteristic il.l G, then.K is characteristic in G . 
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Proof: We are to prove that Ko = K for all o E Aut(G). L<?t o E Aw(G). We 
restrict o to H. Then o ll: H _,. G is a one-to-one homomorphism onto II o: 
Since · H is ch~racteristic in G ,we have H o fl and o li is an automorphism 
of H. Then K o If = K, because K is characteristic in H.· Thus K o = K for all o 
in Aut(G) and K is a characteristic subgroup of G. o 

Another useful result of this type. is given in the next lemma. 

23.15 Lemma: Let K,;;;;; H ,;;;;; G. If K is characteristic in Hand H is normal 

in G, then K is normal.in G. 

Pr_o~f: We are to prove that Kr
8 

K for all r
8 

E Jnn(G). Let r
8 

E Jnn(G). 
We restrict r

8 
to H. Then r

8111
: H _,. G is a. one-to-one homomorphism onto 

Hr
8 

g-: 1f! g. Since if is normal in G ,we have g~ 1H g = H and r8111 is an 
'automorphism of H. Then K r gill K,. because K is characteristic in H. Thus 

g·-1Kg = Kr
8111 

K for all g E G and K is a. normal subgroup of G. o 

23.16 Theorem:. Let G be a group. Then Z(G).is charact.eristic in G. 

Proof: We must show Z(G)o = Z(G) for all o E Aut(G). If we can prove 
Z(G)o ·!:; Z(G) ·for all o E Aut(G), thenwe will have Z(G)o-1 !:; Z(G), that ·is, 

Z(G)!:; Z(G)o for any a E Aut(G) also (cf. the proof of (2) ~ (3) in Lemma 

1K2).So we need only prove Z(G)o!:; Z(G).For any zE Z(G), we are to 

show that (zo )g =_ g(zo) for all g E G. As g runs through G, so does go, 

"because o is onto G. Thes we need only show (zo)(ga) = (go)(zo) for all 

g E G. But this is obvious: (zo )(go)=: (zg)a = (gz)o =(go )(zo) since z E Z(G) 
and a is a homomorphism. Consequently, Z(G) is characteristic in G. o 

We end this paragraph by finding the automorphism group of a finite 
cyclic group. In general, given a group G, ·it is quite difficult to find 

Aut( G). 

Let en <x: xn = I> be a cyclic group of order n E N. An automorphism of 

c,; is first of all a homomorphism of C n· We claim that a homomorphism 
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from e into e is uniquely determined by its effect on the generator x. 
n n . . 

In other words, if a and j} ar.e hommnorphis,ms from en into en and X« = 
· xf}, then. a = j}. To show this, Y,.e must prove aa = aj} for all a € en. But a 

xmforsomem € N,andaa =;tma =(xa)m=(xf})m=xmf}=af}. This proves 

the claim. 

Let lp be a homomorphism from en into en. Then Xlp = xm for some m € l. 

Then xklp = (X'+l)k = (xm)k = xmk = (xk)m forany k € N .. This shows alp =am 

for" any a € en. Thus a homon1orphism from en into en simply sends each · 
element of en to its m -th p6vjer, m being a natural .. number· depending 

__ only on the homomorphism. The homomorphism of taking m -th powers 
will be denoted by a · Hence', m" 

. ., 
is a homomorphism 
e is one of the a . . n. m 

a"m: <x> _,. <x> 

a- am 

from e into e : and any homomorphism from en into n : n 

From the homomorphisms {a : m. E l } , we want to select the auto- . 
. ~ m . 

morphisms. These are the one~to-one am's onto en. Since en is a finite set, 
any one-to-one mapping from. en into en is in fact onto en' So we need~ 
find only one-to-one am's. ~hese and exactly· these: are .the automorph­
ism's of e·. 

n 

Now a is one~to-one if and only if K er a . = 1 (Theorem 2.0.8) and 
m . ) 

1 
m ·. 

K er a = (g € e : ga = 1} m • n m 

= {xk: k € l and xkm = 1} 

= (xk: k .€ l and nlkm} 

= i(:Xk: k € l and n/(n,m) I km/(n,m)} 

=::(xk: k E l and n/(n,m) I k] 
='<xnf(n,m)>, 

so•Ker a = 1 = <xn> if and only. if (n,m) = I. Thus a is an automorphism . m ·. . m 
of Cn if and only if (n,m) = 1. 

Hence Aut( en)'= (am: (n,m) = 1} .. 

This description of Aut(en) loqks like .an infinite set. Aut(Cn) is finite of 
course. Therefore, there are 'repetitions among am' To see this more 
vividly, we remark that a~ = a k if and only if m k (mod n). Ind;?,¢. am 

is equal to a k if apd only if X~ m X tt k by the. claim above, thus if and 

251 



only if xm = xk, thus if and only if xin-k =·I, thus if and only if n I m - k by 

Lemma 11.6, .thus if and only if m k (mQl n). 

Hence, for any m .E l n' we may unambiguously write o: iii: en--+ en·· With 

a--+ am 
this notation, we have 

Aut(e) = {o:-: m E l.x) . n m n 

and. in ;r. I implies o: iii ;&.. u1._ In .other words, . tht;t mapping 

Is one-to-one and onto. h is a· homomorphism, because 

and, by the claim at the beginning,. o:lnT = uiiiui ·for. any iii ,I € l n· Hence 

u is an 'isomorphism and 1~ ~ Aw(en). We proved 

23.17 Theorem: If G is a cyclic ~rol1p of order n E.N. then Aut(G) ~ l~. 

D. 

· Exercises 

I. Let 1/,K he groups. Prove that Z(ll x K) = Z(ll) x Z(K). 

2. Let K ~ G and I Kl 2. Prove that K is a centml subgroup of G. 

3. Prove that K <l G implies Z(K) ~- G. Show by an example that Z(K) is 

·not necessarily characteristic in G. 

4. Find group<> K.G such that K<l G and Z(K) ~ Z(G). 

5. Let G be a group and x,y E C. Prove that, if xy E Z(G), then xy yx .. 

6. Find the centers of D.l' D 1 (n odd), SL(2,0).SL(2,l). 
, ~n . 
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8. Define a subgroup M of G by M /Z(G) =-Z(G/Z(G)). Show that M is char­
acteristic in G. 

9. Let. a € Aut( G) and H .;;.;; G. Prove that H c:i is a subgroup of G an<i is iso-

morphic to H. 
. . ·. . .. . 

10. Let 0 ;z:-A ~ Aut(G) and K < H G. Suppose'that K ~s characteristic in . 
H and H u = H for ;Ill u € A. Prove. that ·I( u K for all a € A. . 

U. Show that; if G::!:! H, then Aut(G)=:! Aut(H). 

12. Find all characteristic subgroups of D8 • Prove that Inn(D8);::: 1 and that. 
Aut(D~)::!:! D

8
• . . 

13. Prove that Aut(Z)::!:! C2, Aut(V4 )::!:! S3, Aut(S3)::!:! S3 , Aut(Q 8 )::!:! S4 (see 

.· §17; Ex.15). 

·14. Let H be a characteristic subgroup of. G and put 
N ={a € Aut(G): (xu)x-1 € If for all x € G}. Prove that N. ~ Aut(G). - . 

· 15. Find a one-to~one homomorphism from Aut(H x K) into 
Aut(H) x Aut(K). · 

16. Let Ii < K_ < Gand ci ~ hut(q). P:ove that Ha ·< Ka and,ifaJso H ~ K, 
· then HG ~ Ka . . 
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§24 
Generators and Commutators 

We introduce an important . subgroup which distingishes abelian factor 

groups from . non abelian ones. It is generated by the set of commutators. 
First we define 'generation'. 

24.1 Definition: Let G be a group and let X ~ G. The intersection of all. 

subgroups of G which contain X i~ called the subgr~up of G generated by 

X and is denoted by <X>. 

~fence <X> = xdJ < G H. Here ll runs through a nonempty set, since at least 

G is a subgroup of G that contains X. Note that <0> L When X is a finite 

set, for instance X {xl'x2;· •• . ,xn}, we write <Xj;X2, ••• ,xn> rather than· 

< (x1 ,x2, ... ,xn} =?'· In- particular, if X = {x} consists of a single element, then 

' <x> = < (x] > is the cyclic group generated by x, as we introduced in Defini­

tion I 1 .I. Definitions 11.1 and 24.1 are. consistent, as will be proved in 

Lemma 24.2, below. Our notation -:!: p,cr> for dihedral groups is also con­
sistent with Definition 24.1. 

When K <:, 'G and X r;; K, then <X> r;; K by definition. So <X> is the· sm~llest 
subgroup of G containing X. Jn particular, if ll <:, G, then <ll> =H. 

The elements of <X> are described in the next lemma. See also Ex. at 

the end of this· paragraph. 

. .- . 

24.2 Lemma: Let X be a nonempty subset of a group G. Then 

Proof: Let Y be the set on the right h .. wd side. We must show Y ~;;; <X> 

and <X> !: Y. 
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In order to prove Y !: <X>, we show that Y !: H for every H<:. G such that 
X !: ·H. This follows from the clesure properties of subgroups.· If. X !:' H 
and H ~ G, then, fo~ any x ·E X, there holds xn E !! for any n E N since H 
is closed under muldplication, · and also xn E H for any n E Z since H is 
~.losed under taking inverses and x0 = 1 E H. Hence, for any. k E N, any 
x 1,x2, ... ,xk .EX, any m 1,m2,i ... ,mk E Z, we have x 1mt,x2m2, •• ~,xkmt E Hand, 

f~om' the· closure of H undef multiplication, we get x 1 m
1x2 m2 •. •• xk m1 e: H. 

~hus Y !:. H. whenever X!: H,<:. G. This proves Y!: <X>. 

Now we show <X>!: Y. By definition of Y, we have X!: Y (take k = 1 and 
m 

1 
= 1). So <X> !: Y will be pro,ved if we show thar Y is a subgroup of G. 

Ilut f is closed under. mu~tiplication (bec_ause k runs through N) and . 
u:nder the forming of invers,es (because -mi e: Z when m; E Z). So X.!: Y 
and Y <:. G, consequently <X> !: Y. o. 

. . 
24.3 Remarlt:.<X> consists of all finite products of elements 'in X and 
the inverses of the elements in X. Notice that the set Y of Lemma ·24.2 
does not change if the elements. of X are replaced by . their inverses. Thus 

<X> <Z>, where Z = {x':"1 e: G:l E X}. 

24.4 Definition: Let G be a group. IfX!: G and <X>= G, then X is called 
a set of generators of G, and G is S!!.id to be generated by X. If G has a · 
finite set of generators; G is said to be a finitely generated group. 

24.5 Examples: (a) Ifx e: G, then <x> = {xn: n E Z} by Lemma 24.2. So 
<x> is the cyclic group generated by x as in Definition 11.1. 

(b) Any ele,nent of the dih~dral group D 2n can be written in the form 

pmoi, where mj E Z. Hence Din= <p,o> .. So the notation of §14 is consistent 

with Definition 24.1. · · · 

(c) Any permutation in S n (n > 2) can be written as a product of . 
tr~nspositions (Theorem 16.2). Let T be the set of all transpositions in Sn. 
-~hen Sn =<T> by Lemma 24.2. 
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(d) SL(2,1) is generated by { (6 ~).(~-~1 )}. A proof of this is outlined in 

Ex. 9. 

24.6 Le-mma: Let G be a· group and let X he a nonempty- subset of G. 

Suppo.~e xa E X for all x E X and for all o E Aut(G) [respectively for all 

cr E /nn(G)]. Then <X> is a characteristic (respectively normal] subgroup_ 

of G. 

_ Proof: Let y F<X>. Then y = x
1 

m 1x
2 

m 2 _ •• xk mt for some suitable k E N, 

x 1,x2, ••• ,xk EX, and m
1
,m2, ... ,mk E 1 (Lemma 24.2). Then~ for any a in 

Allt(G) [respectively for any a in /nn(G)], 

yo ='=(x!mlx2m2 ... xkmt)a = (xlo)ml(Xzo)m2 .•. (xko)mt EX 

by Lemma 24.2, for x
1 
a ,x

2
a, ... ,xko E X -by hypothesis: Thus <X> a ~ <X> 

for any a E _Aut(G) [respectively for any a E /nn(G)]. But then we have 

,.-x__:o-1 ~ .-:X>for any 0 E iia(G) [respectively for any 0 E /nn(G)], too. 

Then /X/= .-:X>o-1o ~<X> a ~<X>. Hence <X> a= <X> for all o E Aut(G) 

-[respectively for all a .E /nn(G)] and <X> is a characteristic [respectively 

normal] subgroup of G. 

We arc now irt a position to- introduce commutator subgroups. 

24.7 Definition: Let G be a· gmup and x,y E G. Then 

x-1y-1xy E G 

0 

is called the commutator of x and y. (in this order)· and is denoted by 

[x,y]. 

Some authors define [x,y] to be xyx-ly-1
• In this book, (x,yl will always 

stand for x-1y- 1xy. ·Clearly, xy = yx(x,yl for any x,y E G. In general, ~y ,r. 
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yx, and [x,y] is that element z in G for which,xy yx.z,_ whence the name_ 

commutator. 

24.8 Lemma: Let G be a group and x,y E G . 

. 0) [x,yrt =!y.xl. . . 
(2) [x,y] = I if and only if x andy. commute: xy yx. 

Proof: (I) (x,yrt = (x-Iy-Ixy)-t = y-tx-t(y-trt<x-trt = y-lx-lyx = [y,x]. 

(2) [x,}'] ·= I means x-ly-1xy 1, and. this means xy yx. o, 

From Lemma 24.8(2), we understand that commutators measure, so to 
speak, how nonabelian a group is. When the set of commutators consists 

of: I only, then the group is abelian .. Rather. sloppily, the trior~ nonidentity 
commutators a group has; the more elements of G fail to commute with 

other elements of G, and the, more nonabelian G is. This vague statement 
will acquire a precise meaning below (Lemma. 24.12 and Theorem 24.14). 

24.9 Definition: Let H ,K <G.· We define the commu{ator subgroup 

corresponding to H and K as . _ 

[H,K] = <[h,k] € G: h E H, k E K>. 

We saw in- Lemma 24.8(1) that the inverse of a commutator is a commu­
tator. However, .when H and K are subgroups of G, the inverse of a com­
mutator of the form [h,k], where h E' H, k E K, need not be a commutator· 

of the form Jh ',k'], with h' E H, k: E K. Also, the product of two commu­

tators is not a commutator in general. The commutator subgroups are 

· defined to be the subgroups generated by the set of appropriate com­
mutators, . not as the set of commutators. 

24~10 Lemm"a: Let H,K G. Then [H,K] = [K,H]. 
,._ 
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Proof: We have [H,K] <[h.k] E: G: h .E H, k E: K> 
= <[h,kr1 E:. G: h E: H, k E: K> 

:.. ' 
(by R'emark 24.3) 

<[k,h] € G: k E: K,h € H> 

= [K,H]. 0 

24.11 . Lemma: Let H, K<, G. If H and K are characteristic [respectively 

· n~m~aq -~l{bgraups ofG; then. [H~Kl is_ characteristic [respectively normal) 
in G. · ··. : ' 

'Proof~ .W~ use Lemma '24.6; whtt x' == {[h;k] ': iz' .E: H' k E:. K},Ii suffices to 
;sho~·that xa € X:· .for'':di x':'E·X and for. all a E Aut(G) [respectively for all 
. a E: Inn( G)). This ·follows fwm 

x;; [h,k) for some hE: H,.k E K, 
xa = [h,kjcr = (h-1k- 1hk)a = (lzar1(kar1(ha)(ka) [ha;ka] E: X 

as lla E: II,, ka E: K for any p E ·Aut(G) [respectively for any a E: lnn(G)] 

when II and K are characteristic [respectively normal] subgroups of G. o 

. . 
24.12 Lemma: Let H~ G, K ~ G. Then llf,Kl <, II n K.ln particular, if 

II n K = I, then every element· of H commutes with every element of K. 

Pri)()f: It suffices to show that [h,kl € II n K for all hE: H, k €. K. For any 

h E: II, k € K, we have indeed 

lh,kl = h-1X 1Jzk E fl since If~ G 
[Jz,k) = h-1k-1h.k E: K since K ~ G, 

.·yielding [h,kl € II n K. 

If II n K I, then [h,k) € H n K = I and lh,k I = I, so hk = kh for all h E H, 

and k € K. o 

The preceding· lemma supports our vague remark that commutators 

measure how nonabelian a· group is. Suppose we treat, som.ehow, com­

mutators like the identity. Then the group will be like an abelian group . 

. The. formal way of treating commutators like I is to define an equi­

valence rch1tion on the group in such a way that all commutators will be 
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equivalent to I. The most natural equivalence relation oLthis type Js 
right congruence . modulo t~e subgroup generated by all _commutator~ . 
(Definition 10.4) .. The equiyalence classes are the righ( cosets of this _ 
·subgroup,. which is normal, 'form a factor- group .. We e~pect this factor 
groul' to be abelian. First we give a name to the subgroup. 

t4.13 · Definition: Let G be a group. Then the subgroup · 

[G,G] = <[g,g1: g,g' € G> 

-
generated by. an· commutators in G is called the derived subgroup of G, 

denoted by G • . 

. G is abelian if and only_ if G; =' 1. Now G ~-is a characteristic subgroup of G 
(Lemma 24.11), hence \\'e can build)he factor group GIG'. We expect GIG' 
is: abelian. In fact, much more is true. · 

24.14_ Theorem: Let- K:Q G .. Then GIK·is abeUan if and only if G'<:. K. 

Proof:GIK is ab~lian <=>. (xK)cYK) =.(yK)(xK) for aifx,y e: G 
<=>. :i:y~ = yxK for all x,y E_ G: 

x-1y-1xyK = K for all x,y e: G · 
.:~:-ly-1xy e: K for all x,y E G 

[x,y]E K for-all x,y € G . . -· ~ 

<;[x,y]: x,y € G> K 

~-~K. 

Exercises 

· 1. Let G be a group and X a nonempty subset of G: Prove that- _ 

d'>={i1£1x2r2 ••• xkrt e: G:k € N,xi e: Xa11~ e1 =:rl for all i =1,2, .:·.~}.' 

2. Show thatS =<(12),(123 ... ri-l,n)> when n;;;;.. 3; n . "- , • 
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3. If II <:;;:; G, I G :HI is finite and G is finitely generated, show that· II is also 
-

finitely generated. 

4. If H "' G and G is finitely generated, show that GIll is also finitely 

generated .. 

5. Show th;tt every finitely generated subgroup of 0 _is cyclic. 

"' 
6. Let f/ 1 <:;;:; H~ <:;;:; H 3 <:;;:; • •• be subgroups of G. Prove that H := ildl Hi is a 

subgroup of G. Prove further that, if each Hi is a proper subgroup of G, 

then fl is also a proper subgroup of G. 

7. Let o:: IR ...... IR and~: IR ...... IR and put G <o:.~> <:;;:; SP.. Let o:
11 

= ~~~o:~-n for 
u ...... 2u 

n E N. Show that o: ~+l = a·
11 

for all n· E N. Show that 

<o:l> < <o:2> <. <o:3> <·.: . 
00 

Prove that <o:
11

> is a proper subgroup of A.:= ild 1<o:;> for all n EN. Using 

Ex. 6, conclude that A is ·not finitely generated. Thus a subgroup of a 

finitely generated group need not be finitely generated. 

8. Let M 0\(0,1} and a: M ...... M and~: M- M~ Prove that <a,~><:;;:; SM 
x- 1/x x- 1/(1-x) 

and that <a,fi> is isomorphic to s3 .. 

9. Show that SL(2,l) = <T,S>, where T 
I I 0 -1 

( 0 1).s = ( 1 0 ) by going through 

f . . (a b) SL(2 f the ollowmg steps. Let M =. c d . E ,l ). I c 0, then M is a power 

ofT. Make induction: suppose a matrix in SL(2,l) belongs to <T,S> 

whenever its lower-left entry is positive and < c. If M ( a b) . 
C d IS a 

matrix whose lower-left entry is c, divide d by c, so· that d.= qc + .r. Then 
. b 

AI~S is in <T.S>, and so isM. Thus(~ d) E <T,S> whenever c > 0. If c is 

negative. MS2 E ,o·'T.S>, and so M E <T,S>. 
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10; Let H < G. Prove that [H,G] = 1 if and only if H < Z(G) and. also that 
[H,G] < H if and only if H <! G. 

II. Show that, if G '< N < G, then N is a. normal. subgroup of G. 

12 .. Let K <! G. Prove that [xK,yK] [x,y]K E G/K for any x,y E G. Then 

prove that [H K/K,JK/K] = [H,JJKIK for all H,.! <.G. 

13. LetH1JJ2 < H and K 1JS < K. Show that [H1 X K1,H2 X Kil = [H1,H2] X [K1JSl 

as subgroups of H x K. 

14. Show that [xy,z] ::y-1[x,z]y.[y,z] and [x,yz] [x,z].z-1[x,y]z for any 

elements x,y,z of a group G. Deduce that [HJ,K] [H,K][J,K] whenever H,l,K 

·are normal subgroups of G. . . . 

15. For any elements x,y,i of a group G, show that 
y-'[[x,y-'],z]y .z-t[[y:z-'J.x]z. x-'[[z.x-'J,y]x 7 1. 

. . . . . . . 

16. Let H ,K ,L be subgroups of a group G and N <! G. If two of the sub-
gr,oups [[H,KJ,L], [[K,L]JI], [[L,H],K] are contained inN, prove that the third 
is also contained in N: 

17. Give an. example of a group G and three subgroups H ,K ,L ·of G such 
that ([H,l(],L] ~· [H,[K,L]]. 

18. Prove: ·if K <! G, then ic <! G.· 

t'9. Find the derived subgroups ofS3,S4,A4,D 8,Q8 (see §17, Ex. 15),SL(2,Z3), 

GL(2,Z 3), Sn' An (for n > 2). 

20. Let G be. a group such that G '< Z(G) and let a be a fixed element of G. 

Prove that the mapping rp: G -:-- G is a homomorphism. 
x __._ (x,a] 
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§25 
Group Actions 

Many of the important groups we have examined so far are groups of 

functions. S x is the group of one-to-one mappings on the set X-; lsom E is 

the group of distance preserving functions on the Euclidean plane,_ Aut(G) 

is the group of multiplication preserving functions on a grollp G. You will 

see more examples later: In general, when X is a set with some structure 

on it '(algebraic, geometric, analytic, topological or of some other type), 

the mappings on X that preserve this ~t~ucture form a group. Up to now, 

we neglected the functional character of the elements of a group they 

- might have: In this paragraph; we consider groups whose elements can 

be thought of as functions on a 'set X. This leads to the idea of group ac­

tions. 

25.1 Definition: Let G be a group and let X ~e a nonempty set. We say 

that G acts on X provided, for all x E X and ·g €. G 1 there corresponds a 

uniquely determined element of X, denoted by xg, such that the follow­

ing hold: 

(xgl)g~ =x(gtg2) 

xi = x 

for all x E X, gpg2 € G, 

· for all x E X. 

More precis_cly, we say then that D acts on X on the righL We similarly 

·define a left action of G on X by stipulating that (g 1g2)x = g
1
(g

2
x ) and lx 

= x for all,x € X, gl'g2 E G, where gx is a· uniquely determined element of 

X corresponding to the pair g ,x. 

25.2 Examples: (a) Let X be a noncmpty set and G = Sx· Then G acts on 

X when we naturally interpret xg as the image of x E X under· the map­

ping g E G. The condition (x g1 )g2 = x(g 1 g2) is satisfied for aU x E X and for 

nll g l'g2 € G, for it is nothing else than the definition of composition of 

mappings. The 9ondition xi = x holds, too, since. it isthe definition of the 

identity mapping ·I € G on X. More gene;ally, if G < Sx, then G acts on X. 

(b) Let X= :;:;: x P. and let G = GL(2,P. ). Then G acts on X if we put 
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We have indeed 

i 
I· 

. . . 

· = '((xci~+ yc)e + (xb + yd)g~ (xa + y'c)f + (xb + y~)h) · 

= (xae: + yce + xbg +._yd_g; xaf + ycf+ xbh + ydh) 
·, 

. _,·.(.·(a b)(' ef)' )· ..... 'c'ae+bg af+bh)·_ .. 
(x,y) c d_ g h. . = (x,y) ce+dg cf+dh 

= (x(ae + bg) + y(ce + dg), x(af + bh) + y(cf +·dh)) 
·, ·. ·. I .. · 

· = (xae'+ xbg + yce + ydg, xaf + xbh + ycf + ydh) 

an~ so . ( (~.y)(~ ~) }(; {) ~ (x,y)( (~ t)(;~{)) for: aiHx,;) EX ~nd_ 

(a b) (e f) E G .. 
c,d ' g h 

One proves, analogously that G act~ on Y = _ { (~): x;~ E_ ~ }. on the left 

; (a b)(x)· (d~+by)-- . (a b) (x)-
when we put c d . y = cx+dy -for all c d E G, y E Y . 

. _Clearly, the field ~ ·can _be replaced by any field in this example. 

{c) Let X = 1. X 1. X 1. and G = SL(2,1.) _= { (~ ~} E Matil): aS- fly= 1}. 

The~ G acts on X when ~~ de(ine (a,b,c)(~ ~) to be 

(aa 2 +bay+ cl, 2aafl\ b{a8 + fly)+ 2cy8,afl2 + bfl8 + c82). 

The verification is left to the reader. 
I • '; • ' 

(d): Suppose G acts on· X on the, left and we denote the element of X cor- -
· responding to the pair g;x (g · ~ G, x E X) by g•x. Then G acts on X on the. 
right when we put xg := g-1•x, . because · · -
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(Xgl)g2 = (gJ-1*X)g2= gi-1*(gl-I*X) =g2-lgi-?*X = (glg2f1*X =x(glg2) 

and 

X1 = rt *X = hX = ~t , 

for all x E X, g 
1 
,g2 E G. We could· not write -~g :,.; g *x, for then we would 

get (x g1 )g2 ::;; x(g2g1) instead .of (x g1 )g2 ::;; x(g 1g2). However, if G is com-

mutative, G acts on.X on. the right when we pui xg := g*X. 

(e) Let F be a nonempty subset of the Euclidean plane E. Then Sym F 

acts. on F, because fo € F forallf € F, o E Sym F and 

for all f E F, o 1 ,o 2 E Sym F. 

f(olo2) =(fol)o2 

ft f 

(f) L~et G be a group. Then Aut(G) acts on G, because g(o: 1o: 2) = (go: 1)o: 2 
and gt g for all g E G and for all o:

1
,o:

2 
e: Aut(G). 

(g) Let 2. be the set of all nonempty subsets of the Euclidean plan.e E. 
Then S£ acts on J., since (FaW F(al3) and Ft = F for all F ~ J.,and o:,l3 ESE 

<Lemma 14.1). 

(h) Assume that a group G acts on a set X. Then any subgroup of G also 

acts on X. 

In· the next two theorems, we shall show that. any. group action on a set 

X is· essentially a homomorphism into S x-

25.3 Theorem: Let G act on X. For each g e: G, consider x .... xg as a 
function ami put p;: : K ..... X. Then p 

11 
E S X and the mapping 

x--. xg 

p: G:... Sx 

g- Pg 

is a ltomnnwrphism (called the permutation representation of G corre­

sponding to the action}. 
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Proof: Let g E G. Sin~e G acts on X' to each X E X' there corresponds a 
uniquely .determined element xg of X. Hence p 8 : x -+ xg is indeed a func~ 
tion from X into X .. 

For any x E X, g 1 ,g 2 E G, we have , 
. xp

8 
g = x(g 1g 2) (xg 1)g2 ;, (xgi)p

8 
= (xp

8 
)p

8 
=x(p

8 
Pg ), 

t 2 . · · 2 I . 2 I 2 · 

SQ (1) 

Furthermore, xp 1 ==" x1 x for all x E X, hence 

(2) 

From (1) and· (2), we obtain 

P8 P8-1 = P88-t =PI:::: 'x = SX; P8-tP8 = P8-tg =·PI 'x = SX 

and thus p
8 

is one-to-one andonto (Theorem 3.17(2)). So p
8 

E S£ for all g 

in G. 

So we have a mapping p: G -• Sx· and it is a homomorphism by (1). o 

g-+ Pg 

25.4 Theorem:·Let X be a nonempty set and let cr: G -+ S x be a group 

homomorpftism. Then G acts on X when we put 

xg =x(gcr) 

for all x EX, g1,g2· E G. Furthermore, the permutation representation of. G 

corresponding to this action· is cr. · 

Pt·oof: The proof consists in observing that cr is a· homomorp~ism. We 
have 

(xgl )g2 (xgl )(g2cr) (x(gi cr})(g2cr) = x((gl cr )(g2o- )) =x((glg2)cr) x(gig2) 
and 

x1 x(lcr) =x 

·for all x E X; gl'g2 E G. Here we use t~e fact that 1 cr E S x is the identity 

element of the group S x (Lemma 20.3(a)), ·which is 'the identity mapping 

on X. Thus setting xg = x(gcr) does define a group action. 

265 



Let us find the permutation representation of G corresponding to this 
action. This is p: G-- Sx, where pg is the mapping x--. xg on G. Since 

g _, _Pg 

·xpg =xg "=x(gcr). 

for all X € X, g E G, :_ve have p g :::; g (J for all g E G. Hence p = cr by tlie defi- . 

·nition of equality of mappings. o 

We now show that group actions define .an equivalence relation on the 
underlying_ set X. The numbei: of elements in an equivalence class can be 
expressed in group .theoretical terms. This gives some arithmetical infor­
mation about groups. 

· 25.5 Lemma: Let G act on X. For any x,y e: X, we put x ~ y if and only if 
there is WI element g € G such t/wt XJ.( = )'. Then - is an equivalence 

relation on X. 

Proof: (cf. Lbnma 15.7.) (i) Since I E G and xl = x for all x e: X, we have 
x ~- x for all x E X. Thus -~ is reflexive. 

( ii) If x,y e: X and x- y, then there is a g E G such that xg = y, so: yg-1 = 
Cxg)j(1 x(gg-1) =xl =x. From g-1 £ G and yg-l =x. we conclude y·- x. 

' Thus ~ is sy11unctric. 

(iii) Suppose x,y,z £ X and x- y, y- z. Then there ·arc g-,h E G such that xg 

y and yh = z. Then x(gh) = (xg)h = yh = z. From gh E G and x(gh) z, we 
conclude x ~ z. Thus - is transitive. 

So ~ is an equivalence relation on X. 0 

25.6 Definition:_ Let G act on X. The equivalence classes of the equi­

vah:nce relation in Lemma 25.5 are called orbits. The e(juivalence class 
_ { x,~; E X: g E G ) or'r £ X is called. the orhii of x. 

25.7 Lemma: Let G act on X. For x E X. we write 
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Stabc(x)= _[g e: G: xg = x}. 

Then Stabc(x) is a· subgro~tp o/G (called the stabilizer of x in G). 

Proof: The proof is a routine application of our subgroup criterion. 

' ' 
(i) Let g,h e: Stabc(x). Then xg = x and xh =~·So x(gh) = (xg)h 

= xh = x, so gh e: Stabc(x). Hence Stabc(x) is closed· under multiplication. 

(ii) Let g-1 e: Stab(;(x). Then xg = x. So xg-r = (xg)g-1 = x(gg:1) = 

xl = x, so g-1 e: Stabc(x). Hence Stabc(x) is closed. ~nder the forming of in­

verses .. 

Thus Stabc(x) <: G. 

Stabilizers ·of elements in the same ·orbit· are closely related .. 

25.8 Lemma: Let G act.on-X.Let x E: X and g e: G. Then 

Stabc(xg) = g-1Stabc(x)g. 

Proof: As lz e: Stabc(xg) ~ (xg)h =xg 

~ x.(gh) =xg 

~- (xi_gh))g-1 ·= x 

~ x(ghg-1) =X· 
~ , ghg-1 e: Stabc(x) 

~ · . h e: g-1stabc(x)g; 

0 

0 

The kernel. of the permutation representation can. be expressed in terms 
of the stabilizers. · 

2S.~. Lemma: Assume G acts on X and let p: G ..... Sx be the permutation, 

· represenrat!on. Then Ker P, = D; Sta~G(x). 
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Proof: Forx E G, we have p: g-+ Pg € Sx, where pg:x,-. xg. Hence 

... 

Ker p = {g € G: Pg = l € Sxl 
= {g € G: xpg = x for all x € X} 

= [g € G: xg = x for all x € X} 
=n [gE:G:xg=x-} 

X€X . 

= Dx Stabc(x): 

The following elementary counting principle has many applications. 

'25.10 Lemma: Let G act on X. Forany x € X, we have 

I orbit of xl = IG:StahG(x)l. 

D 

Proof: The orbit of x is the set {xg € X: g € G). The index IG:Stabc(x)l is 

the number of right cosets of Stahc(x) in G, more precisely, the cardinal 

number of 'R = {Stabc;(x)g: g € G }. We must find a one-to-one corre­

spondence between. the . orbit {xg € X: g € G} of X and the set 'R = 
( .)'tahc;(x)g: g € G} of the Tight cosets of StahG(.x) in G .. The description of 

these sets leads us to consider the mapping 

a: orbit of x 'R, 
xg S g 

where we put S StahG(x) for brevity. Let us see if a is one-to-one and 

onto. 

Before that, however, we must check that a is well defined, for one and 

the same element in .the orbit of x can have representations xg ,xh with 

J(?:. h. We must prove that xg = xh implies Sg = Sh. If xg xh, the~ x(gh-1) 

= cxg Jh~ 1 (x/z)lz- 1 = x(hh-1) xl = x, so gh-1 
€ S ami th~refore Sg = Slz by 

Lemma I 0.2( 5 ). Thus (J is well defined. 

That rJ is one-to-one follows by reversing the argument above. If (xg )a 

(xh)u, then Sg Sh, then gh-1 E S, then x(gh-1) x, then (x(gh- 1 ))i~ ~ xh. so 

xg = xh. Therefore o is one-to-one. 

11 is c~rtainly onto. since any s·g E 'R is the image of xg in the orbit of x. 
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. ' 

Thus' a. is a one-to-one mapping from the orbit of x onto 'R. This gives 

!orbit oFl:.l = IG:Stab0 (x)l. ' . . . 
D 

25.11 Definition: Let G act on X. We say G acts tran.sitively .on X or the 

actim1 of G on X is said to be. a transitive action if, for any x,y E X, there 

is a g E G . such that xg = y: If G does not act transitively on X, then 'G is 

said to act intransitively on X . 

. Thus: G acts. transitively on X if and only if there is one and only one or­

bit. The whole set X is the singk qrbit of the action. 

25.12 Examples.: '(a) A g,roup 0 acts on itself by right n1ultiplication: to 

the pair x,g E G, there corresponds the product xg E G. Tlie conditions 

(xg 1)g2 = x(g 1g 2) and xl = x (for all x,g 1,g2 E G) are immediate from the 

associativity of multiplication ~tnd from . the definition of the identity el- · 

e ment. This action is transitive, because, given any x ,y E G, there is an 

eleme'nt g i~G,namely g =x-1y, such that xg =y. Hence, for any x E G, 

we have IGI =I orbit of xl IG:Sta:b0 (x)l, thus Stab0 (x) = 1, as can be seen 

also from Stab0 (x) = (g E G: xg =x} {g E G: g = 1) = {1)::: 1. This action is 

called. the regul~r action of G on G. The kernel of 'the perm~tati01i repre­

sentation p:· G ~ Sx is Ker p Dx Stab0 (x) = 1· by Lemma 25.9. Thus pis 

one-to-o~e and Theorem 20.16. gives q '='=' G/1 ::: G/Ker p '='=' lm p.;;;;; S0 . · 

(b) The preceding example can be generalized. Let H .;;;;; G .and let~'R = 
. {Ha: a E G) be the set.of all right.cosets of H in G. Then G acts on i by. 

right multiplication, where, to the pair H a, g, t~ere corresponds the coset 

Hag, because 

and 

(Ha)l =Hal ::: Ha 
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This action is transitive, because, given any H a ,H b E 'R, there is an ele­

ment gin' G, namely g = a-1b, such that (Ha)g Hb. 

We have 

and 

by Lemma 25.8. 

StabG(H} (g E G: Hg= H] = (g E G: gE H] '= H 

· StabG(Ha) = a-1StabG(il)a a-1Ha 

The kernel of the permutation representation p: G -+ S 'R is, by .Lemma 

25.9, 

Ker p = lln'R StabG(Ha) = DG StabG(Ha) = aQGa-1Ha. 

The intersection n a-1 fl a is called the core of H in G, and is designated 
aEG . . 

by HG. Theorem 20.16 gives now G/H G == G!Ker p ="' lm p.,;;;; S'R. 

25.13 Theorem :Let G be a group. , 
(() (Cayley's theorem) G isisomorplzic to a subgroup of SG. 
(2) Let H .,;;;; G be of index I G :HI = n: Then G!H G is isomorphic to a sub­

group of Sn. 

Proof: (I) This follows from Example 25.12(a). 

12) From Example 25.12(b), it follows that G/f/G is isomorphic to a sub-. 

group of S <it,. where 'R is a set with n clements. Let 11 :'R - {I ,2, ... ,n] be a 

one-to-one mapping from 'R onto [I ,2, ... ,n). Then, for each f E S 'R, the 

mapping ~.~- 1{!1 is a one-to-one mapping from (1,2, ... ,11) onto (J,2, ... ,n}, s.o 
u~1lu r; S

11
• Now the function 

.M: s'R .... sn. 
I- ~.~-'!11 

i.s easily verified to be a homomorphism: fg M Jl- 1fgll == Jl-:rJlJl-lgJl = jMgM 
for all f,/!. E S 'R; and M is one-to-one and onto, because the mapping 

N: s" .... s'R 
a-+ JlOJ.l- 1 

is such that M:-; == identity mapping on S 'R and NM identity mapping on 

Sn (Theorem 3.17(2)). Hence M is an isomorphism and S.R =: S
11

• Together 

with G/11(; == S.R' this gives G///G == s/1. 0 
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25.14 Example: Another important. group action is conjugation. For any 
x,g E G, we. call g-1xg. the conjugate of x by g~ In order to avoid any con­
fusion with right multiplication, we shall write xg for g-1xg. TIJ:is notation 

is standard. Since 
. . 

(xgl)g2 = (g ~-txgt)g2 = g2-t(g ~-lxg t)g 2 g2-tgt-lxg tg2 (~lg2ftx(gtg2) = x<glgi) 
and · · · ' 

for all x,g Pg 2 E G,, conjugation is indeed an action of G on G. 

The orbit (xg: g E G) = (g-1xg: g E G} ofx f' G is called the conjugacy class 

of x. We have 

- Staba(X) = (g E G: xg =X}= {g E G: g-1xg =x} ~ (g E G: xg = gx}; 

so 'StabG(x) consists of the all those elements in G which commute with x . 

. It is called_ the centralizer of x in G in. this case and is denoted. by C a<x). 

The permutation representation is r: G-+ SG,where rg: G -+ G: ~ence 'g is 

g-+t X-+Xg 
. g . 

the inner automorphism of G induced by g. We get 

' Ker t. = n CG(x) = nG (g E G:xg =gx} = (g E G: xg =gx for allx E G} =Z(G) 
. :nG X€ · · . • 

as we know als~ from. the proof of The~rem 23.10. In this case, Lemma 
25.10 assumes the following ._form. · 

25.15 Lemma: Let G be a group and x E G. Then 

!conjugacy class ofxl = tG:CG(x)l. ·o 

2S.16 Lemma {Class equation): Let G be a finite. group. Assume G has 
k distinct conjugacy classes :and let x1 ,x2 , .•. ,x k be representatives of 

these classes. Then 
k 

IGI = 2: IG:Ca(xi)l. 
l=l 
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Proof: Conjugacy is an equivalence relation on G and gives rise to a par­

tition of G (Theorem 2.5): 

k 
G )J · conjugacy· class of x,., 

'"'I 

the union being disjoint. Counting the number of elements on both sides, 

and using Lemma 2,?.15, we obtain 

k 
IGI = I.lconjugacy class of xil 

. i= 1 

k 
2:1G:CG(x1)1. 

. i"' I 

We give an important application of the class equation. 

. ' . 

D 

25.17 Theorem: Let G be a group of order pn, where p .is pri'me and n is 
a natural mmiber. Then Z( G);:! 1. 

· Proof: Let k be the number of conjugacy classes in G, and let x 1 ,x2, ••• ,x k 

be representatives of these classes. Then, in the class equation 

k ' 
IGI :;::: I.lG:CG(xi)l, 

;., I 

each summand ·on the right hand side is a divisor of pn by Lagrange's 
theorem. So IG:Cc;(X;)I = pm; with suitable nonnegative integers m; (for 

each i =' I ,2, ... ,k ) .. Thus the class equation is 
pn pm1 + pmz + . ; . + pmk. ~ 

Ilere pm; = I if and only if IG:CG(x1)1 = 1, so if and only if CG(x1):;::: G, and so . 

if and only if x 1·f Z(G). Thus exactly IZ(G)I summands on the right hand 

side are equal to I, and the class equation gives 

. pn = IZ(G)I + (a sum of powers of p greater than p0= 1) . 

(The second term is absent in case IGI = IZ(G)i; in this case Z(G) = G;:! 1). 

The last equation tells us that IZ(G)I is divisible by p, so IZ(G)!;:! 1, hence 

Z(G)7! I. o 

25.18 Lemma: Let p be a prime number. If G is a group of order p2, 

then G is abelian. 
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Proof: We must show Z(G)-= G, or, equivalently, IZ(G)I= p 2
• We know 

IZ(G)l = 1 or p or p 2 by. Lagrange's theorem, and IZ(G)r;: 1 by Theorem 

25.17. We suppose, by way of contradiction, that IZ(G)I = p. Since Z(G) ~ G . 

(Theorem 23.3), we can build the factor- group G/Z(G), which has order 
p"2/p = p and which is therefore cyclic by Theorem ll.IJ. Then G must be 
abelian by Lemma 23.5, and IZ(G)I = p 2, contrary to the assumption IZ(G)I 

= p. Thus IZ(G )I = p is impossible and there remains only the possibility 

IZ(G)I = p2. Hence G is abelian. o 

We. wish to present the basic idea in the proof of Theorem 25.17 in its 
purest form. We need a definition. 

25;19 Definition: Let G act on X. If x E X, g E 'G and xg = x, we say that 

g fixes x. The· set 

{x E X:xg =X for all g E G} = {x EX: StabG(x) ='G} _ 

.. of a'tl elements in X_ which are fixed by each element of G is called the· 

fixed point subset of X and denoted by Fixx(G). 

Thus Fixx(G) consists of all those elements in X w~_ich form an orbit with 

only one element in it. Wh~n we count the number of elements in X as 
the sum of the number ·of elements in each orbit, each element in Fixx(CI)· 

contributes 1 to this sum. Notice that, under the _action of--a group G on 

itself by conjugation, FixG(G) is nothing else than Z(G). 

25.20 Lemma: Let G act on X. If G has order pn, where p is a primer 

number and.n E N, and X is a finite set, then 

lXI = IFixxCG)I (mod p). 

Proof: We consider the equivalence relation ..., of Lemma 25.5 on X. Un­

der this equivalence relation, X is partitioned- into finitely many disjoint 
orbits, say 
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k 

X = U orbit of X 1•• i= I 

Counting . the number of elements on both sides, we get 

k 
lXI =2: !orbit of x;l 

i= I 

k 
Hence, by Lemma 25.10, lXI 2: IG:Staba(X;)I. 

i=l 

Now each of the indices IG:Staba(x1)1 is a divisor of I Gl = pn, hence is equal 

to some power pm' of p with a nonnegative integer m 1• Here pm' = p 0 = I if 
and only if G = Staba(x1),' that is to say, if and only if X; € Fixx(G). Thus 

there are exactly IFixx-(G)I summands equal to I, and the sum above be­

comes 

IXI=(I +I +: · · +I)+ (sum of pm; with mi :> 0) 
IFixx(GJitimes .. · 

(the second term is missing in case there is no.pm• with m 1 > 0). So 

lXI = IFixx(G)I + (a number divisible by p) 

and therefore IXJ "" IFixx(G)I (mod p), as was to be proved. 

We end this paragraph with a generalization of conjugation. 

0 

25.21 Example: Let G be a group and let Z be. the set of all nonempty 

subsets of G. For any U € z and g E G, we put 

ux = (ull E G: u E if}= [g-1ug· E G: u E U} = g-tug. 

UK consists therefore of conjugates by g of the elements of u. and is 

called th.e crinjugate of U by g. With this definition, G acts on z, because 

(UIIl)K2 = [uKt € G: u ;:U)112 ((uXI)112 E G: u € U} =[u<11IX2-l € G: u € U} = u(g1g2) 

.and 
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The orbit { Ug: g € G}::: {g.:..1U g;: g e: G) of U € .2, is ca:Ue<l'the conjugacy ciass 
ot U. We .have .. 

StabG(U)= {g € G: Ug =::lJ} =:: {g E:.G:g-1Ug=U} ={g € G:Ug=gU}; 
I 
I ; . . 

so $tab0(U) consists of the all those elements in G which fix U asa set. It · 
is; called the normalizer of u: in G in this case and is denoted by N G( U). 

I ' 

TI1e set· 

{g € G: ug = u for all u € U} 

== {g € G:g-1ug = u for all u € U} = {g € G: ll:g =gu for all u e: U}· 

·of all those elements in G which fix each element· of U under~ conjugation, 

or, what is· the same, which . .commute with every element of U, is called 
th~ centralizer of U in G and is denoted by C G( U). So C G(U) is the inte:-

section of . the centralizers of ,the elements of U: 

CG(U) uQu CG(u). 

In particular, CG(U) is ~subgr?up of G. We have C~(U} NG(l!} <G. 

The orbit of U €· i> is 

(U8 e: .2,: g € G} = {g-1Ug_€ .2,: g e: G} 

and is called the conjugacy class of U in· G. We have 

lcmijugacy class of VI = IG:NG(U}I 

by: Lemma 25.10. 

In general, U ·neither contains nor is containe~ in CG(U} or NG(U}. How­

ever, ifU happens to be a subgroup of G, we have g-1ug e: U for all u,g in 

U, so U8 == {u8 e: G: u € U} = {g-1ug € G: u € U} !;;; iJ and, for any gin U, we. 
get U !;;; __ (U8'

1
)8!: U8!;;; U, thus iji = U and U.;;;; NG(U). 

We collect the last two remarks in a theorem. 

25~22 Theorem: Let G be a group and let H be-a subgroup of G. Then 
) ' ., 

H < N G(H} < G. and !conjugacy class. of HI IG:N G(H}I. o 
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Exercises 

· .·. . a h/2 } 
l. Prove that SL(2,Z) acts on X:= { (h/2 c ): a,b,c € l · when we asso-· 

ciate the matrix g 1xg with the pair (x,g) E X x SL(2,l) . 

. 2. Let G act on X and let H be a subgtoup of G. Show that 

Stabu(x) = Stabc;(x) n H 

for any.x EX. 

3. Let G act on X and fl acr on Y. Prove that the .direct product G x J-1 acts 

on the cartesian product X x · Y. . . 

·4. Give an examples of groups G and subsets U.of G such that U 11: NG(U), 

Nr/U) <Z U,U iz CG(U), CG(U) 11: U. 

5. Prove that Cri(U) ~ NG(U) for. any nonempty _subset U of a group G. 

6. ~Let II ~ G. Show that N c;(H) acts on 11. by conjugation .. Considering the 

pcrinutation representation of this action, prove that N G(H )/C c<H) is iso-

morphic to a subgroup of Aut(//). 

7. Assume G acts on X, mid let K be thl! kernel. of the permutation repre­

sentation of this action. Suppose ll ~ G an~ fl ~ K. Show that G /H acts 

on X when we put x(fiu) =::=xu for all x E X, llu E G//1. What is the kernel 

or the permutation representation? 
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§26 
Sylow's Theorem 

Let G be a finit~ group. Lagrange's theorem asserts that, if G has a sub­
group of order k, then k is a divisor of IG I. The converse , of Lagrange's 
theorem, like the converses of many. theorems, is wrong. If k · is a divisor 
of I G I. thenG need not have a subgroup of order k. For instance, A 4 has 
order 12, 12 is ~ivisible by 6, yet A4 has .no subgroups of c;>rder 6 .. · 

The converse of Lagrange's :· theorem becomes true if we impose the ad­
ditional condition that. k be a prim~ power such that k and I G Ilk are rel­
atively prime': In . other· worqs, if I G I = pam, where p is- a prime number 
and p.J'm·, then G does have a subgroup H of order pa. Then any conjugate 
H g of H, too, is a subgroup of order pa · and the question arises as to 
whether G has subgroups of: order pa other than the conjugates of H, The 
answer turns out >to be n~gative. The conjugates of H are the only 
subgroups of order pa. 

' 
This theorem was proved by the Norwegian mathematician L. Sylow in 

.1872. It is a very important tool in the theory of finite groups. We pre­
sent here a very elegant proof due to H. Wielandt (1959). 

26.1 Theorem (Sylow's Theorem): Let G be a finite group of order IGI 
=pam, where pis a prime number and p{m (that is, let pabe the highest 

' ' ' . ~ . \ 
power of p dividing I Gl). The11, the following assertions hold.. 

' . 

(l) (; has a subgroup H .of order pa. 

(2) If J is any subgroup of G: who~e order Ill is a power of p, then there is 
an x e: G such that J -~ Hx. 

(3) If nP denotes the number of subgroups of order pa, then nplm and 
n;, 1 (modp). 

Some remarks will.now be in order. If p 0 IIGI and pa+ 1.tiGI. then a sub­
gr~mp of G of order pa is called 'a Sylow. p-subgroup of G. Part. (l) of Sy-
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low's theorem states that every finit.e group has a Sylow p-subgroup, for 
all prime numbers p. 

If H is a Sylow p-subgroup of G, so is Hg for any g € G. Part (2) of Sylow's 
theorem states that any subgroup of p-power-order of G is a subgroup 
of a suitable conjugate of 'H. In particular, any Sylow p:subgroup of G is 
contained hi a suitable Hx for some x e: G, and, since the orders of that 
Sylow p-subgroup and of Hx _coincide, that Sylow p-subgroup must be Hx 
itself. So any Sylow p-subgroup of G is a conjugate of H. 

If a Sylow p-subgroup H of G is normal in G, then all conjugates~ of H are 
equal to H. hence H is the unique Sylow p-subgroup of G. Then.- for any . 
automorphism · a. of G, H a is a subgroup of order pa, and therefore· is 
equal to H. So H is in fact a characteristic subgroup of G in this case. 

. . 
Part (3) of Sylow's theorem gives us arithmetical information about· the 

. possible number Sylow p-subgroups. Two ·applications of this is given in 
Lemma 26.5 and in Lemma 26.6: 

Proof of Sylow's theorem: . The basic idea of the proof is as follows. If 

there is a Sylow p-subgroup H of G, then H is first of all a subset of G 

having exactly pa elements and is furthermore such that H h = H for all_ 
h e: H. SoH= {h e: G: Uh. = U} for some subset U of G with lUI = pa. In or­
der to find a subgroup of order pa, so we look at the sets [ h e: G: U h = ·u}, 
for each U!:;;; G ~ith lUI = pa. Such sets. are the stabilizers of U's under the 
grpup action described below. A juidicious choice of U will produce a 
subgroup of order pa. 

Step 1. Let 11 = [U !;·G: lUI =pa). Then the number 1111 .of elements of 11 
subset~ of G in 11) is not divisible by p: 

There ~re clearly (P;:;') subsets of G in 11. We are t~ prove p ~<P;:;'). 

We have (pam)·= (pam)! =pam pam-l pam-2 . .. pam-(pa-l). Now 
pa pa!(pam-pa)! pa pa-l pa-z 1 

pam-s · b 
consider each one of the factors a. (s = 1 ,2, ... ,pa-l). We write s = p t, 

p -s. 
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\vith · t E Z and p.ft, and observe that neither the numerator nor the de­
nominator of these numbers 

pam-s 
pa-s 

( Ppama) contain p after cancellations are made. Hence their product is not 

divisible by p. 

' As an example, note that alf 3's· are cancelled in 

(
18). = (322) = !!!l.l2..!1.,!i 13 12 !.!.!.Q.= ~!1.12.~ 14 13 !!.!.10. 

: 9 3 2 9 8 7 6 :s 4. 3 2 I I 8~ 7 2 5 4 1 2 1 

Step 2. G acts on '1:1 when we put Ug = (ug: u e: if} for U E: '\:1, g E G: 

The mapping U - U g is oi1e-to-one (Lemma 8.1 (2)) and onto (by ·defini-
u- ug . 

tion of Ug). Hence IUgl lUI =paand Ug is an element of '\:1. Now (Ug 1)g2 
U(g 1g2) for all u·e: '\:l;gl'g2 e:G by Lemma 19.2 and also U1 = (u1: u E U] = 

( ~: u E U} = U for all U E '1:1 . Thus G acts on '\:1. 

Step 3. There is an orbit of '1:1 under the action of Step 2 such that the 
number of elements (of '1:1; equiva.lently, the number of subsets of G) in it 
is. not di~isible by p: 

. The orbit of any U · e: '1:1 is { Ug E '1:1 : g E G}. Now '1:1 j_s. partitioned into dis­
joint orbits. If '1:1 I' '\:12, ... ''1:1 k ·are the orbits, then 

I 

Counting the number of elements and keeping in mind that· the orbits 
are pairwise disjoint, we get·. 

I '\:II =,1'1:1,1 + 1'1:121. + ... + l'l:lkl. 

If 111. 11, I '1:1 21, ... , I '1:1 kl were all divisible by ·P, their sum I '1:11 would be di­
vi~ible by p, too, contrary to Step 1. Thus at least one of the numbers 
1'1:11 1,1'1:1 21,.~., 1'\:lkl.is not divisible by p, as contended. 
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Let U 0 E \1 be such that the number of elements (of \1 ) in its orbit is not 

divisible by p. This is the juidiciotis choice \\'e have alluded to. We- put 

II = StabG(U0 l. 

Step 4. H ,;;;; G and II/I == pa: 

II is a subgroup.of G by Lemma 25.7. As to the second assertion, first we 
note. that the .orbit of U 0 is equal to I G :HI . (Lemma 25.1 0) and; by · the 

choice of U 0 , this index.IG:HI is not divisible by p.SoptiGI/Ifll, so 

p{pam/1/.11. Writing IHI p"n, where n E N, ph and, by Lagrange's theo­

rem, b,;;;; a, and nlm~ we get ptpa-bm/n. This is possible only in case pa-b 

p 0 • lf~ncea =hand 1111 =pan;:;.:.. pa. On the other hand,-if 

u()' (!ll,Il2 • .•. ,liP"}, then, for any h E 11. StaQ(;(Uo), we have 

By Step 4, II is a Sylow.p-subgroup of G. This cori1pletes the proof of part 

(I J. We proceed to. the. proof of part (.2). Let J ,;;;; G be such that I./I = p", 
where h :;;. 0. 

Step 5. There is an x E G such that .I ,;;;; 1/x: 

Let 'R = I II a: a E G I tic the set of all rightcosets .of II in G. Then C acts on 

'R by right. multiplication (E~ample · 25.12(b)) ·and its subgroup J also acts 

on 'R. Since the order of .I is a power of p~ we can apply Lemma 25.20 

and conclude 

I'RI !Fix.RU>i (mod p). 

!Fix.RUJI =I 'RI IG:I/1 =in 't 0 (mod p) 
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So there is a right coset llx in Fix'R.(J). Thus StabJ(llx) = J. But Stabilix) = 
J n Stabc(llx) = Jn w: by Example 25.12(b). So we obtain J n llx = J, which 

means J < Hx. 

This completes the proof of part (2). In view of the remarks preceding 

the proof; all Sylow p-subgroups of q are conjugate; and a normal Sylow 

pcsubgroup of a finite gr01;p is the unique· Sylow p-subgroup of that 

group, 

Let N :::::: N G(ll) = {g E G: llg = II} be the normalizer of II in G. Then II <Q N, 

N ~G. and, since pf!N:J-11, His a Sylowp-subgroup of N. Thus II is the 

unique Sylow p-subgroup of N . . · 

We now prove part (3). Let 11P be the number of Sylow p-subgroups of G. 

Step 6,n = IG:NI: 
p 

Let 2, = {Hx~ G: x E G}. Then 2:, is the set of all Sylow p-subgroups of G.' 
We want to evaluate n = 12:.!. Here G acts on 2:, by conjugation, because p . 

(Hx)g Hxg E 2:,; (lfgt)g2 =H(g 1 !~2); and Hr = 1-1111 = H for aH RE J:,,g
1
,g2 E G. 

Lemma· 25.10 ·gives now 
!orbit of Ill. =.IG:Stabc(H)I. 

But the orbit of H = {Hx~ G: x E G} = 2:, and StabG(/1) = NG(H) · N. Thus 

nP = 12:.1 = IG:NI, 

as was to be proved . 

. Step 7. nplm and np 1 (mod.p): 

Of course n IG:NI divides IG:iVIIN:IIL= IG:HI = m. 
' p 

Now we want to prove n P . 1 '(n1pd p ). This wHi :be do~e by applying . 

Lemma·· 25.20: In order to apply ),..emma 25.20, we need the action of a 
group of p-power order oQ a finite set. Our group of p-power order . will· 

be H, as this is the ~nly group of p-power order a'vailable to us. II acts on. 
'R I = {Na: a E.G} the set of all right co sets of N in G by right multi plica~ 

tirii1 (Example 25.12(b), Example 25.2(h)). Lemma 25.20 yields ' 
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I'R 11 =IFix'R (H)I(mod p). 
l 

Since n P = I G :/1(1 = 1 'R 
1

1, the claim· will be esdbtlshed when we show that · 
!Fix'R (H)I l. . : . 

l 

From the equivalences · 

Na € Fix'R (H) ~ . Stabu(Na) = H 
1 

~ (Na)h =Na for all/z € N, · 

~ . Nalw-1 = N for all h € H · 
~ aha:.1 € N for all lz e: fl 
~ ha·t € N for all/z E: H 

ua·t ~ N 

na·t is a Sylow p-subgroup of N · 
H~-t the unique Sylow p-subgroup H of N 
Ha·t=H 
-r· a € Nc;(H) = N 

~ a e: N 

~ Na=N, 

it follows that Fix'R (II)_= (N}. Thus IFiX'R (II)( I and n = I (mod p). 
1 . . I p 

This completes the proof. o 

26.2 Definition: Let p be a prime number. A finite group G is called. a 

finite p-woup if IGI ::: pa for some integer a :> 0. 

26.3 Theorem~ Lei G be a finite p-group, with IGI =pa > I. 
(I) G luis a normal subgrt)up o} order p. 

(2) There are normal subgroups- !/. of G such that IH:I pi (i = 0,1,2, ... ,a) . 
l . . . I 

and 1~1 <".,H1 <".H2 <. ··· <". f/
0

_ 1 <". fla=G. 

. . / . 

Proof: (I) From Theorem 25.17, we know Z(G) ;:t! L Let z € Z{G) with z ;:t! I, 

a~d let o(z) pk (I <". k <". a).' Then o(zP
11

) = p. Thus <zp•-J; isA subgroup 

of order p and is normal in G (Theorem 23.3 ). 
. ' . 
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.-A2) We make induction o~ a.- If a = 1, then I G I :::. p and G has normal 
subgroups H0 and H

1
, namely H 0 = 1 and #1 :::. G, with IH01 = 1 and IH11 p 

such that H
0

..:;; H
1
: - - . · 

Assume now that a ~- 2 and that the claim is true for any finite-p-group _ 
of order pa-t. By part (1), there is H 1 .:Q G with IH11 =p. We consider_ the 

factor group G/Hl' which has order IG/H 11 = IGI/IH11 = pa/p =pa-l. By 
induction, there are normal subgroups, say H 1+/H 1, of G/H1 with IHi+l/H 11 

=pi(i=O,I, .. ;,a-1) and 

' 
1 =HlH 1 < HlH1 < HiH 1 ..:;; · ·· Ha- 1/H1 < Ha/H 1 = G!H1., 

By Theorem 21.2, each Hi .:Q G (i = 1,2, ... ,a) and 

H < H < · · · < H < H =G. I -2 ·. · · a-1 a · 

_ Here IHi+ll;:; 1Hi+/H-111H11 =pip pi+1 .for i = 0,1, . ·: ,a-1. Thus, when we put-

H0 = 1, the claim is proved for finite p~groups of order p_a. o 

26.4. Theorem: Let G be a finite group and let p be a prime ·number. 

Suppose pbll G!, where b ;;;;. 0. Then. G has a subgroup of order pb. 

Proof: Let u's write IGI =pam, with m {Nand ptm. -Then G has a Sylow 
. p.-subgroup H of order pa, and, by Theorem 26.3(2), H has a subgroup J 
of order pb. Hence J is a subgroup of G with Ill = pb. - o 

Theorem 26.4 generalizes Sylow's theorem (1) to the case where pb is 
any prim_e power divisor of I G I (not necessarily the highest power of p • · 

dividing I G I). Part (2) of Sylow's ·theorem does not generalize: two 
·su!Jgroups J

1 
and J 2, of the same order pb, are n_ot necessarily conjugate 

in G, or even isomorphic. Part (3) of Sylow's theorem, however, is true in 
the more general case: if. pb II G f, then. the number ofsubgroups of order 
pb in G is congruent to 1 modulo p. 

We close this- paragraph· with ·two applications of Sylow's theorem._ 
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26.5 Lemma: Let p and q be distinct prime numbers and let G be a 
group of order pq. Then either. a Sylow p-sub_group or a Sylow q_~ 

subgroup of G is normal in G. In fact, if p > q, then a Sylow p-subgroup 

of G is normal in G. 

- P~oof: Suppose p > q and Jet n be the number ·of Sylow p-subgroups 
. . - . p . . 
·of G. Then np divides IGI/.p =Q, so ~P ::= 1 or q, and np = 1 (mod p). So np = 

q implies J?lq-1, which is not compatible with p > q. Thus np = q is 
impossible arid np = 1. Then there is a unique Sylow p-subgroup of G, and 

it is normal in G. D 

26.6 Lemma.: Let p and q be distinct. prime numbe_rs and let G be a 
group of order p2q. Then ~ither a Sylow p-subgroup ·· or a Sylow q­

subgroup of G is normal in G. 

Proof: Let n ,n be the number of Sylow p and Sylow q~subgroups of G, p q . 
respectively. The claim is that either n = 1 or n = 1. Suppose, by way of 

- p. q 
contradiction, that n > 1 and n _ > 1. 

p q 

, Since nP divides IGI/p2 = q, andsin~e q is prime, we have nP = q. From q. 
= np = 1 (mod p), we get p < q :- l, so q > P.: Besides,. nq divides IGI!q = 
p 2, so nq =p or p 2• Here nq = p is impossible, because nq = l (mod q) and 

. . . 2 
q > p. Thus n q = p ._ 

Let QI'Q2, •• :, ~2 be the Sylow q-subgroups· of G. An element of order q is 
a nonidentity element in one of these subgroups, and any two distinct of 
them have a trivial intersection: Qi n Qi l. Hence 

{g e: G: o(g) = q) = (Q1\{I)) u (Q2\{J}) u .~. u (QP~{I}), 

where . the union. is talcen over pairwise disjoint sets. Counting the 
number of elements on the right hand side,· we see that there are exactly 
p 2(q-1) elements of order q in G. So there are exactly IGI - p 2(q-1) = p 2 

elements in 

G\(g e: G: o(g) = q} = (g e: G: o(g)?! q). 

Let P be a Sylow p-subgr!)up of G. Then P ~::· {g e: G: o(g)?! q}, and, since 
both of these sets have p 2 · elements, we have P = (g e: G :. o(g) ?! q) . 
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. . . 

Therefore {g e G: o(g) ~ q} is the unique Sylow p-subgroup of G and np is 

equal to C a contradiction. So .G has either a normal Sylow p-subgroup or 
a normal Sylow q-subgroup. o 

Exercises 

1. Find· Sylow. 2- and Sylow 3·-subgroups ·of S 4 , A4 , SL(2,l;), GL(2,Z 3). 
~ ' 

2.! Find a Sylowp-subgroup of D2n (n € N). 

I . • , . • 

· 3.1 Let G be a finite group with exactly one Sylow p-subgroup. Prove that 
ev:ery subgroup and every factor group of· G, too,· has exactly one Sylow 
p-subgroup. 

4,: Let G be a finite group and K ~ G. If P is a Sylow p -subgroup of G, 
' . . _, 

sh(>w that P n K is a Sylow~p-subgroup of K and PK/K is a Sylow,-p-
suqgroup of G/~. 

· 5. • Let G be a finite group ~md H .;;;;; .G. Show that, if P is a Sylow p­

subgroup of G, then P n H is not necessarily a Sylow-p-suligroup of H. 

6. Let G. be a finite group, IJ .i;;; G and let P 1 be a Sylow p-subgroup of H. 

Show that there is a S~low p-subgroup · P of G such that P n H = P 1• 

7. Let P .;;;;; K ~ G, where G is a finite group and Pis a Sylow p-subgroup 
of K. Showcthat G ::= N 0 (P)K. 

8. Let G be a finite grpup andH,J < G. SuJ)pose J is a finite p~group and 
·IHI ¢ f(mod p), where~ is a prime number. Prove thafH n C0 (J) ~ 1. 

9; Let G be a finite p-group. Sh'()w that; if 1 ~ H ~ G, then H n Z(G) ~ 1. 

10.\ Let G be a finite p-group and H <G. Prove that H < N0 (H). 

. . . . 

I L Let ·p,q,r be distinct prime numbers and let G be. a group of order pqr. 
Sho·w that G has a nontrivial ·proper normal subgroup. ' 
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12. Let G be a finite p-group, with JGJ ::,pa > I, and let K < G. Prove that 

there are subgroups H1 of G such that 

(i) JH1J =p1: for all i = 0,1;2; ... ,a, 
(ii) K=Hj for s~me i = 0,1,2, ... ,a, .. 

(iii) I = H0_ ~ H1 <l H2 <l· ·· <l H
0

_ 1 <l H;= G. 
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§27 
Series 

In this paragraph,· we study series of groups. The celebrated Jordan­
Holder theorem is proved and the class of solvable groups is introduced. 

27.1 Definition: A nontrivial group G js called a simple group ifG ·has· 
no nontrivial proper normal ~subgroup. 

Thus a group G is simple fr and only if G .: 1 and 1 and G are the only 
normal subgroups of G. This resembles the oefinition of prime ·numbers. 

'iust as prime numbers are the building blocks of iriteg~rs. simple groups 
are the buildi!}g blocks of certain groups, as· will be seen below. More­
over, the fundamental theorem of arithmetic has a counterpart, namely 
the Jordan-Holder theorem. • This theorem states that, for a class of 
groups G . satisfying certain conditions that will be specified later, the 
building blocks of G are ~niquely determined. However, this analogy 
should not .be pushed too far. For one thing, the building blocks may be 
combined in various ways to produce different groups. Stated otherwise, 
different groups may have the same building blocks. In fact, the 
problem of determining a group from its building blocks, known as the 
extension problem, still awaits its solution. 

It is an easy matter to find all ·abelian simple groups. Any subgroup of 
an abelian group is normal in: that group, so an abelian group is si~ple if 
and only if it has no subgroups except 1 and itself. If G is an abelian 
simple group, then G ..,: 1 by definition, and so there is an x E G, x ..,: 1. 

Th,en <x> is a nontrivial subgroup qf G and, since G is simple, <x> has to 
be~ G. Thus G = <x> is cyclic. :Now an infinite cyclic group has subgroups of 
every index (Lemma 11..11) and cam:wt be simple. Therefore G is a finite 
cyclic group, say IGI = n > L Then, for every positive divisor m of n, the 
group G has a subgroup of order m (Lemma I 1.10). But the order of any 
subgroup of G is· either I or n. Henc~- I and n .are the only positive divi­
sors of n and n is prime. Thus an abelian simple group is a .cyclic group 
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of pdme order. Conversely, a. cyclic group of prime order 
trivial prope~ subgroup 'by Lagrange's theorem, and is· 
abelian simple group. We _proved the· following theorem. 

has no non­
therefore an 

27.2 Theorem: An abelian group G is simple if. and only if G is cyclic of 

··prime order. 0 

We prove next that the alternating groups An' where n :> 5, are simple. 

We need a lemma.· Let us recall that a 3-cycle is a permutation of the 
form (abc), a ;e b ;e c ;e a. 

27.3 Lemma: lfn :> 3, then An is generated by the set of all 3 -cycles in. 

An . 

. Proof: We must prove that ~very element. of An can be written as a · 

product of 3-cycles (Lemma 24.2) .. Every. element of A can be written as . , . n 
a product of an even number of transpositi?ns and, taking_ the transposi-
tions. in pairs, we see that every .element of A can be written as a pro- · 

. . . ~ n . 
duct of permutations of the form (ab)(cd), where a ;e b and c ;e d. Ht?nce 
it suffices to prove that every permutations of the form (ab)(cd) can be 
wriuen ·as a· product of ~-cycles. 

There are three cases to· consider, in which two or one or none of c ,d is in 

the set {a,b}. In the first case, {c,d} = {a,b), hence (cd) (ab) and (ab)(cd) 

(ab)(ab) = _1 =.(abe)(abe)(abe) is a product o.f 3-cycles, where e is 
distinct .from a and b (here we u_se tbe assumption n ;;;:. 3). In the second 

case, we may assume c a without lo~s of generality. Then (ab )(cd) = 
(ab)(ad) = (ahd) is a product of o~e 3-cycle. In the third case, a,b,c,d are 
all distinct and (ab)(cd) (abc)(adc) is a product of two 3-cxcles. The 
proof is complete. 

27.4 Theorem: If n > 5, then An is simple. 

Proof: Let I < N. <J An' We will prove N = I. 
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First we prove that there can be no 3-cycle in N. Assume, by way of 

contradiction, that there is'a 3-cycle (abc) inN. Let (a'b'c') be any 3-
cycle and choose two distinct num~ers eJ from [1,2, · ... ,n}\{a',b',c'}. This 

_is possible because n > 5. Let a be a permutation in S n -such that a a = a·, 
ba = b' and co = c • and put:lr ::: a (ef). ·Then arr = a·, brr = b • and err = c • as 

well and a-:1(abc)a = (a'b'c')"= rr-1(abc)rr. Since the signs of a and rr = a(ef) 

are different, either a or rr is in An. Then, since (abc) e N and N <l An, 
either a-1~abc)o or rr-1(abc):r is inN .. So (a'b'c') e N and N contains all 3-

cycles. From Lemma 27.3 ;: we conclude A~ ~ N, contrary to N <l An. 

Tllerefore 'there can be no 3'-cycle in N . 

. . 
Secondly, .there can be no permutation in N involving a cycle of length 

greater than or equal to '~ when written out as a product . of disj_oiin _ 
· cycles. Indeed, if a = (abed . .. )rr E N, where (abed . .. ) and· rr are disjoint - · 

' . . . . 
permutations, then 

a-1.(abcr1d(abc) =:= rr-1( ••• dcba)(cpfJ)(abcd ... )rr(abc) 

= :rr-1rr( . .. dcba)(cba~(abcd; .. )(abc) 

= { . .. dcba)(cba)(abcd ... )(abc) 

= (abd) 

would be in N, contrary to .what we proved abov-e. So the disjoint cycles 
of· a nonidentity permutation in N have lengths (1, in which case we· do 

not write them, or) 2 or 3, 

Thirdly, in the. disjoint cycle decomposition· of any no!lidentity element 
of -N, there can be no 3-cycle. To prove this, we first note· that, if there 

'were only one 3-cycle in tlie disjoint _eye!~ decomposition of a noniden­

tity element of N, so that ·its disjoint cycle deco~position is a 3-cy<_:le 

times a product of transpositions, then the· square of that element would 

bh a 3-cycle in N: which is 'impossible. Thus, if there is a a in N whose 

disjoin( cycle · decomposition involves a 3-cycle at all, then there are at 

least two . 3-cycles in the djsjoint cycle decomposition of a. Then we have 

a = (abc)(def)rr, say, where (abc),(deh,1r are disjoint permutations and 
a .(dec )-1a(dec) = (abc)(def)rr(ced)(abc)(def)rr(dec) 

. . (abc)(def)(ced)(ahc)(def)(dec)rr 2 
"\ 

F (adcbf)rr~ 
is in N, which is impossible, . since there is a cycle of length 5 in its 
disjoint cycle decomposition, ((adcbf) and 1r 2 are disjoint permutations) .. 

Hence, in the disjoint cycle decomp~sition of any nonidentity element of 
N, there is no . cycle of length 3. Combining this with what we proved 
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above, we conclude that any nonidentity element in N must be a product. 

of (an even. number of) disjoint transpositions'. 

Fourthly, a p~oduct of 2k aisjolnt transpositions cannot belong to N if k is 

greater than or equal to 2, for if cr = (ab)(cd)(ef)(gh)rr· belonged to N, 
.:; . - . .. 

where rr =1 or ir is a product of disjoint transpositions and disjoint from 

(ab)(cd)(ej)(gh), then cr.(der1(bcr1cr(bc)(de) 

= (ab )( cd)( ef)(g Ji)rr( ed)(cb )(ab.)(cd)( ef)(gh )rr(bc )(de) 
= (aed)(bcf)rr 2 . . 

would al~o belong to N. This possibility was excluded above. 

Since we assume N ·~ 1; there is a cr E N, cr ~ 1. Here ·cr is necessarily a 
product of two disjoint transpositions, say cr (ab)(cd)~ We choose a 

number e from {1,2, ... ,n}\{a,b,c,d}. Then the 3-cycle ·cr .(aeb)-1cr(aeb) = 
(ab)(cd)(bea)(ab)(cd)(aeb) (abe) belongs toN as well, the final contra­
diction. This shows that the ·assumption N ~ I is untenable. Thus N == I 
and A~ is 'simple. 0 

-
27~5 Definition: Let ·G. be a nontrivial group. A proper normal subgroup 

M of G is said to be a maximal. normal subgrotip of G ·if there is no 

· subgroup L of G such that M < L <l _G. Equivalently, M is· a maximal 

normal subgr<>Up of ·G if M <l .G. m1d M ,;;;,- K <i;;J G implies that either M 

K or K =-G. 

27.6 Lcnmm:· Let M <l ·G. Then G/M is a simple group if and only if M is 

a maxinial ;wrmal subgroup of G. 

Proof: Sincc·M <l Q, we have G/M ~ I. If G/M is not simpl.e, there is. a 

normal.subgroup of G/M, sayN/M, which is. distinct from M/M arid G/M, 
so M /M < N/M "? G/M. By Theorem 2I .2, M < N <l G and 'M is not a 

maximaL norl1ial subgroup of G. Conversely, if M is not a maximal norfr!al 

subgroup of· G. there is anN such that M < N <l G and, by Theorem 21.2, 

MJAf. < N !M <l G!M. So .G/M -has a nontrivial proper. normal subgroup 

N /J\-1 and G /M is not simple. 0 
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27.7 Definitions: Let H < G. A finite· sequence of subgroups of G, · 

ihcluding H amJG, is called a_~eries from H (o G, or aseries between H 
and G, if each group in the sequence is a normal subgroup of the next 
one. Thus a.series from H toG can be written ' ;~ ' 

H = H0 -Q H: -Q · .-. -Q H -Q H = G. 
1 n-1 n 

(1) 

The subgroups H0,H1; ••• ,Hn_1)in are called the terms of the series· (1). The 
f!tctor groups H/H0; H.jH l' :J .,H/H n- 1 are- called the factors. of the series 

. (i). A series from I to G will be called shortly a series of G. 

If each term H 0,Hl' ... ,Hn-t,Hn of the series (I) happens to be normal 

(characteristic) in G, the series (I) will be,called a normal (characteristic) 
series. 

There may be repetitions in (1). If, however, HH.<J HJor each i = 1,2, ... ,n, 
the series (1) will be called a· proper series. 

A series 

H J.-QJ<>J ... -QJ -QJ.,;.G · 
0 1 •· m-1 m 

(2) 

from H to G is. said to be a r'efinement of (I) if every term of (1) is also a 
term of (2). Thus a. refinement of (1) is ~btained from (1) by inserting 
additional groups · between: some consecutive terms of (1). These 
a~ditional terms need not be.: distinct from the terms of ( 1 ). For· example, 
A -Q B -Q B -Q C is a refinement of A -Q B <Q C. If (2) is .a refinementof (1) 

and if there is at least one term in (2) which is not a term of (I), then (2) 

is called a proper refinement 'of ( 1}. 

27.8 Definition: Let G be a group. A series of G is called a composition 
series of G if it is a proper s,eries of G and has no proper refinement. A 
factor of a composition series .of G is called a composition factor of G. 

27.9 Lemma: A series 
I =G0 -Q G1 -Q ·· .. -Q Gn-l -Q G

11 
=G 

of a group G is a ·composition series of G if and only if all factors G/Gi-1 
! ' . ' ~ 

(i ;= 1,2, ... ,n) are simple. 
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Proof: Suppose first that the given series is a composition series of G. By 

derinition, it is a proper ~eries.-SoGi-i <J~Gi ~nd all factors G/Gi-1 are dis­
tinct from the trivial group (i = 1,2, : .. ,n). If one of the factors,· say GjG

1
_1, 

were not simple,. GJGr- 1 would ~ave .a nontrivial proper normal sub­
group, which may be wri11en as H tG

1
_1, where G

1
_1 < H < G

1 
by Theorem 

2J .2. Hence G
1
_1 <J. H <:i G

1 
(in fact G 

1
_1 <l G) and the given series has a 

. proper. refinement whiCh is obtained by inserting H between. G1_1 and Gt _ 
contrary to our hypothesis that the given series is a composition series~. 

Hence G/Gi-1 are all simple (i = 1,2, ... ,n) . 

• Conversely, let _us assume· that all' factors GJGi.,. 1 are simple (i =.I ,2, ... ,n) . 

. Then GJGr-l is not trivial and so Gi-l <l Gi for all i = 1,2, .. :. ,n, Thus the 
given series . is prope~. Jf it were not . a COf!lpOsition series, it would have __ 
a proper refinement. To fix the iOeas,. let us assume that s.uch. a refine­

ment has a. term fl between G
1 

and GJ-1' so that G1_1 .<l H <l Gi By Theorem 
21.2, HIG1_1 would be a nontrivial proper normal subgroup :or GJG

1
_1, · 

.contrary to the hypothesis that all factors, including .G jG
1
_1, are simple. 

lienee the given series is. a 'composition series. · o 

21:10 Examples:(a) 1 <l S3 is a series of S 3 and I <l A3 <J S3 is a. 

refinement thcr~of. The latter is a composition series of S 3, because the 
factors Ail ~ c-3 and S3/A 3 ~ C 2 are simple (Theorem 272, Lemma 27.9). 
It is easily-seen that 1 <l A3 <l. S~ is the unique composition series of s3 
(cf. sl5, Ex.IO). . 

(b) I <l \14 <l A4 <l S4 is. a normal series of S 4 (it is a ch_ief series of S4 ; 

see Ex. 4 ). It ·is not· a composition serie.s of S 4, for it can. be refined by 
inserting one of the subgroups' Ut.= {1,(12){34)}, U2 = (t,(l3){24)}, and U3 
{1.(14)(23)) between 1 and Y

4 
· [1,(12){34),{13){24)'.(14)(23)}. Each one of 

the three ~cries I <l lf; <l V4 <l A4 ,<i S4 is a composition series of S 4 (i = 

I. 2,3 ). The reader will easily verify that these are the only composition 
series of S 4 . •, ... 

- (c) We wal!t to find all composJIIOn series of s n for n ;;;;. 5. For this 

purpose. we determine all normal·subgroups of Sn. 

Let 11 ;;;;. 5 and I < 'N ~ S . Tncn N n A :Q A by Theorem 21.3 a. nd, since n · n n 
A

11 
is siinplc (l;hcorcni 27.4 ), either N n An =A,:. or N n A

11 
= I.· 



.. 
In case N n A

11 
=An, w~ have A

11 
<: W<: S

11
• Thus JN:A

11
1 divides IS

11
:A

11
1 = 2 

and IN:.A I= 1 or IN:AI. 2. HenceN=A orN=.S. ·._:· n-. · 11 . n 11 

In case N nAn::;}, we have·N-;( A
11 

(because 1. < N), so A;;< AnN~ S
11

, 

so A N::; S and INI = JN·ll = JN·N n A I = lA N~A I =IS ·A I = 2 Thus N = 
: II .· · . II •· . · •• ., . · •. • II .. II •. II . 11• II • 

{ 1,cr} for some cr .€ S
11
\A

11
• Since N~ S

11
, we obtain 

. {1,cr} = N = N' = { 1,cr )T::: {1~,cr ~~ = { l,cr~}for all< i S
11

, 

hence for all r € S . 
·II 

From o(cr) = l<i:r>l = INI = 2~ w,e St<e'that the disjoint cycle decomposition of': 
0" involves transpositions' only (theorem 15.17), say ., .. 

cr = (U1bl)(·a2b2) ••. (ambm) 

' ' 
for some o(fd number. m. If'm ;;;;._ 3, .th¢n ll'. := (a3b3). .:(amb~) is disjoint 
f~om (a 1b 1)(a2b2 ) and . 

cr<ataz) .:.._(a b )<ata2>(a b )(ala2)lf(ala2)- (a b- )(a b )lr;: (a b )(a· b )l!' - cr 
· -.11 22. · _- 21 12· II 22-. 

·contrary to(..:). Hence m.=' 1 and.cr (a1b 1): Let c € .{1,2, ... ;n}\[a1,b1}. Now 

a<atc> (ca
1
)(a

1
b

1
)(a

1
c) = _(b

1
c);: (a

1
b

1
) = ci, ·· 

again contradicting ( * ). H~nce there is: no nontrivial normal subgroup N 
. of S such that N o A = 1. 

11· : _ .. n 

. ~ ' -
Consequently, l,A 11 ,S11 ar~ the only normal subgroups of S

11 
wh:n n;;;;. 5. 

Thus if 1,; G0 ~ G1 ~ • • • .~ D.H ~ Gk = S 
11 

is .a. composition series of S
11

, · 

here Gk-I has to be A
11 

arid Gf._; has to be 1; Therefore the series mus~ be 
1 :<1 'A

11 
<1 Sit, which is indeed a composition series of S 

11
, for A 

11
/1 ~ A 

11 

a~d S nfA 
11 

!?:! C 2 are simple groups (Lemma 27 .9). · 

T~us I <1 A
11 

<1 S
11 

is. the unique composition s~ries of S n when n ;;;;. 5. 

(d) Not every group has a composition series. For example, Z has no 
cqmposition 'series. Indeed,· any series of Z is of the .form 

. . . 
, . O<l m1i ~ m2Z ~ ..• ~ m

11
Z ~ ( 3 ) 

·where ~21m!' m3Jm 2, ••• , m)m
11

_ 1 ; If m0 is a multiple of m 1 and m0 ~ m;, 
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is a proper refinement of (3). Thus any series of l has a· proper refine­

ment. Consequentl.y, no series of l can be a composition series of l. 

(c) Let <a> b~ a cyclic group of order 12. The.n 
1 <l <a6> <l <a 2> <l <a>;. :1 <l <a6> <l <a3> <l. <a>; 1 <l <Sa4> <l <a2> <l <a> 
are the composition series· of <a> .. The composition factors are isomorphic 
to . C2,C3~C2;· C2,C2,Cj; C3,C2,C2• 

Thus, aside· from order, ·the composition factors arising from different 

composition series are isomorphic ··groups. 

27.11 Definition: Let G be a group. Two series 

G ~ G ~ ··· ~ G ~ G =G 0 1 n-1 . . n 

l=H ~H ~ ··· ~ H ~ H ::::G 0 . I m-1 .m " . 

/ 

of G are said to be eq·uiva/ent if n == m and if the factors· G/Gi-l are, in 

some order, isomorphic to the factors H/Hj-l (i,j 1,2, . .. ,n). 

Ilerc it is not stipulated that G/GH .~ H/fli-1 for all i 1,2, ... ,n. The 

·condition in Definition 27J 1 is that G/G;,.J ~ H;)Hia-l for some a E S n' 

Clc<irly, Definition 27.11 introduces an equivalenc~. relation on the set of 

all series of G. The three seri~?s in Example 27 .IO(e) are equivalent. We 
will prove· that, any two composition series of a group ·are equivalent, 

provided· G does have a composition series (Jordan-Holder theorem). In 

fact, a much stronger theorem is true- (see Schreier's theorem .below). We 

need sorite elementary results. 

27.12 Lemma (Dcdckind's modular law): Le( 9 be a group and let 

.AJJ,C he .mhJ:roups of G such that A ~ C. Then 

. A(B n C) AB n C. 
(A(B n C) and AB n C are not necessarily subgroups of G.) 

Proof: Let x E A(B n C). Then x:::: ah for some a E A, b E 8 n C. Thus x 

ab € AB and x:::: ab € AC = C, sox E AB n C. This givesA(B n C)!: AB n C. 
To sliow ~he reverse inclusion, let c E A B n· C. Then c ::::a 1b 1 for some a; 
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in A and b; in B. Fromb
1 

=:a
1
- 1c E AC = C, we conclude b

1 
E B n C; hence 

c = a 1b 1 € A(B. n C). This gives ABn Ck A(B n C). So A(B n _C)= AB n C. o 

27.13 Lemma: Let A <Q C.;; G dnd-B.;; G. Then . 

An B <Q CnB andCn B /An B'=A(/j nC)/A. 

1>roof: If G is a group, H <Q ',G and K ~ G, then H n K <Q K and K /H n K is 

_isomorphic to H K /H by Theorem 21.3. Using this theorem wit~ G ,H ,K . 

r'ephiced by C,A,C nB, respectively, we obfain ~ n (C n B) <Q CnB and 
Cn B IAn (C.n B)-= A.(C niB)/A. Since An (C nB) =An B and-A(C n B) 

= A (B n C), the claim follows. - D 

27.14 Lemma: Let A <Q C < G and B <Q G. Then 
J' 

, BA<Q BC; and BC/BA '= C/A(B n C)·. 
. ' ' . --

Proof: Since B <Q G, we know from Lemma 19.4 that AB .= BA ~ G .and 
that CB = BC .;;·G. Thus BA .< BC. We prove next that BA is normal in BC. 

We observe 
B < BA < NG(BA) 

hence. (BA)b = BA. . for all b E B. 

Then, for any b E B ,.c E c. we obtain 
(BA)bc = [(BAlY ;= (BA)c ~ BcAc = BAc = BA , 

since ,B <Q G and A <Q C. Thus; (BA)x = BA for all x € BC and BA ~ BC; · 

U~ing Theorem 21.3 with BC,\BA, C in place of G,H,K, respectively, we get 
! . . - • 
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AB n C ~ C and C/AB n C =-:. C(AB)/AB, 

Since AB n C = A(B n C) and C(AB) = (CA)B ~ CB = BC, this isomorphism 
means C/A(B~n C)=-:. BC/BA. o 

~27.15 Lemma (Zassenhaus•· lemma): Let G be a group, 

U
1 

.:,Q U2~ G and V1 ~ V2~ G. 

Proof: We put Dij := Ui n Vj ~ij = 1,2). Since U 1 .:,Q, U2, we have 
U 1 n. V2 ~ U2 n V2 by Lemma 27.13, so D 12 ~ D22 . Similarly,V1 .:,Q V2 and 
Lemma 27.13 gives U 2 n V 1 .:,Q U2 n V2, so D 21 ~ D22" Now D 12 .:,Q D22 and 

. a;1 .:,Q D22 and ~riling£ =D 12D21 D 21D 12 for brevity,we get£~ 0 22 by 

Lemma 19.4(3). 

llerc U 1E = U 1(D 1p 21 ) = (Up 12)0 21 :;: U 10 2 i and E(U 1 n 0 22) =E (because 
U 

1 
n 0

22 
D 

12 
r;; E), so (4) becomes · · 

(5) 

Rcpcitting'the same argument with U'':i replaced by V's, we get 
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. The· claim follows from (5) .and (6). 

. - ' --
27.16 Theorem·· (Schreier): Any two sertes of a group have equivalent 

refiizements. More precisely, if 

1=G~G~···~G ~G=G 0 . I n-1 n 

1 =H ~ H ~ · · · ~ H ~ H = G 0 I IIJ-1 m 

- -

(g) 

(h) 

are series of G, then there are series (g ') and-(h ') of G such that (g ') ·is a 
refinement of (g), (h ') is a r~finemenl of_ (h), and (g ') and (h ') 'are equi­

valent.· 

Proof: we· will try to. build a series between each Gi-l and Gi (i = 1 ,2, .... ,n) 

by so modifying the terms of _(h) that the modified series begin from Gi-l 

and terminate at Gi" There are ·two natural ways, of doing this. Either we 

multiply each term of (h) tiy Gi-l (the . resulting series will thus begin 

from Gi_ 1) and intersect the. products with Gi (the modified series will 
thus terminate at G.); or· 'we. intersect each term -of (h) by G. (the 

I . I 

resulting series will thus terminate at G~) and multiply the intersection§ 

by G;_ 1(the modified serieswill thus begin from Gi_ 1). By Dedekind's 

modular law (Lemma 27 .12), these two. series. between G i-: 1 and G i are 
identical. 

H 
m 

Hm-l' 

H· I 

G H . 
i-1 m-1 
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fl 
Ill 

We put G.= G. 
1
H.n G.= G. 

1
(H.n G.) 

I) 1- j I 1- j I 
(i = 1,2, . .. ,n;j =I ,2, ... ,m). 

Here Gi-l :oQ Gi' hence GH(Hjn G)< Gi by Lemma 19.4(2). Thus Gij is a 

·subgroup of G
1 
.• In the same way, H .. i"s a sub.group of H .. So 

I) . I 

and - (lz) 

l;sing Zassenhaus' lemma (Lemma 27.15) with 
ul =G. ·1. u2 = c, lil =II. 1·, v2 =H., 

1- I· . )- 1 

we obtain, for each ·i = 1·.2, ... ,n,j = I ,2, ... ,m: 

C 
1
(G 11 //. 

1
) Q G. 

1
(G. n 11), II. 1(G. 1 n If) :oQ II 1(G. n H) 

1- I )- 1- . I )- 1- )- I 

and G 1(G. 11//) I C. 
1
(C. 11//. 1) ~ H. 1(G. n //.)I /1. 1(G. 1 n H). 

1- I 1 1- I )- )- I 1 )- 1-

and G .. !G . . 1 = II . ./II. 1 .. I) I,J I) 1- ,) 

TIH.:refore (g
1

) is a series between Gi-l and G1, and (lzj) IS a series between 

· 1/j-l and 1/J' Writing the terms of (g 1 ),(g 2);(g 3 ), ••• ,(g n) consecutively, we 

obtain a series (g ') of G with nm factors; and writing the terms of 

( h 1 ),(/z 2),(/z ~ ), ... ,(/z 
111

) consecutively, we obtai!) a series (/z ') of H with m n 
factors .. Ilcrc (g') is a refineme.nt of (g) and (/z') is a refinement of (/z). 

finally, in view of the isomorphisms G ./G .. 1 = 1/.jl!. ·1 ., tlie series (g') 
I) I,J I 1- ,) 

and (/z') arc equi\'alcnt. o 
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27.17 Theorem: Let G ·be a group' and assume that G has a composition 

series. 
(1) Every proper series of G. hilS a refinement which is~ a composition 

series. 
(2) (Jo~dan-Holder Theorem). Any two composition series of G are' equi~ 
valent. 

Proof: Let 
1 G <l G <l •.• <l G <l G' = G 

0 : l n-1 n · 
(g) 

. be a proper series of G and let 
' I=H<JH<l···<lH <JH G 

0 i 1 m-1 . m 
(h)' 

! 
b~ a composition series of G .. By Schreier's theorem (Theorem 27 .16), 

th:ere are equivelent series · · (g ') and (h ') of G such that (g ') is a 
refinement of (g) and (h ') ..is a refinement of (h). From (g ') and· (h '), we 
d¢lete repeated factors and thereby ob.tain two equivalent proper series, 
say (g ") and (h "), respectively. Here (g ") is a refinement of (g) and (h ") 

is a refinement of (h), because both (g) a~d (h) are prop_er series. 

(1) (h'') is a proper series and 'is a refinemen~ of (h). But (h) has no 
proper refinement, because :(h) is a composition series. Hence· (h ") is 
identical with (h). Thus (g) has a refinement (g ") which is equivalent to 
the composition series (h '') = (/f). Then the factors of (g "), being iso­
morphic to. the composition factors in (h), are all simple· groups and· (g '') 

itself is a composition series by. Lem!lla 27 .9. Tperefore any proper 
series (g) of G has a refinement (g ") which is a composition series. 

l 

(2) Assume now (g) is als~ a composition series of G. By the same 
argum.ent as above, (g ~-) must be identical with (g). Then (g) = (g ") and. 
(h ") = (h) are equiyalent. Thus any two composition series of G are equi­
valent. o 

wd now discuss the· class of solvable groups. 

27.:18 Definition: A series 
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B =H0 :Q H1 :Q • • • :Q Hm-1' :Q Hm = G 

from H to G is said to be an abelian series if ali" the- factors 
.H/H0,HiH1, ••• ,HJHm-l-

are abelian groups. 

27.19 Definition: A group G is called a solvable (or soluble) group if G 
has an abelian series (fro~ 1 !O G). 

Clearly, any ab~Iian group A is solvable: _l :Q A is an abelian series of A. 

S 3 - is an e·xample of a nonabelian solvable group. Not· every group is 
solvable. For example nonabelia·n simple groups are c_ertainly not solv­
able. In -particular, An is not solvable for n ;:;?; _ 5. 

27.20 Lemma: If G is a sqlvable group, ·then all subgroups and fac{or 

groups of G are solvable_. 

Proof: !3eing solvable, G has an abelian series 

1=H'5Q. H :Q ••• :Q H :Q H =G , 0 I m-1 m • 

Let K be an arbitrary sub~roup of G. Then,by Lemma 27.13,· 

1 =H0 n K :Q H1 n K :Q • •• :Q Hm-l n K :Q Hmn K= G n K = K (6) 

is a series -of K and H. n K /H. 1 n K :=f. H,. 1(K n H.)/H. ~H./H. 
1 

for all i = 
· l ·1- - l l I 1-

1,2, ... ,m. Since H;fiji.,.l are abelian, Hi n K /Hi- I n K . are also abelian and 

· (6) is an abelian series of K. Hence K is solvable. 

Now let N be an arbitrary normal subgroup of G. By Lemma 27.14 and 
Theorem 2~.2, 

is a series of G/N, _and, for all i = 1,2, ._..,m,H,N/N I Hi_ 1N!N.:::f. H/'V/Hi_1N. 

2:!. H/Hi_ 1 (~ n H) :=f. H;fHi-l I H i- 1(N n Hi)/Hi-1 is a· factor. group of the 
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a?elian group.H/Hi-.: 1 and therefore· HiNIN / Hi-!NIN is abelian (Lemma 

18.9(2)). So (7) is an abelian series of GIN and GIN is solvable. · o 

21:21 Lemma: Let N <Q G; If Nand GIN are both solvgble; :then G is. 

solvable. 
; 

rioof:.. By hypothesis, there are an abelian sedes 
' . 

l=N<Qfv<Q ... <QN- <QN=N 
0 ·I m-1 . m 

of lN and an abelian series 

NIN = HJN <Q H 11N. <Q ... <Q Hk_ 11N <Q HkiN =GIN 

o(GIN. By Theorem 21.2, 

I =N <Q N <Q ... <Q N <Q;N =N=H
0
. <Q H <Q : .. <Q H <! Hk· =G 

, 0 I , m-1 ,. : m · I · k-1 

is~ series of d. Sihce NiiNj-l is abelian for j,; 1,2, ... ,m andH;/Hi-l"". 

H/N / H;_
1
JN is abelian fori,,;, 1,2, : .. ,k, this is. an aqelian series of G. 

Thus G is solvable. :D 

27.22 Lemma: Let H.'and K be normal solvable· subgroups. of a group G. 

Then HK is a normal -solvable subgroup of G;. 

'Proof: HK is a normal subg;oitp of G by Lemma 19.4(3). Also, since K is 
solhble, KIH n K is solvable by Lemma 27;20, so HKIH is solvable by 

Theorem. 21.3. So H and H Kl({ are solvable arid consequently H K is solv-

abl~ by Lemma 27.21. D 

_:, 

27 .23. Theorem: I/ G is a ftnife p-group, then G is solvable~ 

Proof: If G is a finite p-group of order I.Gl = pa, then there is a series 
l=H <Q H <Q ... <QH <Q H =G 

0 I a-1 a. 

of q whose factors H/Hi-1 (i = '1,2, ... ,a) are cyclic of orderp (Theorem 

26. (2)). Thus q has an abelian series and G is ·solvable. D' 
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· The series in Theorem 27.23 is a composition series of 'G. We .now want 
to prove more· generally that a finite group G is solvable if and · only. if 
every composition factor of G is cyclic of prime order. A finite group 

. does have a composition series, of course. 

27.24 Lemma: A solval;le group G is simple if and only if G is cyclic of 
prime order. 

I 

Proof: Let G be a simple solvable group. Then G ¢ 1 and G has an abelian 
series 

1=H0 <J H1 <1 ••• <1 H 1 <1 H =G. m- m .. 

After de.leting repetitions, we may. assume that this is a proper series. 
~en Hm-l <1 G and G/Hm-l is a nontrivial ab~lian group. Thus G'.E; Hm-l 

(Theorem 24.14) and G', is a proper normal subgroup of G. Since G is 
simple, G' = 1 and G is abelian. Thus G is. cyclic of prime order by . The­
orem 27.2. Conversely, a .cyclic group of prlme order is simple; and 
abelian, hence solvable. D 

, 27.25 Theorem: Let G be .a finite group. G is solvable if and only if 
every composition factor of G has prime order.-

Proof: If G is solvable, then any composition factor of G is solvable by 
Lemma 27 .20, simple by Lemma 27.9, and so has prime order by Lemma 
27.24. Conversely, if every composition factor of G has prime order, then· 
a composition series of G is an abelian series of G and therefore G is solv­

able. · o 

The following result will play· a crucial role in proving . that a polynomial 
· equation of degree greater than four cannot be solved by ra~icals. 

27.26 Theorem: lf n ~ 5, then Sn is not solvable. 

Proof: Otherwise the subgroup An of S n would be solvable (Lemma 
27.20}, ·whereas· An, being a nonabelian simple group (Lemma 27.3), 
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cannot have an -abelian series .. The conclusion follows also from Theorem 

27.25, since An is a I composition factor of s n (I <l An <l sn is the unique 

domposi!ion series of Sn by'Example 27.lO(c)). o 

' { 

Exercises . 

L Let ( Gi: i E N} be a collection of simple groups such that G1 <;;;; Gi+l for all 
'00 

i E N and let G = !J G.. Prove that G is- a sirpple group. 
1=1 I . ·. 

2. LetS{N) = fa E SN: ka ;:.: k for at most finitely many k E N} and, for ~ach . 
n E N, let S(n) = (a E SN: ka ;:.: k for all k;;:.. n + 1}. Show tha! 
Sn'i:!S(n)< S(N)< SwL~tA(n) denote theimage o,fAn under the 

' 00 . ' . 

i~omorphistn ·sn '2:: S(n) for,;;;:.. 2 and show that A := 1~5_A(n) is a simple 

group. (A is called the infinit~ alternating group of ··degree ·INI.) 

3; Let M <l G and .fG:MI be prime. Prove that M is a ll1aximal normal 
subgroup of G. 

, 4: A normal series of a group G· is called a chief series of G if it is a· 
proper series anq if it has no p~oper refine~ent which is a normal. series 
o~· G. A factor of· a chief series of G is called a chief factor of G: ~ · 

L~t G · be· a nontrivial group. A nontrivial norm~! subgroup M of G is 
called ·a minimal normal subgroup of G if there is no L:!i'J G such that. 

1.< L < M. 

Prove the following statements. 

_(a) H IK is a chief fa'c;tor of G if and only if H /K is.a minimal 
subgr~mp of G/K. 

(b). If M is a minim~! normal subgroup of G, then M has no 
ch-aracteristic subgroup ex,cept. 1 and M. . 

(c) If G has a composition series~ then G has a chief series. 

(d) 1 -<l V4 <l A4 <l S4 is the unique chief series of S 4• 
' I 
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5. Suppose _G has a· finite abelian group having no characteristic 
_ subgroups except_ 1 . and G. Show that there is ·a prime number p such 
that gP = 1 for all g € G. 

6. Prove that an abelian group has a composition series if and only if it is 
finite. 

7. Find an infinite abelian . subgroup of the. infinite alternating group ·(see 
Ex. 2). Conclude that a. subgroup of a group with a composition. series 

-. does not necessarily have a composition series. 

8. Let H Q G. Prove that, if G has a composition series, so does G/H. 

9. Let H Q G. Prove that, if H and G/H have composition series, so does G. 

10. Repeat the p~oof of Schreier's theorem for the two series 1 <l C 18 <l 

eli and 1 <l c4 <l cl2 <l c36 of the cyclic group c36. 

11. Prove that, if Hand K are solva_ble, so isH x K. 

12. Prove that, if H ,K ~ G and G/H, G/K are solvable, so is GlH n K. 

13. For each n € N, we define a subgroup G(n) of G recursively by d<n+I) = 
( G(n))' = [G(n) ,G<n>]. The series 

G > G(l) ~ G<2> ~ • • • 

is called the derived series ofG. Show that each G(n) is characteristic in G 
and that, if · 

0, <! G,_1 Q G,_2 Q ... <QG1 <QG0 =G . 

is ·an abelian series between G, and G, then G(n) ..;;; G n for each n = 1 ,2, . , . ,r. 

· Prove that G is solvable if and only if G(r) = 1 for some r € N. 

14. Prove that a solvable group has a composition series if and only if it 
is finite (cf. Ex. 6). 
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§28 . 
Finitely Generated. Abelian Groups 

In this !ast paragraph of Chapter 2, we determine. the structure of 
finitely generated abelian. groups. A complete classification of such 
groups is given. Complete classification theorems a're very rare in math­
ematics and, in general, they require sophisticated machinery. Howe~er; 
the main theorem~ in this paragraph are proved by quite ele~entary 
methods, chiefly by induction! This is due to the fact that commutativity 
is a very strong condition .. · 

This paragraph is not needed in the sequel. 

28.1 Lemma: Let G be an abelian group. We write 

T(G) ::= {g E G: o(g) is finite}. 

(l) T(G) is a subgroup of G (called the torsion subgroup of G). 
·(2) In GIT(G), every nonidentity element. is of infinite order. 

Proof: (I) Since o(l) =I E N, 1 E T(G) and T(G) ~ 0. Suppose now a,b are· 
in T(G), say o(a) = n, o(b) = m (n,m E N). Then (ab)nm = anmbnm = 1.1 = I, so 
o(ab),;;;;; nm, thus abE T(G); and o(a-1) = n E N, thus a-1 E T(G). By the 

s~bgroup criterion, T(G)..;; G. 

(2)' Since G is abelian, we <ian build the.factor group GIT(G). If T(G)x in 

GIT(G) has finite order, say lJ E N, then (T(G)x)n = T(G), so T(G)xn =!:(G), 
so xn E T(G), so o(xn) is finite. Let o(xn) = m .. E N. Then xnm = (xn)m = I,· so 

o(x) ..;; nm. Thus o(x) is finite and x E T(G). It follows that T(G)x = T(G) is 

the identity element oL G IT( G). · Hence every nonidentity element of 
G IT( G) has infinite order. 0 

28.2 Definition: A group G is called a torsion group if every element oC 

d has finite order. A group is said to be without torsion, or torsion-free if 
eyery nonidentity element of G has infinite order. 
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Thus I is the only gr.oup which is both a torsion group and torsion-free. 

Every finite group is. a torsion group, but there . are also infinite torsion 
groups, for example lf.P /l. · 

In view of-Lemma. 28.1, ~we are. led to investigate two classes of abelian 

. groups: torsion . abelian groups and . torsion-free abelian' groups. When 
. . . 

this is done,· we will know the structure of T(G).and G/T(_G); where G is 
.an abelian group. We must then investigate how T(G) and G/T(G) are 
· combined to build G. 

We. cannot expect to carry out this ambitious program~ without. imposing 

additional conditions on G. We will assume that G is finitely generated 
(Definition 24.4 ). , Under· this assumption, T( G) turns out to be a finite 

. . --
group (Theorem 28.15). The study of finite abelian groups reduces to the 

. st~dy of finite a.belian p -gro.ups, -p being . a prime -number,' whose · 
structures are · de.scribed in Theorem 28.10. ·After t!iat, we turn our 

attention .to torsion-free abelian groups. (Theorem 28.13). The next step. 
in our program is to put ·the pieces T { G ) and G IT (G) together in the 

. appropriate way to form . G . The apprqpriate way proves. to be the 
simplest way: G is isomorphic to the direct product of T(G) and G/T(G). 
The structure of G will be completely d,etermined by ·a set of integers.# 

28.3 Definition: Let G be an abelian gro~p and let S = {gl'g~, ... ,gr} be a· 
. finite, .nonempty subset of G. If,. for anyintegers al'a2, ... ,a,; the relation· 

g a1g az ... ga'= 1 
· . 1 2 r . 

implies ·that. g;a1 = g2az = · · ·'= g,a, = 1,. then S is said to be independent.If S 

is Independent and. geTierates G, and if 1 ~ S, then S is called a basis of G .. · 

In the following lemma, we will prove; among other things, that S = 
{g1,g2, ••• ,g,} is a basis of G if and only if G_ is . the direct product of the 
cyclic groups <g

1
),<g2>, ... ,<g,>. Lemma 28.4(2) is of especial; importance: it.: 

states that a finitely generated abelian . torsion group :is in fact a finite 
group. 



2'8.4 Lemma: Let G be aiz .abelian group and g1,g2, •• ;,g,be finitely 'many 

elements of G, not necessa.rily disti~c((r > 1). Let B ...;; G. , L . . . , 

<b <gl;gz, ····8? <:g,><iz>· · .Jg,>. 
(2) If each gi has finite order, then l<g

1
,g2, ••• ,g,;>l·< d(g1)o(g2) .. .-lj(g,). 

(3) If G = <gl'g2, ••• ,g,> and rp: G __,.A is a homomf}rphism onto ~A, then A 

<glrp,g2cp' ...• g~rp>. 
(4) lfG·= <g),g2, : •• ,g,>, tlteJl (~iB = <Bgl'Bg2, .;.;Bg,> .. 
($) If G!B = <Bgl'Bg2, ••• ,Bg,>~ then G = B<g1,i2, ••• ,g,>, If, in additi~IJ •. 
b1, • ~. ,b

5 
E B an(i B = <b1, .-• .,bs>' then G =<bl' ... ,bs,gl'g2, •• : ,g?· . 

(6) If B =<g? and GIB <Bgi ..... ,Bg,>,then c·. <gl'g2,· •• .,g>. '. 
(7~ (gl'g2, ••. ,g,J is an indepel~dent subset of G and-G = <g1;g2,. ... ,g,> if and 
otzly if G = <g1>X-<g2> x ... x;<g,>; In particular, iiz case gl'g2, ••• ,g, are all 
distinct from I, the subset (~l'g2, •.. ,g,J is a ·basis of G. if and only if G = 
<g1>X <g2>X ... x'<g,>. 

Pro~f: (1) Certainly (g1,g2, ••. ,g,} £; <g1><g2> ... <g,> < G by repeated.use of 

Lemma 19.4(3),_and so <gl'g2 .... ,g,> < <g1>'<g2> ... <g? by the definiti6n of 

<gl'g2, ••• ,g,>. Also, any elemcnt.of-<g 1).<g2> .. . <g?, necessarily. of the form 
ml m2 m • • . ; . • • . . . . 

g1 g2 ••• 8, ' Wllh SUltabte l,ntegers ml'm2 , .•• ,mr' IS 1n <g1,g2, , •• ,g,> by 

Lemma 24.2 and so <g1><g2>: .. <g? < <gl'g2, •.• ,g,>. He~ce <gpg2, .•. ,g,> = 

(2) Supp~se o(gi) = ki e:· N for each i::::: 't,i, ... ,r. I(g e: <gl'g2,; .. ,g,>; then,. 

by part (1), ·g = g1mtg211}2.: .g, ~ith suitable integers mi. Dividing mi by ki, 
we may write ·m. = k.q:-+.t.,' where q.,t: e: Z and 0 < t. < k .. Then g.~= 

. ~ l -· l. I l · I I . · I l . I 

(g/•)q'g/1 =·g/' and 8.= g1 
1tg2

1
2 .. • j~/'· 'Thus - · 

. <g 8 ,g > ,.. (g ltg li 8 t, • ·o· ~ k f 11· · 1 2 J 1' i• : . . r ,_ I 2 .•• •. r • . """ ti _< i or a .I = ' ; ... ,r 
and 

!<g 1'g2, .... ,g,>l < k1 k2 ~ .. kr. 

· (3) If. a E A, then a = gp for sdme g E G since <p is onto and 
g = g1 m1g2m2 ... grm, with stiitabl.? Integers mi sine~- c·= <gl'g

2
, ... • g;.'>· Thus 

a;, gcp = (gl mtg:tz ... g,m')<!l)f' 4't~)mt(g2cp )11'2. :. (irp.)lllr E <gtrp,g2<p? ... ,g,cp). 
an,d A !: <g {P,g2p, . •.• ,grp>. ' • · 

• < ' 

(4) This follows from part:(3) when. we take A to.be G/8. and~ -to be the 
natural homomorphism v: (;.:.: GJB: 

·' 

• I 

! 



(5) Suppose G /B = <B g1 ,Bg2, ••• JJg;>. Let g e G-: Then Bg e G IB and, by part 
(l) with GIB in place of G and Bg; in place ,ofgi, we have 

.. .. . Bg = (Bg1)ml(Bg2)m2 •. •(Bg;)"'r=Bg~mig2mz ..• g/": for some integers. mi. 

·Hence ts. = b.gt"11g2m2 . .': grni.. for. ~q.me, b .E B. an~ g E~B<gl'g2, •• ; ;g,.>; So G =. 
~'%.g2, ·~·;g,>• If, in ~ddhion;·B ~ <b1; ••. ~.b)>; ·t~e·n · · · · 

. . . 0 .= <b1 •· •· ·•b.s">.<.gt•iz• • ~· .g?:. = <bt>~ · ~ <b;><gt><g;:>. • .<gr> 
· ,;=; <bp •; ~ ,p;,~i~•:a,,g?··· . . . . . . .. 

.. . .,, : ·' . ~ .' · .. · .... ._:··, 

· ·· (6Y·This."t-~n~~s fr~m :Parr·(5) .. wlth a slight:cllamse·Jn ~otation. ' 

; •' ····,···(7) ·Sine~· ·~ .. ·,~s.· ··abelia~[·~···~ ~~~·~;4·,~~~· ~k:/>x~<i)~·:if;·~~d· ;·~nly .if- ·every 
.. ·:.ei~Jl1ent :of"G··~~ri J1ee'xpresse({.iin :the.:form~~~~:: .~u;;'where/Uf€ . ..::g?• iii .a :.• 

·., .· :· --... - '· . ' ~ :.-.- ·-·_ --~;- \ .. _ -->---·. - -:;r:-' • "'\_:.··.· .- -. ... :·--!_-. ':·).~.--_~ :_ -~- - " . ~----~.:-.. ~.. ' - '·-
,;: .. u:ntque , mannet<('fhe.orenr:22.1$).: · · · '::' ;' .; :. ··· \ .:' · , ·· .. '·~.,, · - · 

··~· • 0~r:f.:,~::~~r1;;~~~;~1~it~·~t:~~::·i~:;, 
se~tation if- and. ._<nil!,':·1f.'·~t.i·'*1":~~ ~·~rl' }.f.s~~,~~~~p~.e~9:-.J,;!~ll,:ival¢~!!Y; . VI~ :'~~Hl i.,-:. , 
prove ·~hat'' there/ is.:fin.' ~~e~1ltfiti;rG. ':wi~h"J\1'C~ii~e.~-~~t· ;J;epi~se~iatio.ns' if'·,;~<. 
·and :rinty .. ir .. {g 1,g2~.··~·.: :•K;J t~~:·:#9:~:;~P4~~;!i~f~:~I)~~~e~~i)~i!e.,}~~·a~··- el~n:t~n~i-:~' ., 

. in G ·with· two. ',d~ffe~ent, ~epre:~e.!).t~tjoijs -~~f;:,~t;d o;pnly :,_if'.~ i':l:~ill1l~>· ·Er ~:: 
g/11Q2nz •.• grn, rocsorile· jnt~gersi:suc~;:tlt~t\~i~~c;~ifor:ii!t.le1!st;ori~ ' 

. , .-· · · ~- .- ~ .. -_-·'-· !-: _-·:··-· .. _,.:: .... :_:--· ;,·-~~~ _._;.::~--<!.~--</:_;;,:-r:.-·~-.:_~ -.. ·.:··--_.-~· 

· i E { 1,2,_ •.. ,-rJ /.l'he\ latt~r .cdnditiiin' n~Id~:if:'!ii:fd: -l)nli if<. 

. . . . . . .... · .',gim~-n)~~~~~;~;~f,~D?;_\: .:: ·· 

· where not all. of g t 1""< gz"1~2, • ;.~~.gr'mr~·.;ari:';qual.·:tg ~i ;·:tha~ 'i,s~ ,if ·atid :O!IIJ. ii 
{g

1
,g

2
, ••• ,g;J · is .·not independent.· ~ · · · · ' · · · •· · ·· · · o · 

. . . . 

28.5 Lemma: Lei G be a group and gl'g2, ... ,gr elements ·of G. Let B = <g1> 
and suppose o(g1) = o(Bg1)·for i = 2, . .. ,r. 

(1) If {Bg2, ... ,Bg,J is an independent subset of GJB, then {gl'g2,.,. ,g;} is an 

independent subset of G. 

(2). Assume gl'g2, ... ,g, are all distinct from 1. If G/B = <B g2> x ... x <Bgr>, 

then G = <g1> x <g2> x .... x <g,>. 

308 



Pr'oof:· (l) If mj ,m2 ; , .. ,m, are integers such that 

then B == Bgl mig 2m2 •. . ·g,m, (Bgl)mi(B Eh)m2 ..• (B g,)m, := (B g2)'n2 ••• (Bg,Xn,' 

_so (Bg
2
)m2 = · ·: == (Bg,)m, = B since. (Bg2, ••• ,Bg,). is .independent. Thus o(gi) = 

o(Bg) divides m;in case o(gi) is finite aild mi = 0 in case o(g)= o(Bg1) is 

infinite (i := 2, ... ,r). In both casesgt'= 1 (i 2, .. :·,f), and, because of(*), 

gt• = I as well. Hence (g1 ,gz, ... ,g,J is independent. 

(2). If G!B =<Bg
2
>x , .. x <Bg,>, then G/8 =<Bg

2
, •.• ,Jig,> and _ 

. '{Bg
2

, ... ,Bg,J is independent . (Lemma 28.4(7)), 

G=<g1,g2, ••• ,g,>' (Lemma 28.4(6)), 

(gl'g2, .•• ,gr} is independent (Lemma 28.5(1)), 

G <g1>X<g2>x ... X<g,> (Lemi:na 2_8.4(7)). o 

We now examine the structure of. finite abelian groups.· A finite abelian 
group is a direct product of its Sylow R-subgroups. This follows immedi­
ately if th~ existet1ce, of S)•low p~subgroups is· granted. In. order to keep 
this paragraph independent _?f §26, we give another proof, '{rom which 

the existence of Sylow. p-subgroups (of finite abelian groups) follows as 
a bonus. We need a· lemma:. 

28.6 Lemma: Let A be a finite abelian group and let q be a prime 
nuinber.If q diyides lA. I, then A has an eletnent of order q., 

Proof: L<;:t lA I = n and let ai'a2, ... ,an .be then. elements of A. We write 
ln1 = o(ai) fori= 1,2, ... ,n. We list all products · 

a k•a. k2 . a k., . 
1 2 · .. n · 

\~here each k, runs through 0,1, ... ,1~. · L Our -list has thus m 1m2 ••• 1n 
l . .·, ,, , l n 

~ntries, Every element of· A. appears· in· ()ur list. Two entries· a 1k 1a2 k
2 • · •• ank. 

and a
1
s;a

2
s2., ,a~Sn are equal, jf :;nd ·onJy if the entry a

1
' 1a

2
'2 ... an' •, where ri 

is such that 0 ~ r1 ~ m i - 1 and k1 • s1 = ri (mod m ), is equal to the 



--------~~-----------~----------

identity element of A. Thus any. element of A appears in our list as -
many times as 1 does'; ~ay t times .. The ·number of entrie~ ·is therefore 
m1m2 ••• m

11 
= n~~ Since q divides n, we see qlm1m2 ••• m; lmd q· divides one. 

of the numbers m 1,,m2, ; •• ,m
11 

(Lemma 5~16), say qlm1• Let us put m1 = qh, 

h E N. By Lemma 11.9(2), a1h has order ' 

o(a1h)_ = o(a1 )/{o(a 1~,h) = m1/{m 1,h) = qh/(qh,h) = qhlh = q. ~o 

28.7 Theorem: Let G be a finite abelian group and let I_GI = p 1a
1p2a2 ••• p

1
a• 

be the canonical decomposition of IGI into prime numbers (ai > 0). 
. . 

(1) For n € N, we put G[~) := {g € G: g11 = 1). Then G[n) <. G for any n € N. 

{2) Let Gi = G[pt)for i = 1,2, ... ;s. Then G = G1 X G2 X ••• X G
1

• 

(3) IG;~ = Pt (and Gi is called a Sylow P;-subg~oup of G). 

(4) Let H be an abelian group with IHI = IGI and 11; = H[p1aq (i = 1,2,: ~ . .s). 

Then G !:!! H if and only if)Gi!:!! H;.for all i = _1,2, ... .s. 

Proof: (1) Let n € ·N~ From 111 = 1, we get 1 € G[n), so G[n) ~ 0. We use our 
subgroup- criterion. 

(i) u·x,y E G[n], then x 11 = 1 = yn and (xy)11 = xnyn = 1.1 :;= 1 and· 

so xy € G[n). . 
(ii)Jf x E G[n) then X 11 = 1 and (x-1) 11

,;, (x11r 1 = 1..:1 = 1 and so 
x-1 € G[n]. 

Thus G[n) <.G. 

(2) _We must show that G = G1~ ••• q and G1 •• .Gi-1 .n Gi= 1 for allj= 2,-... ,s 

(Theorem 22.12). We put IGI/pr = mi (i = 1,2, .•. ,s). Here the'integers 
, ml'm2, ••• ,m

1 
are relatively prime and there. are integers u(·~· ... ,u

1 
such· 

. that u1 m·1· + ~m2 + · · · + U1m1 .= 1. -

We show G = G1~ ••• q_. If g E~G, then g = gulmllf'P~z •• • (""•, with gu;m; € Gi 

since (g";m;Y'f_; = lf•JGI = l(i = 1,2, ., . .s). Thus G!: G1~··· G1 
and G = G1~ •• • G

1
• _ 

Secondly, let j € {2,-~ ..• s) and g € G1 •• .Gi-1 n G1 .Then g =gv .. gi- 1, where 
a a ·· a a ·· 

gt1 1.= ··· = g;t'J-1 J-l = 1, therefore gP1 1···P;.1 J-l = 1 and o(g)_lp1a1 •• • pj_1a;.1. On 
P.· . . 

the other hand, g _E Gpso gP1 1 = 1 and o(g)l P/i· Thus o(g) = 1 and g = 1. 

Thus·G1 .~.Gi- 1 n Gj!: 1 angG1 •• .£}1 n_ Gl = 1. This proves G = G1 x G2 x ... x G
1

• 
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.· (3) By the very definition of Gi = G[pt•L the order of any element in G 1 is 

a· divisor of pa;_ Then, by Lemma 28.6, I G I· is not divisible by any prime 
· I I .. 

number q distinct from p1• 'rhus IGl = p/• for some bi, 0 .;;;; h 1 .;;;; ai. From 

Pt 1Pzb;_:.p/·~ IGll iGzl ... lql:::: IGl X G2 X •• . :x as' I p1alp2a: .. ·fl,a •• \ve get 

P/; = 1q1 =pia; for all i = I ,2, .. ·: ,s. 

.h .,il. l , (4) LeLrp: G -.H be an isomprphism. For any g E G
1
, ·we ave J.:'' ·= •. so 

(grp )PP• = (gPP')q> = 1 q:> = l. Thus gq:> E H. and G .rp ~ /1.. A I so, iLh E IJ • then II :::. 
. . . I I I I 

g~ for some g E G and (gP·a•)~,p =. (gq> )Pia;= !zP,a, =· l. Thus gf'/
1
• E Kerr~ = I, so • 

a· . . , .. 
gP• '=I, so g € Gi and h g<p. E. G;IP· Hence f/1 -< G1rp. We obtain G,'fl =II; .. 

C':>nsequently, 'fld: q; H1 is an isomorphism and Gi HJor all { =. 1.2, ... ,s. 
• .. I 

C~nversely, assume IGI ;= IHI and G1 =Hi for all i = 1.2 •... • s. From part (2), 

we get G·= ql X Gz X ••• X Gs CJ.nd H =HI X Hz X ••• X liS and Lemma 22.16 
gives G = H, · o 

i ... 

According to Theorem 28. 7, the· structure of a ·finite abelian group- is 

completely determined· by t~~ structure of its Sylow subgroups. Conse­

quently, we focus our attention- on finite abelian p -groups~. After two 

prepatory lemfllas, tl.te structure of finite ~belian p-groups will be de­

scribed in Theorem 28.10. 

28.8 Lemma: Let G be an abelian group and gl'g2, ••. ,g, elements of G. 

Let n E N. We write en= {gn: g. E G). 

(2) If G ='= <gl'g2, ... ,g,>, then G'':=.<g1 n,g_2n, ... ,g,n>; 

(3) 1! G = <gl> X <gz> X • ; •. x <g;>.. then en = <gl n> X <g2n> X X <g n> and r . 

G/Gn =: <gl>/<gln>, X <g2>/<g2n:,. X ... X <g,>/<g/>. 

(4) 'Let H be an abelian group.lf G = H, then en~ Hn and G/Gn = H/Hn. 
; 

Pr~of: (1) and (2) Since (ab)n = anbli for ali a,b E G, the mapping 

·w: G-. on 
a-. an 
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is a homomorphism onto on. So Sr = lm 1P <;; ·o by Theorem 20.6 .. Also, if 
0 =<gl'g2, ... ,g,>, then on= <g1JP,g2JP, .. ,,g,JP>::: <gt.g2n, ... ,g,n> by Lemma 

28.4(3). 

(3) If G = <g1> X <g2:> X .••• X <g,?:; then 0 = <g1,g2, ••• ,g,> and {gpg2, ••• ,g,J is 

independent ·(Lemma 28A(7)). Then on= <g1n,gt, ••. ,g/> by part (2). 

Moreover, l8t.gt, •.• ,g,n} is independent, for if m;,m2, .•• ,m, are integers· 

and. (gt)mt(g/)mz ... (g,n)m~ = 1, then 8inmtg2nmz ••• g,nm, = l, so (g/')m' = ginm: = 1 
because {gl'g2, : • • ?gr} is indepen_dent. From Lemma 28.4(7), we obtain that 

' on =<gin> X <gt>X •.• X <g,n>: The second assertion follows. from Lemma 

22.17. 

( 4) Assume cp :.G .,... H .is an isomorphism. For any g € 0, gncp = (gcp )n € Hn, 

and therefore oncp <: Hn. Also, if hi € Hn~ then hi = hn for some h € H and 

· h = gcp for some g € 0, so h1 = hn = (gcp)n = gncp € oncp and thus Hn <;; oncp. 

Hence nn = oncp and IPGA: on ..... /{n is an isomorphism: on 5:! ifn. By Theorem 

21.1(7), we have also 0/Gn 5:! Ocp/On(p. =H/Hn. · · o 

28.9 Lemma: Let p be a prime number and 0 a finite abelian p~group. 

Let g1 € 0 be such that o(g1) > o(a)for all a € .0 and put B = <g1>.lf 

Bx € 0/B and o(Bx) = pm, ihen Bx;; Bg for some g € 0 satisfying o(g)= pm. 

Proof: Let o(gi) = p 1 , o(Bx)::: pm and o(x) = p". Since (Bx)P" =BxP" = B 1 ~ B, 

we have pmiP". by Lemma 11.6. Also, BxP"' = (Bx)P"' = B, thusxP"' € B = <gi> 

and xP"' = gt for ·some n € Z with 1 <: n <:._p1 • ·We write n = p"t, where k 

. and t are integers, k > 0 and (p,t) = 1._ The~ p" <: p"t = n < p1 and, by 
Lemma 11.9, 

pu-m ,= p"/pm = p"!(p",pm) = o(x)!(o(x),pm) = o(xP"') 
= o(g!n),; o(g/t) = o(gi)!(o(g!),pkt) = ps/(ps;rplr.) = pslp" = ps-k. 

So ps+m-k = p" ;, o(x) <: o(g1) = p 1 ·by hypothesis and m <: k. 1 

We put z = g/P
1
.,. and g = z-1x. Then z _€ <g1> = B and Bg = Bx (Lemma 

10.2(5)) .. From xP~ = gt = g1
1P

1 = (g/P
1
."')P"' = zP"', 

gP"' = (z-1x)P"' = (zP"'r1xP"' l, 
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we obtain o(g)lpni. P.,lso· pm := o(Bx) o(B~)-.:;;; o(g'). Thus o(g) . pm, This 

dompletes · the .proof. 
t 

We can now describe' finite abelian groups. ., 

28;10 Tlicorcm: (I) Let p be· a prime 1iumher mu{ let G he a nontril·ia! 

finite abelian p-group;~Tiwi] G lzas a basis, that is.,thcre~ ;ne climemx 
gl'g2, ••• ,grin G\1 such that · 

(2) The number of elements ;in a basis of G, as~well as. the orders of the 

elements in a basis oj G, ar<! zmiqu~ly determined by G. More precisely; 

let {gl'g2, • • ,gr} (llld [hl'/z2,. ··:•lis} be bases of G, lcUJC~1) =pm, (i 1.2 .... . r) 

ando(h)=pni(j 1,2, ... ,s);and"suppose thenotation }s so cliosen that 

ni,1 ;;;;.. m2 .. ;;;;. •• , ;;;;. mr > 0 and n1 ;;;;. 112 > .. : ;;;;. ns>O. Then r sand the 
: · 1 { · m r m 2 . . m ) · · ·. · 1 '· · ,· [ ' ( n 1 n 2 n · 1'/ 

r~tllp e p ,p , ... ,p ' zs .equa . to 1 zc s-tllp e p .p •... . p ').. 1e r-
. ttlple (pm1,pm2, ... ,pm•) is c~ll<fd the type. o( G.. . . 

' . . 

(3) Let H be a nontrivial finite abelian p-group. Then G = H if and only tf 
; . ~ ' . 

G and H have the same type~ 

Proof: (If We make induction on u; where IGi ::: pu. If t! 1, then 1GI = p, 

sd G ·is cyclic (Theorem 11:13) and the claim is true. Assume now. G is a . 
fi~ite abeiiait p'~group, I G I p2 and assume that,. whemever .G 1 is a finite 

a~elian p-group with 1 <: I G 11 < IGI, then G1 is a direct· product of ·certain · 
]. ~ . 

nqntrivial cyclic subgroups .•. 

W,e choose an element g 1 of G such that o(g1);;;;. o(a) for all a €. G. and PL!t 

<g1> =_B. Since G;:! 1, wehave.·B ;:zt'l. IfG = B = <·g 1>, the claim is 

.established, so we suppose B <G. Then G/B is a finite abelian p-group 

w~th L< IG /Bl < IG I, By im:ucti6n~ there are elements B Xz• ~ .. ,Bxr of G /[), 

dihinct from B 1, such that 
· . . G/B;: <B-xz>x ... X <Bxr>. 

Let us put o(B x) =.. pml for i 9 2, ... ;r. Using Lemma- 28.9, we find gi € G 

su~h that'Bxi'=Bgi and o(gi):=pm'(i. 2 •. ~ .• r).Letus wr.ite o(g 1)~Pm'. 
Then G!B,;, <Bg2>x ... x <Bgr>, and, by Lemma.28:5(2),• 

. G = <gi> X <g2>X ... X <gr>, 
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where g 2, .. . gr are distinct from -I since B t:z_ ... ,Bg, are distinct from B 
and g; is distinct from I since o(g 1);;;;. o(a) for all a E G and G,: 1. This 

completes the proi)f of part (I). 

12) and (3} For convenience, a 1-tuple (pu 1,pa 2 ; •••• ,pa') will be called a 

trp.e of a nontriYial. finite abelian p-group if a 1 ;;;;. a2 ;;;;. ••• > as > 0 ~md 

if ;i has tLI:iasis IJ;J2, ... J;J with JJ (fk) pat (k I ,2, .. :,I). We cannot say 

the type of A. for part (2) is not proved yet. 'fhe claim jn part (2) is that 

all types of a nontrivial finite abelian p-group (arising from different 

bases) arc cq_ual. 

Let r; and II ·he nontrivial finite abelian p-groups., let (p"' 1,p"'2, ... ,p"'') be 
a typt: of(;, arising from it h;isis {g1,g2, ... ,,!:r} of G and let (p 111 ,p 11

2, ••• ,p 11
') 

·hc·a type ofl/,arising from a,basis {lt 1,1t.2, ... ,hs)ofll. 

llr "-' s ami (p"'•.p'".: .... ,p"'•) (p"'.p 112 , ••• ,p 11
·'), then <g.>=:: C "' =::<fl.> for 

. . . . . L p I . L 

1.2 .. ,. ,r and G 'g
1
," X ·g2> X •· •• X ~g? =:: <h 1> X <ft2> X X <he= II 

ILemma 22.16). This t'>rovcs the "if"_part of (3). 

:\ow the_ "only if" ra'rt of (3). whic_h iilcludes (2) as a particular case 

I when (/ II): we \\·ill prove that G =: II implies r = ,\; and (pm 1,pm 2 , ••• 4> 111
')' 

~ 1p"-.fJ"2, .... fl''•). 

Suppo\e· G =II. We make ioduction on 11, where IGI =p\ If u =I, then IGI 
- p :~ I J/1, s(> r; ami II are bi>th cyclic, "hence G = <;: t_... and II = <h1 >. Thus r 

I = s and p 111
' o(g

1
) "'-: p ~. o(h

1
) =.pn 1• The claim is therefore established 

'when 11 _ . I. :-\ow st1ppose I(; I ;;;;. p 1 and .suppose inductivcl.y. that, if G 
1 

and ·. 

//
1 

arc isomurphic .finite abelian p.groups with 1·-'( IG
1
1-'( IGI, and if 

lpa.f!", ... Jla,-1 j, a type of r;, and (fl"'./)" 2 , ... ,flb,·) is.a type of //I' then,.: 

'--' ,\ · ami (fJa·.pa", .... p"·) (p 11•,p'1z, . . --: ,pb•'). We distinguisit two cases:' the 

ca~c wh<.:n Gfl I ;md the ease Gfl ;;! I. · 

In case (; 1' .-:- I. we have ~'' = I for ail g E G, in particular pm• o(gi) = p for 

all i 1,2 . .... r. Also II'''= I (Lemma 28.8(.4)) and p 11
1 oUt)= p for all j = 

1.2 .... s.lknccpr ·l~g 1 !1·g,l, .. !/g,..-l !CI l/ll=l,..lt
1
..-lldL:!>f ... l<"h,>l ps, 

'or .\ anillpm··f'"': ..... pm·) !p.p, .... fl), lp"',p"l, .... Jln'), as claimed. 

Supp(·,-,c um\· · (;:· -· l. Then II'';;:: I. Tin:- there arc clements in G and II of 

order > Ji. ""'/'"' > p and p"' > p: Assume k is the greatest index in 
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{1,2, ... ,r] with pm• > p, so that (when k < ~r) pmt+l = ... = pm, = p. Let the 
.I . . - ' . 

in'dex '1 E {I ,2, ... ,s] have a similar meaning for the group H. 'Then 
' ' 

' . ' 
(pm1,pm2,· ... ,ptti~) = (p"'t, : .. ,p·m~,p,-• .. ,p) 

' · · . r-k times·. 
(pn1,pn2,_ •. :';pn•) = (pnt, ... ;pn',p, .. ; ,p ), 

. . s-l tifllCS 
® 

it being understood that the' entries p should be deleted when k =· r or s 
1. By Lemma 28.8(3), 

. GP = <gt> X <gl> X ,,."X .(gP> 
. ,. 

=<gt:>x.:.,X<g/>X<I>X. :· x_<i> 
i . .r-k ttmes 

=·<gt;>. X .•• X <gt> 
w~th o(g{) = pni:-1 :::> I fori id i, ... ,k. Hence {g/ •...• g/} is a basis and 

· (p'mt-1, ... ,pm•-1) is a type of Of: In the same way, (pnt-1, ... ;pnrl) i~ a type 

of: iJP.. Here GP is an abelian ·~-group with I <. fGPi p<m 1 - 1 }+~- · ; +(m;.-1) < 
p~ 1+m;+.~·-+m·=IGI. SinceGP~HP by Lemma 28.8(4), mir-inductive hypo·· 

thesis gives 

k=l and 

i 
Then pm1 = pn; for i 1; .. : ,k. From 

. pm1+· ~ ·+m'Pr-k = IGI·:= IHI = pn1+· · ·+n,ps·l =pmi+· · --ttn1Ps-l 

we get ~-- k = s - 1 ::= s...: k. Thu~ r = s ~nd a glance at (t),(tt) sho\\:s 

(pmt ,pmz, ... ,pm•) = (pnl ,p.nz, .•. ;pn•). This completes the proof. 0 

28.11 Exam_Ples: (a) we' fifid fill abelian groups of ~rd~r pS, wh~re p is 
a prime number. An abelian group A of order p 5 is· determined by its_ 

tYPe (pm 1, .. . ,pin·)~ where of cpurse pm1:· · ::wn, = IAI = ps. Since mi > 0 and 

m 1; + · · · + m, = 5, the only. possible types are 

(p 5 . 4 .) (p' 3 2) '(pj ) (p2 2" ) (p. 2 . ) ' . ), (p ,p ' .,p ' . ,p,p ' ,p ,p • ,p,p,p), (p,p,p,p,p 
and any abelian group of order' p5 is. isombqJhi,c to one of . 

Cps, ,CP~-x CP, CP1 X C;y., CP~ X CP X CP, Cp2 X Cp2 X CP, 
.cplx Cpx cpx GP'. . Cpx cp X cpx Cpxcp. 

In ! particular, there are · exac~ly seven !!Onisomorphic . abelian. groups of . 
order p 5 • . 



( b J The number of non isomorphic abelian groups of order pn (p prime) 

cai1 be found. by the same argument.. This num?er _i's clearly the number 

of ways of writing n as a sum of positive integers m 1, ••• ;m,. If n E_ N, an 

equation of the form 11 m 1 + · · · + m,, where m 1 ,m 2, ... ,m,. ·are natural 

numb~:rs and m
1 

> m; "> ... > m, > 0, is called a partition of n. Thus 

the number of no·nisomorpl)ic abelian- groups of order pn is the riuinber 

of partitions -of II. Notice that this number depends only on n, not on p. 

The partitions of 6 arc 

6, )i I, 4+2., 4+1+1; 3+3, 3+2+1, 2+2+2, 2+2+1+1,-2+1+1+1+1, l+l+l+l+l+l 

group Qf order p 6 is isomorphic to one of 
C 3 X C 3, C 3 X C 2 X C , p p p p p 

C 2 xC xc xc xc, 
p p p p p 

lrl Let us find all abelian groups of order 324000 "25 3 45 3 (to within 

isomurphi~m). A.n abeliarl group A of this order is· the direct product 
.\; "- 1L1 / A 5 • where A P denotes the Sylow p -subgroup of A (p = 2,3,5 ) .. 

I kn.: ,\, has <iruer · i'i. and is is-omorphic to one of the seven grQups of 

type . 
( ~~) (14 I) (23 I 2) (I) 2' 2) (12 22 I) (?2 2 ') '>. (' ') 2 .2 2) . 
· .... ' ..... , .... ' ......... ) -' . ' -' , ..... , -' , ........... '· ..... , ..... , ' ' . 

Likewise. there arc five possibilities for- /\3: 

(34 ), (33,3), (3 2,3 2 ) ,(3 2,3,3), (3,3,3,3) 

and three possibilities for A5:. 
3 - ~ - . 

(5· ), (5-.5). (5,5,5). 

Th..: 7-J-5 1anous direct products A2 Y A
3 

x A5 gives us· a complete list of 

noni:-onwrphic abelian groups of order 124000. 

\ow that v.-e obtained a complete classification of finite abelian groups, 

we turn our auention. to torsion-free ones. 

2H.I2 Lemma: l.et G be an ~1helian ~roup, 8 a suhwoup of G and assm1w 

that G!IJ i.i· a direct product of k il!finite cyclic woups (k ~ 1), say 

'G/IJ = -·By1/ / -'By2 · Y ... x'..-:B_\~? 
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(YpY2,. ·:.·hE G). Then <y1>.<y2>: . .. !<yk> are infinite cyclic -groups and 

G B X <.y1> X <y2> X ... X<Ye· 

Proof: Let Y := <yl'y2, :~,yp ~ G. Then G/B = <By!'By2, ••• ,By/> and, from 
_Lemma 28.4(5), we_ obtain G BY. We will show that G = B x· Y and Y = 

.. <yl> X <y2> X ••• X <:yk> . 

. To establish G 0:::.' B X y. we need oitly prove B n y l. Let g € i .n y. Then 

g = Y/~Jt2 ... yk01 for some integers .al'~' ... ~a~ (Lemma 28.4(1)) and B-=Bi 

= (B y1)01(B y2)0
Z.:. (B yk)01• Since (Byi'B y2, •• : ,B yk} is an independent subset 

of G/B,(Lem~a 28.4(7)), •ye geL(By1)a1;;;: (B y
2

)02 = · ·: (B yk)01 =B. But 

. o(By1)=.q(By2)=· .. _=o(B:y1) .ro by·hypothesis, so a1 a2 = ··· ak = 0 

~rtd thus y
1
°yt .. yk~= L Thi-s proves B nY · l· .. Hence G = B x Y. 

We now prove Y = <y1> x ~)'2> x ... x <yk< In vi~w of Le~rna 28.4(7), we, : 
must only show that. {yl'y2, •• • _,yk) is an independent subset <?f Y. Suppose 
m 1'm

2
, •.. ,mic are integer~· with · · · 

Then 

so 

and 

Y·- m1y mz y mt- 1 · 
I 2 · ··· k. - • 

.(By1)ml(B y2)m2 •. ~(B.Y,i)m1 =: B, 
m1 m2 · .. = m,_ := 0 . 
"m1 y·mz.:... ... - y· mk-.1 · 
-'1· 2.- -k.-. 

independent ·.and Y =_<y1> x <y2»< ... x <yk>. 

Finally, since By. has infinite order, 
. . t ' ' • 

we. see that ~ i has also infinite ·order 
, and <y.> is an infinite cyclic group 
, I . ' ·. . • 

1,2, .... ,k). 0 

· 28.13 Theorem: Let G be a finitely generated., nontrivial (orsion~free 
abelian group, 

(1) G has a basis,.that is, there are elements gl'g2, ... ,g,. in, G\1 such that 

G =<g,> X <g2>X ...• ·X <g,.> • 

. (2) The number of elements in a basis of G is uniquely determined by G. 
tVIore precisely, if{gpg2, : •• ,gr} ~nd {hpl~, ... ,hs) are bases of G,then r = s. 

The number of elements in a basis of G is called the rank of G. 

(~) Let H be a ji~itely generated. nqntrivia[. torsion-free abelian group. 
Then G ~· H if and only if G a!zd H have the same ta!J,k. ' . . . . .. ~ 
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Proof: (1) Let G be -a nontrivic~J torsion-free abelian group and assuine 
that G = < u 1 ,u2, • , • ,u,?. We prove the claim by induction ·on n, If n = 1, 

· then G = <ut> is a nontriviai cyclic group and the claim is true (with r: = 1, 

g1 = ul). 

Suppose now n > 2 and suppose inductively:_ if G1 is a nontrivial torsion­
free abelian group generated by a set of m elements, where m <:: n ·- 1, 
then G 1 is a direct product of a -finitely marty cyclic ~ubgroups of· G. 

If u1 = 1,_ then G =<up~· .. . ,un> = <~, ... ,un> is generated by a set of n - 1 
elements and, by induction, .G has a basis. Let_ us assume therefore u1 ";;! 1. 
Then o(u1)= ro, We putB/<u;> :=T(G/<u1>). 

For any b € B, the element <u1>b of B/<u1> -has finite order, thus there is 

-a natural number n wi~h bn: € <u1>. Consequ~ntly, for any b € B, there is 

ann € N and m e: Z such that bn.= u1m. 

We define a mapping q>: B - 0 by declaring brp :::: min for. any b _€ B, 
where n e: N, m e: 'l_ are such that bn = u1 m. This mapping is well defined; _ 

for if n' e: N and m' e: Z are al~o such that bn' = u
1
m ', then ut'n-n'in = . 

(ul m)n[(ut>~'rl = bn'n(bnn)-l = 1, so m 'n- n 'm = 0 (because o(ul) = 00) and 

m/n = m'/n';' 

q> is in fact a homomorphism. To see this,_ lei b;c € B and bcp = m/n, cq> = 
m'/n' (where n,n' e: N, m,m' e: z): Then bn =·u1m ~nd en'= u1m:, so 

- (bc)nn' = (bn)n;(cn)n = ulmn'ulm'n = ulmn'+mn ' 

and (bc)q> = (mn' + m'n}/nn' =min+ m'/n' = brp + cq>. 

Thus q> is a homomorphism. 

Since Ker q> = {b e: B: brp = 0/1} :::: {b e: B: b1 = u1°} = 1; the homomorphis~ 
q> is bne-to~one and rp: B -+ Im q> is an isomorphism: B !:::! Im q>. 

Claim: if B is fi~itely generated, then B is cyclic. To prove this, . assume 
B = <bpb2, ••• ,bi! and let b1rp = m/n i (i = 1,2, ... ,t). Using Lemma 28.4(3}, 
we see that Im q> = <b 1rp,b2rp,: •• ,b1rp> = <m1/n 1,m2 /n 2 , • :. ,m,fn

1
> is a 

subgroup of the additive cyclic group <l/n1n2 •• • n,>. Hence Im q>_ is cyclic 
and B is cyclic. 

1 If B = G, then B is ·finitely generated by hypothesis, so B = G is cyclic and 
( 1) is proved. We assume therefore B -;tf. G. Then . 
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G /B = <B 1~1 ,8 112 , ••• ,B lin> = <.Bl'z• .... ,BUn'> 

(~ee Lemma 28.4(4)) is a nontrivial abelian group; generated by n - l_G.I­
ements. Moreover~, G/B = G/<u1> / B/<.Li·1>; G/<u~>/ T(G!<u 1::>) is iorsion-
free by Lemma, 28.1(2). So, by induction, .. • · 

G/8 = <Bg2> X ••• X <B.gr>· 

with suitable .g1 E G, where· Bg1 is .. distinct from B (i = 2, ... ;r). Thus o(BJ.:1) 

= oo, and this forces o(g.) ~ oo (i = 2; ... ,r). Lemma 28.12 yields . 
. . . . . I. . . . , , 

G = B X <g2> X: ... X. <gr>. ··• ·· 

We put <g1, ... ,gr> =A. Then G = B x A and B =: G /A i~ finitely generated' 
by Theorem 22.7(2),' Lem111a 28.4(4)• Hence, by the claim above; B is 

cyclic, say B ~-<gi>. S~nce I ;r. <u1>~ <!? 1:::, ·we have a(gi) ;r !,so o(gi) =. oo 

and 

I . 

This completes the pro9f of (I}. 

(2) ~nd. (3) For convenienc:e. a natural number r will be called a rank of a 

finitely generated nontrivial torsion-free abelian· group A if A has a· 

-basis of r elements,/ We .carinot say the rank of A,· for~ part (2) is ._not 

proved yet. The claim in part (2) is that ~II ranks of a finitely generated 

nontrivial. torsion-free abeliari· group (arising from different bases) are 

equal. 

Let G and H be finitely generated .nontrivial torsion-free abelian groups, 
I 

let r be a rank of G arid s be a rank of H, say G = <g I> ::< <gi> x ... ·x <gr> 
and H ::'::<hi> X <h2> X ... X <hJ>. 

If r = s, then <g.> =:.l =:<h.> fori= 1,2, ... ,r and 
I I , . 

G = <gi> X <g2~ X' ... ::< <gr> =:<hi> X <l'z> X ••• X <hr> =: H 

by Lemma 22.16. This proves (he "if" part of {3). 

Now the "only ·if" part of (3), w~ich includes {2) as a particular case 

(when G =H): we will prove that G =: H implies r = s. This i~ easy. Now 

G/G2
::: <gi>/<gi2> X <g2>/<g/> X •.•. X <gr>J<g/>::: C2 X C2_x. ;:: X C2 . 

is a finite group of order 2r by Lemma 28.8(3). Also 
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is a finite group of order2s. IfG r==H, then'G/G 2 ~ HIH 2 (Lemma 28.8(4)), 
so 2r = IG/G21.= IH!H21 = 2s. Hence r = s. . ' o 

28-.14 -Remark: Theorem 28.13 states essentially that a direct SUfTI. l r -:= 

z. IB l IB ••• IB l of r copies of l cannot be isomorphic to a direct sum 
zs := l IB l IB "·; !B l of's copies .of l unless r = s. This is not obvious: 
there are. many one-to-one mappings from l r onto l s, and there is no a 

_ priori reason why one •of these mappings should not be ·an isomorphism. 
The proof of l r := l s ==} r = s does not and cannot consisr in cancelling 
one l at a time from both sid~s of zr := zs. In general, it does not follow 
from A x 8 == A x C that 8 := C. As a matter of fact, there are abelian 
groups G such that G :=_G x G x G'but G;;! G x G! 

28.15 Theorem: Let_ G be a finitely generated abelian group. Then T(G) 
is a finite group and there is a subgroup I o[G such that G = T(G) x I. 

Proof: G/T(G) is a finitely generated abelian group (Lemma 28.4(4)), 
and is torsion-free (Lemma 28.1(2)).ThuseitherG/T(G):= t;orG/T(G)r== 
<;T(G)g1> x <T(G)g2> ·x .... x <T(G)gr> 'with suitable gl'g2,, •• ,gr e: G (Theorem 

· 28.13(1 )) and therefore G = T(G) X <g1> X <g2> X ... -X <gr> (Lemma 28.12). 
Putting· l = I in the first case arid l <g1> x <g2> X ••• X <gr> in the second 

case, we obtain G = T(G) X I. 

Then T(G y:= G/1 by Theorem 22.7(2). Since G is finitely generated, so is 
G/1 (Lem~a 28.4(4)) and T(G) is also finitely generated. From Lemma 
2!L~(2), it follows that T( G) is a finite group. o 

The subgroup I in Tlieorem 28.15 is not uniquely determined by G. 
llowever, iis rank r(/), which is the rank of G /T(G) is completely deter­
mined by G when G/T(G);;! I. Let us define the rank of the trivial group 1 
to be 0 and let us call 0 a basis of I. Then the rank .of any finitely. 
generated torsion-free·- abelian group is the numb~r of elements in a 
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' basis of that group, arid r(/) is ... completely determined by G, also in case 

. G/T(G) ~ l. 

As G =· T(G) x I, the finitely generated. abelian group'. G is determined 
uniquely to within isomorphism by T.( G) and I. Now I is determined 

i . ' ~ 

. uniquely to within isomorphism by the integer r(l) (Theorem 28.13.(3) 
a'nd, the. defi~ition r(I) = 'o); and T(G ),-·being a finite ~belian 'group 

(fheorem 28.15), is determi~ed uniquely to · withi'n isomorphism by ·its 
/ Sylow subgroups (Theorem 28.7(4)). Let s. be the number .of distinct 

prime divisors- of IT(G)I (sq s = 0 when T(G)~ 1). Each one of the_ s Sylow 
subgroups (corresp~nding to the. s distinct prime divisors) is d~termined 
uhique1y to with_in isomorpiiism .by its type (Theorem ,28.10_(3)). Thus 

the finitely generated abelia11 group G gives rise to_ the following system 
i . ' . . 7 

of nonnegative ·integers. 
~: (i) A n~nnegative. integer r,. namely· the rimk of G IT( G). Here r = 0 
means that G is a finite grotfp. If r > 0, then](G) x I;. where·/ is. a direct 

product of r cyclic grou'ps _of infinite order. The subgroup I is not, but its 
isomorphism -type is uniquely determin~d by G. . _ . 

. (ii) A nonnegati~e intdger.. s, namely the number· of distinct prime 

divisors of IT{G)I. Heres = 0 means that T(G) ~ I and G is a torsion-free 

group. 
(iii) In case s > O,,a system pl'p2 , ... ,p of prime numbers~ .namely 

. - . . . . . ~ 

the distinct p~me divisors of::IT(G)I;. imdfor each -i = 1,2, .. . ,s, a -positive 
integer ·t. and t. positive integers m.

1
,m.

2
, ... ,m. ,-so that -

I . I . ·.. I I II;. 

(ptn,pim;2, ... • /Jti••) is ·the_ type of the Sylow p(subgroup of T(G). 
' . ,t . 

With this information, G is ;a direct product of r + t1 + t2 + · · · + ts cyclTc 
· s~bgroups. r of them are )iifinite cyclic; and (in case s > 0) ti of them 

have orders equal to a prime number-pi' more specifiCally, ti of them -

. h~ve orders Ptn,pt•'2, ... ,ptii,. Furthermore," two finitely generated abel­

ian groups are isomor.phic -i_f and only if th~y give rise to the same 
system of integers. 

Exercises 
'!. 

I. ;Let G- be an abelian ·group ll:rid H -~ G. Prove that 
I . 

(a) T(H) = T(G) n H, . 
(b) T(G)!T(H) ~ HT(G)!H ~ T(GJH) . 
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and.that HT(G)/H neei:(not be equal toT(G/H). 

2. Let G be an abelian group. ·Show that 
(a) if G is finite, then G/Gn:::: G[n] for all n E N; 
(b) if G is infinite, then G!Gn:::: G[n] need not hold for any n E N\{ 1}. 

3. Let G bea finite abelian group. The exponent of G is defined to be the 
largest number in [o{a): a E G }, i.e., the largest possible· order of_the 

elements in G. Show that . 
(a) the exponent of G divides !GI; 
(b) for any g e: G, o(g) divides the exponent of G; 
(c) the exponent of G is the least- common· multiple 

the elements in G; 
{d) G is cyclic if and only if the exponent of G is I G 1 •. 

of the order of 

4. Let G be a finite abelian group and H ..;;; G. Let K ..;;; ·.G such that -H n K = 
I and H n L ;r. I for any L..;;; a· satisfying K < L. Let ge: G . 

. '{a) Assume gP ,E K. for. some prime number p. Prove that, if g ~ K, 

.then there are h e: H, k e: K . and an integer r relatively prime to p such 
that h = kg'. Conclude that g E H K. 

' (b) Prove that G = H X K if and only if, for any prime number p and 
elements g E G, h e: H, k e: K .such that gP = hk, there is an '~lement h' e: fl 

satisfying h =·(h')P. 

5. Let G be a finite abelian group of exponent. e and let g E G be of order 

· e, so that o(g) =e. Put H = .<g>. Show that G = H x K for some K <:;,.G. (Hint: 
Use Ex. 4. Consider the cases pie and p{e separately. . ' 

6 .. Let G. be a nontrivial finite abelian group. Using Ex. 5, prove· by. 

induction on I G J that there are non~trivjal elements g l'g2, ••• ,g, in G such 

that G <~: 1 > X<g2>x ... x <g,> and (in case r > l)_o(gi) divides o{gi+l) for 
I ,2, . : . ,r 1: 

7. Keep the notation of Ex. 6. Prove that the integers o{g 1), o(g2), ••• ,o(g,) 

determine the types of the .Sylow p-S"!Jbgroups of G uniquely, and con­
versely. the types of the .Sylow p-subgroups · of G compl~tely determine 

. the integers o(g 1), o(g2), •• : ,o(g,).- {The integers o{g 1), o(g2), ••• ,o(g,) are 
called the· invariant factors of G. Two finite abelian groups ·are_· thus iso­

inorphic if and only if they· have the same invariant factors.) 
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8: Find the invariant factors of the finite abelian groups C6 X C9,. 

q, x c8 x c15 x c30, c4 x c6 xc15x c20. · 
' . 

t• 
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§29 
Basi.c Definitions 

In the preceding chapter, we .have examined groups. Groups are sets 

with one binary operation on them, In this chapter, we want to .study 

sch with two binary op~rations defined .on them. The most fundamental 

algebraic structure with two binary operations is called a ring. 

29.1 Definition: Let R b<:: a nonempty set and let + and · be two binary 

operations dd'incd on· R. The ordered triple (H.+:·) is callei:l a rinR if·thc 

following conditions (ring axioms) arc satisfied. 

such that 

Ci) For all a,h E R, a + b E R. · 
( ii) For· all a,b,c E R, (a +h)+ c =a + (h +c). 

(iii) There is an clement in R, denoted by 0, such that 

a + 0 a for all a E N. 

(in For each a E R, there is an elemcll! in R, denoted by -a, 

a+(-a)=O. 

( \' 1 For all a ,IJ E R, (t + h = h + a. 

(I J For all a,h E: R, a·b E fl. 

i21 For all a.h.c E: R. (a·hi·c a·(/J·c). 

( D 1 For all a.h.c E: R. there hold 



a·(b +c) a·b + a·c -and (b + c)·a = i:J;(i + c·a .. 

The_ condition's (i) and (I) 'assert that. two binary operations + and · are . 
defined ori R. We shall refer to +as addition and to · as multiplication. 
Further, we: shall call the element a + b ·the sum of a and b, and the . 
element ab lhe product of a and.b. The conditions (i)-(v) say that R. forms 

a group with respect . to addition .. Th~ identity element 0 . of this group 
will be called the zero element, or. simply ·the zero of R. So 0 is an~ 

element of tbe set R and not neccessarily the number zero: The inverse 
clement' -a of a E R is called the opposite of a, 

The condition (2) states tha.t the multiplication on R . is associative.- The 
condition (D) relates the tvvo _binary operations +. and ·.,It is called the 

distribufivity of' multiplication ov.er addition. Here it · should- be ·noted 

that a¥+ a·c stand~ for (a·b)+(a·c) ~nd similarly b.:a + c·a for (b·a) + (c·a). 
Notice that there are two equation_s · in (D), and we must check· both of 
them when ·we want to show that a given ordered triple (R, +, ·) is a ring. 
Jn gen~ral, neither of them'jmplies the other,' and it is not -enough to 

check one of them: The~e ·.are ordered· triples (R ,+,·) for which all the 
conditions above are satisfied, except· for. one of the equations in '(D), and 

. they fail to be. a ring just for tha(reason. 
~ . - . 

For ease of notation, we ~hall· fr~quently- denote rimltiplication by juxta­
'POSition and thus. write a b. i~n place of _a •b. Also, we shall write. a - b for 

·a + (-:b). Since multiplication in a ring is associative, the products of ele-
ments in a. ring are indep~ndent-- of the _mode of inserting parentheses 
and the ~usual exponentiatiOJ~ r'ules are valid . (see §8). We shall use the 

. results of §8 without explicit mention. 

29.2 Examples: (a) Let (R ,+) be any commutative group, whose identity 

element we shall denote as 0. We define a !llulti'plication o~ R by 
declaring 

ab = 0 for all a,b e: R. 

It is easily seen that (R,+,·) is a ring. 
' i' --~ 
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( b} A more interesting ring is (l __ , +, · ); wherte + and · are the_ usual addi­

tion and multiplication of integers.· 

(c) Let 2l denote the set of even integers. Then (2l,+,·), where·+ and 

are the usual addition and multiplication of integers, is a ring. In the 

same way, if n E N and nl is the set of integers divisibile by ll, then 
(nl,+,-) is a ring. 

(d) (0.+.·). (1ft,+,-), (C,+,), (l ,+,·) are rings under the usual addition and 
n . 

multiplication. · 

(e) Let R o= {alb E _0: (a,b).= 1 and 5-t'b}. With respect to the usual 

addition and multiplication of rational numbers, (R,+,·) is a ring: 

(f) LetS:= {alb E 0: (a,b) _1 and 6th). With respect to the usual 

addition. and multiplication o.f rational numbers, -(S,+,·) is a not ring. The 

very first property (i) is not satisfied. For example 

1 1 . 1 1 5 
- E S - E S but -+- - '/.. S 
2. '3 ' '2 3 6 . 

(g) Let p be a pdmenumber and putT~ {alb E 0: (a,b) j and p-tb). 

With respect to the usual addition and multiplication ·of. rational num­
bers, (T,+,·) is a ring. 

(h) _Let N he a ring. A matrix over f? is an array (~ ~) of four elements . 

a,b,c.il of R, arranged in. t~vo rows ·and two columns and enclosed within 

parentheses. The set of all matrices over f? will be denoted by Mat 2(R). If 

A JJ E Mat 2(N ), we say A is equal to B provided the correspording entries 

' in A and B are equal and write A = B in 'this case. This is clearly an. equi­

valence relation on Mat
2
(R). 

(a b (e f) Let A c d), n = g h E Mat 2(R). The sum A + B of A and B is defined 

h h · (a+e b+f) h d AB f to ~- t e matnx c+g d+h and t e pro uct · o A and B is defined to 

( ae_+bg af+bh) 
be the matrix ce+dg cf+dh · 
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The proof of Theorem 17A remains valid and shows that M tlti_(R) is a 
commutative group under addition. The proof. of Theorem 17 .6(1 ),(2),( 4) 

_is also. valid and establishes the ring axioms (1),(2),(D)., So (Mat
2
(R),+,·) is 

a rmg.· 

(i) Let K be the set of all real-valued functions defined on the closed 
interval [0,1]. We define operations + and · on K by· -

(f+ g)(x) = f(x) + g(x), (f·g)(x) = f(x)g(x) for alfx e: [0,1] 

(f,g E K). So f + g is .that function _that -maps any X E [0,1] to _the sum of 
the values f(x) and g(x) of the function~/ and g at,x; and f·g is that 
function that maps any x e: [0~1] to the product of the values f(x) and , 
g(x). In ''f+ g", the sign "+" stands for the binary' operation + we,jus(· 
defined, and in "f(x) + g(x)"_. the sign "+". stands for the 'usual addition of 
real :numbers. It is .easily verified that (K,+,·) is a ring. The sum f t g .and 
the product f·g are said to be· defined pointwise. The operations' + and · 
are called poi~tlYise addition a~d pointwise multiplic~tion. 

(j) , Let S be any set and let (R, +, ·) be any ring. Let L denote the set of all 
functions from S into R. For f,g E L, we put 

. ' . 

(f + g)(s). = f(s) + g(s), (f·g)(s) = j(s)g(s) for all s E S. 

Ori ·the right, we have the sum· (produc-t) of elements f(s),g(s)in R. on the 
left; we have the operations on L. The .operatio~s + and · on L .are called 
pointwise addition and pointwise mU;ltiplication. With these_ operations, 
(L,+,-) is a'ring. 

./ 

Let us find the zero elements of the rings in Example 29.2. This is. the 
identity element of the comnmtatiye group R in Example 29.2(a); the. 
number zero in the Examples 29.2(b),(c),(d),(e),(f),(g) :~x~.epi .in 'the case 
ln of Example 2~:2(d); where 1he zero element is the residue class D E ln 

of o. E l;-- the so-called zero m1itrix (g gy E _Mat 2(R), where 0 is the z~ro 

element of R in Example 29:2(h). In the ring of Example 29.2(i), the zero 
element is the ft:nction l;: {0,1] --+ ~ for which l;(x) = 0 for all x E [0)]; and 
in the ring of Example 29.2(j), the zero element is the function u: s·- R 

for which u(s) = 0 for all s e: S. 
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We make a· convention. As in the case of groups, if (R;+,-)-is a ring, and if ' 
. it is clear from what the binary operations + and · are, we shall call the . ., . . . . -

set R a ring. Hence we shall speak of the ring Z instead of using the. mor~ 
correct but more cumbersome expression "the ring (Z ,+,·)", etc. 

The. addition in a ring has all the desirable properties one cpuld wish_ for: 
it is associative, there is an identity element, all elements possess 
inverses, and .it is also commutative.' As for multiplication, only one. of 
these properties, namely the associativity, is assumed to be satisfied. It 

'1.-- . . • . 

may happen, of course, that muhiJ>lication in a ring has some· of these . 
properties. Then we make the following definitions. 

29.3 Definition: A ring R is called a commutative ring if ab = ba. for all 
a,b € R.· 

29.4 Definition: A ring B is called a ring with identity if there is an 
element e in R such that ae = ea'= a for all a E.R • . 

Thus a·· ring is a commutative ring if the multiplication. o~ it is cpmmuta­
tive. This is a natural definition: sinc:e addition is commutative in any 
ring, ·commutativity can refer only to multiplication. Z, 0, R, C, 2Z mid 
Zn are examples of commutati':e rings. Mat2(Z) is not a commutative 
rin~ because; for instance, .. 

( 1 o) (o o) .(o o)· (o o) (o o) (l o) .. 
11 . 1 1 .= 1,1 ~ 2 1 = 1 1 . 11 . 

Likewise, a ring with identity· is a ring w!th a multiplicative identity. The 
additive identity exists in any. ring anyway. Notice that e in Definition 

_- 29.4 must be both a right identity and a left iden~ity. Since. multiplica­
tion in a ring is not necessarily commutative, we cannot conclude, say,. 
from 

.ae = a for all a € R 
. that the other condition 

ea =a for air a € R 
-

also holds. In the case of grpups, we proved that a right identity is also a 
left identity, but in the proof we made use of the existence of- inverse 
elements. We cannot use the same argument in the case of rings, for we 
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do . not know ·anything about" the existence of inverse elements. They 
. may or may not exist for all a e· R. It is possible that a ri11g R has an 

element I such that 
· af'=a for all a .. E R 

- but lb >r! b for some b E R. 
In short, R may have a multiplicative right identity \vhich is not a left 
identity. If each right identity ·in a ring fails to be a left identity, thim · 
the ring is not a ring with identity. 

These remarks make sense .. only for noncommutative rings_. Of. course, in 
a commutative ring, any· right (left} identity is also a ·left (right) ide(ltity. 

A ring may be, commutative without having an identity: 2Z is an 
example. A ring may have an identity without being commutative: 

Mat
2
(l) is an, example. An :identity of thi-s rio~ is the. matrix (~ ~).-More 

generally, if R is a ring with an identity e, then Mat2(R) is a ring with an 

identity (~ ~)- The proof o! Th~ore_~ 17.6q) works here without change .. 

29.5 Lemma: {et R be a- l-ing with iden{ity. Then its multiplicative 
identity is unique (i.e., there is one and only one _elen~ent e such- that. ea 
= ae = afor all a E R). 

Proof: If I! and f are identity elements of R, then e = ef since 1 is a right 

'tidentity a~d el =f since e is' a left identit~, so'e = ef =f. 0 

In view of this lemma, we can speak of the identity. We snail follow the 
convention of writing I for the multiplicat~ve. identity of a ring· with 
identity.. 1 is therefore an element of the ring under 'study, and not 
necessarily the. number one .. For instance, in. the ring M a t 2( l ), ., the 

element 1 is the matrix (~ ~): the· identity matrix. The ring K of Example 

29 .2(i) is a ring with identity,. and one checks easily that 1 here_ is. the 
function h: (0,1] .... !R such that h(x) . 1 (real number one) for all i E. [0,1). 

What about th~ eXistence of multiplicati-ve inverses? Of course the ring 
mu·st be a ring with identity i.f we are to .speak· about multiplicative 
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inverses. ·We will see presently ~hat the additive identity 0 of a rif)g 
cannot have a multiplicative inverse unless the 'ring is idiosyncratic. 

29.6 Lemma: Let R be a ring and 0 its 7ero element. 
(1) aD;;: Oforall a E R. 
(2) Oa "'Ofor all a E R: 

(3) a( -b)= -:(ab) for all a,b E R. 
(4) (-a)b = -(ab) foraUa,b E R; 

(5) (~a)b;;; a(..:.b)for alla,b E R. 
(6) (-a)(-b) ~ ab for aU a.b E R. 

. . .. . ' ' 

Proof: (I) Since 0 is the additive' identity of R, we have 0 + 0 ::::: 0 . .Thus 
a(O + 0) =aD for all a E R, 
aD + aD = aD for all a E R. . . 

· By Lemma 7.J(l), aD must be the identity .~i the group (R, +). Thus aD= 0. 

(2) This is proved by the same agumerit, using Oa '+ Oa (0 :t 0 )a ;; Oa. 

(3) For any ii,b .E R, we have . 
0.= aD::;: a(b +(-b))"' ab +a(-b). 

So a(-b) is the additive inverse of ab~ The additive inverse of ab is -_(ab) 
. by definition·. Hence a('-b) -(ab ). 

(4) For any a,b E R_, we have 
0 =Db"' (a + (..:a))b "'ab + (-a)li. 

So (-a)b is the additive inverse of ab. The additive inverse of ab is -(ab) . 
Hence (-a)b = -(ab). 

(5) This follows from (3) and (4) . 

. (6) This follows from (5) on writing -b forb and observing ..:(-b).= b.·· o 

29.i Lemma: Let R be a ring .with identity I. If the zero element 0 of R 

has an inverse (i.e., if there is an element t E R such that Ot =tO = 1), 

then · R has only one element. 

Pr.oof: If r € R, then r = rl = r(Ot) = (rO)t:;: Ot:;: 0, so R i=. {0}, so R = (O}: o 
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. The set {0} can be made into a ring· if we :define + arid · in the_ only 
possible way: 0 + Q = 0 and 0·0 · = 0. This is a commutative ring with 

-identity; the multiplicative identity being the additiv~ identity 0. ' This 
ring· is called· the_ null ring. 

29.8 Lemma: Let R be a ring with. identity _I. If R is f'!OI the null ring, 
then 1 iZ! 0. 

Proof: If R is not the null ring, then there is an r € ·R, r iZ! 0. Then the 
' assumption 1 = 0 leads to the ~on~adiction r = rl = rO = p. So 1 ;>:! 0. o 

Lemma 29.7 ·states that ,0 in a 'ring cannot •possess a multiplicative 
inverse unless the riqg is the null ring. We now want to show that 
divisors of 0 cannot possess a multiplicative inverses, either. 

29.9 Definition: Lei R _be a ring. If a iZ! 0, b -¢ 0 are. elements of R such 
.that ab =. o, then a is called a left zero divisor· and b is called a right zero 

·. divisor • . 

. . 

It may very well happen _that a iZ! 0, b iZ! 0, but ab = 0 in a ring._ For 
example, in the ring Mat 2(0) of matrices over 0, . 

. (g ~) iZ! 0 ~.(g g) and(~ g) iZ! 0, but (g ~) ~ g)_= (g g);= 0; 

As a second· example, consider the .... ring · K of re~l-valued functions on [0,1] 
with 'respect to pointwise addition 'and multiplication (Example_ f9.2(i)). 
The zero element in this ring is the function. t. where l;(x) = 0 € R./or all 
x ·£ 10,1]. The "functions a and b~ where . 

·. { 0 if, 0 < x < 1/2 I 1 if 0 <:; x< l/2 
a(x), = 1 if 112 < x <;; 1 • b(x) = lo i.f l/2 < x < 1 
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are thus distinct from l;, but their pointwise product is l;, as a(x)b(x) = 0 
for all x € [0,1]. 

In a commutative ring, there is no distinction between right and left 
zero divisors. But in a non commutative ring, an element a ~ 0 may be a 
:ri~~~ _ z~~o divisor·· without being a left zero divisor, and vice versa. 

29.10 Lemma: Let R ·be a ring with identity. If a is a left zero divisor, 
. then a does not have a multiplicatiye left inverse: If a is a right zero 
divisor, then a does not have a multiplicative right inverse: 

Proof: -Let 1 be the· identity of R. If a is left zero divisor, then a ~ 0 and 
there is a b ~ 0 in R ·such· that ab = 0. Now if a had a left inverse x, so 
that xa = 1, we would_ obtain-b = 1b-= (xa)b = x(ab) = xO = 0, a contra­
diction. So a has no left inverse. The second statement is . proved analog­
ously. o 

We know that the zero element in a ring distinct from- the mill ring 
cannot have an inverse and we understand from Lemma 29.10 that 
being a zero divisor is the very opposite of having an inverse. So if we 
want a ring to . have the property that ~very nonzero element in it has a 
multiplicative inverse, the ring has to. be free from zero divisors. 

29.11 Definition: A commutative ring with identity, which is distinct 
from the null ring, and which has no zero divisors, is called an integral 
domain: 

· 29.12 Definition: ·A ring . with identity, which is distinct from the null 
I 

_ring, and in which every nonzero element has .a ri_gbt inv.erse, is .called a 

. ...tJ.Wision -ring. 

An integral domain is therefore a ring in which we may expect that 
nonzero ~lements have inverses, but nothing is said about the actual ex­
istence of inverses. The· necessary condition that zero divisors be absent 
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is satisfied in an· integral domain; plus commutativity .. Whether the 
'nonzero elements do in f~ct have inverses is not relevant in the defini-

. tion of integral domains. .. 

In l! division ring, every. nonzero element does have a right inverse; 
more precisely·, a righ:t i'nverse .. But this mea.ns that the nonzero ele­

ments in a division ring form a group under multiplication. We know 
that, in any group, right inverses are also left inverses and that they are 

i unique (Lemma 7 .3). Hence, in a division· ring, every nonzero element 
has· a left inverse as well, and the right and left. inve~;se of. an arbitrary 

·element coincide. This will: be called the inv~rse of that element. . 

Z is an integral domain. In fact, Z is the · pr?totype of all integral 
'domains. 2Z is not an· integral domairi, because -2Z is not a ring with , 

identity, although 2Z is commutative an4 has no zero diYisors~ An 

,example of division rings i~ given in Ex: 9 .. 
,· 

;A rjng which is both an integral· ~omain and a division ring deserves a 
:name. 

/ 

29.13 Definition: A commutative ring with' identity, which is distinct 
from the null. ring, and in • which every nonzero element has a multiplica­
tl.ve· .inverse, is called afield. 

Thus a field is a commutative division ring: Also, a field is an integral 

domain in which every nonzero element does haY;e an inverse. I\ field is 
a .ring in which the nonz~ro elements -,form a commutative group under . 

muJ.tiplication. 

l is not a field, sine~ 2 E Z, for instance, does not have an inverse in l 
(there is no z E l such that;:2z :::;; 1). Thus l is a:n integral domain which is 
pot ~- field. The rings IQl, IR,. C, and z· (where p is a prime number) are 
. I. p . 
example of fields, so Defi,nition 17.1 is consistent wit~ Definition 29.13. 

·There are fields with-_ finitely many elements as well as with infinitely 

~any elements. 
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·29.14·. Definition: Let R be a ring with identity. AJI element a e: R of R is 
sait to be a unit of R if a has both a right. inverse and· a left inverse in R . . 
The set of all units. in R will be. <fenoted. by R". 

For example, the units of Z ar~ I and :.. I; so z• = {I ,-1 J. The units in Zn are 
the residue classes a for whi~h there is a 'o €: z such. thitt ii 5 ;, 1' and· . n 

this holds if and only if (a,n) = L Hence Z= = (a E ln: (£l,n):::; l).as in §II. 
We know . that = {1 ,-1} and l = are groups und~r multiplication 
(Theorem I2.4). This are a special cases of the following theorem. 

29.15 Theorem:: Let R be a ring with identity. Then R~ is a group under 
multiplication.· 

Proof: We denote the identity of R by I. Since 1·1 = 1, we have I E R" and 
, so R" _;r. 0. We now ~how that any unit· of R ha·s. a unique· right inverse, 
which is also the unique left inverse of that. unit. Let a E R", let i be any 

_ right inverse. of a and let y be any left invers~ of a. Then ax == 1 = ya and 
y= yl = y(ax)::;; (y.ti)x Ix x. 

, Thus any right. inverse of a is equal to Jl- Hence there is .only one right 
inverse 'of a, namely x. Then a_ny_ left inv,erse of.a is also equal to x. 
Hence there 'is a unique left inverse. of .a, ~a.mely th.e unique · rig~t 
invers.e x of a. 

We check the group axioms . 

.. (i) If a ,b E R\ then there are uniquely det~rmined elements 
_x, z in R with ax z= I =xa and bz = I := zb·. f'rom 

(ab)(zx) a(hz)x = aix "=ax= I,· (zx)(ab) = z(xa)h = z1b = zb.= I, · 
we see that zx is both a· right inverse and a left· inverse of a h. Hence 
ab E R' and R' is closed under ~ultiplication. 

• •• • •• • - - > c 

(ii) The multiplication on · R' is associative since ~ is a. ririg. 

, . (iii) Since a I= a. = lq. for all a .€ R, and since I· c{C, we see that 
is the identity clement of R". 
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,Civ) If a E R', t~en there is an X .E R· with ax= I = xa. This X is 

in fact an element of R": it follows Jrom ax = I = xa that--a is a left and· 

right inverse of X, so X E R~. So any a E .w has an inverse in R". 

Thus R" is a group under multiplication. -0 

The reader will check easil)' that, if R is a ring with identity, disti.nct 
frqm the .null ring, then R is a division ring if and only if R • = R\( 0} . 

Likewise, if K is a commutative ring with identity, distinct frorri the null 

. rin'g, then K is a field if and on:ly if K" = K\( 0}. 

Frbm now on we will wfite ()}", W, IC" for the multipliCativ~ groups 1[)1\( 0}, 

~\(OJ, ·{:\(0} of nonzero rational, real, .complex numbers, respectively. 

w9 ~onchide this paragraph -with the binomial 'theorem. 

29:16 Theorem (Binomial Theorem)_ : Let R be a ring and a,b E R. If 

ab ~~a. then (a + b)11 .= ·I (Z \.n-kbk. 
· · k=O J 

Pr:oof: First. we remark that a11b0 and a0 b 11 are to be interpreted as a 11
• 

and b 11 respectively, even if .R has .no ide~tity: As usual; (Z) = k!(;:~k)! 
· · · · · · (n) ( n ) ('n+l) · · 
and 0! = 1. We use the fonnula _k + k.:.l = k for 1 < :k < n- I. 

We mal<:e induction on n .. The formula (a+b) 1 =(~p 1 ~ 0 +G)z0b 1 .is 
clearly true. We suppose thaJ the ,formula is proved when the exponent 

of a+ b·is n. Then 
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(n+l.)~ n+lbO " ~(n+l) n+l-kbk (n+1)~ Obn:.~t 
0 a ~ + L . -k ~ a + n+1 a 

. ' ~. k= I - ' . ~ 

n+ I (n+l) 1-k k = L k a"+~ b 
k=O. ~ ~ . . 

an.d · the formula is true when· the exponent of a + b is. n + 1. This com­

pletes the proof. · o 

Exercises 

I. L!!! X = [a + lrJl :: a ,h E l} and Y =~ {a+ .b~2: a,b E l} ~ Determine 

whether X and· Y arc rings under the usual add ilion and multiplication of 

real numbers. 

2. Let (R,+,·) be a ring. On the group (R,+·), we define an .operation ~.by 

declaring .a" b . .ba for all a,b E R .. Show that (R,+,Q) is a ring (c~illcd the 

rJppo.~ite rlng of (R,+,-)). 

. . 
J: On. the group l EB l, we define a· multiplication by 

(a,b)-(c,d) (ac,b) 

for all (a,h), k.clJ E Z EB l; Docs l EB ·z become a ring with this multipli­

cmion? 
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4. Show that the set A (alb .€ 0: (a.~)= 1, n{b} i_s not a ring (under the 
usual addition and multiplic:a~ion of rational numbers) if ·n is a composite 
number. 

5. :Prove that Zn has iero divisors if n is composite, and thai Zn is a field 

. if n is prime, 

. . . 
6. On the group R = Z m Z, \Ve define a multiplication by 

(a,bHc,d) = (ac;ad) 
for all (a,b), (c,d) e: Z ·m Z. Prove that, with this multiplication,, R becomes 
a ring. Show that (1,0). is a left identity in R, but not a right identity; and 
that (1 ,0) is a right zero divisor, but not a left zero. divisor.· Is· R a ring 
with identity? 

· 7 .. Let R be a ring without identity, and let S R ED Z • On ·the 
commutative group S, w~ -define a multiplication by· 

(r,a)·(r',b) = (rr' + ar' + br,ab) 

for all (r,a), (r',b) .€ S. Prove that S is a ring with identity. 

8~ On the group R = Zn EB we define .. a mul~iplication by 

(ii,1i){c,a) = (· ac- b 71 • aa + b c ) 

for all (a,1i),(c;a) e: R. Show .that R is a commutative ring with identity. 
Prove that R is a field when n = 3,7 ,11 and that R .is not an integral 
d01pain if n = 5,13,17. 

9.Let~= {{~ -:;):a,b'e C} . .;:;; Mat 2(C). Prove that, under the usual 

matrix addition and multiplication, H is a division ring (cf. §17, Ex. 14). 
. ·. 

10.: Let R1 ,R2; • :. ,Rn be rings. Prove that the . group R i ~ R 2 EB • • • EB R n 

becomes a 'ring if multiplication is defined by 
I . 

(r1,r2, ••• ,rn)(sps2, .:.;sn) = (r1 s~;r2s2, ••• ,rnsn) 

for'all (rl'r2, , .. !rn),(sl's2, ••• ,sn) € R1 EB R2 EB ••• EB Rn. Moreover, prove that 
R1 ~ R2 EB •• , m Rn is a commutative ring if and only if each Rk is; imd 
tha~ R1 EB R2 EB ••• IDRn is a ring with identity i~and only if each Rk ·is. 
Th~ ring R1 m R2 EB • :. m Rn is 'called the direct sum of R1 ~~ ••• ,Rn' 
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§30 
· .Subrings; Ideals and Homomorphisms 

As in the case of groups, we· give a name to subsets of a ring which are 

tfiemselves 'rings. 

30.1 Definition: Let R be a ring. A nonempty subset S of R is called a 

subring of R if S ii~elf is a ring with respect to the operations on R. . 

Thus a nonempty subset S of a. ring R is a subring .of R if and onJy if S 

satisfies all die ring axioms in Definition 29J. As in the case of groups, 

we can dispense with some of them .. 

Let (/~ ,+,·) be a ring and 0 ;%! S s R, If S is a subring of R, :.then (S,+) is a 

commutative . group, thus (S,+). is a subgro.~p of (R ,+);. and (S ,+) is a 

. 'iubgrou~ of (R .+) if .and only if . 

(i) a +h E. S . for all a,b E S, 

(ii) -a E S for all'a ·10 S, 

as we, know from Lemma 9.2. Let us now consider multiplication. If 

CS,+,·) is to be. a ring, the the restriction of the· operation ~ to S musi b~ a 

binary operi1tion on S: and this holds. if and only if 

( l)a·h E S for all a f:: S. · 

So, if a nonempty subset S of a ring R is a subring of R, then (i),(ii),(l) 

hold. Conversely, if S is a noncmptysubset·of.anng N and (i),(ii),(i) hold, . 

. then (.'i,+) is a subgroup of (R,+), so (S,+) is' a a commutative group, and·· 

• is a binary operation on S, ·and the associativity of multiplication and the' 

disributivity of multipli~ation over addition holds in S since they hold in 

.fact inN. Thus (S,+,·) is a subring of (R,+,·). We_proved the-foilowing_ 

lemma. 

30.2 Lemm.a.ISubring cr~tl:rimi):· Let CR.+;·) be a ring (;ndlet S bi! a 

nnimnpty suhset 11/ N. Then (S,+,·) is a su/Jring of R if and only if 
.,(i) a + !J t S for all a,h E S, 
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(ii) -a e: S 
(ill) a·b e: S 

for all a e: S, 
for all a,b e: S. 

30:2 · Examples: (a) (0} andR are' subrings of any ring R .. 

0 

(b) If R is a ring and Si is an arbitrary collection of subrings Of R, then it 
follows . immediately from Lemma 30.2 that fJ 

1 
Si is a subring of R. 

. . 

(c) If R is a ring· and X is a subset of R, the int~rsection of all subrings of 
R that contain X .is a subring of R · by Example 30.2'(~.-rit is called the 
subring generated by x; I ~ 

' Some properties of multiplication are inherited by subrings, 

3Q.3 Lemma: (I) A subri~g of a commutative ,ring is a commutative 
ring. 
(2) A subring of a noncommutative ring can be commutative. 
(3) A. subring of a ring with )dentity can be a ring without identity. 
(4} A subring of a ring withdut.identity can be·a.ring with identity. 
(5) A subring of a ring wi'thout zero divisor~ is: a · ri.ng without zero 
divisors: 
·(6} A subring of a ring with. zero oivisors can be a ring without zero 
'di~isors. 
(7) A. subring of a division ring is not necessarily a divisi~n ring. 
(8) A subrlng of a field is not necessariiy a .field. . · . 
(9). A subring; distinct from: (0}: of an -integral domain is an integral 

~ ,, , 

'domain if and only if it contains the identity. 
' ; <"' 

Pr(lof: Let R be a ring and S ~ subring of R. · . 

(1) If R is commutative, then ab = ba for all a,b e: .R and; a fortiori, a_b = 
ba ·for all a,b E S. Hence S is commutative. ' 

(2) Assume R is not commutative. Then there are a,b E R with ab--,:= ba. 

The point is that all such pairs ·a,b may be outside S, and that st :::: ts may 
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hold for all s,t E S. For e~ample, R ~ Matii!Jifis not commutative, but S = 

· {~ ~) : a,b E o} ,is a subring of R and s .. is commutative. 

: (3) The point is ·that the identity I. of R need not belong to S. For example, 

l. is a ring with identity, 2l. is a subri~·g of l. and 2l. has no i'dentity. 

(4) The point is that there may be an e inS such that es = se = s for ·all s 

inS, but er = re.= r need not be true for all r E R,_i.e.; ero ~ ro or roe~ ro 
for a particular r

0
.in R: -As an example, consider R = l. x l., on, which· 

addition and multiplication are. defined by declaring 

(a,b) +-(c,d) =(a+ c,b +d) 

(a,b)(~,d) ; (ac,ad) 

for all (a,b) E R and which is easily verified to be a ring with'respect to 

these operations. If (a ,b) E R is a left identity _element of R so that 

(a,b)(x,y) = (x,y) for all (x,y) E R, then (ax;ay) = (x,y) for all (x!y) E R, thus 

a·= 1. But (l,b) is not a right identity element of R, because {x,y)(I;b) =. 

(x,xb) ~ (x,y) for any (x,y) E R with Y-~ xb. Thus R- is a ring without an 

identity. However, S =.((a,O): a E .z) ·is a subring of R wi_!h ·an identity 

(1,0) E. S, as (l,O)(a,O) = (a,D)·= (a,0)(1,0) for any (a,O) E S. 

(5) Jf R has. no zero divisors, then 

for all a,b E R, a ~ 0 ~ b = ab ~ 0. 
But ·this holds for all a,b .E S, too.· Hence S ·has _no zero divisors. 

(6) If R h'as no: zero divisors, it may happen that ~J.II zer<? divisors fall· 

outside S, and. in this case S has rw zero divisors. For instance, The ring. R 

= Mai 2(1!Ji) has zero divisors, but its subset S = { (~ ~) :a E I[Ji} is a sub-

· a 0 · 
ring· of R w'ith no ·zero divisors. For if s ,I E S and "st = 0, 'then s = ( 0 0 ) 

· . (b o) · .. .. . · . (a o)(b o). (o o) 
and 1 = 0 0 for some. a ,b E ([)), and sl = 0 means . 0 0 0 0 . = 0 0 , 

which is possible 'only if a = 0 orb = 0 (in 0), that fs, only if s = 0 or i ,;,· 0 
(in_S). 

(7) and· (X) Consid~r the division ring ([)), which ts a field as well. Its 

suhring l. is neither a division ring nor a field. 
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(9) A subring. S ~ {0) of an integral domain R is commutative by (1) and 
has no zero divisors by (5), Hence S is an integral dgmai11 if and only if S . 
has an identity. We claim S has an identity if and only if the identity of 
R belongs to S. Indeed, if S contains the identi'ty· element IR ofR, then of 
course 1 R is .im identity element of S .· Conversely, if S has an identity 

• element ·i; then vee =·e =·lRe-;~o-vee- IRe•. so (e- IR)e = 0 and, since e' ~ 0 
(for S ~ {0) by assumption) and R has no zero divisors, e·- lR = 0 and 
hence e must be ·equal to IR" D 

.. 

The claim in the proof of Lemma 30.3(9) is not self-evident; If R is a ring 
with identity and S is a subring of R, then it is possible that S is a ring 
with identity and the identity of S is distinct from the iden~ity of R. Can 
you give some examples? 

Just as in the case of groups, we want to define factor rings by subrings. 
We take our factor group construction-/as a model. For a group G and a· 

· subgroup H of G, the factor group G/H is the set ofall right cosets ofH in 
G, on which the multiplication is defined ·by the rule Ha·Hb = Hab. In 
order that this multiplication . be _w_ell defined, it is necessary and 
sufficient that H be normal in G (Theorem 18.4) .. 

Now let R be a ring and S a subringof R. Then R is an abelian group with 
respect to . addition and S is a subgroup of R. Using our results in. group 
theory; we build the factor group RIS~. This is possible because S is a 
normal subgroup of R (any subgroup of an abelian group is normill in 

' I 

that group). The elements of R/S are the (right or left) cosets r +-S, 

where. r ranges over R. Of course we must Write the cosets as r + S or as 
S + .r, not as rS or as Sr; for the group R is an. apditive group. We now 
wish to define a multiplication on RIS and make R/S into. a ring. 

The most natural way to define a multiplication on R/S is to put 
(r + S)(u + S) = ru + S for all r,u € R. 

Let us see if this multiplication is well defined. Once we show that this 
multiplication is well defined, it is routine to prove that RIS becomes a 
ring with this multiplication. This multiplication is well defined if and 
only if the implication 

r1 +S = r2 + S, t1 + S = t2_+ S => r1t1 + S = r2 t2 + S. ~for allr1,r2,tl't2 ,£ R) 

holds, am~ it holds if and only if · 
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' -

ri = r2 + si, t1 = t2 + Sz• si ,s2 e: S. ~ - riit :- r2t2 e: S (for all r1 ,r2,t1 ,t2 e: R); 

i.e., if and only if 

sl's2 e: S ~ (r2 + s1)(t2 +s2)- r2t2 e: S . (for all r2,t2 e: R), 

i.e., if and only if 

Sl'Sz e: ~. _. =:*- : ~2s2 ± ~1 t2 + s1sie: S (for all r2,t2 e: R), 

that is, since s1s2 e: S when sl's2 e: S, ifand only if 

sl's2 -e: ·s · ~ rs2 _ + s/ e: S (for all r;t e: R) 

is true. We dropped the subscripts of r2 and tz-

Assume (•)'holds: Then, ·choosing t::: O,we see rs2 e: S whenever r ·e: R, 
. s2.- e: S; and choosing r = 0, we see sit e: S whenever s1 e: S, t e: R. 
·co~versely, if rs2 e: S and site: S whenever re: R, s2 e: S and si e: S, t e: R, 

· the!'!- rs2 + sit e: S for all r ,I e: R, s2,s1 e: S, since S is a sub~roup of R . with 

respect to ·addition. Thus (•) is ~quivalent .to, and the multiplication on 
'RIS is well defined if and only if: 

for all s.e: S, r e:·R, there.holci rs e: Sand sr e: S. 

· Subrings · with this property have a name. 

(u) 

30A Definition: A nonernpty subset S of a ringR js called an ideal of R 

· if the following two conditions are satisfied. 
(i) S is a subgroup of R mider addition. 
(il) Fo~ all s e: S, r e: R, we haye rs e: S and sr e: ·s. 

. . . . 
Aceording to this 'definition, an i,deal of a ring R is a subiing of R, since it 

. is closed under multiplication by (ii).' The condition (ii) tells more than 
simply that the product of an element in S by an element. in S is in_S, It 
teJls thaf the product of any element in R. by any element in S, as well as 
the product of any _element in · S by an element in R, are both in S. Thus S 

"swal~ows~ or "absorbs" products by elements :_in R. · 

_The £Q.Dd.itiDn ..(Ji} . .CO.UsistS· -o{-,.i~"'"""1l\'il1ronrlitrorrs: 1"'S 'E' 'S and 'sr € S, In a 
commutative . ring, these subconditions are identical. But when R is not 
commutative, neither of them implies the other in general, and one of 
therq is not enough ~o make S an ideal: both of them o'ught to hold. · 

Definition 30.4 and the discussion preceding it give us the following 
theorem (cf. Theorem, 18.4) .. 
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·30:5 Theorem: Let R be a ring 'and S a subgroup of R under, addition. 

Tlz~ multip.lication on the set 
1

RIS of right (and left) cosets ·of S, giv~n by 

(r+ S)(u + S) = ru + S. for all r,u ER 
is well defined if and only 'if s' is an ideal of R. 0 

.. 
After gtvmg some examples of ideals, we will prove that the multiplica:.. 
tion on RIS makes RIS into a :nng .. 

30.6 'Examples: (a) In any ring R, the set (0} is an ideal (Lemma 

29.6(1) and (2)). The set R i~self is also an ideal of R since R is closed 

under ,multiplication. 
.,:i 

\ .. (b), In· th~ rlng Z of integers,:,'2z . .is a subring and in fact an ideal of Z, / 
since the product of an even ·~nteger by a~ arbitrary in~eger is always an 
yven integer. In the same way,:: the set nl. is an ideal of Z (n E N). 

! '; 

(c) :Let K be the ring of re"al-~alued functions on [0,1] (Example 29.2(i)). 
Its :subset (/E K:f(112) ::=: 0} l~jan ideal of K. Similarly, when Y_is a subset 
of [0,1], the subset. (f E K:/(y) i;= 0 for ally E Y} is ail ideal of K. 

(d) :Let T = (a/b e: ((]): (a,b) = I( p{b} be the ring in Exam.ple 29.2(g). Then 
its !subsets . ' . . 

1
A =(alb E {)>.: (a,b) = 1,p{b,pla} ·and (alb .E ((]): (a,b) = l,p{b,p 21a} 

. ' 

are id~als of T. 

' 1 1 
(e) Z is not an ideal of((]), since for example, 1 E Z, 'IE Q, but2·1 e: Z. 

' ! 

{ ;(a 0) · } (f) Cons~dcr the subset S = · . b 0 : a ,b E ((]) 

subring of Mat 2(0). Also, one.sees easily that rs e: S for all r E Mat 2(0), 

s e: S. ·Nevertheless, S is. not, a·n ideal of.M at il[)i ), since it is not· true t!1at 

\. __ 
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· . ·. ' I 0 1 I . · 
sr E S for a! I r E MatiO); s E S: for example{) 0) E S, ( 11 ) E M at2(0), 

( 
1 0 1 1 

but I 0)( I I) 
. , 

Now let s l = { (~ g): c E G) } a~d s2 = { (~ ~): a :b € 0 } . It is easy to see 

that S 1 and S2 are subrings of Mat 2(0_) and of course S 1 !;;; S2• Here S 1 is 

· .. · · (aO)(cO) (cO)(ao)· (acO) .an .tdeal of: S2 , because. 0 b 00 0 0 0 b = 0 0 € S 1 for any 

(~ ~) € S 2 'and ( ~ g). E S 1• On .the other hand, S 1 is not an ideal of·· 

. · ·. '· .· I 0 . . . · 1 I · : 
Mat2(q:jl), because, for example,. ( 0 0) E S1, ( 0 0 ) e:. Mat2(0) and yet 

1 1 ,. . . . .. 
( 0. 0 ) I! S 1• Thus S 1 is' an ideal of S 2 but not an ideal· of 

Mat 2(Q). Tpis shows'. that "idealness" is not an intrinsic· property of a 

subring. A subring is not merely an ideal, but an ideal of a ring that has 
to be clearly specified. Compare this· with Example 18.5(i). 

(g) Intersection of ideals in a. ring is an ideal. More precisely, if R is a· 
ring and S 1 are ideals of R (i € /), then S :=[J~ S1 is an ide~! of R: we . . . 

know· that S· is an additive subgroup of R .(Example 9.4(f)) and;whenever 
r € R,s € S, we haves € Si for all i € J; hence rs € S

1 
and'·sr e:' S

1 
for all 

i € /, hence rs E S and sr € S, and Sis therefore an ideal of R. · . . - ' ' ' ' ~ 

(h) Let R be a ring and X a subset of R. There are ideals of R which 
contain X, for example R itself. The intersection of all ,ideals that contain 
X is an ideal of R by Example 30.6{g); This ideal is crtlled the ideal 

. generated by X. Compare this with Definition 24.i, Wh~n X consists of a 
single. element only, say when X = (a}, the ideal generated by X is said to 
be a principal ideal, more exactly the principal. ideal generated by a. It Js 

, easy to verify tlia~ the principal ideal generated by a is · 
. . II . 

.[za + ua +at+ :L rias1 : z e: 
. 1=1 

u,t,r.,s. € R, n € N} 
. . I I . 

(cf. Lemma 24.2). If R has an identity, this ideal can be wri.tten 'more 
. simply as 
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·. 11 

{"" r .as.: r.,s. € R,.n € N }. LJ I· I I I · 
i= l . 

. ' 

If R is commutative, the principal ideal generated by a is 

{za:+ ra': z € l, r€ R}. 

If R is .a commutative ·ring v.•_ith identity, in particular, if R 1s an integral 

domain, 
(ra :r€ R} = (ar: rt.R} · 

is the principal ideal generated by ,a. This is usually written as R a, or as 

aR, or as (a). 

30.7 Theorem; Let R be a ring and A. an ideal of R. On the .~et RIA of 
. . 

.right cosets of A in R, we defhw .two, operations+ ·and · by 

(r +A)+ (s +A)= (r + s) +A; (r + _A)·(s +A);;: rs +A 
for all r,s € R. With respect·.to these aperations, R til is a ring. 
-- ' ~ . 

Proof:· :fhe addition on RIA ~s weli·!Jefined since A is a normal aqditive 

· subgroup of R and the multipl,ication on RIA is well defined since A is an 

ideal of R. (Theorem 30.5). 

R /A is a commutative group under addition (Theorem 18.7, Lemma 

18. 9(2)). We must now check the associativity <?f multiplication and the 

9istributivity laws. 

For all r +A, s +A, t +A € RIA, \Ve have 

[(r + A)·(s + A)]·(t +A) = (rs + A)·(t +A)' 
· :::=: (rs)t +A 

r(st) +A 

== {r +.A)·(st+ A) 

;;: (r + A)·[(s + A)·(t +A)], 

so multiplication is associative; arid we also have 

(r + A)·[(s. +A)+ (l- + /\)] = (r + A)·[(s + t) +A)) 
= r(s+ t) +A 

(rs + r!) +A 

~ (rs +A)+ (rt +A) 

=(r+A)·(s+A) + (r+A)-(t+A), 
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[(s +A) +(t + A)Hr +A) .o= [(s+ t).+ A)J·(r +'A) 
. I 

(s +t)r +A 

= (sr + tr) + A · 
= (sr +A)+ (tr +A), · 

= (s + A)·(r +A) + (t + A)·(r +A)~ 

Hence RIA is a ring. 0. 

30.8 · Definition: LetA be an ideal of a ring R. The ring RIA of Theorem . 
. 30.7 is called the. factor. ring .of R with respect to A,. or the factor ring R 

by A, or th~ fqctor ring R mod(ulo) 'A. Other names for RIA are: ''quotient 
·ririg", "difference ring",."residue class ring". 

30.9 Examples: (a) In the rin'g l of'integers, .the multi_ples nl of an 
integer n form an ideal, the priP,cipal ideal generated by n (Example 
30.6(b) and (h)). The factor ring l/nl is exactly the. ring Zn of integers 

, mod n. 

(b) Let T and A, be as in Example 30.6( d). Then A. is an ideal ofT and we 
can build the fa~tOI: ring TIA. This factor ring has precisely p elements. 
What are they? 

(c).Let R' be a ring and :A an ideal of R. IfR i~ commutative, so is RIA, for· 
then (r + A)·(s +A) rs +A = sr+ A = (s + A)·V+ A) for all (r+ A),(s +A) 
inRIA; and if R is a ring with identity, so is RIA, ~orif l is an identity of 
R, then 1 +A € RIA is an identity of RIA, because· 

(r + A)·(l +A)= rl +A= r +A = rl +A = (1 + A)·(r +A) 
·.for all r'+ A € R/A; . · 

Ideals. ar.e the subrings with respect to which. we can build factor rings, 
just as normal subgroups are. the subgroups with respect· to which we 
can build factor gwups. We kiww that normal· subgro_ups are exactly the 
kernels. of homomorphisms. We now show that ideals, too, are the ker­
nels ·of . homomorphisms . 

.. 
. ' 
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30.10 Definition: Let R and" ~ 1 be rings and let.I.P,: R-+ R 1 be a mapping 
from R into R1, If 

(a+ b)'P = arp + b'p anti (ab)<p = arp·b<p 

for all a,b t. 'R, then rp is called a (r'ing) homomorphism., 

· The operations on the 'left hand sides are the operations on R,. and · thos~· 
on the· right ~hand side are t\le ~perations on R 1., If. tlie operations on R,1 • 

were denoted by E£l and ®; the: equatioJs would read (a .f..b )q{:;; a<p e brp 
and (ab)<p = a<p ® b<p. · . . :~ ' . · . . 

1 . ~ 

If IP: R __. · R1 · is· a ri!lg ~omd11norphism ~nd S is a. suhring • of R, then the 
_restriction rp s .o'f rp to S is also[· a ring homomorphism. · 

. ·. ; . . . / . . ' . j . . . . . 
A i ring homomorphism, .ls a} homomorphism o.f additive groups ~which ·· 
pr~serves products as welL 1~hi& remark enables us to 'use. the properties·. 
of! group homomorphisrits .\)hene~er we investigate.· ring· homom~rph:: 

! j . . 

isJ:tis. 

30.11 Lemma: Let rp: R,··:.... R1 . a '{ing ·homomorphism. 

(1) O<p = 0~ 
(2) ( -a)<p = -(arp) for all a t. R . .. 

· (3) (a1 + q2 + · · · +all)rp = a1<p + a~rp + · · · + allrp for all ai,{l2, .• ; ,all t.. R, n t. I'll',. 
n ;;;. 2. (In particular, (na)<p = n(a<p) for all a e: R) .. 

• • • • 1 • 

(4) (a 1a2 ••. ali)IP = a1rpa2<p • •• a~(pjor all al'a2, , .• ,all e: R, n e: N, n;;;. 2. (In 

particuld~. (a11 )rp = (acp ) 11 for all a, e:. R); . . 

Proof: · (1),(2).(3) follow i111mediately from Lemma. 20.3, since cp is a 
gr~up. homomorphism. (4) proved by the same argument as m the 

pr~of of Lemma · 20.3(3). b 

wt now establish the ring .. theoretical analogues of. theorems · about 

gro:up homomorphisms. 
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30.12 'Theorem: Let ep: R-+ R 1 and ljl: Rj-+ R2 be a ring homomorphisms. 

Then the composition mapping 
epljl: R-:+ R2 

is a ·ring ·homomorphism from R. ·.into ~· 

Proof: We regard ep and ljl as group homomorphisms. We know froin . 
Theorem 20.4 that epljl is an additive group homomorphism. It remains to 

show that epljl preserves multiplication. Since 
(rs)ep ljl = ((rs)ep)ljl 

· = .(rep ,sep )ljl 

= (rip )ljl·(sep Jljl 

= r( epljl )~s( epljl) 

for all r~s e: R, cpljl does preserve· multiplication and hence epljl is a ring 
homomorphism. 0 

Since any ring homomorphism .tp: R ~ R 1 is. a group homomorphism; 'we 
can talk about the image and kernel ~f ep. Of course 

Im ep. = {rep e: R
1

: r e: R} s;;; R1 and Ker ep = {r e:· R: rep = 0} s;;; R. 
. . ' 

30.13 Theorem: Let ep: R ~ R 1 be a ring homomorphism. Then Im ep is a 
subring of R 1 and .Ker ep is an ideal of R (cf. Theorem 20.6) .. 

. Proof: Imep is a subgroup of R1 by Theorem 20.6. We must. show. that I m 

ep is closed under multiplication (Lemma 30.2). Let x,y e: fm ep. Then ·x = 
rep, y = sep for some r,s e: R. Then xy = rep·sep = (rs)ep is the image, under ep, 

of an element of R, namely of r s e: R. So xy e: I ni ep and I m ep is closed 
under multiplication. This .proves that Im ep is a· subring of R

1
•• 

. ' 

Ker ep is a•subgroup of!? by Theorem 20.6. We must only show that Ker ep 

has the "absorbilig" property (Definition 30.4). For any r e: R and 

a e: Ker ep, we have aep = 0 and so·. · 
·(ra)ep. = rep:aep = rep·O = O.and (a'r)ep = aep·rep = O·rep_ = 0 

by Lemma 29.6(1),(2). Thus ra e: Ker ep and are: Ker ep. Therefore Ker ep is 

an ideal of R. 0 
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.! 
We prove con~ersely that every ideal is the kernel of some nomqmo!ph-
ism. 

30.14 Theorem: Let R.be a ring and let A be ·an ideal of R. Then 
:. v:R _.RIA . . 

'' · r-> r +A 

, is a ring homomorphism froni R onto RIA and Ker: y =A (v is called the 
. . ' : ' ' 

natural or canonical homomorphism). 

Proof: The natural mapping v: R _. RIA is a group homorr,10rphism from 
R onto RIA and Ker v =A by Theorem ~0.12. so· we need only show 'timt · v 

is a ring homomorphism, i.e.; )hat v preserves multiplication. This follows 
from the very definition of m·ultiplkation in RIA: we have· 

. · (rs)v =-rs +\4 ,; (r + A)(s +A)= rv·sv . 

for' all r ,S E R. So v is a ring homomorphism. . D 

30.15 Definition: A ring homomorphism ·rp: R .:_. R
1 

is called a (ring) 

,isomorphism if it is one-to-one and onto~ In this case, we say R is iso­

. morphic to R
1 

anct' writeR==' J?'1• If R is not isomorphic to Rl' we put R ~ R1• 

So a ring isomorphism is -a group isomorphism that. preserves multi plica~ · 
tion .. We use . the same sign "=:<" for isomorphic rings as for isomorphic 
groups. This should not lead to any confusion. When confusion is likely, 
we state explicitly whether ,we mean ring . isomorphism or group iso­
morphism. 

30.~6 Lemma: Let rp: R _. R1 :and tp: 1(1 -R2 be ring i~omorphisms. 
(1) 1q>tp: R :.... R

2 
is· a ting isomorphism. 

(2) ·cp-1:R
1 

- R is a ring isomorphism. 
' . . 

Prbof: (1) We know that cptp is a group isomorphism (Lemma 20.11(1)) 
an~ a ring homomorphism (Theorem. 30. 12), so qJip is a ring isomorphism. 

This proves ( 1 ). 
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(2) We know that cp""1 is a group isomorphism (Lemma 20.11(2)). We must 
also show that cp:-1 preserves 'products. For any x ,y € R P we must show 

(xy)cp -l :::: x~:-1 .yfP-1 • Since' cp is ·onto, there ar~ a ,b € R such that acp = x and 
bfP = y. Now a and. b . are unique with .this property, for fP is one~to-one, 
and a = xcp-1, b =yep -I .. This. is the' definition of the in.verse mapping. Since 
(f) is a homomorphism, we have 

(ab)cp = acp.bcp 

(a b )cp =xy 
. ab = (xy)fP-I · 

xcp-l.ycp-1 = (xy)fP-1 

for all x,y E R 1• So cp-1: R1 _;. R i~ a. ring homomorphism and conseq~erttly 
· . cp-1 is a ririg isomorphism. ' o 

30.17 Theorem (Fundamental theo,rem on homomorphisms): Let 

fP:R-R1 b~ a ring homomorphism .. and let v:R-+ R/Kercp be the natural 

homomorphism. 

R/Kef cp RIKer cp 

v/ v/ \~ 
R Rl R . Rl 

. (a) (b) 

Then there is a one-to-one ring homomorphism 1p:R/Ke: cp- R
1 

such that 

Vlp '::::: cp. 

. ' 

. Proof: From Theorem 20.15 and its proof, we know that the mapping ... 

1p: RIKer cp - R1 
r + Ker cp -+ . np 

is a well defined one-to-one · group homomorphi~m :such. that v 1p ~ cp. It 
only remains to check that 1p preserves multiplication. For all r,s € R, we 
have. · .((r + Ker cp)·(s + Ker cp))'P = (rs + Ker cp)1p 

;= (rs)cp 
= rcp~scp 
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=:<r +Kerrp)1!l·(s + Kerrp)1p, 
so 1P preserves products and'll1 is _a ring homomorphism. 

30.18 Theorem: Let rp:R - R1 be a ring homomorphism. Then 
' I . ' . ' -

0 

R/K e.r·rp ~ Jm rp (ring· isomorphism) .. 

Proof: The-mapping ql:R/Ker rp- R1 is· a one-to-one ring homomorphism . 
r + Ker rp - rep 

(Theorem ~0~17) and I~ 1p = lm rp (see the proof of Theorem 2Q.16). Thus 
tp ,is a one-to-one ring· homomorphism onto I m rp and therefore- · 

RIKer~ a: Im <P~ o 

30~19 Theorem: Let i>:R -:+ ~~ be a nng homomorphism from R onto B1 •.. 

(1) Each subring S of R with' Ker rp 1: S, is mapped to·~ subring of R1, 

wh:ich will be denoted by. s.'l,lo: . . 
(2) If S and T are sub rings of ~ and K er rp ~:: S 1: T~ then S 1 ~:T 1• 

(3) lf S and T are sub rings ofjl containing Ker rp and if S1 !; T l' then S r; T. 

(4J If S and T are subrings of'/l contai'ning Ker rp and if S1 '= T 1, .tl!en S = T .. 
(5) For any subring U of R1, tliere i~ a sub ring S of R such that K e r rp r; S 

and s! = u. ! 

( 6) Let S be a sub ring of R ~lJntaining Ker rp. Then S is an ideal of R if and 
only if S1 is a!l idea/. of R1., . . . · . . . 

(1)IfS is an ideal ojRcontai~i11gKerrp,then R/S~R 1 /S 1 •.. 

R l R 

T Tl 
I s I sl 

Ker rp {0} 

0} {O} 
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Proof: (1). As in Theorem 21.1, we put S1 =1m cps· B:Y Theorem 30.13, S1 is 
a subring of R1

• (The restriction of a ring , homomorphism to a subring is · 

also a ring homomorphism,) .· · 

(2),(3),(4) We regard cp me.rely as a group ho~omorphistn and apply 
Theorem 21.1 (2),(3),( 4). 

·(5) Let U be a subring of R1• Consider (! as an additive .subgroup of R 1• ' · 

From Theorem 21.1 (5), we know •that 'there ,-is a subgroup S ofR, namely 

S:: {r € R: rep e: ljJ 

with Ker CJl. ~ S and S1 U. It remains to show· Jhat S is a subring of R. we_ 
need only check that S is dosed under multiplication, and this is easy: if 

r,s e: S, then rcr), scp e: U, then rcp·scp e: U, thell (rs)cp e: l}, then rs e: SandS· 
is multiplicatively . dosed. 

. .· 

(6) Let S b~ a subring of R, with Ke.r ~ ~. s. ·First we assume that S is an 
. ideal of R imd prove that S 1 is an ide at: ofR 1 .. We must show that r 1 s 1 e: S 1 . 

and s1r1 e: S1 ·for all ~: 1 e: Rl' s1 E S1• Well; if r1 € Rl' s1 E S = lm cps•· then 
there are r e: R with rep.= r1 and s E · S with scp = sl' and so 

ris 1 = rcp·sq> = (rs)cp e: lm ~s = S1 since. rs e: SasS is an ideal of R, 

s1r 1 ::scp·rcp = (sr)~ e: lmcp5 = S1 since sr e: S asS is an ideal of R. 
This proves that S 1 is an ideai of R 1 ifS is an ideal of R. · 

Next we suppose S1 is an ideal of R1•• By Theor~m 30J4, S1 = Ker v', where 
v':R1 -R1JS 1 is the natural homomorphism. Then cpv': R 7"R1JS 1 is a ring 

homomorphism '(Theorem 30;12) with 
· Ker cpv' = S, (*) 

as follows· from (ii) on page 225. By Theorem 30.13, Sis an id~al of R; 
. . . 

· · (7) .Assume that S ·is an ideal of R andS1 is_an ideal of R 1• From the ring 
homomorphism rpv': R- R1/Sp we get 

RIKer ~v' ~ lni q>v' (ring isomorphism) 

by Theorem 30.18. Here Ker .rpv' = S by (*)and lrh rpv' = R1JS P for cp and v' 
are both onto. ·rhus · 

(ring homomorphism) .. ·o 
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. . . . . 

30.20 · Theore~:- Let A be an ideal ofR. The _subrings of RIA are given 
by SIA, where S runs through the subrings of R -containing A. In other 
words, for each subring U ofRIA. there is a unique subring S of R such 
that A !: U and U = SIA. Wh~n U1 and U2 are subri~g~v of RIA, say with 
U1 S 1IA and U2 = S2IA, where Sl' S2 are subrings of R containing A, 
then U1 r; U2 if and only if S1 t S2• Eurthermore, S .fA_ is an ideal of RIA if 
and only if_ S is an ideal of R~ ~n this case . 

RIA l SIA :;;, RIS (ring isomorphisn:z). 
. . 

Proof: The natural homomorphism v: R -. RIA is onto by Theorem 30.14. 
No~'we m'ay apply Theorem :30.i9; which states that anysribring of RIA. 

I .• 

is of the form S1 =Im vs = {sv;e: RIA: s E S} = {s +A .e:'RIA: s.E S} = SIA 
for some subring S of R contliining Ker v =A (notice that SIA is mean­

in~ful, for A is an ideal of S ·:when A !: S and S is a subring of R). We. 
kno,w that U 1 = Im· vs

1 
r; I m vs

2
::= U2 if and only ifSi !: S2 (Theorem· 30.19. 

(2),~(3)). Fin~lly, SlA = Im Vs j~ an ideal 6r RIA if and only if sis an id~~l 
of R.. in which case RIA /SIA ~. RIS (Theorem 30,19(6),Ci)). 10. 

30.21 Theorem: Let R be a riTig, ·s a sub ring of R and A an idea,l of R. 
. I . 

(l) S +A is a subring of R (here;s +A denotes'. {s +a E R: s E S, a E A} !:R · 
in ~ccordance with Definition 19.1). . 
(2) A is an 'ideal of S +A, and S 11 A L~ an ideal of S. 
(3) S + A 1 A ~ S I S n A (ring isomorphism). 

( ' ·. . 
. ; . . ' 

Pro.of: (1) S +A is an additive subgroup of R (Lemma 19.4); and it is also 

closed under .multiplication since 
(s + a)(s' +a')= ss' + s.a' +as'+ aa' E S +A 

for iill s,s'.E' S,a,a' E A, becau~e then ss' E s;·and sa',as',aa' E A, conse­

que_ntly sa' +as'+ aa' E A. So S +A is a subring of R. 

(2) A is an ideal of R . and -a subset of S + A, so, a fortiori, A is an ideal of 

s + A. Also, s () A is a su bgtoup of s and, for all a E s n A, s E s! 
sa e: Sand sa E A, so sa e: SnA, 
as E Sand as e: A, so as e: S n A 

since S is closed under multiplication and A ·is an ideal of R. This shows 

that S n A. is an ideal of S. 
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(3) We· have a ring homomorphism v s: S- RIA; the restriction of the . 
n~tur~l homotporphism v: R _;. R/A. Hence S/Kervs ~ lm·vs· From .the 

1 proof of Theorem 21.3, we know Ker vs = S n A ·and lm vs = S +A /A. So. 

s + A I A ~- s Is '{i A 

as contended. 

Exercises 

1: Let R be a ring. The center of R is defined to be the set 
. , . Z(R)=(z€R:za=azforall_a€R}~ 

IsZ(R) ·a subring or an ideal of R? · 

2. Given a ring R, find Z(MatiR)). · 

3. Prove that, if D is a. division ring, then Z(D) is a field. 

4~ 4t R be a ring and b € R:: Is :the centralizer 

CRCb) (r € R: rb = br} . 

of b a subring of R? 
. . . . . ' - . ' . . . : . ~ 

5. Let R be a ring with identity. Prove or disprove that Z(R") = (Z(R)Y: 

6 .. Show that, if K is a field, then {0} and K are _the only ideals of K. 
. . . ' 

7. Let D be a division ring. Find all ideals of Mat2(D). 

0 

8. Let R be a ring and _let End,(R) be the. set of .all ring. homomorphisms. 
from R into R~ For any q:~,1p' € End(R), we define q:~·+,1p: R ·'- R by. 

r(q:~+ 1!>) = np+ '11>· 

Show that q> + 1p € End(R) ~nd that (E~d(R),+,•)is a ring (• ~s the composi­
tion of functions). 

9. Let R he a ring and A a'n ideaL of R: Prove that 
(r € R: rx € A for allx € R) 

is an ideal of R. 
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· 1 0~ Let (R, +, ·) be a ring. If A;B are nonempty subsets of R, we -define A B · 
• c •' 

io be the. nonempty subset 

[t;b1 + (!2b2 + · •·,; ~nbn E R: n E N, ai £ A, bi E BJ . 

of R. A subgroup A of (R .+) is called a right (resp. left) ideal of R 

provided . ar E A (resp. ra E A) for all a t=; A, r E R. Prove that, if A ,B ,C are 
arbitrary right (resp. left) iddis of R, then · 

. (a) A + B, AB, A n B are: right (resp. left) _ideals of R, 
(b) (AB)C= A(BC), , 

, (c) A(B +C) =AB + AC 'and (B + C)A = BA +CA. 
' ., 

' :j ~ 
11. Let R be a ring. An ideal I( of R is said tobe prime· if P ;;eR and if, for 
any two ideals A ,B of R, the implication 

AB !: pi· => A !: P orB !.;;; P 
!j , I 

is valid (see Ex. 10). Prove the following statements. 
(a) Let P. be an ideal of d and P;;e R. If, for~ny a,b E R, 

' ab E:. p; => ' a E: p or b E: 'p. 

then P is ,a prime. i~eal of -R. .: 
(b) Let R be commutative. If P is a prime ideal of R, then 

ab cP~- =>. a E P orb E P 

for any a,b E R. 

(c) [0} is a prime ideal bf any integral domain. 
(d) Let, R be a commut~tive ring with identity and P an ideal of R. 

Then P is a prime ideal of R if and only if RIP is an integral domain. 
' ' ' 

12. Let R be a ring. An ideaL(resp. right_ ideal, resp. left ideal) M of R is 
said to be maximal ideal. (resr. right ideal, resp. left ideal) of R if M ;;e R . 

and if there is no ideal (resp. right ideal~ resp. left ideal) N of R such that 
M c NcR. Prove. the folloy/ing statements. 

(a) If R is a commutative ring with· ident.ity, then every maximal 
· ideal of R is prime. , ·. . 

. (b) If R is a ring with identity, distinct from the nuil ring, and if M 

is ap ideal of R such that R f M · is adivision ring;· then M is maximal. 
(c) If R is ·a ring with identity and M a maximal ideal of R, then 

RIM is a field. 
i (d) Find a noncommuta'tive ring R with .identity and a maximal 

ideal M of R such that RIM is not a division ring. 
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13. An elen:ent a in a ring R is said to be nilpotent if an - 0 for some 
n e: N. Prove that, if a ,b are nilpotent elements in a ring, and if ab ba, 
then a + b is also nilpotent. · 

14. Lei R be a commutative ring. Show that the set N of all nilpotent ele­
ments .in R is ari idear of R and that the factor ring R IN has no nilpotent 
elements other. than 0. · . 

r 

15; F~nd rings R ,S with identities lR, ls respectively and. a ring homo-
. morphism cp: R -+ S Sl!ch that (IR)cp ;z!ls: ~ 

16. If R ,S a;e. rings with identities lR'ls ~espectively, and . if cp: R ·-+ S is a· 
ring. homomorphism onto S, prove that (lR)cp = 18. · 

. . . . 
17. The notation being as in_§29, Ex: 7, prove that the mapping r-+ (r,O) 
is .a one_-to-one ring homomorphism from R into S. 
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" .§ 31 
Field of Fractions of. an Integral· Domain 

i 

Le~ D be an integral domain, i.e., a commutative ring with identity which 
has: zo zero divisors, distinct from the null ring. Let a,b,c be elements of 
D ~uch. that 

' 
a ;z: 0, ': a b = ac. ( i) 

If a has a multiplicative inver~e a-'1 in D, we could multiply. both sises of 
thi~ equation by a-1 and obtain 

~6=~ 00 
But we do not know whether 'a has an inverse in D and we cannot argue . 
in !this ·way. Neve~th~less, it· is true that (i) implies (ii) in an integral 
do~ain: from (i), we :geL 

ab- ac 0 
a(b c)= 0, 

and, since a ;z: 0 and D has no zero divisors_, 
b :...c = 0 

b ·=c . 

. Hence the cancellation law holds in an integral dorriajn · D just as if the 
non.zero elements in D had inverses .in D, i.e., as if D\{0} were a group 
und~r multiplication. 

It i~ the objective of this par(lgraph to show that· any integral domain· is 
in fact a subring of a ring F such thai F\{0} is a commutative multiplica­
tive gro~p. i.e., a subring of ~:field F. We can then say that the nonzero 
elen1ents in D do have inversd, perhaps not in D, but certainly in F. 

First we show that finite integral domains are always fields. 

· 31.1 Theorem: If an integral domain has finitely many elements, then it 
is a,field. 

Proof: (cf. Lemma 9.3) Let D be an integr-al domain with finitely many 
elements. We are to· show that every nonzero element of D has a multi­
plicative inverse in D. 
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Leta € D, a ;t! 0. Since IDI is finite, the elements 

2 3 n a,a ,a , ... ,a, .. _... 

ofD cannot .be all distinct. So there ·are natural numbers k,l E N such 
that ak = a 1, with k < I, say. We 9btain then 

fl.- a1 = 0 
d< - akaH<. = 0 

ak(l - aH<) = 0, 

where. I is the identity of D . Since D. has no zero divisors and a ;t! 0, we 
conclude ak= a·a· .. ~ ·a ;t! 0, which yields 

1- aH< = 0 
aH< =I, 

a-a~-1 =I. 
Thus aH<-1 E· D is an inverse of a. SoD is a field. Cl 

Starting from an integral domain D, we now construct; without any 
hypothesis on ID I, a field F. which contains D as a subrlng. This co_nstruc­
tion is an immediate generalization of the construction .of (J) 'from Z , 

whose basic moments we recollect: every rational· number is 'a f~action 

~of integers a ,b, with b ~ 0; different fra~tions can represent. the same 

. . l b . . f a c .f d l .f d b (. h . b d z rat10na num er, tn a~t b= (j' 1 an on y 1 a = C . . W erea, ,C, E. 

andb,;t! 0 ;t! c); _the addition of two ratio_nalnumbers F' Jis carried out 

by wntmg them with a common denominator and adding ·the 

(
a c ad be · a·d + b c) . ·. . :· . ·.' 

numerators . /i + d = b d + b d =: b d ; the multlphcatton ts earned 

out by multip~ying the numerators and denom~nators separateiy (]; J = 

:~); an integer a is considered to be equal to the ratio~al mimber 1· · 
All these carry over to the.' more general case of an arbitrary integral 
domain D. in place of Z ~ and give rise to· a field F which. is related. to D in. 

the same way as (J) is related to Z . The elem_ents of F will be like 
. ,"fractions" of elements of D. We introduce them in the next two lemmas. 
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31.2 Lemma: Let .D be an integral domain and put 
S := {(a,b):a,b ED, b~ 0} = D x(D\{0}). 

We deflne a relation --on S by deClaring · 
(a,b)"' (c,d) if and only if ad be 

for all (a,b), (c,d) E S. Then~ is an equivalence /elation on S. 

Proof: -(i) I:or all (a,b) .E S, we have (a;b)- (a,b) since ab = ba'. So- is 

reflexive. 

(ii) If (a,b), (c,d) € Sand (a,b) :.-.. (c,d)·, then 
ad =be. 
da.::::. cb 
· cb 'da 

(c,d) - (a,b) 

and - is symmetric. • 

(iii) If (a,b), (c,d), (eJ) E 8 and (a,b)- (c,d), (c,d) ...... (eJ), then 
ad =·be and cf = de 

adf= l)cf and bcf =·bde 
, · daf= dbe 

d(af be) ·=·0. 

· From (c ,d) E S, we· know d ~ 0, and, since D has no zero divisors, we 
obtain af- be 9. Thus ·af = be, so (a ,b) - (e J) and - is transitive. 

So - is an equivalence relation on S . . · ·· 0 

31.3 Lemma: Let D /;Je an integral domain,S:= b x (D\(0}),' and let- be· 

the equivalence relation of Lemma 31.2. For (a ,b) E S, we designate the 
equivalenceciass of(a,b).by(a~b]. Thus [a:b].= [(c,d) €S: (~,d)- (a,b)}. 

Let F = ([a:b]: (a,b) E S} be the.set. of all equivalence classes of the 

dements inS. For all [a:b). [c:d] .E F,we put 
[a:b] + [c:d) = fad+ be : bd], 

.[a:b)·[c:d) [ac: bd]. 

Then + and ·.are well defined operations on F. 
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. . ·. .. . - i 
Proof: First we remark that, if (a,b), (c,d) e:. S, then b,d ~- 0, and s~ bd ~ 0 

since D has no zero divisors. Thus (ad + bc,bd), (ac,bd) e: S and therefore 

[ad+ bc:bd], [ac:bd] e: F. 

We must show that + and · are well defined operations on F. This means 

we must show that the implication 

[a:b] [x:y], [c:d] =[z:u] · ~ · , [ad+ bc:bdJ= [xu+ yz:yu], [ac:hd] = (xz:yu] 

is valid. This . implication is equivalent to 

(a,h) ~ (x,y), (c,d) ~ (z,u) => (ad+ bc,bd) ~(xu+ fz,yu), (ac,bd) ~ (xz,yu) 

which, in ·turn, is equivalent to 

ay = bx, cu = dz => (ad+ bc)yu bd(xu+ yz), ac-yu = bd·xz, 

where h,d,y,u ;z!. 0. 'But certainly, wh~n ay ~ bx, cu = dz, we have 

(ad + hc)yu = adyu + bcyu ay·du + by·cu =.hx·du + by·cu ~ bx·du + hy·d~ 
· = hd·xu + hd·yz = hd(xu + yz) and ac·yu qy·cu = hx·dz = bd·xL . ' o 

31.4 Theorem: With the notation ofLemma 31.3, (F,+,·) is afield. 

Proof: (i) According to Lemma 31.3, +is a binary operation. on F. 

(ii) + is associative since for any [a:hl, [c:dl, [e:fl e: F, we have 

([a:bl + (c:dl) + [e;fl = [ad+ hc:hd) + [e;fl 

= [(ad+ bc)f + (hd)e : (bd)fl 

(a(dj) + b(c.f +de): b(df)] 

[a:bl + llf + de:dfl 
= la:bl + ([c:dl +[e;fl). 

1 ~ 1-

(iii) [0:11 is a right additive identity since [a:bl +[0:1) = [aL+ bO: bl) = (a:bl 

. for any [a:b] e: F. (NotiCe that [0:1 I [O:dl for all de: D, d ;z! <1:) 

(iv l Any I a :hI e: F has a right additive inverse: 1-a :b I is the opposite of 

[a:h]. for [a:hl +[-a:b[ lab+ b(-a): b21 = [O:b2 l = [0:1[. 

(v) + is commutative since for any [a:b], [c:dl € F, we have 

]a:h] + k:dl =[ad+ bc:hdl = [£:h+ da:dbl = [c:dl + [a:b[. 
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We proved that- (F.+) is a commutative group. We now check -the 

remaining ring _axioms .. 

(1). According to Lemma 31.3, · is a binary operation on F. 

(2) · is associative since for any [a;b], [c:d],' (e;J] _e: F, we have 

([a:bHc:dl)·[e;j] = [ac:bqHeif.l 
= [(ac)e :(bd)J] 
= [a(ce):b(df)] 

= [a:b]·[ce:dj] 
= [a:b ]·([c:d]·[e;/]). 

(D) For all [a:b], [c:d],- [e;/] € F, we have 

[a:b]·([c:d] + [e;/]) = [a:bHcf + de:dj] _ 
[a(cf+de):b(df)] 

= [dcf + ade:bdj] / 
_ =·[bacf + bade:bbdj] 

= [ac·bf + bd·ae:bd·bf]­
= [ac:bd) -!- [ae:bj] 

= [a:bHc:d] + i'a:bHeifJ 

-·(why?) 

and one of the' distributivity laws hold in F·. We ·must prove the other 

_ distributivity law. W~ can give an argument similar to the above; but we 
show presently that . is commutative~ and this will give the <¥her distri-
butivity law as a bonus. -

We have not yet proved that (F,+,;) is a·ring. 

(3) ·.is commutative since for any- [a:b), [c:d) e: F, we h;lve 

[a:bHc:d] =·[ac:bd) = [ca:db];, [c:d)·[a:b.]. 
As we h;ve already remarked '!bove, this __ yields :.the -distributjvity. law 

we have not checked: 
([c:d] + [e;/])·[a:b] = [a:b]·([c:d] + [e;J]) 

tor all (a:b ], [c:d], [e;/] e: F. 

= [a:b}[c:~] + [a:bHe;J] 
= [c:d]·[a:b) + [e;/]:[a:b) 

We_ now proved that (F,+,-)' is a commutative ring.-
. ~ . r . 

- ·\ 

(4) [I: 1] is the multiplicative identity because 

[a:bHI:lJ = [al:b1].= [a:b)..---

361 < 



for. all [a :b 1 e: . F. Since multiplication is cbmmutatiye, the.re holds also 

[l:l]'[a:b]·= [a:b] for any [a:b] € F_. (Notice that [1:11 [d:d] for all de: D w,ith 

d~_O.) 

. Thus (F,+,·) is a commutative ring with ide'!'ltity·. It remains to show Jhat 
every nonzero el~ment in F has. a multiplicative inverse in F.· 

(5) For all [a:b.] € F\{0), we show that [b:al is a multiplicative inverse of 
(a:b]. First oJ all, since [a;b] ~ [0:1] in F, 

·. (a;b) is not equivalent to (0,1) in S 

al ;!! bO 
a ~ o 

(b,a) € S 

and [b:a]is an element of F. Secondly, (a:bHb:a] = [ab:ba]= [ab:ab] = [l:.IJ = 
multiplicative identity of F. Thus· (b:a] is a multiplicative inverse of [a:b} 

. ~.10:1 1 in F. 

·This proves that (F~+.·)is a field. 0 

31.5 Theorem: Let D be an integral domain and let (F.+~·) be ihe field of 
· 'Theorem 31.4. Then · D is isomorphic to a subrfng of F. 

Proof:, Let ~p: D:.... F.· We de~onstrate that 1p is a one-to.-one :ring homo­
a_, [a: I] 

morphism. For all a,b € D, 
arp +hip= [a:l] + [b:I] = (al + lb:l·J) =: (a+b:l] =(a +b)rp 

arp·brp =[a:l Hb:l] =·(ab:H] = [ab:l} =(ab)rp, · 

thus 'P .is a homomorphism. Also 
Ker rp = (a € D: arp = zero element ofF} 

={a e: D: [a:l) = (0:11) 

={a € D: (a, I)- (0,!)} 

{a € D:a·J = l·O) 
(a € D: a= 0} 

= [0) 
and hence rp is one-to-one. By Theorem 30.18, D iS isomorphic to. the 

subring lm rp D~p = {(a:l) r:: F: a € D) of F. o 
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31.6 Definition: Let D be an integral domain~ Then the field. of Theorem 

31.4 is called the field of fra~tions. or the field ofquotienis o{Dr . . 

,( 

From now on, we shall write F for[a:bl. The elements ofF will' be called: 

fractions (of elements from D); Furthermore,. we. i'dentify .the integral 

domain D with its .image D rp u.nder. th.e· mapping in• Theorem• 3 1'.5. Thus. 

we w~ite a inst<?ad ofT and regard' D as a subring ofF, Then . the inv~~se 
. . . · · · . I. . , a . b· · . . · · · 
. of.b € D !;;;; F_as b € F and that. of b ts a (her~ ~,b· E D·,. a•,b• ;e 0) .. With: th~se. 

notations, calcu,lations are carried' out in the· usual: way·. · 

Starting from im integral domain D ,'we constructed the ficllF F of frac­

tions of D: Now :this fi~.ld F is also an integral domain, too; and we 1:nay 

..,. repeat our construction · and. obtain the field of fractions. of F,.,say F 1• 

However, nothing is gainep by this repetition, for F 1 is not, essentially 

distinct from F. 

31.7. Theorem: Let~ be afield alUf let K1 be the field o[Ji·ltetiolls ~~fl\. 

Then K1 is isomorphic to K: 

Pr~or:· From Theorem 31.6, w'e Rnow that tp: K ·,_. K
1 

is an isoHH;rphi:>m 

ll 
a--
. I 

. ' 

from K onto Ktp ::0: /m cp, We will show tha't lm cp K
1
• 

Any clement of K1 can be written .. as F. whe~c (d; E. K' and h "" 0, Since f.: 

,is a field and b ;>! 0, there is an .inverse h-1 E K or h in.K. Tlnls a/~-l • f.: and 

a · . a!J-1 · --= [a:bl ==.[ab-1:11 =-. - (ah-1)rp .€ lm tp. 
b · . . I· • 

This proves K1 .~ lm cp, so lm.tt>. = K1 and K1 is ison!i)~·j1hic 10 K. 

Next we show that the field 9f fractions of an integral domain 

smallest field containing that integ.r<ll . domain. 
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31.8 Theorem: Let D be an integral doma(n 
. . . . l 

and F the, field of fractions 
> 'of D .If K is _any field -that contains D, tJJ,~ K contains a subring -i!~o-

morplzk to F. 
- l -· . """. 

Proof: - We construct an isomorphism_ From; F onto a subring of K. The 
• • ~ . ·l' 

a 1 ,, 
elements of F are fractions b , where a,b € D and b ;r. 0. Regarded as an 

element of K, b has an inver~e/b:.1 inK, so ~i/1, e K.Let ~p:F-+ K. 
a -' -
-- ab-1 
b -

-- · - , · ·. · a- c . · _ · . · 
1p is a well defined mapping, for if ,; = d (a,b,c~d e: ~, b ;r. 0 ;r. d), then ad _ 

1 a. c-ca , _so (b)IP = ([j'}ll'· Now 

(~+ J)'P = (a~+:c)'P =(ad+ bc)(bd)+ 

and 

. for· arty two fraction~ ~ , J. in F and 1p is a ring homoJtiorp_hisrri: Here 1p is 
• ' • • I 

one-to-one because Ker IP' = (0}, for~ e Kef IP implies (~)'P =·0, so ab-1 = 0, 

so a = abb-1 = Ob'"1 = 0, so ];- = f ~ = 0. Hence F is isomorphic to the 

subring /m 1p ofK _(Theorem'' 30.18). o 

'Exercises 

I.Lct/J1 {a+bie:C:a,be:Z},D2 (a+2bie:C:a,be:Z}-and 
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. ·E= [a+·~2J2+c~E ~:a,b,cE Z}.Show that ~I'D2,E are integral domains 

. and describe, as simply' as you can, the elements in the field of fractions 

of these· integral · dmnains. · 

2. Let R ·be a. commutative ring ·and let M be a nonempty inultiplicatively 

Closed subset' of R .. For ordered' pairs in R .x M, we ;put 

(r,m) --:· (r',m ') if and only if t!tere is an n E M such that n(rm'- r'm)' 

Sh.ow that ~ is an equivalence relation on R x AL Denote the equivalence 

class of(r,m) by.!_ and define. on the set M~ 1R of all equi~all~nce classes, . . . m· . . 
addition· and multiplication by 

r r' rm'+mr 
in·+ m~ =· min 

Prove that M-1R is-.a commutative 

tions. 

r r: rr' 
and-·-=-­m.m' mm'· 

ring. with . identity under .these, opera-

3. Keep the notation of Ex. 2. Prove that,. if· A is an ideal of R, then J\<r1 A = 

'rE... E M-1R: a E A. m E M} is an ideal of M-1 R. If A ,B arc ideals of. R, then m , . . . . .· . . . 

M-1(A +B)= M-1A + M-18 and M'-1(A n .B)= M-1A n M- 18.. Does every ideal 

of M~1 R have the form J\.r1;l for some ideal A of R'? 

4. Let R be. a commutative ring with identity and let i> be ·.a prime ideal 

of M (sec §30, Ex. !'1 ). Show that M := R\P is a mul,tiplicatively closed sub- · 

set of R .' Prove that M-1 R, in ·the. notation. of· Ex. 2. has a \lnique maximal 

ideal (sec §30, Ex. 12). 

5. Discuss the rings itt Example 29.2(e),(g) ,under the light ilf Ex. 3 .and 4. 



§32 
Divisibility 'Theory in In(egral Domains 

, As. we have already mentioned, the, ring , Z of integers is the prototype of · 
integral domains. There is a divisibil}ty relation on l *: an integer b .is 

· said ·to be <;livisible by a·· nonzero integer a when ·there is· an integer c 
. ·. such that ac "?b. hitegers. with no nontrivial divisors are called prime, 

and every nonzero integer. that. is not a unit can be written as a product 

.>of prime numbers in a uniq~e way. 

We want to irive.stigate whether there are similar results in other· 

. integral- domains. More generally, one can ask whether .there are similar . 
res~lts in an arbitrary ring. l:lowever, in an arbitrary ring, one has to 
distinguish between left divisors and right divisors: if a,b,c are elements· 
of a ring and ab = c, then a is called a ·left divis9r, and b is called a right 
divisor of c. Here a· may be· a left divisor of .c , without being a right 
divisor of c, and vice versa. Furthermore,. the existence of zero. divisors 
in a ring complicates the th~ory: For these reasons, in this introductory· 
book, we confine oursdlves. to· integral_ domains. 

32.1 ·-Definition: LetD be an integral domain and let a,tl e: D. If a ,r 0 

and if there is a y € D such that a i' = tl, then a is· called adivisor or a . . 

factor of If and tl is said. to be. divisible by a. We also say a divides fl. 

We write a I f:l when a divides tl, and a .J- tl when a ,r 0 and a does not 
divide tl~ 

32,.2. Lemma: Let' D b'e an integral·domain and let u,J),}',Jl,V,J.II;Jl2' •• ~ ,Jls' 

f:ll'tl 2 • . · ••• tlsbe elements of D. 

(.1 I .If CJi tl. then v.l-fl, -al-f:l, -ulf:l. 
(2) If ul f}and tlly, then v.ly. 
(3) ({ 1d (land y;r 0, then v.yll}y. 

• More precisely. on Z\ f.ll j 
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· (4) If a.y! 13Y, ihen a. I 13., 

(5) If a. I 13 and a. I y, tl~en a.II3-J:Y· 
(6) If a. I 13 and a. I y, then a.ll3-y. 
(7) /fa. I l3and a.l_y, tluin ~IJ.tl3+vy. 

(8) If a.! f3pa113i• ... ,a.l13s' then ~I J.t 113 1+1J:2132+ •:· +J.1sl3s· 

(9) If a. ~- 0, th(m a.IO. 
(10) II a and -II a.. 

Proof: The claims are proved exnctly as in the proof of Lemma 5.2. o 
. . I . 

We know that the units I, -1 of l. .divide every integer. This is true in any 
arbitrary integral' dolT) a in. (see Definition 29~ 14). 

32.3 ·Lemma: Let D. be an integral domain and e e: D. Then e is a unit of 
D. (i.e., e e: o·) if and only;if el a. for all a. e: D. 

I. 

· Proof: If e is a unit, then ef:l ~- l'for some 13 e: D; in particular,· since D .is an 
integral domain, el3 1;%! 0 and e;%! 0. For any 0: e: D, we have e(13a.) = (ef:l)a. 

I a = a., with 13·~ e: D. Thwh:l a. for any a e: D. <:onversely, if t1 a. for all a. in 
D, then ell, 'so· Ef) = I. for some f) e: D.· Thus .E has an inverse in D and E is a 

unit ofD. 

· 32.4 Definition: Let D be an integral domain and a. ,f) e: D. Tl}en a is said 
to be associate to 1> if there is a unii E e: o.· such that a. = f)£ •. In this case, 

We write a. "" f). 

32.5 ·Lemma£ Let D be an illtegral domaiti. Then "" is an equivalence · 
relaiion ·on D. 

. . 

Proof: (i)'For any a e: D, we hav.e a = a I and 1· is a unit. I lcnce. a."" a. and 
"" is reflexive. (ii) If a.,f) .e: D ;ind u ~ f), then a.= f)e for sOJne e e:· D', then f) 
a.E~1 with E-1 E: D' (forD· is a group by· Theorem 29.15) and .f:l ~ a,.so ~ is 

symmetric. (iii) If a.,f),ji € D and a~ f), f)-~ y, then a. f:IE, f:l = ye', where·i,'t:' 
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'< ! 
' i· 
I 

· are units in D. So_a ;, yE'E, with E'E € D" (Theorem 29.15), thus a~ y .and~: is 
transitive .. 

., ' 

'o 
i 

Since ,;, is a symmetic relation, Jt ts legitimate to ·say that a and· 13 are 

associate when a is associate to 13. The, alert. reader will have noticed that 
the gro!Jp D"acts on ·the set D in the sense of Definition.25.1, and the orbit 
of any a € D corisists of the associates of· a (that is; elements ;of D which 
are associ~te to a). Lemma 32.5 is thus merely a special case of Lemma 

'25.5. 
. I 

For any_ a € D, the units and associates of. a are divisors of a. A divisor of 
·a, which is neither a unit nor an associate of a, is called a proper divisor 

of a. An element need not have proper divisors;. fot: instance, a unit has 
no proper divisors. 

The relation· a 113 holds if and only if .the r~lation a 1113 1 holds for any 
associate a 1 of a and for any associate 13 1 'of 13. In other words, as far as 
divisibility is concerned, assoCiate elements play the same role. 

' ' 

32.6 ·Examples: (aY The theory o.f divisibility in t was discussed in §5. 

The units in l are I and -1, and the associates of a € l are a and -a. The 
terminology in this. paragraph is consistent with that of §5. 

(•b) Let D be a field. Then a I~ for any a .13 € D ,'a ?! 0 since a ?! 0 implies 
that there is an inverse a-1 of a in D and a(a-113) 13 with a-113 E: D. I~ 
particular, alL for any a E: D, a?! 0. Hence any nonzero clement _in D is a 
unit and any two non'icro elements arc associate. The divisibility theory 
is not· very interesting in a field: 

(c) Let I< = [alb E: IJJl: (a,b) =1, 5{b} be the ring of Example 29.2(e). It is 

easily sccll . that R is an integral domain. Let us. find the units of R. The 

multiplicative .inverse of alb E: R !: iJJl ((a,b) = I) is bla E: IJJl, and bla E: R 

if and. only if·5.ta. ThusR" =(alb E: R: (a,h) =1, 5th, 5ta}. The associates of 
a/h E:. R. arc. the numbers x/y wit!l (x,y) I, where a and x. are exactly 

divisible by the same power of of 5. 
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(d) We put l [i] :,; {a + bi E IC: a,b E l}. One easily checks that l [i] is a. 
subring of I[ and that l [i] is an integral domain. The elements of l [i] are 
called gaussian integers (after C.· F. Gauss .(1777-185~) who intrpduc7d 

them in his investigations about the so-called biquadratic reciprocity 
taw). 

Since l [i] is' a subring of IC! each e'tement a. = a +bi in l [i] has a conjug~te 
and a norm. Th~ conjugate of a. =a +pi E Z.[i] is defined to be iX = a - bi 

in Z[i] (a,b E l). Notice that a.l3='= iX if for any a.,13 E l[i]. The norm·N(a.) of 
a+ bi E Z[il is defined by N(a.) ~ a.ai h~nce N(a+ bi) = a 2 + b2 (a,b E l). 

Thus N(a.) is a no~negative integer for. any a. E l [i], and equals .0 if and 

·only if a. = 0 + Oi = 0. Moreover, N(f3y) =·f3y·~ = f3y· if y = 13~ yy =N(f3)N(y) 
., 

for any l},y E l[i]. 

Using this, it is easy to determine the. units in l.[i]. We claim e E l [i] is a 
unit in l[i] ·if and only ifN{e) = I. Indeed, if e is a ~nit in l [i], then e-e-1 ~ I, . 
then N(e)N(e-1) =I, where N(e),N(e-1) are positive, integers.· This. forces N(e) 

= I, as claimed: Conversely, if N(e} = I, then EE = I, where E E zr,iJ. and this 
yields ell, which means e Is a unit. · 

Thus e E a+ bi is a unit if and only if N(e) = a 2 + b2 = I (here a,b E l) and 

a 2 +b 2 .= I if and ~nly if a 2 = I, b 2 = o·or a 2 = 0, b2 = I. Therefore E is a 
unit if and only if E =·I ,-1 ,i,-i, so that l[if = {I,- (i,-i}. The ass~ciates of .a. in 

. -

.l [i] are the numbers 0:, -a., a.i, -a.i. 

· . · - I + ..J) i . ' 2 2 
'(e) We put w = • 2' . _E IC; Thus w = co~ 

3
rr + isin 

3
rr . By de Moivre's 

- 2 . 2rr .. · 2rr · .. ~" -1 - ..J3 i. 
theorem, w = cos2)+ 1sm23 =e. = 

2 
w and 

3 . 32rr .. -32rr I s· 3 I 0 2 . . . w- =cos 3+ IStn 3 .= . ow - = , so (w- l)(w + w +I)= 0. Smce 

w - I pz! 0, we conclude w2 + w + l = 0, which can also be verified directly. 
From w3 =I, we 6btain w4 = w, whence {w 2f + w2,+.1 =·O;· . 

We put l[w] :={a +bw E C: a,bE l} .. One easily checks that l[w] is a 

subring of ·IC and that l[ w I is an integral domain. The closure of l[ w 1 

. under. multiplication f~itows from w2 = -1 - w:' 
. . ' . I 

(a + bw)(c + dw) = ac + adw +.bcw + bdw2 

= ac + adw + bcw + bd( - i - w) 

= (ac - bd) + (ad +be - bd)w 
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€ Z[w] 

,for all a +bw,c+dw E Z[w]. The ring Z[w] was introduced independently 

by C. G. ·J; Jacobi (1804-1851) and by G. Eisenstein (1823-1852) in their 

investigations abo~t the so•called cubi~ reciprocity law. 

Repeating the proof .for i: [i], we see that a + bw E l [ w] is·a unit in ztw]. if 

·and only if N(a + bw) = L This is equivalent to a2 ..:. ab + b 2 = I, so 

equivalent to 4a 2 - 4ab + 4b2 = 4, so to (2a bf + 3b2 = 4. The last equa­
tion holds if and only if 2a- b = +2, b = 0 or 2a..: b = +1, b' = +1 (a,b €' Z). 
)n this ~ay, we geta + bw.= +1, +w, +(-·l w) = +w2; The units in Z[w].are 

+1, +w, +( -1- w) = +w 2; the associates of a: € Z[w] are the numbers +a:, +wa:, 
+( -1 - w)a = +w2a:. . . 

· (f)We putZf"-'Si! =(a +b"-'5; E C: a,b E Z}. Again, it is easily verified 

that Z["Si] is an integral domain, arid a: E Z[:-J'SiJ is a unit if and only if 
N(a) = 1. Now N(a + b~j) a2 + 5b 2 · 1 if and only if a = +1, b 0 .(here 

a ,b E Z ). Thus + 1 are the only u~its in Z r"-'sil and the associates of a 
number a: E Z[..JSi] are the number's '~'a:. 

So . far, the divisibility theory. in an arbitrary integral. domain has been 
completely analogous to the theory in· Z, which culminates in the funda­

mental 'theorem of arithmetic asserting· that every integer, not a zero or 

a unit, can ,.be written as a product of prime numbers in a unique way. 

We proceed to. investigate if a si.milar theorem is true in an arbitrary 

integral domain. First· we introduce .the. counterparts of prime numbers. 

32.7 Definition: Let D be an i!Jtegral domain and a: E D. Then a. is said. 

tO be irreduc'ible if a: is neither zero nor a unit, and if, in any factoriza­

tion a;:::: fly of a:, where f},)' E ·D. either J3 o.r )'is a unit in D. When a:. is nei~ 
ther zero ~or a unit, and when a: is not irreducible in D, a. is said to be 

reducible. 

Ari'A irreducibie clement in D is therefore one which has no proper 

divisors. Clearly, when .a. and J3 are associates, a: is irreducible if and only 
'I . ' . • . 

. if ~ is· irreducible. One mig~t expc~t that' such elerpents be called prim,e 
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rather than irreducible, but the term "prime'' is reser':'ed for another . 
. property (Definition 32.20) .. 

. . . ' . . . . . . 

We now. ask if every nonz7ro, nonunit element in an integral. domain iJ 
• can be expressed as a product of finitely many· irreducible elements (cf. 
Theorem 5J3) Let us try to.argue as in Theorem. 5.13. -Given a e: D (a~ d; 

. not a unitY, a is either irreducible ·or not. In the former case; ·a is. a 
product of. one irreducible element. In the latter case, a = a 1 ~ for some 
suitable proper divisors of a.- Here a i is either irreduCible oi: not. In the: 
former case, a 

1 
is an irreducible divisor ()f i. In the latter case, a 

1 
a 2 ~ 

for some. suitable proper divisors. of a 1• f~ere a_2 is either irreduc:ible or 
not. Repeating this procedure, we get a sequence 

o: = a 0• o: l' a 2, . . • (s) 

of el~ements in D, where o:i+l is a pro~er divisor ofa;(i = 0,1,2, ... ). 

' -
When thee sequence (s) stops. after, a ·finite· number. of steps,· we obtain· an 
irreducible divisor of . o:. ·However, we do .not know that the sequence (s) 

ever terminates. In tile case of Z. the absolute valttes of o: i' which are 
nonnegative integers, get smaller and smaUer and~ since there .·are 
finitely many nonnegative integers Jess than I aL the sequence (s)' does 
come to an ·end. But this . argument cannot be ex_tended to . the . general 
case, for there is no absolute value . concept. Let us suppose, however, 

• - • ' J . 

that there is associated a norinegativeinteger d(o:;) to each o:i in such 'a. 
way that. d ( o: i+ 1) .• < d (o: ;>· If this is possible, we can conclude fhat · 
sequence (s) does terminafe. 

P'or example:, when D is one of l Iii. l [ w ], :i [ ·[5 i], we may· consider the ' 
norm N(o: .) of a.: The norm N(a.) is a nonnegative integer, and also 

l · I . l . , . 

N (a i+ I).< N (a i) whenever. a i+ I is. a proper divisor of. ai. In fact, with the 
norm function, there is a division algorithm in l [il and in l i w ]. 

32.8 Theorem: Let a,~ be elements ofllil (resp. of'l[w)); 1i,ith~ ;e 0. 
Then there are two elements K imd p· in l r il (resp. in ll w I) such that 

a .:~ + ~ and l'{(p) < N(~). . 

Proof-~ (Cf. Theorem 5.3; note th:it .: and p are not claimed to be unique.) · 
The elements a.~ ofllil (resp. of Zl w I) are complex numbers, and J3 ~ 0. 

' . 

Thus a/~ t: I[. Let us write 
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a· . ( a: .. ) 7f = x + yt resp. 7f = x + yw. 

with 'x,y E !iJ:. We want·Ir to be "'approxi'inatciy· equal" t6 !:·, with an 

"error~ l so small that N~~) < L so· we approximate X + yi (resp. X+ yw) 

by an element !: in ll i] (resp. in ll to D as closely as we can. To this end, . 

\ve choose· integers a ,b E l such tliat 
. . I . 

lx- al < 2 
I. 

ly bl,.;;; 2 
. . 

.and put K = d + bi (fesp. K =.a + bw). This is possible since the distance 

between x :uid the !nteger closest to x· is less than or equal to f . When x 

is ha.lf an odd ·integer, there are fwo choic~s for a, and· therefo're there 
I 

can be no hope for uniquenyss. In this case, we have in fact lx - a I ::= 2 
·.at1d the :ipproxinmtion above is the best p_ossible one. The same rem~rks 

apply toy and h. 

·we now put p = <1. K[:l. Then " K(j + p. It remains·to show. that N(%)" < I. 

\\ c li:ne indeed 

{ 
N((x + yi) ,-(a+ Iii}) 

N((x + yw)- (a+ bto)) 

= { N ( (x . a) + (y - h )i) · · 
N((x- a)+ (y- b)w) 

1_ (x - a )2 + (y b) 2 

~x,.. a) 2 - (x _: a)(y- b)+ (y- h) 2 

. { L~ a (.! + I y. - b I 2 

= lx al 2 + !x ally hi +·ly- bl 2 · 

. (1/2)2 +·(1/2)2 . . 

,:;;; { (1/2) 2 +(1/2)(1/2)+.(1/2) 2 

{ 
2/4 

3i4 < I. 

This cornpkt.:s the proof. 0 

What happ<:ns in li--J .'iii? For a,b 'E ll--JSil, f:l ;r. 0, we write F"' x + y..JSi, 
with x.r € .-.. The best approximaticn to rj~ K ~a·+ b 5i, wherea,b 
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are integers such that lx - a I 
i . 1· . 
2, ly_- bl ~- 2 . Put~ing p · a. - JC j),. we can 

conclude only _- . . . 

N(~) =N(a.,.I3JCI3) '= N(f-'K)= N((x- a) +(y . b),}Si) 

= (x- a) 2 + 5(y- b)2 ~ {1/2)2 + 5{1/2f = 3/2 (t) 
~ . 

insteadof N(~) <1 as in Z[i],Z[w]. _ 

32.9 Theorem: In Z I "5i],' tlzere: are elements a 0 .'13 0 with flo ·;;c 0 Sitch that 

. N(a.0 -~efl0) > N(l30) for all~e E: Z[,}Si]. . 

Proof: We chotise a: 0 ;fl 0 in such a way that.equaHty holds in (t) above. · 

This wili be the case_ when x andy nre half odd integers. So we set d0 

I +,JSi, flo 2. Then, forany .: a + b,)Si E: Z[,JSi] (with a,b E: Z), we have 

. N(a0:..JC~ 0) __ N(I30)Nt0~: 130) =N(I30)N(;~ ~e)= N(130)N( 1 +~i -(a+ b,JSi)) 

N(j)0)[<f-, a) 2+ 5(I b)2
] > N(fl0)[{1/2)2 + 5(1/2)2 ] = N(j) 0)}; N(l30 ), 

as claimed. 0 

The . integral domains ·on which there is a division · algorithn1 . are ·called 

Euclidean domains. The formal definition is as follows. 

32.10 Definition: Let D be an integral domain: D. is called ·a Euclidean 

domain if there is afunctiond: D\{0} -+ N u {0} ~.z such that 
(i) d(a)~ d(aj)) for all a,j)-E: D\{0}, 

(ii) for any O:,j) E: D\{0}, there an; JC~p E: D ·satisfying 

a:= Jej) + p. and· p = 0 or d(p) < d(f:)). 

The first condition (i) assures that the d-val~e of a divisor of y E: D\{0) is 

less than or equal to the d-value of y: ·I{ follows that. d(p) = d(p ') when­

ever p and p • are associate. Using (ii) . repeatedly, the analog of the 

Euclidean algorithm is seen to· be valid, and the last nonzero remainder 
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is a greatest common divisor. It will :be a ·good exercise for the readei to 
_I 

prove this result. . 

l. is a Euclidean domain, with the absolute value furiction working. as the 

functi~n d of Definition 32.10. This foli~~s from Theorem 5.3, with. b 

replaced by lbl. Also, l.[i] and l.[w] are Euclidean dm:nains, with the norm 

function working as the function d of Definition 32.1 0, as Jheorem 32:8 

shows. On the other hand, we do not yet know whcth~r l. [./5 i] is a 

Euclidean domain. It d~es not follow from Theorem· 32.9 that l. [./5i] is 
not Euclidean. From Theorem 32.9,. it follows· only that either l. [./5i] is. 

' not Euclidean, or l. [./5 i] is a Euclide~n· d~mairi with a function d that is 

necessarily distinct from the . norrri function. 

In a Euclidean domain 0, th~ sequence (s) termin~tes after a finite num­

ber of st~ps .. We_ shall. prove a m~re general- statement (Theorem 32.14). 

Recall that {~a E D: ~ E ~} = D a, where a E D, is the· principal ideal gene­

rated by a (Example 30.6(h)). 

32.11 Theorem: If D is a Euclidean domain, then every ideal of D is a 

principal ideal. 

Proof: Let D b,e a Euclidean domaif}, and let d be the ·function of Defini­

tion 32.10. For any .iqeal A of D, we must find an a such that A = Da. We 

argue as in Theorem 5.4. 

When A = {0}, we clearly have A =DO, and the claim is true: Assume 
now A ~ {0}. Th~n U = {d(a)·E. N u {0}: a E ·A·, a-~ 0} ·is a nonempty 

~ubsct of the set of nonnegative integers. Let m be .the ~mallest integer 

in U. Then m = d(a) for some a E A, a ~,0; and d(a) ~ d(f3) for all f3 E A, 

f3 ~ 0. 

We show that A = Da. First we have Da k A, because a E A and A has the 

"absorbing" property. To prove A i;Da, take an arbitrary y fromA.There 

are K,p E D such that, 

y = Ka + p, p = 0 or d(p) < d(a), 

· provided y ~ 0 (Definition 32.10): Now a E A, so K a E A, and since y E A 

as well, we sec that p E A. Here d( p) < d( a) is impossible, for. then d( p) 

in· U would be less than m, which ·is the smallest number in U. Hence 
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necessaril:: p = 0 andy = ;: D c:. ·This shows i' <: D.:: for alf y .:: .4. rroc 

\'ided i' := 0.-Since 0 = Oa .:: Da as·well. we get A:;;. Dc:. Thus .4 = D~~· ..., 

32.12 Definition: An· iniegral- domain Dis calle.d aprincipai id1.,1i cf.-.m,;f•i 

if every ideal of D is a principal ideaL 

" ·.' 

With this terminology. Theorem 3::!.11 can· be reformulated as follows. 

32.11 Theorem:£\·ery Euclidean domain is .a principal ideal -dt-n;jin·. 

. ; . . - . . 
In any int~gral domain. a i ~ if and only -if D p :;;. D a.. and a "" p if and only if 

D a = D ~. Thus the sequence ( ~) :gi\'eS rise to the chain 

Do.~ Da.0 ;; Da. 1 :;;. Do.~ r;. ... 
of prinCipal ideals in D. The sequence· ( s J breaks dO\\·n if and only if. this 

chain of ideals . breaks dow~. For principa·r. ideal domains. this is always 

true. 

32.13 Definition: Let I5 be~an integral domain. D is said to saris])· rhe 
. ascending·. ci:din condition. (ACC). if. for e\'erv chain 

i . '. - . ' 

Aot.Al ~A2;;.A3;;. ... 
of ideals in D, there is an index k 'such thar Am = Ak for all m ;;;;:. ·k: or. 

what is the same, every chai'n 

B0 c If c f!. c 11 · c ... -

of ideals in D consists of Ji~itely many terms: An integral domain satis­

fying the ascendi-ng chain co,ndition is also called a noe'r11erian domain 

(in honor' of Emmy Noed1er (Issi-1935)). 
! -

Theorem: £;·ery principal_ Ideal domai1r satisfies rhe ascentii1!g 
' . ". 

32.14 

chain condition (is noetherian). 



Proof: Let D be. a principal ideal dQmain mid let-

. Ao Ai ~::·A2!; .. A:d;; ... 
be a chain of ideals. of D. , We mus!'' show there is an integer k such that: 

A~ =A,t for all m ;;;. k. To this eng; we· putS·:= i'dt Ar We claimB is an 

ideal of D. Indeed, if a!f)E· B-, then a E 'Arf) E- A1 for. some indicesj,l. 
Assuming .j < [-without loss of generality, we have k ~ Ar Since A 1 is an 

J . . . 
ideal of D, we: have a + ~ € A1, so a+ f) € 8. Also -a E A1, so a E' B. This· 
shows that B_ is a subgroup of D ·under addition~ Finally, if 5 is qn 
arbitrary element · of D,. . then 8 a E A I' si_nce A 1 is an ideal, so 8 u E B. 
Hence B is· an ideal of D. 

Since D is a principal ideal domain, B ·= D K for some K e D~ As K = l~e E D K 

• m~ 

=B == U A.; we see K·€ A,, for some k. We claim A =A,, for all m;;;. k. 
l= 1 l ~ ' . m ~- , 

We know ttiat Ak !; Am for ·all m ;;;. k. because _each· ideal in the chain is 
contained in the. next one (the chain is. ascending).. On the ·other hand, 

for any m .;;;;,: k, we have Am!;; i';!l Ai=B .·D.;~ Ak, because ~-E Ak and Ak 

is. an .ideal. of D. Thus Am = Ak for all m ;;;. k, and lJ satisties the ascending 
· chain condition. o 

Using Thcorein 32.14, we shall prove the analog of Theorem 5.13 for any 
a~itrary princip.al idc:il domain. 

32.15 Theorem: Let D be a principal ideal domain. Then every element 

of D tl!at is neither zero 'nor: a unit can be exressed as a product of 

finitely maily irreducibfe elements of D. 

Proof: First we prov.e that every clement u in D, wpich is neither zero 
nor .a unit. ha:-: an irrcducij)le d_ivisor in D. Let a ·€ D, u ;z; 0, u ~ unit. 
Arguing as .on page 366, we get a sequence 

(~ o: 0, o:l' a 2, ... (s) 

of elements in .. /), where o: i+ 1 is a proper divisor of u i (i = 0,1 ,2, ... ) ... In 
particular, none of the a. i is ~~-. Ullit. This sequence gives rise. to the 

ascending · chaii1 
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of ideals of'D (here D'a.iC Da.i+l because a.i+l is aproperdivisoi of a.i). 

Since.D is· noetherian (Theorem'32.14), this chain breaks ofLthe chain 

consists only of the ideais 
Da. = Da.0 c Da. 1 c D'u-2 c > .. c Da.k 

say. Hence 
. a. a.Q, a. I' 1}.2' ••• ,a. k 

are the only elements in. the sequence (s). We claim, that a. k ·is irn!dudble­

in D. Otherwise, there would be proper· divisors a. k+ 1 and fl k+ 1 of a. k whh -

a.k = ak+lflk+l' and the sequence (s) wouid contaitl the term. a.k+ 1 after ak, 

and wo_uld not terminate with the term. a. P a cOntradiction. Hence a. k is 
an irreducible divisor of a.. We proved that every element. a in D, which 

' • I . ' 

is neither zero nor a unit~ has. an irreducible divisor in D.· 

Let fl· be an arbitrary. nonzero, non unit element. in D. We want to show 

that fl can be written as a product of finitely many irreducible elements 

in. D. By what .we .pr_oved ·*bove, we k~o~ that fl. has an irreducible 

·divisor, 11' 1 say. We put fl = ,.;;1 fl 1• Here fl 1 ~ 0. If fl 1 is not a unit, then fl 1 
has an irreducible divisor, 11' 2 ~ay. We put p1 = l1' 2flr Thus 'p = 11' 1 11' 2 ~ 2 . Here 

f.l 2 ;z! 0" If f,l 2 is not a unit, then t> 2 has an irreducible divisor, 11'3 say. We 

put P2=11' 3f)3.Thus P =l1' 1 ~ 2 11' 3 ,S 3 • Continuing in this way, we get a 
· sequence 

p T Po• flp p2' P3 .... 
of elements in D inducing a chain 

· DP "': DP0 ;<:: DP1 c Dt>2 c Dp3 c ... 

of ideals of D. By Theorem 3:i~ 14, this chain is firiite, for example 

. Dp~DP0 c~P 1 c DP
2

c Df,}3c~.~ c D.f,lk .. 

We claim fl k is a unit. Othe~ise fl k would have an irreducible divisor 

lt' k+ 1 an_d, when we put 13 k = ~ k+l 13k+ 1, there would be, in the chain. an 
additional ideal D 13 k+ i containing D f) k properly, a contradiction. Thus 13 k ·is 
a unit. Then . '. . 

13 = l1'111'21t'3 ... 11'~-llt'kl3k = 11'111'211'3 ... 11'k-1(11'kl3k) 
is a product of the irreducible_~elements.1fpl1' 2,11' 3 , ••• ,11'k-l'l'l'kl3k. o -

Having established the analog: of Theorem 5.13, ·we proceed to work out 

the counterpart of Eu~lid's lemma (Lemma 5.15). For this we need the 
notion of greatest common divisor ... 
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32.16 .Definition: Let D be an -arbitra,ry integral domain and let a ,1':1 € D, 

not both zero. An element S of D is· called a greatest common divisor of; a 

and 1':1 if 

(i) Ol ex and oll':l. 
(ii) for all S1 in D, if o11u and S111':1, 1 then S11S. 

Notice that any associate of S above satisfies the same conditions and 

hence~ any associate of· a greatest common diviso~ of a, and 1':1 is also a 

greatest' common divisor of ·a and IL It is seen easily that any two great-

.. est common di~isor of a and 1':1, if a and .1':1 have a gre~test. common divi~ 
· sor at all, are associates. So a, greatest. common d.ivisor of a and 1':1 is not 

uniquely det_crmined and we have to say a greatest common' divisor;-·not 

the greatest common divisor. 

We let (cx,f:l) stand for any greatest common divisor of ex and fl. Thus (u,l':l) 
is· determined uniquely to within ambiguity amo~g associate elements. 

Althoug,h we defined a greatest common divisor· of. two elements in an 

integral domain, this do~S not f!lean, Of COUrse, _that any two elements 

(not both zero) in that domain do have a greatest cofnmon divisor{ 
. . 
Introducing a definition_ docs not create the definiendum. Given two ele-

ments (not both zeroj in. an integral domain, we cannot assert that they· 

have a greatest common divisor. As a matter of fact,. in an arbitrary 

integral domain, not. every pair of elements (not both zero) has a 

greatest common divisor. For the special class of principal ideal domains, 

hc>wever, the following theore.m holds. 

J2.17 Theorem: Let D be a principal ideal domaiiz and let a ,1':1 he arbiF 

rarv clemcllls in D. not both of the_m being zero. Then there is a greatest 

comm01i divisor of a and fl in D .. Furthermore, if Sis a greatest .colnmon 
tli I' is or o{ u ami fl, then there are !;, 11 E D s-uch that 8::::: a~ + 1':111. 

l'roof: (cf. Theorem 5.4) As in the proof of Theorem SA, we consider the 

set A:= !a~+ fl11: ~.11 € D}.;\ is a nonem£lly subset of D. We claim that A is 



. . . . . 
an idealof D. To prove this, let,yl' y2 be arbitrary elements of A. Then y1. = 
o:~1 + till1; y2 o: ~ .+ ti112 for some !;1, !;2, 11p ll2 E: D. Hence 

Yt + Y2 (o:l;l +till!) + (o: !;2 + till2) = o:(!;l + !;2) + ti(IJI + .IJ2) E: D 

-yl -,(o:l;l .+ till!) a( -'!;1) + 13(-1)1) E: D 
I ' • • • 

and therefore A is a su~group of D under· addition. Also, for' any K E: D, 

K}'~ K(o:!;1 7- till1) o:(Kf;j)+ ti(K11l) E: [) ' 

and thus k has the "absorbing? property as well. So A- is an ideal ofD. 

Since o:, ti are .not both equal to zero, A·;= {0):. NowD is a prinCipal ideal 

domain, so. A =Do foi some".o E: D, and A ;= · (Ol implies 8 .;= 0. Also, since 

o = lp E: Do A, ·there are ~·Do. E: D with o = o:So +~llo· We prove. now that o 
. is. a greatest common divisor of 0: and ti.. . 

(i) · o: = o:l + tiO E: A=. Do,_ so o: = KO = oK for s~me .: E: D. Since 

. we have o ;= 0, we_ can write 81 o:·. Likewise ol ti. . . 
(ii) If o1 .E: D and o1la., o11ti •. then 811 o:~+ tiflo. hence.o110. 

·- - . ' 

Thus o is a greatest common divisor of o: and 13. find o = o:So+~llo for some 

So; llo E: D. The proof is complete. . o 

In a principal ideal domain D, we see that Do: + D 13 = D ( o: ,ti) v;henever 

'o:,l3 ·~ D are not' both, zero. Either from· this remark, 6r better from Defini­

tion 32.16, it follows that (~,13) = (~,o:). When (o:,ti) ,.,· 1, w~ say o: is. 

relatively prime to 13, or a and 13 are relatively prime. In this case, thei;e 

are !;, .ll in D with o:!; + f'll = 1. -. ' 

32.18 _Lemma: Let D be .a principal ideal domain and o:,l3,y,1T E: D. 
(l)1fylo:13 and (y,a),; 1, then yl13. 

(2) lfrr is irreducible and JT.to:, then (1r,o:)"" L' 
. . . 

Proof: (l) If(y,o:) ,,.,; I, we have y!; +·a!)= 1 for some ~. ll € D. Hence y~~:+- a1311" 

·= 13. Now yly13~ and yl<i13, soyjy~!; and ylo:131), so yJ yl3l;+ o:j31), so yl13. . . 

. . . . . 

(2) Let rr be irreducible~ Then rr ;= 0. So (1r,a) exists by Theorem 32.17, Let 

o be a greatest common divisor· ~f rr and a. Th~n ol1r. Since rr. is- irre-
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· ducible, either o is associate to rr, or o is· a unit. In the first case 8 "" rr. we. 

get rr I a (since Sl a) against our hypothesis- rr 4 ~. Thus 5 is a unit and 5 "" 1, 
as claimed. 0 

: ... 

32.19 Lemma: Let Db~ a pri~cipdl ideal domain and a,f.\,rr E: D. Jfrr is 
irretlucible and rrl a f.\, then rd a or rrl f.\. 

)•roof: If rrl a, the lemma is. true. If rr t a, then (rr .~) "" . I by Lemma 32.1 8(2) 

mid. so rrtf.l by Lemma 32.18(1). with rr in place of y. o. 

32;20 Definition: Let D be an 

zero or a unit, and if rr has the 
/ . . 

· -for all a,f.\ E: D, 

arbitrary integral domain. If 'rr E: D is not 

property. that 

rrl a f.\ ==*. rrl ~ or rrl f.\. 
then rr is called a prinie element in .b_ · 

In an arbitrary integral dmnain, all prime element~ are irreduciole. In­

deed. let rr be prime. Then. rr is nqt zero or. a uri it by definition. We show 
that rr iuis no p~oper divisors. Suppose ·rr u f.\. Then rr I a 13. and therefore· 

rrlu. or.rrlfL Withou~ restricting generality, let us assume_rrla: But alrr as 

' well, so rr_"" a and f.\ is a unit. Thus·rr admits no proper factorization and rr 
is irreducible. 

The con verse of' this· remark is not true .. That is to say, in an arbitrary 

integral·· domain, there may. be irreducible elements which are not prime 

(sec Ex. 13 ). Lemma 32~ 19 asserts that irreducible and prime elemenis 

_ coincide in a principal id.eal domain. This is· the basic r~ason why, there 

·turns out t~>. be-. a unique factorization theorem in. principal ideal do- . 

mains . 

. U.21 Lemma: Let D be wz arbitrary ideal domain and al'a2, •• ; ,an,rr e: D . 

. ff'rr is p/·ime ami rrl u1 i~ 2 •• • .c!n• then rrl a1 or rrl ~or ... or rrlun. · 

l'nwf: Omillcd. 
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32.22 Theorem: Let D be a principal ideal. domain. Every element of D .. 

which is not zero or a unit, can be. exp~essed· as a product 'of irreducible. 

eleme1lts of D in a unique way, apart from the orde_r of the factors and 
. the ambiguity among· associate elements . . 

Proof: (Cf. Theorem 5.17.) Let a f. D, a ';z! 0, a ';z! unit. By Theorem 32.15. a. 
can be expressed as a product of irreducible elements of D. yVe must 
'show uniqueness.· Given two. decomposition~ 

of 0: into irreducible .elements, we must show r"= s and 11';,11'2, ••• ,11', are, in 

some order, associate to ol'o-2, •• • ,as. This will be proved. by induction on r . ... 

First assume r..= 1. Then tt1 ==a o1o2 • .. os, so a is irreducible. This forces s 
= 1 and ll'1= a= a 1• This proves the theorem wheq· r = l. 

• f • • 

Now assume r > 2 and that the theorem is proved for r - 1. This means, 
whenever we have an equation 

with irreducible tt', o ', there holds r- }; t and tt1 ', ll'i'· ... ,tt,_i are, in 
some order, associates of crt'· o2',; .. ,cr/. 

We have ll'1ll'2 ... 11', =a= o 1o2: .• as. So rr,la. So tt)cr1o-2 .•• as. Now tt, ·is prime 
by LeJ;llma 32.19, and so n)crifor somej f. {1;2, ... ,s}. (Here we use the fact . 
that irreducible elements are. ,prime in a . principal ideal domain. The . 

. conclusion rr)oj is not valid ii1 an arbitrary integral ~omain.) Reordering 
the o 's if necessary, we may· assume rr lo . Since o is irreducible; o has 

· T S S S 

no proper divisors. H~nce the divisor rr, of o s is either a unit or an · 
associate of o s· But tt, is irreduCible, so not a unit. Therefore ll', and o s are 
associate. So rr, Eos for some unit E f. D. Then we_ obtain 

rr1rr2 ... rr,_ 1(Eos) =a= o-1a2 ... os 

rr1ir2 ... (rr,_1E) =: o1 o~ . .. os-l 

and by' induction, we get 
r--I =s 1, 

ll'pll'z, ... , (ll'r-lE) are, in SOme Order, aSSOciateS Of Ol' cr2, .• ·., Os-l' 
. ' " . .. 
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I Ience r=s i 

. . . ; 
and rr I' rr2, ••• , rr,_ 1_ are, in some order, a·ssociates of a p· a2, ..... as- I;, . 

and- rr, is associate to a r l'his completes the prooL . . o 

32.23 ·-Definition: Let D be an integral donmin. I( every element of D, 
which is not zero or a unit, ·can be expressed as a product of finitely. 

manyc irr~ducible elements of D in a unique. way, apart from the order of 
the factors and the ambiguity among associate elements, then D is called 
':1 uniqUJ! fact~rization dom~in. ':'· · 

Wi.th this definition, Theorem 32.22 reads as follows. 

32.22 Tticorem: Every principal ·ideal domain is a unique factorizaiion . . . 
domain. In particular, every .Euclhjean domain is a unique factorization 
di;nwin. o 

We generalize Lemma 32. I 9 to unique factori~ation domains. 

32.2-1 Lemma: . Let D be a unique factarJzation domain. Then every irre­
ducibje e!em~nt of D is, prime. 

J>roof: !.et·;r be jrreducible in D and rrl a~. where a ,f) E. D. Thus there is a 
yE f) with rry = o:J). Then 

where E, .. E', ~::"are units and 1ri' 1r/, 1r/' are irreducible elements in D. 
Ffom the uniqueness of the decomposition 

" -- ~ 

we see that rr ·must be associate to or.c of ·the irreducible clements rr/ ·or 
:'r1 ", Tl1us ;r divides a or J). So rr is: prime. , . o 
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There. is the followin'g ·generalization of Theorem 32.22. If D is an integral· 
·domain in which every ~on'zero, nonunit element . c~n be written as a 

product ·of ·finitely many irreducible elements, and if every irreducible 
element in D is prime, then·D is a unique factorization domain. The proof 
of Theorem. 32.22 is valid in this more gen~ral case .. 

In a unique factorization domain D, ariy two elements <X,t\ (not both zero) 
have a greatest common divisor. Clearly <X,.; (a,tl)if 1> 0 and[)"' (a,[)) if 
a = 0; and if a ~-a_~ 1}, then a= e1rt' 11r2m2 ••• rr,m, ,and tl. = e)

1
n11r2n2 ••• rr/' 

with suitable. units e,e ', irreducible elements rrl' 1r2, :. :, rr, and nonnega­

tive intege~s ini' ni' and it is easily seen that· y = rr/•rr/2.;.rr/', wqere ki 

min(mi' ni}, is a greatest common divisor o(ci and fl. Thus (a,tl) exists in 

any unique factorization domain,. provided only d., 1> are not ~oth equal 
to zero. However, in an arbitrary unique' factorization domain,- (a,tl) can­
not, in general, be expresse.d in the_ form a I; + till. 

There are . unique factorization domains which are riot prinCipal idear 
domains and· there ~re principal ideal domains which are not Euclidean 
domains, 

32.25 Theorem:Let D be a principal ideal domain and let 1r € D be a 
. nonzero, nonunit element of D: Then 1r is

1 
irreducible if and only if the 

factor ring D/Drr is a· field. 

Proof: D/Drr is a commutative. ring with identity 1 + Drr (Example 
30.9(c)). Su.(lpose rr is irreducible. We are to show that every nonz~r.o 
element a +Drr of D/Drr has an invers~ ~n D/D1r:Let a +Drr be distinct 1 

from the zero elemen't 0 + Drr =Drr of D/Drc_. This means a. !l Drr, so rr{a. 
Since 1r is irreducible, we obtain (rr,~)"' 1 from .Le~~a 32.18(2), and there 
are therefore j},y in D such that rrtl.+ <XY = 1. So ay - 1 € · Drr and· 

(a+ D'rr)(y + Drr) '= 1 +Drr.. 
1 

Thus y + Drr is aninverse of a:+ Drr • .This pr?ves that D/Drr is a field. 

We . now prove · th~i. if rr is not irreducible, then D (D rc i·s not a field. 
Indeed, if rr i~ 'not irreducible, then ·rc ::;: a t1 for some· <X ,tl € D, where 
neither a nor t1 is ,a uriit. Here. rrl <X and,. in view of this, al rr would ._imply 
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that lr_ "" a ; then ll would be a unit •. a conttadiction. Hence ~ hx and i · 
·. · . . • i . · - I 

likewise lrU!. So a e: Dn: and lS e: Dlr, so a + Dir ~ 0:+ Dn: ~ ~ + Dn:, but 
. (ex+ Dn')(~ + Drr) =a~+ Drr = ~ + Drr 9 0 + Drr':= zero element or D/Drr_: 
Thus ex +Drr'and ~ +Dlr are zero divisorsin.D/Drr and D/Drr cannot be a 
ficli ! . .0 

Exercises 

L L~t D be air integral domain arid rr ED·. Prove that rr is a prime element . 

of D if and i:mly if Die is a prime-id~alor D. (see §30, Ex. ll ). 

2. Let D be a principal ideal .domain and rr e: D. Prove that X. is an irre- · 
ducible element of D if and only if Drr. is a maximal ideal or D >(see §30, 
Ex. 12); 

3. Sh~w th~t Z[...fd) := {a+b{d e: ~:·a,b e: Z} is· a Euclid~an domain when. 
d 2,3,6. 

4. Show that Z[...f2i]. := {a + b:-/21 e: C: a,b e: l} is a Euclidean domain .. · 

. .· 1+...f7; . . -
5. Let e = .-2-. -. Show that Z[e) := Ja + ba e: C: ~.be: l} is a Euclidean 

domain. 

· . , . 6. Let D be a Euclidean domain, with. the function d as· in ,Definition 32.10. 

Prove· that t e: D is a unit ifa~d only if d(~) = d(l ). . 

7. Find the deCOJI!position inter irreducible ~lements of 2 in .z {i] and of 3 

·in l!wJ.. ·•'" 
. ' . . • 'It· 

8. Letp e: N be an odd. prime number; Prove that (i) p i:.: p + Oi e: Z {i) is 

prime in Zl if in case x~ a-1 (mod.p) has no solution and (ii) p ·e: Z (iJ is not 

prime i~ Zl i), and in Jact p = a a with a suitable. pnme element i.x of Z [i], 

in case x2 (mod p) has a soiution .. 

9. Let (J E Z[il, Show that Zli.Jicxllil has exactly N(a) elements. 

I 0. Using the Euclidean afgorithm~ find a sreatest common divisor of 
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3 + Si and 2 +.3i; and of 14+ 23i and 11 + 44i in•Z[i], 

11. 'Prove: an integral domain is a principal ideal domain if and only if 

there is a function d.: D\[0} -+ N u. [0} l: Z satisfying 
(i) d.(a) <;; d(JS) for any CliP € D\(0} with alfS, .and d(a) = d(JS) if .. 

and only if a A< JS: . . 
(ii) for all a,fS ~· D\{0} with atfS and Pta; there are l', K, p €. D 

such that~ l'a = KfS + p and d(p) < lniJ1[d(a),d(JS)}. 

12. Let A= 
1+~~ .. Show ._that Z [A] := {a+ bA € c;: ·a,b €.' Z} is a principal 

ideal domain, but not a Euclidean domain, 

13, &ove that 2, 3, 1 + fSi, 1- '15_i are irreducible in Z [...J5i]. Show that 2,3 
are not associate to t· + ...J5 i, i - ...J5 L Hence there are two essentially 
distinct decompositions 
- - 2·3 = 6 = (1 + f5i)(l- {5i) 

of 6 € Z[fSiJ and therefore Z[...J5i] is not a unique factorization domai~. 
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§33 
Polynomial Rings 

The reader is familiar with polynomials. In high school, it is taught. that 
expressions like 

xl +~-1x+ 1 

are polynomials. One learns how to add, subtract, multiply and divide 
two polynomials. Although one· acquires a working. knowledge about· 
polynomials, a satisfactory definition of polynomials is hardly ·given. In 

· this· paragraph, we give. a rigorous d~finition of polynomi~s. 

Polynomials are trea~d in the calculus as functions; For .example, 
x2 + 2x + 5 is considered to be the function (defined on R, say) that maps 
any x e I( to x 2 + 2x + .5. With this interpretation, a polynomial is a 
function and x is a generic element in its domain. 1'be equality of-two 
polynomials means then the equality of their domains and the equality 
of the function values ai any element in their domain.:. . 
. . . . . 

- . 
This is a perfectly sound approach,- but it will prove convenient to treat 
polynomials differently in algebra. We propose to define the equality of 
two polynomials as ihe equality of their corresponding coefficients. This. 
definition is motivated by th_e so-called comparison of coefficients. Note 
that this definition of equality does not involve x at all. Wliatever x may 
be, it is not relev~t to the defipition of equality. Nor is it relevant to the 
addition and multiplication of two polynomials. So we may forget · about 

. x completely.· We then deprive of a polynomial a~ +a1x + · · · + anxn of the 

symbols x'. What remains is a finite number of coefficients and"+" signs; 
The '·'+" signs c~n be thought of as connectives .. Then a polynomial is 
essentially a finite number of coe(flcients~ This leads to the following . · 

. definition. · 

33.1 Definitions: Let R be a ring. A sequence 
'l= (ao• .al' Oz• ••• ) 



of elements a
0

, a1, a 2, ••. ·in .R; where .. only finitely many of them are 
distinct from the zero element of R, is called a po,lynomial over R. 

The terms a0 , al' a2, ... are called the coefficients of the polynomial f 
(a

0
, a"a2, •.. ). The term a0 will be referred to as the constani term off .. 

Two polynomials f (a0,a1,a2 , • •• ) _and g = (b0,b1,b2, ••• ) over R are 
declared .equa} when they are equal as sequences of course, thatJs to, · 
say, when ai = bJor all i = 0,1,2,... In this case, we write f= g. Other~ 

. .wise we put f;r! g. 

Iff= (a0,a1, a2, •.• ) is a polynomial over R, there is an index d such that 
a

11 
0 E R whenever n.> d. Jf.the coefficients a0, a1, a2,· •••. are not all 

equal to zero, there is an· index d, uniquely determined by f, such that 
ad ;r! 0 and a

11 
·= 0 f~r all n > d. This_ index d is called the degree· off. We 

write then d = deg. f. If d is the degree off, then ad is said to be the 
leading· coefficient of f. It is the last nonzero c~efficient of j. If R happens 
to be a ring with identity· I and if-/ is a polynomial over R . with leading 
coefficient equal to l, then f is called a monic polynomial. 

A polynomial of degn;e one is called a linear polynomial, one ·of degree 
two is called a quadratic polynomial: of!e of degree three is. called a cubic · 
polynomial, one. of degree four is called a biquadratic or quartic 
polynomial and one of degree five is called.'a quintic polynomial. 

The polynomial 0* = (0,0,0~ ... ) overR·. whose terms are all equal to the 

zero element 0 E R of R, is called the zero polynomial .over R. The leading 
coefficient and the ·degree of the zer? polynomial are not defined. The 

leading coefficient of any other polyn9mial is defined. The constant term 
of the zero polynomial is defined, and is 0 E R. 

Notice thilt indexing begins with 0, not with I. For example, , 

(1,0,2,5,0,0,0, ... ) is a polynomial over l. of degree 3, not of degree' 4 .. Its 
constant term is E 7_, leading coefficient is 5 E l. 

33.2 · Definition: Let R be a ring and h~t 
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be two polynomials over R. Then the sum .off ana g, denoted by f+ g, .is 

the sequence 
. \ ' 

· ·· f + g ,; (a
0 

+ b
0

, a
1 
+ b1, a2 + b2, ••• ) 

obtained. by termwise addition of the coefficients .. The product off by g, . 

denoted by f g or· by fg, is the. sequence 

fg == (co;cl'c2, ... ) . 

wher_e the terms c E R are given by 

CO;:: aObO 

cl aObl + albO . 

. c2 = a0b 2 + a1b 1 +a2b 0 . 

c3 'a0b3 + a1b2 .+a2b 1 + a3b~ 

Ck ::: ~Obk +a 1hk-l + a2bk-~ + · · · + ak_2b2+ ak-lb! .+ akbO . 

To fin~ the k-th term-ck fnfg, we multiply all a's·with all b's in such a 

way that the stirn of the indicesis k, and add the results. We write c1: = 
k 
2: aib k-r The summation variable runs through .. different values for 

' i=O . . 

. different k's (thro,ogh 0,1,2,3 for k ~= '3, through o,i,2,3,4,5 fork =. 5, etc.). 

It wilL be . convc_n_ient .to· write c... v a .iJ .·, it being. understood that· i . and 
'' ."-!I) . . 

.· i+f;;.k ' ' 

j run through nonnegative integers in such a W<}Y that their sum is k. · -

33.3 Lemma: Let R be a ringa:-d let f =. (a0,a1 ,a2 , ... ) and g = (b
0

,!;
1 
,b

2
, ... ) 

be drbitrary. polynomials over R. Let 0'~ = (CJ,O,O, ..• ) be the zero. poly· 

no mid over R, 

(l) f+ 0* = j and 0* + g =g. Also JQ* = 0* and O*g = 0*, 
(2) J'hesum.f + g. i:'i a poly,iomial_ o~er R. Jf deg I= m and de'g g = n, then 

'· 
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_deg(f+ g)= max{m,n}. ' in: case m ~- n, 

deg(f +g)< m in case m~= nandf + g ~ O*:. 
(3) The product fg ·is a polynomial· overR~ Jf,deg f = m a,nd deg g = n, 

then 
deg fg < m+ n 

deg jg = m + n . 
, in case fg ~ 0*, 

in case R has no zero divisors. 

Proof: (1) The ~ssertions f +O* ;.]'and o* + g =g. are. hpmediate from 

the definitions: I+ 0* = (a0,al'ti2, ... ) + (0,0,0, ... ) = (a0+ O,a1 + 0,~ + 0,: .. ) = .. 
. (a0,a!'a2, ... ) ;f and similarly 0* +'g =g. Also, the k:..th coeffici~nt of ]0* is .. 

a00+ a10 + a2o + ··· + akO = 0 + 0 + 0 + ··· 1- o·= 0 by Lemma 29.6, for .any 
k. Tlik proves JO* = 0*. Likewise O*g :::: 0*~ 

(2) We must show that f + g has only finitely many terms . .distinct from 

. 0. We prov~d it in part (1) whenf= 0* or g ~ 0*. Now we assumef~ 0*~ 
g. Then f and g have degrees. Sup()ose def f = m and deg g = n, so that 
a ~ 0, a = 0 for all r > m and b ·~ 0, b = 0 for all r > n. m·r- · n .r· .· 

If m < n, then/+ g = (ti0 + b0, a1 + bl' .',.,am +bm~ bm+l' ;~ .• b,., 0, 0, 0, ·~·>· 
So the ·n-th ter_m inJ+ g is b ·~. 0, and .the later terms are a +b = 0 + 0 =. n · · . r . r ·. · 

· 0 for r > n > m. This shows that f + g is a nonzero polynomial and · 

deg f + g = n = max {!1';n) . 
. ' 

If n < m, then f +g = (a0 +b0;a1 .+b1, ••• ,a,.+ b,., an+l' ... ,a~, 0, 0; O, •.. ). 
So the, m-th term in I+ g is am ~ 0, and the later terms are ar + br = 0 + 0 
= 0 for r > m > n. This shows that f + g is . a nonzero polynomial . and · 

deg f + g = m = max{m;n}. [Qllestion: wliy cannot ~e combine the two 
· cases m < n and n < m into a single ·one by assuming m < n with·out 

loss of generality?] 

If m = n, then/+ g = (a0 + b0, a1 + bl' ... ,am+ bm,_O,O, 0, ... ). Th~ r-th term 
in/+ g is ar + br = 0 for all r > m. This shows _that f + .g is a polynomiaL 
Either it is the zero· polynomial, or it is not the zero polynomial. In the 

latter case, the. nonzero terms in f + g have indices ..:;; m. In particular, 

the degree off+ g is < m. (More exactly, deg f+ g,; m,ifa + b ~ 0, and · . . . · · m m . · 
deg f + g < m if am +bm 0.) 

(3) To prove that the ~product fg is a polynomial over 'R, we must show. 

that fg has only finitely many terms distinct from zero .. We proved it in 
part (I)' when f 0* or g· ,;. 0*. Now we assume f~ 0* ~g. Then/ and g 
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have degrees.' Suppose def f=·m ;md deg g =·n, so that am~ 0, ar ;;: 0 for 

all r >. m and bn;: 0, br.·= 0 for all r > n. 

LP ibj. Suppose now 
i+j=k" 

k > m + n. If i + j = k, then either i > m orj > n (for i < m and j < .n 
implies the contradiction k = i + j..;; m + n < k), so·either ai = 0 or bj = 0 . . . 

for each one of the summa~ds aibj in ck = L a ;br So each. summand is 
.. . ' .. i+j'=k . 

either Db.= 0 or a.O· = 0 by Lemma 29.6 and ck = 0 + 0 +- <· · + 0 = 0. This 
J I • . . 

shows that ck = 0 for all k'> m + n .. Hence fg has at most m + li terms 

distinct from 0 and fg is a polynomi.al over R and deg fg < m + n in case. 

fg;: 0*. 

Th.e (m + n )-th term. c + in fg is m n 

c =a b +·a b +a b + · ·· +a b· · m+n . 0 m+n · I m+n-c! 2 m+n-2 · · m-1 n+l 
+a b · · 

m n 

+ am+tbn-t+ am+2bn-z +· .. + am+n""tbt + am+nbo· 

Here the s~mmands .in the first line are o' since bm+n'bm+n-l'bm+n-Z' .. : ~bn+ 1 

are 0 and. the summands in. the third line are 0 since ain+l'am+2'' .. am+n-1' 
a + are 0. This gives c . . :::::a b . If R. has no zero div.isors, then c +. , m n ~ · m+n nJ n - m n 

ambn since am;: 0 and bn;: 0. So m. + n is the greatest index k for which 
the k-th term in jg is. distinct from 0. This proves that deg fg. = m + n in 

case R has no zero divisors. 0 

33.4 Remark: The last argument shows in fact that the leading coeffi­

cient of fg is the leading coefficient off times the leading coefficient of g, 

provided R has no zero divisors. 

33.5 Theorem: Let R be a ring. The set of all polynomials over R is a 

ring _with respect to the operations + and ·given ifz Definition 33.2 (called 

the add iii on and multiplication of polynomials,· respectively). 
. . 

Proof: First of all, "We must prove that + makes the set of all polynomial 

over R into an abcli"an group. The closur~ property was shown in Lemma 
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33.3(2). The associativity and commutativity . of addition of. polynomials . 
follow from the associativity_·· and commutativity of addition iil R. The 
zero· polynomial 0* is the zero element (temma 33.3(1)). and each poly~ 

· nomial ·(a0,a1,a2, ••• ) _over R has an oppos~te (-a0,:-al'-a2, ••• ). The details 
are left· to the reader. · 

No\V the properties of multiplication in Definition~ 29,1. The closure of the 
set. of all __ polynomial over R ·under multiplication· was shown in Lemma 
33.3(3). The associativity ofmultiplication is proved by· observing that 
the m-th term in (jg~h, .where 

are arbftrary polynomials over R, is given by · 
. . 

L,(k-th term in fg)c1 = L ( )::a1bi)c1 
k+l=m · . k+l=m z+J=k 

= 'L <<b}c1 
i+j+l=m 

and that the in -th term in f(g h) is given by 

L,atCs-th term In gh)- =. L a 1( L,b/t) . = .L a ;(b/1). 
i+s=m . . ·. · · z+s=m · Hl=s .. i+j+l=m 

Here we used t!J,e distribut~vity Jri R. Since (a'1b}c1 = a1(b/t), the' m ~ t h 

term in (jg)h and f(glt) are .equal, and this for all m. So (jg)h = f(gh) for 
all polynomials f,g ,h ove~ ~ and the. multiplication is associative. · 

It remains to·. prove the distributivity' laws. For ·any polynomials f = 
(a0,al'a2, .. ~ ), g = (b0;b1 ,b~, .. : ), h = (c0,cl'c2, ... ) over R, we. have · 

f(g +It) = (a0,a1 ,a2, ... )(b0 + c0,b1 + cl'b2 + c2, • : .) 

= polynomial whose k-th coefficient is · L, a ·.(b. + c.) 
I J. J 

i+j=k 

, 

= polynomial whose k-th coefficient is· L, (a1bi + a6) 
. _i+j=k . 

= polynomial whose k-th coefficient is ! a 1bi + L a 6 
.i+j=k i+j=k 

. ' 
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= (polinomial .whose k-th coefficient is I, a ,hj ) 
i+j""k. 

+ (polynomial whose k-th coefficient is I, a 1cj) 
i+j=k 

· =fg ·r fh 

and a similar arguri1ent pro\'eS · (j + g )h = fh + g h for all polynomials f,g ,lz 

over R. This completes the proof. · o 

The ring of all polynomials over. R will be·denoled by R[x[: When f E R[xl, 

we say f is a polynomial with coefficiel.zts in R. 

We now want to simplify our notation. A polynomial f = (aO'a;,a2 , •• '.) 

over l?, for which an = 0 .whenever, say, n > d, can. be written as . 

. . . 
Each one of. the polynomials. above has at most ·one ~onzero ·coefficient. A 

polynomial over l? whiCl) hits at· most one nonzero. coefficient will be· 

called a lnonomiul'over. R. We can write monomials over R more com­

pa~tly as follows. If, for exampl~, g. is a monomial' o~er R whose r-th 

coefficient is a (the possibility ·a = 0 is not excluded) and· whose other 

coefficients arc ·zero, th(!n we can write g = (0,0, ... ,a,O, .. .") shonly as 

(a .'r). llcre r denotes the index witl1 the· only the possibly nonzero 

clt.:ment, and a E N is that possibly nonzero clement in the r-th . place. 

Then our f -would be· written as (aO'OH· (a1, 1) + (a2,2) + · · · + (qd,d). The 

essential point is that a polynomial can be written as a sum of 

monomials, and a monomial_ is determined as soon as the index r and the 

possibly nonzero element a is given. We ca,n chO<:JSc other notations for 

monomials, of. course, as long as they display ·the index _r and the. 

possibly _nonzero clement a. We prefer to. write axr instead of (a,r) for 

the monomial (0,0, ... ,(l,O, •.. ). In this notation, both the index r and the 

elcmeJJt a are_ displayc~.l. -It ·should be noted. that x does not· have a 

·meaning by itself. li is like. the comma_ in (a,r) .• .ln particular, xr is nol the 

r-th rower of anyth,ing. r iri ax' i.s an index, a superscript showing where 

the clement a sits iJL ·wiih lhis notation, our f is wrillen as 
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f a x0 + a xf +a x2 + · · · +a· :x:d· rr · l 2 · cr· • 

The product of two monomials ·ax' and bxs is easily evaluated to be 
abx'+s. The multiplication of two polynomials can . be carried out in. the 

familiar ~ay by using this tule and. the distributivity. The symbol x is a 

convenient device that simplifies computations. x will 'he called an 

indeterminate (over R). This does not mea~ that x fails to be determined 

in some way. "Indeterminate" is just an odd name of a computational 
device. Finally, we agree to write a

0 
for a

0
x 0 and a 1x for a

1
x 1

• In 

particular, we write 0 for . the zero polynomial 0*, This convention brings_ 

f to the form 

With the convention of writing a0 for a0x 0 , we regard R as a subring of 

R [x]. I.n particular. we can multiply polynomials by elements of R in the 

natural way: 
b(a0 ~ a1x + azX2 + ·; · +aiJXd) = bClrJ +ba1x + bazx2 + · .. + bacrr.d, 

2 .. ' d)b b . : 2 . ' d 
(a0 + a1x + azx +···+ad'-,; a0 + a1qx + azbx + ··· + adbx .• 

If R is a ring with identity I, then x· can be_ interpreted in another way. 

The rule ax'·bx 5 · = abx'+s yields Ixr·I xs = Ixr+s. Let p denote the 

polynomial lx = 1xt = (0,1,0,0, ... ). We calculate that p 2 = ,Ix2 , p 3 = Ix'3, 

p4 Ix4 , etc. Our f can now· be written as 

f = aoP + a p· + a p 2 + · .. · + a pd · I . 2 . , d ' 

where this time the superscripts indicate the appropriate powers o!. p = 
(0,1,0,0, ... ), taken according ·to the definition. of multiplication given in 

Definition 33.2. ··So any polynomial over R can be written as· a' sum of 

powers of p, and calculations are performed by using the distributivity. 

Since Xt obeys the same rules as a computational device as p does as a 

polynomial, we write the polynomial p = IX as x. Then x is the polyno­

mial (O,I,o;o, ... ) in R[x]. We emphasize again that this interpretation of x 
as a polynomial is possible only when R has an identity. If R has no 

identity, _then x is not a polynomial in R [x]. 

The ring ~[x] is said to be constructed by adjoining x to R. When we want 

to examin~ several ·copies of . R [x] at the same time, we use different 
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letters to denote the indeterminates of ,the copies of R [x]. Thus we may 
have R[x], R[y], R[z], etc. 

d . 
Whenever -convenient,, we shall write I a ;X~· for the polynomial 

i=O 

aO +~IX+ a'J!-2 + .... + ard· 

33.6 Lemma: Let R be a ~ing, . . 
(1) If R is commutative, then R[x] is commutative. 

(2) If' R has an identity, then R[x] has an identity . 

. (3) If R has rio zero d,ivisors, then R[x] has no ze~o divisors. 

(4) -If R is an integral domain, tlien R[x] is an integ~al domain. 

- . m . n . . 
Proof: Let/= Iaix 1 and~= Ib/1 be. arbitrary poly_nomials in R.[x). 

i=O j=O 
·(I) If R is commutative •. then a1bi =bpi for all i = 0,1, ... ,m and I= 0,1, ... n. 

We have then 
~' m+n . n+m 

fg = I ( "'aibj }xk = L, ( ·Ibpi )xk = gf 
. k=O i+j=k k=O j+i=k 

and RJx] is commutative. 

(2) If R has an identity 1, then = 1x0 = (1,0,0,0, ... ) is a polynomial in R[x] 

·and 
~ m ' · m m 

fl ={Ia 1.xi)1 = Ia)xi ~I a/ =J, 
i=O . i=O i=O 

m -· m m -

·If= l(Ia/) =I Ia/ =I a/=! 
i=O i=O i=O 

for arbitrary f E R[x]. Thus 1 is an identity element of R[x]. 

(3) Assume now R has· no ziro di'visors. Let- us sup-pose also that f~· 0 

and g ~ 0. Without loss of generality, we may assume that am is the 

:leading ·coefficient of f and that bn is the leading coefficient of g .. Then 
a ~ 0, b ~ 0. By remark 33.4, the leading coefficient of fg is a b and 

m n .-- -- , m n 
ambn ~ 0 since R has no zero divisors. Thus fg- has ·a nonzero coefficient, 
namely the (m + 11)-th coefficient a.rid fg ~· 0. This shows that R [x]· has no 

zero di yisors. · 
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(4) An integral (joniain is a commutative Ting with identiiy having no 
zero divisors, distinct from the null ring. No\\1 if R is ati integral dqmain. 

· . then R- is not the null ring, and since R f: R [x l, tlie. polynoniiai ring R [X] is 
not the null ririg, either. The claim follows then immediately from (I ),(2), 

and (3). 0 

33.7 Lemma: Let R and. S be two rings and let cp: R - S be a ring 

homomorphism. Then the mapping ,P:R[x] ~ S[x], defined by 
m 
.L·ca;cpJxi 
i=O 

. is also a ring_ homomorphism.Furthermore,Ker $ = (K er rp )[x] and lm .P = 
(lm cp)[x]. (Note.: Ker cp anil /m.cpare rings by Theor~~ 30.13, so~ (Ker.rp)[x] 

and Jm, $ = (lm q>)[xl are meaningful.) -

• - n . . 
Proof: Let I= _La ixi, g = L b 

1
xj be ar.bitrary polynomial$ in R [x]. We 

~0 ~Q . 

show ,that $ preserves addition. Here we I'Qay assume m = n, for we may 
add o:(m+l + Oxm+2 + , .. + Oxn to/ in case m < n and Oxn+l + Oxn+2 + ··· +Ox'?' 

tog in case:.n <::: m. We have 

( 

m. . n ) · 

if +,g)$ ~ _La,:xi + .L b / ·~·· 
. · i=O . j=O 

m . m · 

(~~l + ~b~xi}.p 
' 1=0 . 1=0 

' in ' . . . 
'= ( L (a; +' b ;)xi)$ 

i=O .~ . 

m 
="[(a.+ b:.)q>]xi L I I . 

i=O · 

. m 

= L (a ;<ll :+ b ;<ll ):i 
i=O 

m m 
= "(a .. cp )xi+ " ( b .cp)xi L I . L I 

i=O . i=O 

.fii> + g$ 
and. so $ preserves· addition.· As for. multiplication (here we do not have 
to assume m = n ), we observe 
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I. 

m+n 

(jg)(p = [ 2:. ( . 2;-aibi )x~] iP 
, k=O l+p=k · 

='In [ ()>~bj )cp] xk 
/ k=O I+J=k 

ln+n . 

= L, { }Jaibi)cp )xk 
k=O i+j=k 

='In( Lalp·bicp)~k 
, k=O i+j=k . 

, m · ·. · ·n, 

= ( L, (a/p')x1
) (~ (bfp)xi) 

I=P . . . ]=0 

= fo·g(p. 

Thus (p preserves multiplication as well. So iP is a ring homomorphism. 

m - m , 

A polynomial L, a .xi belongs to. ihc kernel of <P if and only if ( L, a ixi) 1$ 
t=O 

1 
. · i=O 

m 
;, L, (a {P )xi is the zero polynomial in Six t• so if a119 only if the coefficients 

i=!l ' 

G!J arc all equal to 0 e: S (i =·0,1, ... ,m), so if and only if a, e: Ker cp Jo'r all 
I · . · - • · l 

' . 
. . . m . . 

i=O,I, ... ,m, so.if and only .if L,a;' e: (Kertp)(,x). 
. i=O 

m · .- m 
1 

• 

·A polynomial L,c,xi e: Slxl belongs to the. image of iP if and only if L,c1x
1 

~() . . - ~0 . 

=(Ia.,x1 )t~> for.somc.Iaixi ~ R!xl. so (assuming m=n without loss of 
i=O i=O . · . 

generality) if and only .if, for each i = 0,1, ... ,m, there is an ai e: R such 

that c. = (lip, so if and only if c. e: ·J m cp for all i = 0,1, ... ,m, and so if and 
I l · l 

m 
only if L,c,xi e: (/m cp)(xj. 0 

i=O 

As an illustration ·of Lemma 33.7, we ·consider the natural 

homomorphism v: l- Z3: Then the mapping v: llxl.- l~)x) is given by 
reducing the coc(ficients modulo 3. For example, · · 

396 



(5x3 - 4x2 + 2X.+ l)v = 2x3 + 2x2 + 2x + 1 
(6x4 - 3x2 +x + 5)v = 1x + 2. 

The reader will easily verify that 
(5x3 - 4x2 +. 2x + 1)(6.x4 :- 3x2 + x + 5) 
= 30x1 - 24x6 - 3x5 + i3x4 + 15x3 - 21x2 + llx + 5, . . . ' 

whose image under v is , 
= 30 x 7 - "'2.4 x6 - "'3x5 + "13x4 + IT x3 - 1f x 2 + lf x + 3 

4 . 
= 2x + 2x + 2. 

We have also (2x3 + 2x2 + 2x + 1){1x+ 2) = 2x4 + 2x + 2. ·-

If cp: R --. S is an isomorphis.m,, then K e r q> = 0 and I m q> = S. This gives the 
following corollary to Lemma 33.i. 

"\!::l 

33.8 Theorem: If R and S are isomorphic rings, then R[x] and- S[x] are 

isomorphic. 0 

Let R be a ·ring. Adjoining an indeterrninate x ·to R, we get the ring R [x]. 

Now we can adjoin a new indeterminate y to R [x] and get the ring 
. m 

(R[x])[y] =: R[x][y]. T~e elements of R[x][y] are of the form "'I.Jiyi' wliere 
i=O · 

fiE R[x]. Similarly we can constn,Ict the ring R[y][x] :=_ (R[y])[x]. We show 

that they . are isomorphic. 

33.9 Lemma: Let R be a ring and let x,y be two indeterminates over R. · 
Then R[x][y] ~-R[y][x]; / 

Proof~ We consider the mapping r: R[x][y]--. R[y][x], giv~n by 
m n . . n m 

L ( L,ai/)i __:_ L ( L,aiil)xi, 
~0 ~0 ~0 ~0 . 

which seems to be the only reasonable mapping from R[x][y] to R[y][x]. It 
certainly preserves addition, for we have 

m n - r s 

[~ ( ?,ai/i)yi + · ~ ( ?,bili)yi] T 
~o FO ~o FO 

397 



-
(assuming r =in without loss: of 

generality) 
m n . . . . . 

[2:. ( l:,(aiJ + · b iJ)xi)i] T (assuming s = n without. loss of generality) 
t=O 'j=O ·· , 

n m 

= 2:, ( 2:,(a11 + ~ IJ)y)xi 
'j=O ' i.=O. '· 

• n .m. m · 

= 2:, { l:,ai/ + l:,hi/) xi 
· J=O · !=0 · 

n · m · n · m . 

2:, ( 2:,a1/)xi +<? ( l:,biJ/) xi . 
J=O i:= 9 J=O i=O 

m n - m n .· 

[2:, ( 2:,a1/)l] T + [f: ( l:,bili)yi] T, 
l= 0 j=O . 170 · . j=ll . . 

Secondly· T preserves multiplication of polynom,ials of the form (axi)yi 
(i.e., monomials over RrxJ, whose eventually nonzero coefficients· iri R[xj 
are themselves monomials 'over R; they .will be. referred to as monomials 
in Rlxllyl over R): We indeed have 

(def. of multiplication in R[x][yJ) 
(de f. of multiplication in R (x)) 

Thirdly, T preserves multiplication of arbitrary polynomials. Any poly~ 
nomial can be written as p 1 + p2 + ··' +·p1, where .pl'p2; .••• ,p

1
_ are suitable 

, mono.mials. Now for .all polynomials p 1 + p2. + ·· · +p1, q 1 + q2 + · ·: + qu in 

R [x II y I, where p's and t(s ar~ monomials, ·we have . 

j(p +p +·l·+p)(q +t{+···+q)JT 
I , 2 . I I 2 . u . 
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,; (~ p /11)T (by .distributivity) · 
l,J 

~=I (piqJ)T 
i,j 

(since T preserves addition) 

= L p 7·ql , (since T preserves products of monomials) 
i,j 

.. = {pt T + PzT + ... + Pl)(qt T + qzT + ... + quT) 

· = {pt + Pz + ... + P,)T{ql+ Qz + . '. + qu)T, 

so T preserves arbitrary products. Hence T i.s a ring homomorphism. 

m n 
T is one-to-one, for i(l: ( Laill)/ E R[x]{y} is in the kernel ofT, then 

i=oO j=O · . · ' 

n m 
its image L ( l:ai/1)xl-is the zero'pol}'nomial·in R{y][x}, so all the 

]=0 .i=O 

.m . 
coefficients· l:aijy' are equal to the .·zero polynomial in· R (y l. .-so all 

i=O 

elements a .. of R are equal to the iero element in R, so all polynm1lials 
. !} ' 

n m n 
"\:' a .. xi are the zero polynomial in R {xj, so "'\:' ( "'\:' a ... T.l) vi is the zero £.J I}. . . · . £.J £.i I} • 

]=0 • · . . . , i=O jc;O 

polynomial in R[xl[y}. Thus Ker T consists of the zero polynomial and Tis 
one-to-one. 

n 'm 

Moreover, T is onto, for any polynomial L ( l:ai/i)xi in R [y II.< l is the 
J=O i=O 

. 1n n 

image of the polynomial ;L ( ~aill)yi in Rlx](yJ. 
t=O J=O · 

Hence T is an isomorphism from Rlxllyj onto Rlyllxl.· 0 

In view of this result, we identify R(xj{yj and RlyllxJ. To. simplify the 

notation, we write Rlx,y]Jor R!xHy!. The elements of Rlx,yl are of the 
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/ 

form. I.· a ;/1yi, where aii e: R and there are finitely many terms il} .th~ 
i,j 

sum. fv1ultiplication is carried ou~ in the customary way, using distribu­
tiviW and collecting terms, We have R[x,y]::; Rly,x). 

·we can of course. adjoin .a- nevv inteterminate z to R[x,y] and obtain 
(R[x,yl)[z] = (R[x][y])[z] ;::::R[x][y][z]. We see 

. R(xJ[yl[zl . (R[x][yl)[z] 
e-: {R[x)[zl)[y] 
~ (R[zJ[xl)[y] 

· e-: (R(z]fyl)[x] 
2': (R[y][z])[x] . 
2': (R[y][xl)[z). 

·(definition) 
(Lemma 33.9 with R [x),z in piace of R ,x) 

. (Lemma 33.9 and The_orem 33.8) · 

(Lemma 33.9 with RfzJ in place of R) 

We regard these six rings as identicafand write R [x,y,z] for it. The 
n~tations "Rix,y,~r'; "R[x,z,y]", "R[z',x,y]", "R!z,y:Xl'\ "R!y,z,x]", "R[y,x,z]" will 

. mean. the same ring .. 

More generaiiy, if ::1 ;x2 , ••• ,xn. arc ·indeterminates over a ring R, then 

Rlxi,.t2;.:·•xn)is defined to betheringR[x;,x2, ••• ,xn-IHxn]: It is isomorphic 
· · · · . · I ·2 n · · 

to each one of then! rings R [X;/;/ ... .X;)• where (;
1 

;2 ~ : : i) . runs . 

th~ough. the· permutations in S n·. These n! isomorphic rings. will be 
considered: identical. Element.s of R[x1,x2, ••• ,xn) are of the form 

a .. 
1 

e: R. 
IJ ... 

. · . · · . . . . · .· . . t j I 
· The polynom~als tn Rlx1,x2, ••• .xnl of the form ax1 x 2 ••• xn will be called 

1iumomials over R. It is c.ustomary to omit the indctermina.tes with 
exponent zero in a monomial. For example, ax1 °x2 

2x3 °x4
3 in R [x1,x2,x

3
,x4] 

is written ax._/x4
3• An _exponent is dropped when it is equal to I. If R does 

not have. an identity, the indeterminates x1 .-Xz• •.• ,Xn arc not elements of 

R(x1 ,.t2, .. . ,xnl and the expressions x 1 
1x/ .. xn1are n"o{ polynomials. 

· Th6' degree of a nonzero monomial ax/x/ .. xn 1 -is defined. to be the 

· nonnegative intcgc_r i +j + ... +I. The total degree of a polynomial f 
. I 
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I, I, ... I, . a ii ... 1I ix/ . . xn 1 is defined to ·l;>e~ the maximum of· the 
i=O j=O 1=0 . 

degrees of the monomials a.. .x1 ix2I ... x 1 with a.. 1 ;:; 0. The tot_al degree 
. lJ ... I.. n IJ ... 

off will be denqted by deg f. The degree of f, considered as an el.ement 

ofR[xp····,Xh-l'xh+l' ... ,xn][xh] will be called the degree off inxh; this will 
be written deg J (h 1 ,2, . : . ,n). The analog of Lemma 33 .. 3 holds for 

polynomials. in n. indetern1inates, both with . the total degree and the. 

degree in xh in place of deg f 

We record a· lemma that can be proved by induction on the number of 

indeterminates. 

33.10 Lemma: Let R be a ring and Xp:S• . ~. ,xn indeterminates over R. 

(1) If R is commutative, then R[x1,x2, ... ,xn] is commutative. 

(2) If R has an identity, then R[x1,x2, ... ,x ] has an identity. · 
. . n 

(3) If R has no zero divisors, then R[x1 ,x2, ... ,xn] fuis nq zero divisors. 

(4) If R is an integral domain, then R[x1,x2, ... ,xn]is an integral domain. 

Exercises 

L Evaluate: (5x2 - 3x + 1)(7x3 + 6x- 1) 

(3x3 + 4x + 1)(3x2 + 7x + 2) 

[(9 1) 4 (12) 2 (2 D))(·(· I 0) 2 (1 1)· (11)) lox+ oox + 11 .oox·- oox+ 11 

(we dropped the bars for ease of notation). 

2. Let R, Rl' R2 be rings. Prove that 

in Z8[x], 

in Z9[x], 

in (Mat2(Z))[x], 

(Matpn)[x] .:::: Mat 2R[x] and.· (R
1 

El3 R
2
)[xJ :::: R

1
[x] El3 R2[x] .. 

(see §29, Ex. 10). 

I 
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3. Generalize Lemma 33.7 to polynomial rings in n indeterminates. 
-

4. Let R ·be a c~mmutative ring ,with identity h.nd let a r' +a ·x"-1 +···+a .. n · n-1 0 

be a zero divisor in R[x). Show that ·there exists- a nonzero b in R such 

that ban =ban-I = · · ·. = b £lo = 0. 

N;. N2 N. 

5. Let R be a· ringandf= L. L. ... L, aij ... f 1ix,j.. ·.:in1 e: R[x1.x2, ••• .xl 
. . . i=O j=O 1=0 , .. 
Prove'.that deg/ is the largest i such_that aij .. .l"! 0, deg-j' is the. largest j 

such ihat aij .. .l;: 0, .... , deg j' is the largest l such that aij .. :l;: 0: 

~- Exteng Lemma 33;3 to polynomial rings in n indeterminates, both 
\yith total degree and the degree in xh in place ofthe degree of f . 

. . 
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§34 
D~visibility in . Polynomial Domains 

. We learned in Lemma 33.6 .that some properties of a ring R are trans­
ferred to the polynomial ring R [x] .. In particular, if R is an integral 
domain, so is R [x]. In· any integral domain, we· have a th.eory of divisi­
bility (§32). ·In this paragraph, we want to investigate the. divisibility 
properties of polynomials. ·Lemma 33.6 suggests the questions: Is R [x] a 
Euclidean domain .if R is a Euclidean_ domain? Is R [x] a principal ideal 
domain if R is a principal ideal domain? Is R[x] a unique factorization. 
domain if. R is a unique factorization domain? The answer to the first 
two questions is 'no'. For example, [x] is' not a principal ideal domain, 
let alone a Euclidean domain, although .l is Euclidean. On the other hand,­
the third question recieves · an affirmative answer: if R is a unique 
factorization domain, so is R [x]. This ·will be proved as Theorem 34.13. 

. . . -

Let us recollect the basic definitions. Assume. D is an integral domain. 
· Then D [x] is an integral domain (!--emma 33.6). A polynom'ial f E: D [x] ·is 
said to be divisible by a nonzero polynomial g E: D. [x] if there is a· poly­
nomial h in D [x l such that f = g h. We write then g If. Notice that the 
coefficients of h are required to be in D. The notation glf does not . mereiy 
mean that f = g h for some arbitrary polynomial h. It means f = ffh for 
some polynomial h in D [x]. 

Whenf 7f!. 0 and/= gh, we have d_eg f deg gh = deg g '+ deg h deg g: 

34;1 Lemma: Let D bean integral domain. If gJ E: D (x], g 7f!. 0 7f!. f and giJ, 

then, deg g ~ deg f. o 

A nonzero polynomial e E: D[x] is.a unit of D[~] if ~lz = 1 for some hE: D[x], 

or, equivalently; if elf for all f e D [x]. In this case, Lemma 33.3 yields 

0 = deg 1 == deg eh = deg e + deg h > 0 + 0 = 0, 

deg e = 0, deg h = 0, 
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e ED, h E-_D, 

eh = 1 holds in D, · 

e is a unit.in D. 
( e ;r. 0 ;r. h, because e It ~= 1 ;r. 0 and D is an inlegral domain.) So a unit -in 

m 
D!xl is a unit in D: if.a polynomial e =}:a/ is a unit in.D[x], then a0 ED 

. ~~ . 
is a unit in D and a 1 a2 = · · · . C!m = 0: Conversely, if e is a unit in D so 

that eli·= I Jor some hE D, then of course e,h E D[x] and e isa unitin.D[x] . 

. We proved the following lemma. 

3.:1.2 Lemma: Let D he m1 integral domai1L Then e ED lxJ is a unit in Dfxl 
if.and only if.e €:: D and e is a unit in· D. in symbols, D!xr = D". · P 

Thus any ur!1~ w D (x J has. degree 0 and the associates of a polynomial in 

. D [xi have the same degrees ·as the polynomial itself. Any proper divisor. 

off E Dl~ I is lhcrefore of degree di~tinct from 0 and deg f. 

.. , polynomial fin D lx ]\[ 0). is irreducible if f is not a uri it in D [xi and if, in 

any factorizatio~ of f as I:::: g II in D I xI, either· g or h is a unit. This is. · , ' . . ·. 
lkfinition.32.7. We paraphrase this as follows:/ E Dlxl\{0} is irreducible 

if degf > 0 and if there arc no. polynomials g,h in'D [x] such that f= gh 

•:nd 0 <:,._de;; g. de;; h < deg f. The phrase "in Dlx)" is important. Suppose 
/J D1• where 0 1 is another integral domain .. ThenjE D1 1xl; too .. Now it is 

.possible that 

there exist no /.: ,h .:: D Jxl such that f ==c gh, () < deg g < deg f. 

and yet .. possibly 

there exist some g,h E D 1lxl such that f = gh, ~ < deg .g < deg f. 

Then f is irrcducihl.e ·in D [x J,. but not in D 1 [x 1 •. This shows that_irreducibii­

ity off is no~ an imrinsic property of f. It is a property of I relative to· 

the polynomial dtmJain [) lx 1. For this n.:ason, ~e have to n~ention the 

domain lJ ,v.;!Jcne\·er we speak ah{)ut irreducible polynomials: We say f is 

· i"rredueih/e, ora lJ when f is. irrcduc.ihlc in /J lx 1. For exiunple, x 2+ 1 e: O!x I 

404 



is irreducible o_ver l(tl since ~2 + 1_ has no proper .divisors in il}l[x],but x2 + 1 
is red11cible in It: [x] since x2 ± 1 = (x- i)(x + i)1 with x i, x + i E It: [x] and 

0 < 1 = deg(x i) < .2 = deg (x2 + 1). 

We . now c·ompare the irreducibility of an element of D in D with its irre­
. ducibility in "D[x]. 

34.3 Lemma: Let v· be an· integral domain and let i:l be any nonzero 

element of D ~ D [x]. Then a is irreducible in D[x] if and only if a is irre~ · 

ducible in D. 

Ptoof: Suppose that a is· irreducible in D. We prove that a is irreducible·· · 
in D [x]. First we _must show that' a is. not a unit in D[x]. -Since a is irre- · 
d~cible in D; so not a unit in D, we have a E: v· = D [xr (Lemma· 34.2); so" a 
is not a unit' in D[i]. Secondly we must show that a= be, where b,e E D[x], 
implies either b or e is a unit in D [x]. Indeed, if a = be, then 0 deg a = 
deg be = deg b + deg e ~- 0, so deg b = 0 = deg ·_c. Then a = be is. an 
equation in b. Since a is irreducible in D, either b or e is a unit in D, so, in 
view of Lemma 34.2, either b ore is a unit in D [X]. This proves that a is 
irreducible in D[x]. 

Now the conver~e. We suppose that a )s irreducible in D [x] and show that 
a is irreducible· in. D. First we must show that a is not a unit in D. Since a 
is irreduCible in D[x], so not a unit in D[x), we have a E: D[xr = Dx (Lemma 

. . 

34.2),. so a-is not a unit in D. Secondly we must show that a = b~, where 

b,c E D, implies either. b or c is a unit in D .. We read a = be as an equatiQn 
in D[x]. S.ince a· is irreducible in D[xi, either bore is a unit in D[x], so, in 

view of Lemma 34.2~ either b or e is. a unit in: D. This proves that a is 
irreducible in D. , o 

We want to find the integral domains D ·such that D [x] is a unique 
factorization domain. What· conditions must be .imposed on D? If D{x] is 
to be a unique fact.orization domain, then each element of· D [x ]\( 0} that is 
not a unit in D [x], must be-wiiuen as a product of im!ducible elements 

of D[xl in a unique way. In~ particular, each eiement of D\{0} that is not a 
unit in D [x], must be written as a product of irreducible elements of D[x] 

in a unique .~vay. As any divisor in D {x] of an element in D belongs to D 
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by degree cunsidetations, the last statement means (temma 34.2, 
Lemma 3·L3 J: each· cknient , of D \{ 0) that is not a unit in D, must be 

wrincn a;; a prouuct o( irreducihlc clements M D in a. unique way. Thus 
' . . I 

lJ must be a unique factorization domain. We shaJI prove c~nversely that 

/)!xI is a unique factorization domai.n whe~evcr· D is. The proof will make 

u-;..: of th!! pol"ynomial ring Fix I. where F i;.. the field of 'fr:ictions of D 
! ~31 J. Fix l will turn out to be a Euclidean domain. 

We show generally 'that Klxl is a Euclidean domain _if K is a field. In order 

.l<l d<l that, kt us remember, we !liUSt find a function d:Kixl\[0} ~ N u {0) 

c;ucli 1 ~~~It di.f\ < d(ft:) for all f,f: · E Klx 1\( 0 l and such .that,. for any nonzero 

polylh•l!liah f.g iti Kl.d~ there arc polynomiaJs q,r € K·lxl with f =::; l/R + r 

and i' :::: 0 or deg r < deg ;: . The degree of polynomials ~ill work as the 

tunction d. Fir~t- we pro\·e a slightly· more general theorem . 

. 1-1.-1 Theorem I Division algorithm): Let /) be an integral domain. £1/1(1 

il'l f.g he pnlpwmials .in Dlxl. Jf tlw leading coefficient of x is a imit in D, 

;hoi rlw1 c are uniqtll! pnly.nomials q~r in Dlx I sw·h that 

( = q~ + r, r -= ·o or deg r < deg g: 

Proof: First we prove_ the existence of q andr. This is noihing but the 

lot1g di v i.~ion -of polynomials. Suppose we divide x5 - 2x4 + 3x3 + x 2 - x + 2 

hy g + x + I .. What d<) we do? We suhiract x 3 times· x from f: 

x:; - + 3x3 + x2 . x + 2 
+ x~ + x 3 

<h.:+ 2x1 + -X+ 2 

and get the polyn(imial .f1 = - 3x 4 + 2x 3 + x2 x + 2, whose degree is 

smaller than the degree of f. Then we subtract -3x2 times g from !
1

. and 

get a polynomial !2 == 5x3 + 4x2 - x + 2, whose degree is smaller than the _ 

degn:e of II: We continue this process until we. get a po,lynomial r whose 

dcgn:e is smaller than the degree of g· x 2 + x + 1: · 
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x5 ..,. 2x4 + 3x3 + x2 x + 2 I x2+ x + 1 
•xs + x4 + x3 . . x3,.:. 3x2 + 5x- 1 

~3x4 + 2x3 +x2 - x + i 
. -3x4 - 3x3 -3i~ 

5x3 + 4x.2 - x + 2 

5x3 + 5x2 + 5x 

-x2 - 6x + 2 -

-x2 - x .:-1 

.-5x + 3. 

Hence f = (x3 ;;. 3x2 + 5i- l)g + (-5x ·+ 3), In general, we haVe 

/ 1 =f- axmg 

where a and m E .N u . {0) are chosen appropriately, atid deg A < deg f. 
Then, by induction __ on the- ~egree of k we can divide A (and hence f) by 
g and get a remainder r. This is essentially the proof. 

. . ·• . ·. 

Now let f,g be nonzero polynomials in D [x] and suppose that the l~ading 
coefficient of g ·is a unit in D. We prove . the. existence of ·q and· r by 

induction on deg f. 
-

I. Induction begins at 0. Suppose deg f :i: 0. Then f E D\{0}. Sipce · 
the leading coefficient of g is a· unit in D by hypothesis, .if g E I), there is 
a g-1 E D such that g_-1g ·= 1, hence fg-1 E D and we can write 

.! (fg-J)g+ 0 
Ifg E D[x]\D, then deg g > 1 and we can write 

!= Og +/. 
This pr9v~s the existence of q and r with 

q=jg"1, ·r=O 

: q=O~ r=f 

in case g € · D, 

in case g E Dfxj\D. 

II. Now the inductive_ step. We use the principle .of induction in the. 

form 4.5. We assume t~at deg f = n > 1 and that, for any nonzero 
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polynomial h with_ deg iz < n, there are polynomials q 1 and r1 in D[x] 
such· that 

In case deg g > n, we have 

. != Og +! 

r1 = 0 or deg r1 < deg g. 

deg f = n < deg g 

and this proves the existence. of q and r with 

. q = 0, r.=f. 

·.Having disposed of the case deg g? n, we assume now deg g < n. We 

subtract a suitable multiple of g from I to get a polynomial of degree 

smaller than n. If, say 

g =. b xm + b xm-J + · .. + b 
m m-1 · 0' 

bm is a !Jnit ,in D, 
· b b -I = I for some b -I E D 

m m " m " 

m < n, 
then we 'put 1

1 
:=f- a

11
bm-lxn-mg. Here' either / 1 0 and the \the existence 

'of q and r is proved with q =a b -lxn-m r = o· or 
n m ' ' 

f ·I- a b .-~xn-mg 
1 n m . 

=(ax11 +a X11- 1 +···+a)-ab·-lxn~m(b xm+b xm-l+· .. +h) 
n n-1 0 n m m m-1 0 

is a polynomial in D (xl ~f degree < n. By the· induction. hypothesis~ there 

are polynomials ql' r1 in D[x] such that · 

11 = q1g + r1, r1 0 or deg r1 < deg g. 

lienee I = /, +a h -Ixn-mg 
I n,m . 

. = (qig + rl) + (anbm-1Xn-mg). 

= (q
1 

+ a
11

bin-Ixn-m)g + r1, r 1 =P or deg r
1 
< deg g 

and this proves··the existence of q and r with q q
1 

+a b -Jxn-m, r = r 1· , • n m 
and completes the proof of the induc;tive step. The hypothesis that the 

leading coefficient of i be a unit has been used to construct the 1
1 

with 

deg J; < deg f. 

Tlie uniqueness of q anq r. Suppose 

l=q;: +r={(g +r'; r=Hordeg r< degg; r'=Oordeg r'< deg f.:. 

Then (qg+r)-(q"t:+i")=l- 0, 
(q q')N = r'·._ r 

imd the . assumption q - q' ~ 0 .leads to the cont'radiction 

deg i < deg (q- q') + deg' g = deg (q- {()g 
. . \., 
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•· = deg (r' -r) ~ max{deg r', deg r]:< deg g ·. 
by Le~ma 33.3. This forces q- q' = o; so q =q', so r =I.., qg = t .... q~g = r. 
Thus q and r are uniquely determined.. · o 

34.5 Theorem: Let K. be a field. · 
(1) For any nonzero polynomials.f,g in K[x], there are unique polynomials 
q and r in K[x] such that 

f =;: qg + r; r = 0 or deg r < deg g. 
(2) K[x] is a Euclidean domain. 
(3) K[x] is a unique factorizatiop domain . . 

Proof: (1) Since·g ;z:: 0, .it has a leading ·coefficient, which is distinct from 
0 € K~ Then t~e leading coefficient of g is a. unit in K(Example 3}.6(b)). 
The assertion follows now from Theorem 34.4. 

(2) We prove that· deg: K[x]\{0} __,. N u .· {0) .satisfies the. conditions in 
Definition 32.10. Certainly· deg fis a nonnegative integer by definition 

· and;deg.f~ deg fg for allj,g e: K[x]\{0) by Lemma 33.3. This proves the 
condition (i) in ,Definition 32.13. The condition (ii) is proved in part (1). 

(3) This follows from Theorem 32.22. 0 

. . . 
We record some consequences of Theorem 34.5.·. 

34;6 Theorem: Let K be a field. Any two polynomials f,g in K[x]; not 
both ·zero, have a greatest common divisor d in K[x]. If d is a greatest. 
common divisor ()f f and g, then there 'are polynomials h and I in K[x] 

such that· d =: h/ + lg. Any two .greatest ·common divisors· off and g are 
a.~sociaie. in particular, there is one al'}d only one monic greatest 
common divisor of I and g: (This .unique monic greatest common divisor­
of I and g is sometimes called ·the greatest common divisor off and. g). 
Any irred_ucible polynomial in K[x] is prime in K[x] (Definition 32.20). . o 

409 



Theorem 34.5 is very satisfactory. If the underlying ring is a field, then 

the polynomial dom~in is a. unique factorization .domain. We turn our 

attention to· polynomials. with coefficients in a unique factorization 

domain. Let_ D be a unique factorization domain and let F be the field of 
fractions of D. We recall that the elements of F are fractions alb of· 

el_ement a,b E D, b ~ 0. We. identify a ED with all E F and thus regard D 

as a subring of F .. In this way. D fx I G f fx ). (If you find this and· the 

following discussion too abstract, you may just assume D = l and F = 0.) 

Let f E. D[x]G F[x). No~. a priori, f may be irreducible over D and not ir­

r,educible over F. See the comments preceding Lemma 34.3. In the case 

where D is a unique fa~torization domain and F is the field of fractions of 

D. it is in fact true that an frreoucible polynomial in D [x] is also irre­

duciplc in F[x). After some· preparation, ttiis will be proved in Lemma 

34.11 .. The ·hypothesis that' D be a unique factorization domain is essen- . 

tial, for otherwise the following definition, which plays an important role 

in the proof of Lemma 34.11, does not make sense. 

34.7 Definition: Let D be a unique factorizati~n domain and _let f be 

any nonzero polynomial.· in D [x). A greatest common divisor of the 

coefficients of f is called a content of f. 

Since greatest common divisors arc uniquely determined to within· am­

biguity among associate elements, any two contents_ of f are asso<;iate. 

We write.. C(/) for any content off. Ignoring\ the distinction among associ­

'atc clements, we sometimes call C{f) the content of./ by· abuse of lan­

guage. 

The contents_ of J= 2x4 - 8x2 + 2~.+ 6 E Z[x) and g = 6x2 - 9x + 18 E.Z[xJ 

arc easily seen to be C(j) = 2 and C(g) 3. The content of fg =, 

t2x6 -t&x5 -.12x4 +84x3 :., 126x2 IRx+lORisC(/g) 6=2·3=C(j)C(g). 

This js an e·xamplc of a general phenomenon. 

. : 

.3~.8 ·Lemma (Gauss'' lemma): Let D. be a unique f(JC:todzation do~nain 
aiUI let .f.M he arbitrary nonzero polynomials in D[x). Then C(fg),., C(j)C(g). 
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Proof: First we remark that we cannot ·write C(jg) == C(j)C(g). for/ 
contents are u'nique only up to asspciate~-elements. 

f and g -can be written as f == C (f)f1 and g = C (g )g 1, where / 1 · and g 1 are · 
polynomials in D[x) with C(fi) ,..-·I and C(g1)"" L Similai'ly fg;;;; C(jg)h, 

where h € D[x) and C(h)"" 1. We have · 
. C(f)f~·C(g)gf = fg = C(fg)h 

C(J)C(g)iig1 = C(fg)h .. 

Taking contents of both sides and_ observing C(al)"" aC(/) fora € D\{ 0} . . . - ' . . 
and l € D[x]\{0}, we obtain 

C(j)C{g)C<f.g1) ""C(fg)C(h) 

C(f)C(g)C<f.g1) "'C(fg)_ 

and the theorem will be ·proved if we can show Clf.g1) "".I. Dropping the 
subscripts, we must prove: 

· i'fC(f)"' I and C{g)"' i, then C(fg)"" L , 

Suppose now C(Jk~ 1, C(g)"' land C(fg) is nota unit. .Then there is an·· 
irreducible element ;r in D with rriC(jg). Since C(f)"" 1 and C(g)"' I by 
assumption, rr cam1ot divide -all the coefficients of 

nor of 

say. Let 
divisible 

g =bmxm +bm-lxm-l +· .. .j.. blx+ bo,. 

ah · be the coefficient of f with· the largest index 
by_ rr and let b;. h~ve a. similar meaning for g. Then . · 

;rlan, rrlan-1' •.. ,11'!izh+l' rr{ah 

rrlbm, 1rlbm-l' "'";'·rr!bk+l';r{b;.· 

that is not 

(I) 

(2)-

But rr divides the coefficient · , 

-(··· + ah+2bk~2 + ah+lbk-l) + ahb~+ [ah-lbk+l ::t ah-2bk+2+···· j 
of xh+k in fg. Because 'of (I) and(2), ;r divides the expressions in ( ) and 

[ ). So ;r divides ahbk as well. 'Thus rr{a11 , ;r{bm and ir!ahbk, which 'tells us · 
that ll' is not a prime element in D . On the other hand, D is a unique 
factorization domain. and' every irreducible element in D is prime 

. (Lemma 32.24 ), hence ;r is priine. Th"is is ~ contradiction. We conclude 
C(fg);., L D ' 

.34.9 Lemma: Let D be a· tmiqu~ factorization df!main and let F be the 

field of fractions of D. Let f;g • be any nonzero _polynomials in D[xJ with 
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C(f) "" C (g). Then j and g are associate in F[x] if and only iff and g ,are 

associate in D[x]. 

Proof: By Lemma 34.2, · 

e is a unit in D[x] ~ e is a unit in D, ·. 

uisaunitinF[x]_ ~ uisaunitinF· ~ uEF\{0}. 

Iff and g are associate in D [x], then f = ~g for some unit e in D (x]. Then e 
is a unit in D, so e is ~-nonzero element of D, so e is a nonzero elemerrt of 

F, so eis a unit in F, so e is a unit in F[x], so f and g are associate in F[x]. 

Iff and g are associate in F[x], then f. ug for some unit u inF[x]; Thus 

u E F\(0} and so u =alb, where a,b E D\(0}. So bf ag. Thus 

· bt:::(f)"" C(bj)"" C(ag)"" aC(g) ""aC(f) 
arid b ,.,· a in D. So alb = u is a unit in D. Hence u is a unit in D [x] and f is 

associate to g in D [x J .. 0 

34. I 0 Lcm m·a: · L.et D be a ·unique· factorization domain· and let F be the 

field of fractions of b.Let f be a nonzero polynomial in D[x] with C(f) ""· . . . 
~nd ass1ime 

f= g,g2 ... g,, 
where gl' g2, •.. ,g, are• polynomials in F[x]. Then tliere . are polynomials 

h 1, lz~, .. . ,h in D!xl such that"· is assodate to h in F[x] and.C(h.)"" I (jor-all 
· - f 0 1 I .· I 

i :::: I ,2, ... ;r) and. · 

f hlh2 ... h,. 

Pr~of: The coefficients of' g l'g2, ••• ,g, are fractions of elements from D. We 

multiply each gi by an' appropriate element ai in D, for example by the 

product of the "denominators" in the coefficients of gi to get a polynomial 

k ( D!xl. Thus ag. k. E D[x]. We write k. = c.h., where c."" C(k.) ED and 
I . l I· I I I I · I I 

. hi is a polynomial in'D[x]with C(hi)"' I. We,have 

_ a1a2 ... a;= a 1 ~ 1 ·azg2 ••• a,g, = k 1k2 ••• k, = c1c2 • •• c,h 1h2 ... h, 

: and, ta~ ing contents of both sides, and using Lemma 34.8 r - I times, we 

get 

a1a2 
... a,C(f) = c1c2.·:.c, C(h1)C(h2) ••• C(h,) 

. a1a2.<.a,"" c1c2 •• :c.~. 
. .. 

Thus e:=c1'c2 ... c/ti 1a2 ••• a, is a unit in D and 
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f= (eh1)h2 ... h,. 
' " 

()bserve .that hi (a/c i)gi is: associate to gi in F[x], bee~ use a/c i E F\(0} is 
a unit in F[x]. When we. make a slight change 6f notation and writ~ h1 for 
e hl' the p:roof is _complete (e h1 is also associate to gi in F[x]). D 

34.11 Lemma: Let D be a ·unique factorization domain- and let F be the 
field of fractions of D. Let f be a nonzero polynomial in D[x] with C(f) ""· 1. 
Then f is irreducible in F[x] if and only iff is irreducible in D[x]. 

Proof:. Assume first that f is irreducible• in F[x]. Then f is ,not a unit in 
F[x], hence deg f "> ·1, hencef is nof a unhin D [xh Also, if g,h e D [x] and 
f = gh, we read this equation in F[x] and conch.ide that ,either g or h is . 
associate to fin F[x]. We know .1 ~ C(f)"" C(gh)"" C(g)C(h), so C(g)"" 1"" C(j) 
and C(h)"" 1."" C(f). Using "Lemma 34.9,. we deduce that either g or k is 
associate· to f in D [x] . .Thus f is 11ot a unit· in D [x] and has no proper 
divisors 'in D [x]. This _means fis irreducible in D [x] .. 

Conversely, assume that f is irreducible i!l D [x). Then f is not a unit in 
D [x] and so not a unit in D. This gives deg f '? 1, for otherwise f,., C(f) ,., 1 
would be a unit in D. So 'deg f ~ 1 and f is not a unit in F[x]. We now 
want to show that J has no proper divisors in F [x ]. Assume f = g 1g2, 

where gl'g2 € F[x]. By Lemina 34.10, f h1h2,where h1-,h2 E D[x], C(h1)"" I 
"'C(f), C(ftz_)"" 1 "" C(f) and gl'g2 _ are respectively associate to hl'h2 in F[x]. 
Since f is irreducible: in D[x], either h1 or h2 is associate. tofin D[x] and 
thus, by Lemma 34.9, eithe; h1 or h2 is associate to fin F[x], hence either 

· g1 or g2 is associate to.f in F[x]. Thus f has no proper divisors in F[x] and f 

. is irreducible in F[x]. .. " . · o · 

We need one more lemma to prove that" D [x] is a unique factorization 
domain whenever: D is. It comprises the .. main argument. 

34.12 Lemma: .Let D · be a unique facto,riza{ion domain and let f be a 

nonzero polynomial in D[x] such that C(f)"" 1 an1 deg f ~ 1. Then f -can be 
written as a product of irreducible polynomials in a unique way. · 
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Proof: Let F be .the field of fractions of D. We will use the fact that F[x} is 

a unique factorization domain and the fact tiHH irreducibility in D [x l ana 

in F[x J coincide (Thcor;m 34.5, Lemma 34.11). ' 

Consider f as a polynomial in F[xj .. By Theor'em 34.5, 

where f{j, g2, ... ,g, -arc irreducible in F[xj. According to Lemma 34.10, 

for some polynomials h. in D [x} with C(h.)"" I and h. is associate to g. in 
l I l · · I 

F[x) (i = 1 ,2, ... • r). Hence h. is irreducible in F[xl and, by Lemma 34.11, h. is 
· ·. . I · l · 

ulso irreducible in D [x ]. We proved that f can be written as a product of 

irreducible polynomials in D[x). 

(':ow uniqueocss (up to the order of factors und ambiguity among 

associate polynomials), Let ft. D[xl with C(})"" and degf';;> I, and let 

(I) 

. he two representations of I as a product of irreducible polynomials 

p 1• fl 2 •• .. ,p,, ql' q2, .. ; ,qs in D [x]. Taking contents and using Lemma 34.8, 

we get 
. C(p1)C(p2) ... C(p,)~C(j)"" l "'-'C(q

1
)C(;h): .. C(q~) 

so that C(p) and C(qs) are units in D: By Lemma 34Jl, the polynomials pi' 

q
1 

arc irreducible .in F[x]. Since F[x[ is a unique factorization domain, we 

deduce from ( l) that r s and, eventually after. reindexing the polyno­

mials, pi is associate to q1 in F[x[. Since C(p1},.,; C(q1), ·Lemma 34.9 tells us 

that p1 is associate to q1 inD[x[ (i = 1,2, ... ,r). This completes the proof. · o 

34.13 Theorem: If D is a unique factorization dm~win, then D[x) is a 

unique factoriwtitm domain. 

Proof: Gi~cn any nonzcropolynomiaijinD[xl which is nota unit in D!xL, 

we have to-show that f can be written as a. product of irreducible poly­

nomials in D [x [, and that this 'representation is uniqu"e up t? the order of 

factors and ambiguity between associate polynomials. 
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Now let f. E D [x].j ;;e 0, f ;;e unit in D [x]. If deg f 0, then f E D and, since D 
is a unique~ factorization' dom~in, f can be written as a product of irre-

ducible elements pi' p2, ••• ,p, of D. These elements are uniquely deter­
mined, and they are irreducible also in D [x] (Lemma 34.3). -So f can .be . 
written as: a product of irreducible elements in a ·unique way if deg f = 0. 

Suppose next deg f~ l. We write f = cf;, where c"" C(f) € D and .t; E Dlxl 
with C(/1)"" 1, deg J; ~ l. Here c and /j are uniquely determined up to a 

unit in D. Now c E D can be written as a product of irreducible elements 
in D, which are also irreducible In D [x]: 

ai are irreducible in D [xI, 

·and ai· are uniquely determined. By Lemma 34.12, f 1 can be written as a 

product of irreduCible polynomials in D (x] :-

q1 are irreducible in D[x) 

and qi are uniquely determined. Hence 

/ a1a2 ••• a,q1qr··qs 

is a product of the irreducible polynomials a.,q. in D)x), which are unique 
. . l J 

up to the order of factors and ·ambiguity between associate elements. 0 

By repeated application of Theorem 34.13, we get . 

34.14 Theorem: .If D is a unique factorization domain, then Dlx1.x2 ••• -:~\) 

is a unique factorization domain. 0 

In · particular, 

34.15 Theorem: If K is a field, then K)x1 .x2~ ••• .xn J~ is a urzique jactoriza-

lion domain. 0 
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Exercises 

l. Prove .that x 4 + 1 € l [x.] is irreducible over _l by comp~fing tHe 
_ coefficients of both sides if! a 'hypothetical factorization x 2 + 1 = fg an'd 

deriving a _contradiction from it. Investigate the_ cases deg f=l, deg g = 3 

and deg f 2 = deg g. separately. 

2. Do Ex. 1 for x4 + 2 and 'x4 .+ 3 € Z[x]. . -

3. Show that x4 + · 4 is reducibie over Z. 

4. Show that· x~ + l E Z
2
[x) is reducible over Z 2• 

5.Show that x4+ :I E (Z [-{2J)[x] is reducible over~ r..J2J-(see §32; Ex~ 3). 

6. Find a content of 

(a) 65x4 + 26x2 - 9x + 143 E Z[xJ · 
(b) {5 + i)x3 + (-1 + 5i)x + (-4 + 7i) _-- .E(Z[i])[x) 

(c) (I + w)x4 + (...:t + 2w)x3 + (1 - 2~)x2 + 3x+ (2 + 3w) E (Z[wJ)[x)-
(d) 8x4 ~+ 24x3 32x2 - · 48x +,56 € Q[x) 

(e) "3x2 + 3x + 7. e:- Z97 [x). 

J. Let D be a unique factorization 'domain and let F be the field of 

fractions -of D. Let f € D [.i] be a nonzero polynomial_ whose leading 
coeffici<;:nt is a unit in. D. Suppose that g,h € F[x] and f = gh. Prove thaf 

then g E D[xl and h E l)[x). 

8. Let D. be a unique factorization domain and letf,g € D[x]\D. Prove that 

a greatest common divisor· of f arid g has degree ;;;;. 1 if and only if there 

are polynomials h,k in D.[x) satisfying deg h < deg g and deg k < deg f 
such that f~ = g k. 
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§35 
" Substitution and Differentiation 

In· this paragraph, we study the divisibility of polynomials by those of 

the firsf degre~~ We ·prove· the familiar remainder . theorem. Ro.ots . of 

polynomials , are introduced and multiple roots are examined. 

Everything in this paragraph is based on the substitution homomorph­

ism which we now define. 

m 
35.1 Definition:. Let R be a ring and let f= L aixi be an arbitrary 

i=O 

polynomial in -R [x]. Let S. be a ring containing R. For any s E: S. the· 
m 

element I.a/ of S is called the value off at s. The value off at s is said 
;:o 

to be obtained by substituting s·for x or by evaluating fat s. The value 
m • \-. 

22arl.i off ats will be denoted. by f(s). 
i=O 

In many cases, S is taken to be R, and then j(s ). E: S. In fact, we may al­

ways assume S =.R by t;iking f as a polynomial in Six!. However, if R c S 

and s E S\R, then f(s) need not belong to R. 

35.2 Examples: (a) Let.g = 4x 2 + 6x + 8 E: E [x }, where E is the ring of. 

even integers; so E b; l. Now 1 E: l and g(l) 4-1 2 + 6·1 + 8 = 18 E: l. 

(b) Let h = 3x 3 + 4x2 + x I E: llxl. Here ilJl is a ring .'that contain~ 
~ 2 (2);3 (2)2 (2 29 
5 E 0. We have h(5) = 3 5. + 4 5 + 5)- I= ill E 0. 

l and 
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· . · 0 I' · . I 1. . --1 0 ... ' ·.· . . . . · 
(c) Let/= ( 1 o)x2 ·+ Co I)x + ( 2 o) E (Mat2(l))[x]. Now Matz(l) is a 

~ing containing Mat 2(l) and (~~)E Mat~(l);:The~J.((~~)) 

. ·~(0 I)·(O 1)2 ( l1 )(0 1) .. c-1 o)· 'co 2) . . . 
= l 0 ·tO + Ol 10 + 2·0 ·~ .4 0 E Mat:z(l), 

. . . . , ' m . . 
(d) Let R be a ring with ·iden~ity and f = L,a,.xi E R[x], Then R ~ R[x] and 

~0 . . 

m . 
x E R[x]. The value .of [atx E R[x] isf(x) · L,a/ =_f,sof(x) =I E R[x] . 

. i=O 

From now on, the notations f and f(x) for a polyn()mial in· R [x] will be 

used interchangably. 

m - "r 

· (e) Again let R be a ring with identity and f L,_a ii E R [x] be a 
i=O 

polynomial with coefficients· in R, Let y be an indeterminate ·.distinct 

from x. Then R is ·contained in R [y1 and y E R [y ]. The value of j at y is 
m . 

fly)= L,al E R[yJ~ 
. i=O · 

(f) Let p = x3 :.. x+ I E !l}[x]. Now 0,!: O(xj, x + 1 e: O!x] and 

p(x + I)= (x + 1)3 (x-+ 1) +I =x3 + 3x2 + 2x + 1 E O[x). Similarly x2 e: O(r] 
and p_(xi) = (x2) 3_.: (~2) + 1 x6 -.x2 + I E O[x). · 

(g) Let R be a ring. For arJY f E R [x). the .value off at g E R [x] can be 

found as in the last example, and it is a polynomial f(g(x)) in R(x]. 

(h) Let f = ·:3x7- 3x +2 E l 
12

[x]. The value f(l) off at 1 e:' l is not 

defined, for l does not contain Z 1z-

o) Let q x 2 +X+ 2 and r =· x3 +X+ 3 E Z[x]. We put 

t ::: qr = x 5 + x4 + 3x3 + 4x2 '+ 5x + 6 e: Z[x]. One checks e;sily th~t q(2) = 8, 
\ ... ' . 

r(2) = 13, t(2) = .104. Notice t(2) 8·13. = q(2)=r(2). This is explaine_d in the. 

next lemma. 
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35.3 Lemma: Let R b..e a ring, S a ring that contains R, ·and s an element 

of S. If S is commutative, then the mapping· 

Ts: R[x]-+ S 

' f -+ f{s) 

is a ring homomorphism (called the substitution or evaluation homo­

morphism). 

m n 
Proof: For any f = L,·a /. g = L, b li in R[x], we have· 

i=O j=O 

. . m n . 

(f + g)T = ("a :x1 + "b :xi)T 
S £.., .I £.., J S 

1=0 j=O . 

m 
= (L, (a1 + b 1)x

1) Ts . (assuming n = m without .loss of generality) 
i=O 

and further · 

m . . 
= L,Ca1 + b;)s' 

i=O 

m m 
= ~a .si + "b .s1 

£.., I. £.., l 

1=0 i=O 

= f(s) + g(s) 
, =ffs + gTs; 

m+n . . . m+n 

(fg)Ts =[ L ( L,a1bj ):xk] Ts = }: ( L,a1bj )sk, 
. k=O i+i=k . k=O · i+j=k . 

m n m · n 

(fTs)(gTs) = (~a1:x1)Ts· (~bli)Ts = (~a1s1)"(~b/) .. 
1=0 · J=O . 1=0 ;=0 

"a .b.s1+i £.., l J 
i,j 

m+n 

= L ( J:pibj )sk 
k=O i+j=k 

= (fg)Ts. 
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Hence. Ts preserves sums and products, and ~is ·therefore a ring homo-· 

morphism ... .D 

- . . 

- In the proof of' Lemma 35.3, ~he commutativity of S is used in a crucial 

way. If S is· i10t commutative, then Ts is riot. a . ~o~omorphi~m: For 
example, 

.· . . 

Jx 2
- {~ ~) = [lx + (~ ~)] [lx -.{-~ ~)] in (Mat2(Z))[xJ 

- ' 

but substituting (6 'ci} for x does not preserve sums ~nd pr?ducts: 

/' 11 2 '( 1 0) [(1 1) (0 1)] (1 1) (0 1)] \o o) - or ;r. o o + 1 o [ oo - 1 o · · 

The substitution homomorphism is· closely re'lated to· the division · algo­

rithm in an integral domafn . 

. 35.4 Theorem (Remainder theorem): Let D be an.· integral domain, 
f E D lxl and a E D. There is a un.ique· polyno,;uat·q in D[x) such that 

/(x) = q{x)(x- a)+ f(a). 

Proof: \Ve divide f by (x- a). This .is possible by Theorem 34.4, because 
the leading coefficient of x - a is a· unit· in D (in· fact 1 ). Thus there ;ue 
unique polynomials q and ;. such that ' 

f(x) .= q(x)(x- a)+ r(x) r-= 0 or deg r < deg (x:- a)= 1. 

So r is an element of D (z<;ro or not). To find r, we substitute a for x; 
since substitution is a homomorphism· ·by Lemma 35;3, we get 

/ 

f(a) = q(a)(a- a) +~(a) 

f(a). = r. 
This completes the proof. · o 

35.5 Definition:· Let ~ be a ring, S a commutative rjng that contains R 
and let f be a polynomial in R [x) .. An element a of S is called a .root or 
zerti off if f(a) = 0. 
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35.6 Theorem (Factor theorem): Let D be an integral domain, and let 
f be an arbitrary- polynomial in D[x]. Let E be an integral domain contain­

ing D and let a E E. Then a is a root off if and onlY if (x :- a)lfin E[x]. 

Proof.: By the remainder theorem (with E in place of D), there is a 

polynomial q· in E[x] such that f(x} == q(x)(x- a)+ f(a). If a is a toot off, 
then f(a) = 0, so f(x) = q(x)(x a) and (x- a)lf(x) in E[x]. Conversely, if 
(x '_ a)lf(x)in E[x], then (x- a)l [f(x) - q(x)(x- a)] in E[x], so (x..: a)lf{a) in 
E[x]. Thus f(x) =·u(x)(x !_.a) for some u(x) E E[x]. Substituting a for x, we 
get /(a)= u(a)(a-- a) 0. So~ _is a root of f. o 

The factor theorem puts. an upper bound to the number of roots of poly­
nomials over integral domains, in particular of those over fields. 

35.7 Theorem: .J,.et D be an integral domain,f a nonzero polynomial in 

D [x] and let E be an integral domain containing D. Then there are at most 
deg f distinct roots off in E. 

Proof: We make induction on the degree of f. Polynomial~ of degree 0 
are just the nonzero 'elements of D, and they have no roots -in E (zero 

roots). So the theorem is true when degf 0. Assume now deg = .1. so 
that f = ex + d, where c ,d E D and c ~· 0. Iff had more then one roots in E, 
say ifa

1
, a

2 
were roots of.JinE and a

1 
~ a

2
, we would get· . . 

cal + d = f(al) = 0 =f(az) = caz + d 
. cal = caz 

_ c(a1 - a2) ;; 0 c ~ 0 
a1 - a2 = 0, 

contrary to a1 ~ a 2• Thu~ ex + d has either no roots in E or one and only 
one root in E, and the theorem is proved when degf = 1. 

Suppose now n > 2, deg f '=. n · and that; for all integral domains D ·;/any 

polynomial of degree n - 1 in D '[x] has at most n.- 1 distinct roots in any 

integral domain E • that 90ntains D '. iff has no roots in E, the theorem is 
true. If f has a root a0 in E, we have 

· f(x) = q(x)(x- a0) for some q(x) E E[x] 
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by the factor theorem. Here q(x) is of degree n -·I by Lemma/33.3(3). By 

our induction hypothesis, q(x) has at most n -: I distinct" roots in E. No~ 
let A be the set of all distinct roots of q(x) in E (possibly A = 0) so that 

IAI < n-,J. 

lfb € E is anyrootof/, then1(b) = 0, so q(b)(b- a0 ) = 0, so q(b)= 0 or 

, b = a0, so b. €. A or b = a0 . Hence B !:: A u { a0 }, where B is . the ~et of all 

distinct roots of /(x) in E. Thus JBI ~ lA I + I < (n -1) + f = n and f has at 
most n = deg f. distinct roots in E .. This completes the proo'r. D 

. ( 

Theorem 35.7 may be· f:rlse if the underlying ring is not commutative or 

if..it has zero divisors. For example, x 2+ I € fl [xl of degree two. over the 

!lOncommutative ring H of Ex .. 9 in §29. has infinitely many roots in H. 
Als?• the polynomial x 2 I = Ti2 - T over 'z 8 ; wbich has. zero divisors, 

possesses four distin_ct roots 1, '3, 3, I in 

We give two applications of Theorem 35.7. In these applications,. the 

underlying integral domain is a field: 

35.8 Thcorc.m (Lagrange's interpolation formula): Let K be a field 

and. q).a1, ••• ,an be distinct elements of K. Let bO'bl, ... ,bn be· arbitrary 
eleriwn~s of K (not necessarily .distinct). Then there is a un!que poly~· 

nomial in K(xl such thatf(a0 ) • b0 ,f(a1)'= b1,: •• ,f(an) ~ bn lind.such that 
. deg f < n~"(one less than the number of a's or b's) or f = 0. This poly­

iwmial is given explicitly by the formula 
. n . . . , 

/:c:,I (x_ -ao>· .. (x- ai-l)(x- ai+l).;. (x- ao) hi' 

1=0 (ai- ao>· • . ,(ai- 0 i-l)(ai -. ai+l) •.. (ai ·- ao) 

Proof: The i-th summand fi := 

(x- a0) ••• (x- ai-l)(x- a 1+1) ••• (x- a0) b. 

(a;- ao>· .. (a;- ai-l)(ai ai+tl· .. (a;- ao) ' 

in th~ formula is .0 € K[x) (when h. 0) or a polynomial in K[xJ of degree 
• , . I . • , 

n (when hi ;r.' 0). Here .t;<ai) = hi and .t;<aj) = ~for i ;r. j. So I:'=~ + /2 + ... '+In 
is either' the .zero polynomial or a polynomial of degree at most n such 

that {(a) /,1(a.J + J2(a )·.+ · ·· +/.(a.):::: 0 + ··· +''(a.)+ 0+ ... + 0 =b. for all 
, • I I I n .1 , Jj I I 
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i == 1 ,2, • ·._ . ,n. This proves the existence of a. polynomial with the 
propertie~ stated in the theorem, namely the one given explicitly above. 

The uniqueness of f follows from Theorem 35.7. If g is a polynomial in 
K[x] with deg g.;;; n_, and if g(a 1) = bl' g(a2) = b2, ••• , g(an) = bn, then the­
polynomial h = f- g has at least n + I roo_ts a0, a 1, ... ,an in K; and, if h ;r. 0, 

then h has degree at most equal to n (Lemma 33.3(2)). This is not 

compatible with Theorem 35.7, so h = 0 and g = f~ Therefore f is the 
unique polynomial satisfying the conditions . above. 0 

The formula for f is easy to remember. We· have f = / 1 + / 2 + · · · + In' 
where /;(a.) b. and /;(a.) = 0 for i ;r. j. The second condition leads to/; 

l l I l J _ I 

= (x-a0) ... (x-aH)(x-ai+l).;.(x-a0)cifor.some,ciE: K,andci must as in 
the formula if J;<ai) is to be eq:ual to bi' . 

35.9 Theorem (Wilson's . theorem): If p E: N is a prime number, then 

(p- 1)! + 1 0 (mod p). 

Proof (Lagrange): Fermat's theorem (Theorem 12.6) states that 
aP-l = 1 (mod p) forany integer a with (a,p) = 1. We can write this as 

aP-1 - 1 "{) in ZP if a ;r. "0. 

Thus the polynomial f = xP-1 1 = 1xP~1 - 1 ~- ZP[x] hasp 

in ZP, namely 1, 2, ... , p::-T. The polynomial · 

g = (x..,. T)(x- 2) ... (x :-P-J) . 
has the same roots. Hence the polynomial _ 

distinct roots 

h - g = ( 1xP-1_- 1)- (x- 1)(x...: 2) ... (x -p=i) = (xP-1 - 1)- (xP-1 + · · ·) · 

over ZP has at least p- I roots 1, 2, ... _, in ZP. If h w~re' not th.e 
zero polynomial in ZP[xJ, its degree would be less than p 1. This 

contradicts Theorem 35.7. So h is the zero polynomial in ZP[x]: each 

coefficient of. h is equal to "0 € ZP. In particular, 

U == coefficient of xP in h 
·='(coefficient of ~0 in f)- (coefficient of x0 in g) 
= (-1)-'- ((-1)(_:2') ... ( -(Fl)) 
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pmvided p is Odd •. Hen~ (p - l )n +. I = oi ~modl p )I wfle[]J fib is· an odd prime_ 

number. Bu£ lhms Cf{}-DgTruence holds aliso wfu:et1'. p = 2. Thiis ccmpCetes the 

pmof:. . _ . I!JJ 

· The nextt. ~rem winE be lf':mtiiEm to the re:m~ irn nile cas.e «rlf D = E. • ;;· =:= 

0 under the mme olf "'lr.l:tiu!U.II lroQtt llhe@rem'"~ 

3.5.10 Theorem: Le.·11 D fJe: a ll!lfifqju:e farttla'frizab.ii(o:n dmiJWJiim am11 Ge:11 F ae: cl±e: 
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fw .. . . . ·. 
a.d!JiiCf[eury.· /l@!Dyrwnt:EaU. iro Lllflx]. Bf a =- e: F ii.v; a. If@(!)(! mj{ ff,. T4't/!r;ae: /iiJ~c · e: fiJ (:][J:rHJi. 

. o:: . 

a:i!(:][ro amdl /b.i!tl(); iiru f!Ji _ 
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F~ro IF i:f.· ae:t!un:fllJi fr1:!1. f[)J_ 
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/ill" /iJ/""11 /&1 . 
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lli,Jbl" * «w~e- 11 !W"-11cr.·-tr-···-- + 1111ae:.nr-u +ail"">!= COl • 

. !kll,./jl" + l'll~li/W'--IIe. * --- +. l'.l.j/W«nr-Ufl *OJI;tt"' = (I))_ 
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35.11 Example: As an illustration Of Theorem 35.10, we prove· ~hat the 
real number ...J2 is irrational. Let f(x) = x 2 -'- 2 € 1[x]~ Since 1 is a- unique 
factorization domain and the leading coefficient off is a unit in l.. (f is in 
fact a monic polynomial), .any root of f in il:P must be actually in 1 by. 
Theorem 35~10. But 

/(0) -2~ 0; /(+l)::: -1 ~ 0; 

f(+m) = m2
- 2;;;;. 2, so J.!;.m) ~ 0 form > 2; 

so f has no integer roots; and consequently. no rational roots, as claimed. 

Next we discuss the multiplicity of roots. Let D be an integral domain 
and I a nonzero polynomial in D [x]: If a € D is a root of I. then we have' 
l(x) = (x - a)q1 (x) for· some q1 (x) ·€ D [x] by the factor theorell! (Theorem 
35.6). Either a is not a root. of q1(x), or !'e have q1(x) = (x- a)q2(x) and 

therefore f(x)'= (x- a)2q2 (x) for so~e q2(x) € D [x]. In the latter case, 
either a is not a root. of q2(x), or we have qz(x) = (x- a)q3(i) -and 

therefore l(x) = (x- a)3q3(x) for some q
3
(x) € D [x]._ We repeat this 

argument. Since the- degrees. of q 1 (x), qi(x), q3(x), . . . get smaller and 
smaller, we will reach a polynomial q (x) with . m 

,f(x) = (x a)mqm(x), qm(a).~ 0. 

35.12 Definition: Let D be an integral domain and I a nonzero poly­
nomial in D [x]. Suppose a € D·and I( a) = 0 .. 'fhe uniquely determined 
integer. m ;;;;. 1 suc_h that 

·, 

l(x) = (x- a)mqm(x), . qm(x) € D[x], 

that is, the 'uniquely determined _integer m ;;;;. 1 such that 

(x- a)m+l~l(x) :in D[x] . 

is called the multiplicity of the root a of f. The root a of I is called a 
simpie root when m = 1 and a multiple root when m > 1. 



This definition makes' sense also when a is a root off in E, where E is ail 
integral domain containing D: we need only regard f as a polynomia] 
over E and use the' definition with E in place of D. When £ 1 and £ 2 are 

· two integral d<:>mains containing D and a roo~ a off is· both in £
1 

and £ 2 , 

we have, say. 

f(x) = (x a)mtq
1
(x), ·. 

f(x) = (x- a)mzq2(x), 

f(x) = (x- a)mo%(x), 

q 1(x) E £ 1[x], 

q2(x) EE2[x], 

q
0
(x) ·E (£1 n Ei)[x], 

q 1(a) ;;r. o. 
q2(a) ;;r. 0, 

q0(a) ;;r. 0, 

as the equations defi!ling the multiplicity of a as a root in E I' £2; E1 n £ 2• 

Then 

and the assumption m1 > m0 or m~ < m0 leads to the contradiction 

(x- a)mt-moq
1
(x) 

0 

or q
1
(x) (x- a)mo-mtq

0
(x), 

or q 1(a) = .0. 

Hence m1 =.m0 • Likewise m2 = m0 and therefore m 1 := m 2:· the multiplicity. 

of a root off E_ D [x) is independent of the integral domain to which the 

root belongs. 

In order to· find out whether a polynomial has !Uultiple roots, we take 
, derivatives. 

In analysis, the derivative of a real-valued function u of a real variable 

x is defined . by 
'( ) - r u(x + h)- u(x) 

U X - ~~~~ ... Jz . • 

This definition cannot be extended· to polynomials over a ring. For one 

thing,_ polynomials are not functions. Second, what should 
u(x + h) u(x) · . . 

h mean m a rmg? Third, we did not define limits in a 

ring. ln fact, in many rings, a reasonable limit process cannot be 

introduced at all. But we' know fro!TI analysis that the derivative of the 
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m m 
function x - La kxk is the function x - ·:rk akxk:-1

• This suggests _the 
k=O . ik=l 

followiJ!g definition. 

.m -
35.13 Definition: Let R be an arbitrary ring arid letf :Lakxk be an 

. _ _ bO 

arbitrary p~lynomial - in -RlxL The deriv~tive of f is defined ~s- the poly- -~ 
nomial 

m -m-1 _ -

J =j(x) = :l,k akx.k-1= -L(k+l)ak+lxk € R[x]. 
k=l k=O 

k ak means of course ak + ak + · · · + air. in R (k __ times). This definition has 

nothing to-·ao _with limits. Taking the derivative of a: polynomial is called 
differentiation:.. 

35.14 Examples: (a) Let f (x)= x 4 - 3x2+ x + 10 € Z [x]. Then. 
_ t(x) = 4x3-- 6x + f € Zlxi. . 

,<b> Let g(x) ~r~ +rx4 +~.i3 +tx- 3€ orxJ. Then 

< : '( )• 5 4 4 .1 6 2 4 .·· 1111[ ] _­
g x ::;: 3 x +

7
x:+ 5 x +3: €...-x .. 

. <'12)3 (01)2:(12) ·_(00) < .)· •• 

(c) Leth(x) = 3 4 x + _11 x + 0 3 x + 1 0 € (Mat2(Z) [x]. Then 

. . 

, · (1 2) 2 • ·(o 1) (12) h (X) = 3 3 4 X + 2 _:_1 1 X+ 1 O 3 

. (3 6 ). 2 • (0 2') ( 1 2) . = 9 12 X +, -2 2 X+ 0 3 € (Mat2(Z))[x·]. 

(d) Let k(x) = 2x4 + 4x2 +1x + 3 € Z8[:i]. Then 

k'(x) =·4·2x3 + 2·4 + 1·1 = j € Z
8
[x]. 

(e) Let l(x) = x 125 + i 25 + 2x5 + '3. € Z~5 [x]. Then. 

l'(x) 1~5·1x 124 +25·Tx24 + 5·Zx4 = 0 € Z5[x]. 
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The familiar rul~s of differentiation hold in a11y polynom_ial ring. 

35.15 Lemma: Let R be.a ring, c € R, and let f,g € R[x]. Then 

(f +g)'= f + g', (cf)' = c], (fg)' = fg+ fg'. 

m . n 
Proof: Let f = L, a kxk and g = L, b fj· We have 

k=O j=O 

· m m . ,/ ; 

= ( L, a kxk + L, b kxk) (assuming n = m without loss of generality) 
. k=O. k=O 

m 

= L,k(ak + bk)xk-1 
k=l 

m m 

= L k.akxk-1 + L k bkxk-1 
k=l k=l 

=f+g', 

(cf)' = ( c fakxk) ~ = ( f,caJ/) "= Ikcakx~-i = c Ika~xk-l = cf 
k=O · · k=O , k=l -k=l · 

·Next we find (fg)' andfg +fg'. We have ' 
(fg), = [ ( I a kxk) (I b /) J" 

k=O · j=O 
m+n 

= [ L ( ~akbj )xS] " 
_ s=O k+j=s 

m+n 

= L s ( L,akbj )xs-1, 
. s= I k+j=s 

(I) 
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fg+Jg' (:~akxk)"(f.b/) +(f.akxk) (Eb/)" 
k70 ; j=O . . · k=O . . j=O . . 

_ m ·· . :. n · m n 

·= (2:k akxk'"1)(2:b/} + (Lakxk) (Lj~xi-1 ) 
k=l . ·· j=O . · _ k=O . . j=l 

m+n . . m+n . . 
/ · = L ( 2:kak6j )xs-l + L ( Dakbj )xs-l 

s=l · k+j=s . : · s=l k+j=s .. 
m+n 

= L (: 2:kakbJ + j akbj)xs~l 
s= I k+j=s 

(2) 

.I:;om (l)'and (::i), we-conclude (/g)'= f'g + fg': This completes the proof. o 

35.16 Le~ma:Let R be a ring and let !jJ2, ••• .fnj,gER[x]. 

o> <J.. + 12 + ... + t,.r =it·+ fi' + ... +J,.'., 
(2) lf,/2· · ·fn)' = /1 'Ji. · .fn + ft/2'· · ·fn + · · ~ '+ ftfi· · ·fn ·~ · · 
(3) (gn)' = ngn-lg·. · 

(4) (t\g(x))f =f(g(x))g'(x): 
Proof: · (1) and (2) follow from Lemma 35.16 by induction on n. (3) is a 
special case of (2!, ·with ft = / 2 = · · · = /,. = g. We now prove. ( 4 ). Let 

m m · 

f = Lakxk. Then f(g(x)) = Lakgk E R [x] and, by (I) and (3), the 
· k=O k=O 

derivative of f(g(x)) is 
. . ' 

m ' m m 
-( La kgk) = La k(gk}" La k(gk), 
. ~0 ~0 . ~· 

m 
Lk akgk-lg• 

k= I 

D. 

We are now in a position to determine· which roots are multiple roots. 
' .. 
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35.17 Theorem: Let D be an integral domain, and E an integral· domain 
that contains D. Let c e: E and let f be a noni~ro polynomial in D[x]. The,n 
c is a multiple root of j if and only if c is a root of both f and .f. 

Proof: Suppose c is a multiple root of f. Then it is a root of f. We wish to 
show that c' is a root of/' as well. We have f(x) = (x - c)2g(x) ·for some 
g(x) e: E[.x]. Differentiating and substituting c forx, we obtain 

f'(x) = 2(x- c)g(x) + (x- c)2g'{x) · . 

.f(c) 2(c- c)g(c) + (c- c)2g~(c) = ci 
and c is indeed a root of r. 
Conversely, suppose c is a root off and/'. We write f(x)::: (x- c)h-(x); 
where h(x) e: E[x]. We want to show that c-is a root of h. Since 

.f(x) = h(x) + (x- c)h '(x) 

.f(c) = h(c) + (c- c)h '(c) 

0 h(c) + 0, 
h(c) = 0 and c is .a multiple root of f. 0 

35.18 Theorem: Let K be. a field and E an integral domain that contains 
K. Let f(x), g(x) be arbitrary nonzero polynomials in K[x]. · 
( 1) Iff and g_ are relatively prime, then I and g have no common root in E. 

(2) If /and .f are relatively prime: then f has no. multiple roots in E. 
{3) Iff is (rreducible in K[x], then. either f _and g are relatively prime or - -
j]g in K[x). 
( 4) Iff is irreducible in K[x] and deg f > deg g, then f and g have no 

common root in E. 

(5) Iff is irreducible in K[x] and f' ·;r. 0, then there is no root off in E 

lvhich is a multiple root. 
( 6) If I is irreducible in K[x] and iff has a root in E which is not a 
multiple root off, then..f ;r. 0. 

Proof: (l) Suppose f and g are relatively priiT!e in K[x]. By Theorem 34.6, 
there are polynomials h,l in K!x] such that 

I.= h(x)f(x) + l(x)g(x), 

where 1 is the identity element of K. Iff and g had a root c e: E in 
common, we would ·have . 

, 1 ::; h(c)J(c) + l(c)g(c) = h(c)O + l(c)O = 0 + 0 =.0, 
a contradi~tion. So f and' g have no common root in E. 
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(2) Assume f and /' are r:elatively prime. If f has no root in E, then 
certainly f has no multiple root in E. Now. we suppose f has_ a root c in E 
and prove that c . is not a multiple root of f. Indeed, since f and /' are 
re~atively prime, f and r have no common root by part (1), so f'(c) ~ 0 
and c is noi a multiple root off by Theorem 35.17. 

p) Suppose j is irreducible- iil.K[xf and let d e: ·K[x] be a greatest common 
· divisor of f and g. Since_ dlf. and f is irreducible, d is either a unit inK [x 1 

oi an associate of f. In the firstcase;f_and g are relatively prime, in the 
second case; f.,. d and dl g yields .f1 g. 

(4) Suppose f is irreducible in K [x] and deg g <:::·. deg f, then f cannot 
divide g, so/ and g are relativ~ly prime by part (3). By part (1), f and g 

have no common root in -E. · 

(5) Suppose f is irreaucible in K[x] and/';>;! 0. Then deg F < deg f. Since f 
is· irreducible, f and/' have no common root in E by_ part (4). Now iff has 
no root· in E, . then f has certainly no multiple root in E; Iff has a root c in 
E, then c is not a root of/', so c is not a multiple root of f by Theorem - · -
35.17. In any case, f has no multiple root in E. 

--
{6) Suppose f is:_irreducible iJ1· K[x) and suppose c e: E is a simple root off 

. in E. If we had] =- 0, we would havef(c) = 0 and f'(c) = 0 and c would be 
a multiple root off by Thec;>rem 35.17,_ a contradiction. Thus, if there are 
roots in E and if they are all simple,· then /' ~ 0.- 0 

We finish this paragraph with a brief discussion of. successive substitu­
tions. 

35.19 Definition: Let R be a ring aJ1d.let 

. N1 N2 - N •. 1 N. _ 

f;::: L L ··:. L ·L aij ... krtixj. .. x;_lxn' 
• i=O j=O :.t=O 1=0 . · 

be a polynomial in R[x1,x2, ·.··~n-l,xn]. Let S be a ring that contains R and 

let cl'~· ... ,cn-l'cn be elements. of S~ The element 
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of S is called the value off at (c1'c2, •. •• ,c,_ 1 ,c~). It. will be denoted by 

f(cl'c2, ... ,c,~l'c,). 

Nl Nl Nft·l N~ . ·.· 
· ~(~ ~~ ·.·ij k). I With the foregoing notation~ f = £.t £.t ... £.t £.t . a ij ... krt x2 ••• x,_ 1 x, 

, i=O j"'O k='O 1=0 . . 
is a polynomial in R [x1'x2, •• ; .x,_1 ][x,) .. Substituting. c, for x, in the sense 
()f Definition 35.1 (With S[x1,x2, .:.,x,_1),R[x1,x2, ·:·.X,_1),x,., c, in place of S, 
R, x,c, respectively), we get an element of S[x1,x2, ... ,x,_1), namely 

..... _"·· 

Substituting c,_1 for x,_1 in this polyno!llial over S[x1 ,x2, ••• .x,_2), we get a 

polynomial in S[xl'xz' ... ,x,_2], namely 

r.. Nl NA·2 . N.~. N,. . • . . . 
~ ~ ~ ( ~·~ k , · · ) i i r 
£.t £.t • •• £.t·. £.t £.t c n-lcn aij .. :j'kl XI x2 · .. xn-2' 
i=O j=O j'=O · k=O 1=0 · . 

We continue in this way.-If S is commutative; we obtain f{cl'c2, ••• ,c,_l'c,). 

after n substitutions. Thus 

where Tcft: R[xl,x2, ... ,x,_t,x,.]----. S[xl,x2, ... .x,..:.tl 

Tc/S[xt .X2, ... .xh-t .xhl---::+ S[xl'xz, .. · .xh-il (h=2, ... ,n 1) 

Tc: S[x1] --+ S 
1 ' 

and 

are the substitution homomorphisms in the· sense of Definition 35.1. 
Since the composition of homomorphisms is a ·homomorphism (Theorem 
30.12), we obtain the following lemma. 

'35.20 Lemma: Let R be a ring, S a .ring that contains R, ·and 

cl'c2, . :. ,c,_l'cn elements of s._lf s .is commutative, then the mapping 
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is a ·ring homomorphism (called the _evaluation or substitution homo­
morphism). o. 

Exercises 

I. Let f =x3 + ax2 + bx +~ E l [x]. Prove that f is reducible over Q if and 
only if f-- has an integer root.. 

2. Fin9 a polynomial f E Q [x] wit~ deg f -~ '4 satisfying 
f(..:i) =9, j{-1) = -2, f{O) =I, f(I) = 4, f(2) ~ 25. 

·-
3. Let p be a prime number of the form 4k + I. Using Wilson's the~rem, 

show that P/ ! is a root ofx2 + T E lp[~]. 

4. Let R be a ring and f = Laijkxiyjzk E R[x,y,z]., The derivative off, 

i,j,k -

when f is regarde_d as a poly~omial in R[y,z][x], is called the derivative of 

f with respect to x and is written :~ · Thus :~ = L i aijkxHlzk. The 
ij,k 

i > I 

derivatives with respect to-y and z. are defined similarly. f is said to be -

homogeneous of. degree m if. i. +I+ k = m for all ij,k with aijk ;I! o._ Prove 
the f~llowing assertions. 

(a) Let t be ari i~detem1inate. ov~r_ R [x,y,z]. ~ff(x,y,z) E R [x,y,z] is a 

homogeneous polynomial of degree m, then 

J(tx,ty,tz) = tmf(x,y,z) E R [x,y,z,t]. ( •) 

(b) Let t _be an indeterminate over R[x;y,z], and f(x,y,z) E R[x,y,z]. If 
( *) holds in R [x ,y ,z ,t], then f(x ,y ,z) is a homogeneous polynomial of 
degree m: 

(c) lff(x,y,z) E R[x,y,z]' is a homogeneous polynomial of degree m, 

then 

f(rx,ry,rz) = rmf(x,y,z) 

fot all r E R. 

(d) lff(;,y,z) E l[j) [X,y,z] and f(rx,ry,tz) = rmf(x,y,z) for all r E i[jl, then 

f(x,y,z) is a homogeneo~s polynomial of degree m. · ' 

(e) Find a po~ynomial f(x,y,z) E l 5 [x,y,z]. such that 

f(rx,ry,rz) = rmf(x-,y:z) for all r E l
5 
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and which is not homogeneous of degree m. 
- (f) If f(x,y,z) E R [x,y,z) is homogeneous of~ degree m, then 

x of ~ y of + ~z of = mf. 
ox oy · oy 

5. Let R be a ring aQd /E R [x]. The derivative off' is called the second 

derivative off, and is written as f" or asf2>. More generally, the (n+l)-st 

derivative off is defined recursively as the derivative of the n-th 
derivative fn> off, and is written as fn+l}. Thus f:n+lJ = {fnl) '. We write 

fll for f' and f 0l =f. Prove that, for any f,g E R[x], ;ny c E R, any _n E N 

6. Let K be a field, fa nonzero polynomial of degree n in K(x] and assume 
that (n!)IK ;r. 0,_ where lK is the identity of K. Show that 

. n fk>(x) 
J<x+y)= :2: ~yk 

. k"'O 
. . fk>( ) . 

in K[x,y], where, of course, -yf- means [(k!) 1Kr1f(x). 

7. Let p be a prime number and f E l [x ]. Show that j' 0 if and. only if p . . . 
f(x) = g(xP) for some g E l [x]. 

p ' 

8. Let K be a field. We put M = Mat 2(K) for brevity. Let us recall that the 

determi~ant of (~ :) E · .-\1. is a(r- be and that A E M is a unit in M if ~md 

only if det A is a unit in K. 

Let A (x ), B (x) E M [x] be nonzero polynomials and assume that the 

·leading coefficient of !J(x) has a nonzero determinant. Show that there 

are uniquely determined polynomials Q(x), R(x), Qt(x),Rt(x) in M[x] such 

that A(x) = Q(x)B(x) + R(x), R(x). 0 ·or deg R(x) < deg B(x). · 

and A(x) B(x)Qt(x) + Rt(x), · Rt(x) 0 or deg Rt(x) <.deg B(x). 

,Q(i) and R(x) are called the right quotient and right remainder, Qt(x) and 

R~t(x) are called the left quotient and left remainder when A(x) is divided 
by B(x). · 
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F(A) :=FnA" + Fn~ 1An-l +···+~A+ F0 E M 

is called the right value of 'F(x) at A and 
FJ(A) :=AnFn -f.An-JFn_

1
+· .. ·.+AF1+F

0 
EM 

is called the. left valtl~ of F(x) ·at A. Prove that the right. (resp. left) 
remainder of F(x) E M (xJ, when· F(x)is divided by lx -A •. is equal to F(A} 

(resp. Ft(A)). 

9. Let R be a ring .and Di : R[xJ :::+ R[x]-be functions (i 1,2) such that 

D.(f +g)= Df + D.g ·D.(cf) = c D.f, D.(jg) = (D.f)g + fD.(g). 
I _ I I I .I .. I I I 

for all f,g E · R[x:J. DefineD: R[xj- R[x] by 

Df= D1(D.j)- DiD1f) .. 

Prove that -
D(f +g):;; Df + Dg D(cj). c Df, · · D(fg) (DJ)g + fD(g) 

for all J,g E R[xl 

. ' 
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§36 
Fields of Rational Functions 

The reader might !wve missed the· familiar quotient rule. (f/ 
in Lemma 35.15. It was missing be~ause L h not a polynomial. We now . g 

introduce these quotients L. 
g 

36.1 Definition: Let D be an integral domain and x, x1 ;x2, .•. ,xn indeter­

minates over D. Then Dlxl and Dlxl'x2 , ••.• x;,l are integral domains 

(Lemma 33.6, Lemma 33.1 0). An element in the the field of fractions of 

D [xI is called a rational. function (in x) over D. The field of fritctions of 

D [x J will be c:illed the field of rational functions over D (in x) and will be 

denoted by D(x). An element in th~ the field of fractions of D[x1,x2, ..• "tnl 

is called a rational function (in xl'x2 , ••• ,xn) over D. The field of fractions 

of D [x1 ,x2, .•• ,xn] will be called the field of ratimwl functions over D (in 

x1,x2, ••.• ,xn) and will·be denoted by D(x1,x2, ••• ,xn). 

Thus a rati.onal function over D is a fraction L of two polynomials over D, - . g . 

fr f2 · · 
with g ~ 0. Two rational functions - and - arc equal if and only if the 

' x, g2 
f . f2 

polynomials /,1 ~-: 2 and g 1f 2 are equaL Two rational functions ...!.. and- arc 
gl g2 

added and multiplied according to the rules 

II . !2 ~g2 + g /2 
-+-
gl /:2 RtR2 

•jl f2 f/2 

~:, /:2 Rj/:2 

llcrc g 1 and g 2 arc distinct from the zero polynomial over D. 

This terminoli>gy is unfortunate and misleading, because a rational 

fui1ction. is not a function .in the sense of Definition 3.1. A rational 

function is not. a function of the 'rational'· kind, whatever that might 

m..:an. Th..: technical term we dcfin..:d is ration{:/ function, a term 
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consisting of two words "rational" and "function". The meaning of the -. ' 

words ~·rational" and "function" do not· play any role in Definition- 36.1. A 

ration.al function .is a fraction of polynomials over D. The reader should 

exercise caution about this point. Oile should not conclude that 
x 2 

- 1 x + 1 
and X- 1 -1- iniC(x). 

are different rational functions, on grounds that that their domains are 

different, sinc.e the domain of the first one does not- contain 1, whereas 1 
is in the domain of the second one. Neither of them has a domain, for · 
neither. of them is a function.· And these rational functions are equal· 

because the p6lynomials-(x2 - 1)1 and· (x- l)(x + 1) in IC[x] are equaf ... 

36:2 Lemma: Let D be an imegral domain and F the field of fractions of 

D. Let x be- an indeterminate over D.Then D(x) = F(x). 

Proof: F consists of the fractions ~, where a,b e: D afid b ,r. 0; and D(x) 

-consists of the fractions 

a xn-'+ a xn-1 + -· · ; + a x + a--
n n-1 . I 0 

b xm + b xm-l + ·- · · + b X + b' ' m · m-1 :, · · I . 0 

where. an;a·f!,.l' ... ,al'a0 ,bm,bm_1, ••• ,b1,b0 e: D · and the 'denominator- is 

distinct from the zero polynomial in D [x].- Finally; F(x) consists of the 

fractions 
C Xn + C Xn-l + · · · + C X + C ·.-

n · n-1 · I 0 

i xm + d xm-l + · · · + d X + d m .m-1 I .. 0 

where c~,cn.-l' .. :,cl'c0,dm,dm-l' ... ,d1;d0 e: F and the denominator is distinct 

from the ·zero polynomial in F[x]. 

An ele~ent of D _ is identified with the fraction-Tin F (Theorem 31.5); 

• > . - f(x) 
whence D r;;. F. Thus- D [x] r;;. F[x] as sets. ~ote that two elements g(x) and 

:~~~ of D(x), are equal in D(x) if and. only if f(x)q(;)- = -g~x)p(x) in D [x], and. 

this holds· if arid on_Iy if f(x)q~x) = g{x)p(x) in F[x], so if and only if ~~:~ 
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and p((x) . arc equal in F (x ). Thus every element o'f D (x) is in F (x) anti 
q X) . . • . 

equality in b(x) coincides with equality in F(x). S,o D(x) s:;; F(x). · 

Next we show F(x) 6 D(x;.Let ;g~ E .F(x), with p(;r), q(x) E F[x], q(x) ;r 0. 

n a. m c. · · . 
" l_:_ xi , (/(X) " -

1
1 xi , where a.'.b.,c.,d

1
. E D, b. ;r. 0, d. ;r 6 for · Then p(x) ~ 

1 
~ c 1 1 1 

. 1 1 
~0 i ~0 j .· . 

all iJ and not all of tj are equal to 0 ED. We put b = b0b1 ... b11
_ 1b

11 
and d = 

d0d1 • •• dm-An· Then dbp(x) and dbq(x) are polynomials in D[x], :ind hence 

p(x) dbp(x) ·· · · · . · · 
.,..----(· . =.dl ( E D(x). So F(x) s:;; D(x). This proves D(x) = F(x). 
q X) 'H/ X) . . . , 

0 

2 .· 2 
3x 

As an . illustraiion of Lemma 36.2, observe that 
2 2 
-X· 
5 

1 

I 
+-

4 
I 

- 2 
E ilJl(x) 

is equal 10 the rational function 
5(56x 2 - 12x + 21) 

14( I 2x2 + I Ox -) 5) 

+ -x 
3. 

in Z(x). 

J(i.J J(cmark: Let D be an integral domain and F the field of fractions 

of f).· Then 
·, D(x 1,x2, ... ,X

11
) = fieJd .of fractions of D[x1,x2, ••• ,X

11
) 

= field offractions of D[xl'x2, ... ,X
11

_ 1llx
11

) 

=D(xl,.X2' ... ,xn-ll(xn) 

= D(xl ,x2, ... ,xn-l )(xn) . 

hy Lemma 3(!.2, with D (x1 ,x2, ... ,X
11

_ 1.1, D(x1 ,xi, ... ,X
11

_
1 
), X

11 
in place of D ,F ,x, 

respectively, 

1\ls(f. we han: !J(x1.x2, ... ,x")=F(x1,x2 , ••• ,x
11

), for this is true when n 

CLem rna 36.2) and. when it is true for 11 = k, so that D (x
1 
,x

2
, ••• ,xk) 

FCx1 ••. • xk). it is itlso true for n = k + 1: 

D(xl ,x2, ... ,xk,xk+ 1> = D(xl ,x2, · · · ~:rk)(xk+ t) 

= F(xt ,x2, ... ,xk)(xk+ t} 

F(x1 ,x2, ••• ,xk'xk·+ 1 ), 

· the last cquatioil h)· the remark above, with F in· place of D and k + I in 

place of n. . 

43X 



In the remainder of thi.s paragraph, we discuss partiaJ fraction 
expansions of ratinonal functions. 

36.4 Lemma: Let K be· a field and let f(x) be a nonzero polynomial in 
K[x]. Let q(x), .r(x) be two nonzero, relatively prime polynomials of posi- -

tive degree in ,g[x]. Suppose ,deg f(x) < deg q(x)r(x) and suppose_ that 

f(x) is relatively prime to q(x)r(x) •. Then there are uniquely determined 

nonzero polynorrtials a(x.), b(x) in K[x] such that 

· a(x)r(x) + b(x)q(x) =f(x); deg· a(x) < deg q(x),. deg b(x) < deg r(x). 

Proof: We first prove the existence'of a(.:~Jand b(x). Since q(x), r(x) are 
relatively prime,- there are polynomials h(x), k(x) in K[xJ with 

•. Jz(x)r(x) + k(x)q(x) = L . 

Multiplying both sides of thi~ equation ·by f(x) and putting A (x) ;:: 

f(x)h(x), B(x) ;:: f(x)k(x), we obtain 

A(x)r(x) + B(x)q(x) ;::f(x). · 

We now divide A(x) byq(x) and B(x) by r(x); · 
. . . . . . : . . . . 

A(x) ~ s(x)q(x) + a(x), a(x) = ()_ or deg a(x) < deg q(x), 

B(x) u(x)r(x) + b(x), b(x) 0 or deg b(x) < deg r(x). 

Thus a(x)r(x)' + b(x)q(x)= (A(x) -:-· s(x)q(x))r(x) + JB(x)- u(x)r(x))q(x) 

=:: (A(x)r(x) + BJx)q(x)) - (s(x) + u(x))q(x)r(x) 

= f(x) (s(x) + u(x})q(x)r(x), 

We claim s(x)+ u(x) is the zero polynomial in K[x]. Otherwise, we would 
have. deg (s(x) + u(x)) > 0, 

deg (s(x) + u(x))q(x)r(x) > deg q(x)r(x),-

and since by hypothesis deg f(x) < deg q(x)r(x), . . 

-· deg f(x) - (s(x) + u(x))q(x)r(x) ;;;. deg q(x)r(x), 

so that a(x)r(x) +b(x)q(x).,.: 0; in particular, both a(x) and b(x) cannot be 
zero, ~ssume~ without loss of generality, that a(x) .,.: 0 in case one of a(x),. 

b(x) is zero and that deg a(x)r(x)·> deg b(x)q(x) in case neither of them 
is zero. Then we g~t the contradiction · . . . 
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deg: [f(x)-:- .(s(x) + _u(x))q(x)r(x)J deg (a(x)r(x) + b(x)q(x)) 
deg a(x)r(x) 

= deg a(x) + deg r(x) 
·· < deg q(xH; deg: r(x) 

= deg q(x)r(x). 

Thus s(x) + u(x), and c~nsequently_ (s(x) + u(x))q(x)r(x) is the zero poly­
nomial in K[x]. This -gives a(x)r(x) + b(x)q(x) f(x). It remains to show 
that a(x) and:b(x) are distinct from 'the the zero polyn~mia.J in K[x]. Both 
of. them. cannot be· 0, for then f(x) would be also 0, which it is not by hy­
pothesis.- If one of them is 0, say if a(x) = 0, then b(xj;z! 0 and f(x) = 

b(x)q(x) would not be relativ_ely prime to q(x)r(x) (because q(x) is of 
positive degree, so not a unit in K[x]), ·against the hypothesis. This proves - . 
the existence of a(x), b(x). 

It remains to show the uniqueness o~ a(x) and b(x). If we have also 
a1(x)r(x)+ b 1(x)q(x)~ f(x), deg a1(x) deg q(x), deg b

1
(x) < deg r(x), 

we obtain 0 = f(x)- f(x) = (a
1
(x).r(x} +b

1
(x)q(x)) -_(a(x)r(x)+ b(x)q(x)) 

. (a(x)- a
1
(x))f(x)"" (b

1
(x)- b(x))q(x), -

so· , _{a(x)- a
1
-(x))r(x) = (b1(x)- b(_x))q(x). -- ' (*) 

Hence . 
_ r(xJ I (b1(x) b(x))q(x) in K[x} 

r(x) I b1(x). b:<x) in ~[x) as r.(x) and are q(x) relatively prime. 
Now b(x) ;>! b;(x) implies b(x)- b1(x) ;>! 0 and this gives 

deg r(x) ~ deg (b1 (x)- b(x)) ~ max{ cJ.eg b1 (x), deg b(x)] < deg r(x), 

a co.ntradiction. Thus b(x) b1(x) and we get_then a(x):::: a 1(x) from (*). 

So a(x) and b(x) are uniquely determined. o 

36.5 Lemma: Let ~-be. a field and let ~~:~ be a nonzero rational function 

· in K(x),with deg f(x) < deg .g(x). Suppose that f(x) and_g(~) are both 

monic and that f(x) is relatively prime to g(x). Assume ·g(x)= q(x)r(x), 

·_where q(x)r-(x) are two relatively prime polynomials of positive degree 

in K[x]. Then. (here are uniquely determined nonzerr1 polynomials a(x), 

b(x) in K!:Xl stichthat · 

and 

f(x) 
g(x) 

f(x) a(x) b(x) 
.....::;.~-:-:- = -- + -- . 
q(x)r(x) _q(x) _ r(x) 

deg a(x) < -deg q(x), deg b(x) <:: deg r(x). 
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~roof.: If~~~- i~ ~ -n~~~ero rational function. in K(x): theri f(x.) ;s -_a nonzero 

polynomial in l([x], a~d f(x) is relatively prime to g(x) = q(x)r(x). As f(x) 

and g(x) are monic; these conditions determin~ j(x) and· g(x) uniquely. 

Th~ polynomials. q(x),. r(x) are relatively prime and deg f(x) is smaller 

. than deg. q(x)r(x). So the hypotheses of Lem~a 36.4 are satisfied. and 

therefore there are uniquely determined nonzero polynomials. a(.::)._b(x) . 
in K[x) such that 

· f(x) = ~(x)r(x) + b(-x)q(x), 
and deg a(x) < deg q(x), deg b(x) < deg r(x). 

Dividing· both sides of- th.e equation ·above by g(x) = q(x)r(x), we see that 

there are uniquely determined nonzero p()lynomials a(x),b(x) in K[x) 

such that 

f(x) =. f(x) = a(x) + b(x)' 
· ... g(x) q(i)r(x) q(x) r(x) 

and deg a(x) < deg_ q(x), deg b(i) < deg r(x). 0 

' . ' 

By induction on m, we obtain the following lemma. 

36.6 Lemma: Let K ·be ·a field and let f(x) be a nonzero riltioiuil. 
' . g(~) 

function in K(x),with deg f(x) < deg g(x). Suppose that J(x) and g(x) are -

both monic and that f(x) is relatively prime to g(x). Assume g(x) = 
. q1(x)q2(x) ... .qm(x), where %(x), q2(x), ... ,qm(x) are 'pairwise relatively_ 

prime monic polynomials of positive· degree in K[x]. Then 'there are 

uniquely determinedc nonzero polynomials a1 (x),_ a2(x), : .. ,am(x) in K[x] 
such that -

f(x)' . f(x) 
g(x) = q1(x)q2(x). , .qm(x) 

a1(x). ~(x) __ am(x). 
--·- + -- + .. ·.+ --ql(x) q2(x) . . qm(x). 

and 
'/ 

-36.7 Lemma: Let K be a field and x .an indeterminate over K. Let g(x) 

be a pol;nomial liz K[x] of degree ;;;. 1. Then, for any f(x) €. K[x], there are 

Uniquely determined polynomials r0(x), r
1
(x), r2(x), ... ,rn(x) such that 
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r1(x) = 0 or deg !j(.X) < degjj(x) for all i =. 1,2, ~ .. ,n. 

Proof: From deg· g > 1, we know that g;:! 0. So we may divide f by g and 
obtain f = q0g + r0 , where q0, r0 e: K(.x), with r0-~= 0 or deg r0 < deg s.: Here 
q0 and r 0 are uniquely determined by J and g (Theorem 34.4) an~ we 
hav«? f = r0 + %g. If q0 = 0, we are done (with n 0). Otherwise, since f = 
q0g +r0, deg g > l and r0 = 0 or deg 'o < deg g, we have deg % < deg f 

:(Lemma 33.3). We now divide % by g. and obtain· q0 = q 1g + r1, .where ql' 

:r
1 

€ K[x}, with r
1 
= 0 or deg r

1 
< deg ·g. Here q 1 and ·r1 are uniquely 

determined by q0 and g (hence by f and g) and/; r() + r1g +.q;g 2• If q1 = 
0, we are done. Oth.erwise~ deg q1 < deg %· We then divide q1 by g and 
obtain .q1 = q2g + r2, where q2 , r2 e: K[x], with r2 o· ordeg r2 < deg g. 

Here q2 and r 2 are uniquely determined by q 1 and g (hence by f and g) . 

and/ r 0 + r1g + r2g2 + q
2
g 3• If q2 = 0, we· are done. Otherwise, we have 

deg q2 < deg qe We continue this process. As the degrees of 'q0 , ql' q2, •.• 

get stnaller and smaller, this process, cannot go on .indefinitely: Sooner or 
later, we will meet a q equal to 0 e: K [x ]. Then; with uniquely . . . n . . . . 
determined · r0,rpr2, ... 'n• we have f = r0 + r1g + r2g2 +·. · · + rngn, where 
r,(x) = o·or deg rl < deg g for all i = 1,2, ... ,n. 0_ 

In the situation of Lemma 36.7, the unique expression 
I= ro + rlg +r2g2 + ... + rng" 

of f(x), where r.(x) = 0 o~ deg r. < deg g for all i = 1,2, ... ,n, is called the 
. I I 

g-adic expansio'n· of f. 

p(x) 
36.8 Theorem: Let K be a field and . q(x) a nonzero rational function in 

K(x), where p{x),q(x) E K[xi are relatively prim!! in K[x]. Let u be the 
leading coefficient' of q(x) and let q(x) = ug1(x)m 1g2(x)mz.: _.g

1
(xY"• be the 

decomposition of q(x) into polynomials irreducible over K,. where gi(x) 
' ' 

are monic. Then there are uniquely determined · polynomials G(X), 
o>c > · o >c > . <t>c > <2>c > <2>c· > <2>c .> . <r>c > <t>c > a1 x , a2 x , . .. ,am

1 
• x ,a1 x , a2 X , • •• ,am

2 
X , ... ,a1, . x , a2 X , 

... ,a (l)(x) in K(x! such that 
m, 
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p(x) = G(x) 
q(x) .. 

a, O>(x) -a2 (I)(x) ami O>(x) 

+ g: 1(x) + g/(x) + · ·· + g
1 
mr(x) . 

. . (2) 
a,<2>(x) . ~(2)(x) .. am2 (x) 

+ '+ + ... + __...;~~ 
. g2'(x)_ g22(x) . g2m2(x) 

+···.···· 
a1(

1>(x) • a2W(x) am,<t>(x) 
"+ . + . +·.··+·--:::-:-~ 

.. g/(x) . g?(x) . g
1
m·'(X) 

a~d deg a/k>(x) ~ deg gk(~) or a/k>(x) Ofor all i and .k. 

Proof:' We divide p_(x) by q(x) an~ find unique polynomials G (x), H(x) in 
K[x] with p(x) == q(x)G(x) +.H(x), deg H(x).< deg q(x) or H(x) .= 0. In the 
latter case, everything is proved (am(x) = 0 for all i and k). If H(x) ';:! 0, 

. , I . . . 

let ; be the leading coefficient of H (x) and put c :::: v/ll. Then H (x) and 
q(x} .are relatively prime (since p(x) and q(x) are). We have H(x) =vh(x), 

where h(x) is monic,.r:_Jatively prime to q(i) and 

p(xf . G( ). . h(x) 
q(x) = x + c q(x) 

with deg ·h(x) <.deg q(x). _We may use Lemma 36.6 and get uniquely 
determined . nonzero polynomials b 1 (x), b2(x), ~ .• ,b/X) in. K[x] such th~lt ... 

h(x) b1(x) · . b2(x) biXc) 
--= . +. + .. ·+-·-
q(x) g (x)mt g (x)m2 g (x)m, 
. I . 2 .. I 

and deg bk(x) <: deggk(x)m1,forallk =;1,2, .. ~.,t. We ptit~(x)=cbk(x), Then 
' - . 

p(x) · . ·.· · / 1(x) . J2(x) ~(x) 
-- =G(x)+ · + · +· .. +--

. q(x) . . · g
1 
(x)mt g

2
(x)m7 . g

1
(x)m, 

and, since c is uniquely determined by p(x) and q(x),_"the- polynomials . 
fk(x) are· al$0 uniquely· determined. Since . 

deg ~(x) = deg bk(x) < deg-gk(x)m1, 

. in the 'gix)-adic expansion ·. . ' .. 

jk(X}_::r0(x)+ r 1 (x)gk(X) + r2(x)gk(X)2 + ; ·· +rn(x)gk(x)n 

of fk(x), the polynomials rs(x) = 0 for s ·;;;;;. mk. So let 
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be the g k (x )-adic expansion of fr..(x ). The. polynomials a 1 (k) ,a2 (k), ••. ,am _'k) 

in K(x]" are uniquel:r ~etermined and deg a/k) < deg gk(x) or a?> = 0 for 
all i 1,2, . ~. ,mk.-Hence, for all k = I ,2, ... ,t, there holds 

fk(x) al (k)(x) az (k)(x) . aml<k>(x) . 
-.:.:.__...,,.... - + + . .. + _,___ 

. gk(x)ml .,... gkl(x) g/(x) . . gk ml(x) 

and this completes the proof. 

The equation 

'+······ 
a <r>(x) a <r>(x) a <r>(x) 

.. + I + 2 + . . . + _m-::':--,--,-
g,'(x) g/(x) g

1
m•(x) 

in Theorem 36.8 is .know~ as the expansion of =~~~ in partial fractions; 

/ . 
Exercises 

I. Let K be a field. For any nonzero rational functi~n L in K(x), we define 
. ,g . 

the degree o/ L, denoted by deg L, by deg L = deg f- deg g. Prove that g g . . g . . . 

the degree of a rational function is well defined. Can you extend the 
degree assertio~s in Lemma 33.3 to· rational functions? 

2. Let K be a field. For any ;ational function L in K (x), we· define the · 
' g 

derivative of L , den~ted by. ( L) ", by declaring· 
g g 

(f)."- !'?. -fg' g - g2 . 



Prove that differentiation is well defined; i.e:, prove_ that f - ~ implies 

(LY-= (q_}'. 
g b . 

3. Extend Lemma 35.15 ·and Lemma 35.16 to derivatives -of rational 
functions ·in one indeterminate over a fieJd; · 

2x 3 + 3x 2 + 8x + 6 
4 .. Expand . ( 3 3 3 )(. 2 ' 2 _3 )· .e. .. O(x) and 

X + X+. X· + X+ 

4x3 + 3x2 +x + 2 
x 5 + 4x4+ 4x3 + 2x + 2 e.Z5(x) "· 

in partial fractions: 

. 5. Let K ·be a field and let a 1 •G:2• ... ,am be pairwise distinct ·elements in K. 
Put g(x) = (x- a1)(x"" a2) .. • (x- am) and let f(x) be a nonzero polynomial 

in K[x] with deg- f(x) < m. Show that 

tJ& = f_f(a;)lg'(~;). 
g(x) .. 

1 
_ x-a. 

l= l 
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§37 
Irreducibility Criteria 

In this paragraph, we develope some S).lfficient conditions for a 

polynomial to be irreducible. In general,. given a specific polynomial, it is 
· extremely difficult to determine whether it is irreducible. This is not 

surprising when we reme.mber that it is also exceedingly difficult to 

determine whether a given specific integer is p,rime. 

We start with Eisenstein's criterion, which is very simple to use. 

37.1 Lemma (Eisenstein'_s criterion): Let D be a unique factorization 

domain and let 
f(x) = a

11
X11 + a

11
_

1
xn-l + · · · + a1x + a0 

be a nonzero polynomial in L?lx] with. C(f) "' I. If there is a prime 
·(irreducible) element p in D such that 

p{an' 
pla

11
_ 1,. ••• : • ••• , pla 1, plaO' 

. p2-l'ao• 

then f is irreducible over D. 

Proof: Suppose, by way of contradiction, that f(x) is reducible over D. 

Then its proper factors must have degrees > q, because C(J)"' 1. Assume 

f(x) = g(x)h(x), where 

are polynomials in D[x]. 

(bm ;>! 0, m ;> 1) 

(ck?!O,k~ 1) 

Then a
0 

= b0c0 . Since pla
0 

aT!d·so plb0c0 by hypothesis and p is prime, we 

seepib0 or plc0 . Here both ·plb0 and plc0 cannot be_ simultaneously true, 

for then ·we would have p 2 Jb0c0 , so p 21a0,. against our hypothesis. Thus 

one and only one of pI b 
0

, p !C 0 is true. Let us assume, without loss of 

generality, that pib
0 

and p{c
0

• 
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Also:an = bmck. Since plan and so p{bmck by hypothesis, we have p{b,n: 

Thus p!b0 and p{bm. Let·r be ,the smallest index for which the coefficient .. 
b, in g(x) is not div_isible by P~ so that · . 

plb0, plb 1, ... , plb,_l' p{b, (•) 

(possibly r = 1 orr= m). 

Now a,= (b0c, +b1c,~1 + ... +b,_1c1) + b,c0, and r ..::. m < m + k = n, So pia, 
by hypothesis and p divides the expression in ( ) by ("'),so pI b ,c0. Then, 
since p-is prime, this forces p!b, orplc0 , whereas p{b, and p_.tc0 . This 
contradiction completes the· proof. · o 

· 37.2. Exam-ples: (a) x5 +'5x +.5 E Z[x] is irreducible over Z, because its 
content is 1 and · _5{ 1 , 

. 510, 510, 510, 515, 5!5, . 

52{5. 

-. 

. . - .. . 
. . . -

(b) Let D = l [ i] and f(x) = 3x3 + 2x2 + ( 4 - ~i)x + {1 + i) E D [ x]: Theri D is a 
unique fa~torization dQmain and C(f) ~ ·1. Moreover i'+ i E D is a pri~e . 

. ele~ent in D and· -

I + i .t 3 

1+ i I 2, 1 + i 14- 2i, 1 + i I I -t i, 
{1 +if { 1 + i. 

Hence f(x) is irreducible ov_er J?. 
(c) Let D be a unique factorization domain and g(x,y) = ~- y E (D [y])[x]. 
The content of g is 1 E D[y], ·since g is in fact a monic polynomial. Also, y. 
is ·irreducible in D[y] and . 

y{l 

y!O, yiO, .-.. , yiO, y! -y, 
.· 2 
_y -1' -y, 

hence g(x,y) = xn + Oxn'"l + Oxn-2 + · · · + Ox- y .. E (D[y])[x] is irreducible 

over D[y]. 

(d) Let p e N be a prime number and <1> (x) = xp-t + xP-2 + .. · + x + I.e: Z[x]. ' . p - . 
The polyno11Jial <I>P(x) is known as the p~th cyclotomic polynomial. We 
show that <1> (x) is irreducible over Z. Eisenstein's criterion is not· directly 

- p . -
appli~able, but we observe that · .-

(x- 1)<1>/~) = xP ::- l, 
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,and, when we subs~itute x + -1 for x in both sides of this equation·, we get 

p-1 

·x<t>·(x+·1)=(x+ I)P-1 :=-I (~)xp-k 
p k=O . 

by· the binomial theorem (Theorem 29. I 6), so 

<t> (x + 1) = xP-1 + (P)xP-2 + (P)xP-3 + ... + ( P ) 
p · _I . 2 p-1 

and we will try to apply Eisenstein's criterion to this polynomiaL We 

note pip!, so pi (p- k)!k!(f). Since p is relatively prime to {p- k)! k! 

when I < k < p- 1, Theorem 5.12 gives pi (f) fork= 1,2, ... ,p- I. So 

p'{l' 

pl(f), pi(D. ···: pl(/1), 

p2:t(p~ I), 

and the content of <t> (x + I) = I. Hence <1> (x + I) is irreducible ·over l. p ' p 

This implies that <t> (x) is also irreducible over l, since <t> (x) is clearly 
p ' p 

not a unit in l [xl and any factorization <1> P(x) = f(x)g(x) of <t>P(x) into 

· non unit polynomials f(x), g(x) E l [x] would give a factorization <l>P(x +I) 

=f(x + l)g(x +I) =f1(x)g 1(x) of <l>P(x + I) into nonunit pqlynomials f 1(x), 

g1(x) in Zlx], ,co_ntrary to the irreducibility of <l>P(x +I) over l .. 

The argument in the last example can be generalized. 

'37.3' Lemma: Let D be _an integral domain, a. a unit in D and let .tl be an 
arbitrary clement of D. 

(I) The ·mapping T: D lx 1 __. D lx I is a ring isomorphism such that yT = y 

f(x) __. f(a.x + f:l) 
for ally ED. 

(2) deg,J(ax + f:l) = deg f(x)for any f(x) E Dlxl\{0} (that is, T preserves 

degrees of polynomials). 

(3) j(x) is irreducible over D if and .only iff( a.x + f:l) ·is irreducible over D. 
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.. 
(4) If, in addition, D is a unique factorization domain, then C(j(x)) "" 

C(f(cxx+l3))for any f(x).e:D[x]\{0} (tlzat is, T preserves contents of poly­

nomials) . . 

Proof: (1) The mapping T: f(x)--> f(ax + 13) is just the s.ubstitution 
ho'?omorphism Tux+~ (Lemma 35.3 with D, D[x], ax+ 13 in place of R. S, s. 

respectively). We are to show that T is one-to-one and onto. To this end, 
·we .need only find an inverse of T (Theorem 3d7(2)). This is quite easy. 
We are ,tempted to substitute (x - 13 )/a for x. This idea is correct, but we -
must formulate it properly. Since a is a unit in D, there is an inverse a-1 

of a in D, and we putS: D[x]-- D(x]~ Then we have 
f(x)- f(a.- 1(x- 13)) . 

f(x)TS =f(ax + •P)S = J(a(a.~1 (x 13)) + p) =f(x) 

f(x)ST = f( a-1\:r . 13 ))T = J( a -l((ax +' 13) - 13)) = f(x) 

for all f(x) E D [x}~ Hence TS = ID[x] =STand T is therefore an isomorphism. 

Finally, polynomials of degree 0 and the ·polynomial 0 e: D [x] are not 

effected by the substitution x - ax+ p and so yT = y for all y E D. 

(2) For any f(x) E D[x]\{0}, if deg f'= nand . 
· f(x) ,; anxn + an_)xh-l + · .. + a

1
x+ a

0 
with an ;:! 0, ·we have 

f(ax + P) = a~(ax + 13)" + an_
1
(ax + p)n-l + · :• + a1(ax + 13) + a

0 
· 

= ana ~xn + terms of lower degree, 

with ana"~ .O'as the leading coefficient. Sodeg f(ax + p) n, as claimed. 

(3) If f(x) ED [x]\{0} is not irreducible over· D, then either f(x) is a unit in 

D[xJ, hencef(x) ED is a unitin D_ andf(ax + 13) f(x) (by part (l))is also a 
unit in D and in D [x]; or f(x) = g(x)h(x) f~r some polynomials g(x), h(x) in 

D[x] with 1 ~ deg g(x)< degf(x), andthenf(cxx+P).=g(ax+p)h(ax+P) 
,;,.ith g(ax+ p), h(ax + P) e: D[x} and 1 ~ deg g(x). deg g(i:xx + 13) = deg g(x) 

< deg _f(x) deg !(ax+ P) (by part (2)), and thus f(ax + 13) has a proper 
divisor. In either case,f(ax + 13) is not irreducible over D. 

Repeating the same argument . for the substitution x ...... a - 1(x .;.· P ), we 
conclude: iff( ax + 13.) is not irreducible over D, then f(x) is not irreducible 
over D. 

" 

(4) Suppose, now that D is a unique factorization domain, that f(x) 
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A content o off( ax+ li) divides (~)a~0:11 , hence ola
11 

(a and a 11 1s a unit); 

mid 0 divides the coeffiCient of·x11
-:
1, hence ~~(~)an-la 11- 1 , hence ola~-1;and 

s divides the coefficient of 'xn-2 
• hence Sl G )all_~a~-2• hence Sl a n-2; etc. 

Proceeding. in this way t we ~ee that S divides all the coefficients of f(x) . . 

Sinc.e y"' C(f(x)), we obtain Sly. The s~me argument with [(ax +li),f(.~), r 1 

in place of'j(xj, /(ax+ li ), T shows that yl S: Thus S "' y, as was to be proved. 

·. 0 

·When· C (J(x.)) "' 1 but the divisibility conditions· in . Eisenstein's cr\(erion 
are not satisfied, we might attempt to· find a unit a and ~n :element ·li so 
that f(ax + li) will satisfy the divisibility condition_s. If. we succeed in 
finding such a, ji, then J( ax + li) will be irreducible by Eisensteln's 
criterion· (as C(f(ax + p))"" 1 by Lemma 37;~(4)). and_f(x) will be 
irreducible, too (by Le;nma 37.3(3)),.: This is what we did fn ~xample 
37.2(d). 

Eisenstein's criterion is a sufficient condWon for irreducibility. It is not 
necesary, ~ven if we extend it using Lemma 37.3(3): That is to say, f(x) 

may be irreducible _and yet, for all units a in D and for all elements li in 
D, the polynomiai J( ax + p) may fail to satisfy the divisibility'conditions 
in Eisenstein's criterion. In . fact, a closer 'study· of its proof reveals that 
yte are essentially_ reading the polynomials mod pp, i.e.;we are taking 
the images ·or polynomials in D-[x]. under the ·mapping v: D[x} _,. (D/Dp)[xl 

(see Lemma. 33.7). . . 

37.4 ~emma: Let D be an integral domain and let K be a field. 'Let 
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rp:D- K be .a ring lzomdmorphism and let $: D - K be the homomorphism 

of Lemma 33.1. 
(I) Iff .E D[x] a(ld gh with g,h ED[x], then fiP g$/z$.' 
(2) Iff E D[x]\D, deg != deg fiP and /$'is irreducible i'! K[x], then f ltas no 
divisors g in D[x] ·such that 0 < deg. g < deg f 

Proof:.· (I) This follows from the fact that $ is a homomorphism. 

(2) Suppose, on the contrary, that f::: gh in D [x], with 0 < deg g <deg f 

Then fiP = g$h$ by (I). Since fiP is irreducible ·in'. K[x], fiP ~ 0, so g$ ~ 0 ~ h$ 
and either deg g$ = 0 or deg h$ = 0. We get then - -.. . . 

deg fiP = deg g$h$;, deg g$ + deg .hiP 
~ deg' g 'tdeg :hcp.;; deg g ~ deg h 
;;;;; deg g + dcg' h = deg gh = deg f"=. deg fo, 

which forces deg g$ = deg g and deg h$ = deg h. Thus. either deg g =· 0 or 
deg h = 0, and so either 0 = deg g or deg g =' deg f, against our hypothesis 
0 < deg g < deg f. o 

In Lemma 37.4, · we relaxed the hypothesis on C (f) that was impqsed in 
Eisens'tehi's criterion .. We pay. for it, of course~ Notice we did not . claim· 
that f is irreducible o~er D. We· claimed only that f h~s no proper· factor 
o( positive degree Jess than deg f. Here { may have proper divisors, but 
any factorization of/ in D [x] has the form f= a.J;, where a. ED and deg ~ 

·= degf 

37.5 Examples: .(a) Let q(x)>= x3 + x + 1 '= 1x3 + 1x+ 1 E Z2[x]. Ifq(x). 

were reducible fn l2[x], it would have a- factor of aegree. ~ '3/2,' so a ·, 
factor of degree. I. So q(x) would have a rocH i~ l 2 = [0,1} by the-:factor 
theorem (Theorem. 35.6). But q(O) = 1 ~ U arid q(T) = T~ U, ~o q(x). ~s 
irreducible in l 2[x] . 

. Letf(x)=x3+2x2 +x+7 € l(x]. Underthemapping v:l[xJ-.l2[x], where 
v: l-. ~ is the natural homomorphism~ we have . . 

. fV = 1x3 + 2x2 + 1x + i = x3 + x +1 = q(x) E l 2[x], 
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I . 

and so fv is· irreducible over Z 2• By Lemma ~7 .4(2), f has no J?Oiynomial" 

divisors of degree I, nor of degree· 2. Since p does not have any divisors 

of degree 0 either (C(/),., I ),J is irreducible over Z. 
- . 

(h) Lemma 37.4 can be useful even if fv is not irreducible~· The· factori­

zation of ftP inK[xJ gives us information about possible factors of/in D[xl 
( 

· and restricts their number dra~tically. · 

As an illustration, consider f(x):::: x 5 + 5x4 + 4x3 + 16x2 + 8x +I E Z[xJ. 

Under v: llxl- Z3[xJ, where v: Z ...... Z3 is the natural homomorphism, we . ~ . .~ 

have (we drop the bars for ease of notation) 

.fv = xs + zx4 + x3 + ~2 + 2x. + I e: Z3[x) 

= (x2 + 2x + 1 )(x3 + I ) 

= (X + I )2(x + 1)(x2 :.: X + 1) 
(x + I )2(x + I )(x2 + 2'1: + I) . 

= (; + l)s, 

so My monic rtictor g off in l (xj with 1· <; deg g <:,. 2 satisfies . 

_ -,11v=x+ 1-e:~~I:XJ. · w- gv=(x+ tie:Z31xJ· 
(Z31 x l is. a unique factorization. do'!'ain)< 

Does I € ll·x I have a divisor Of .degree one? If it· had, it would. have .a 

. rational root, ~md ihat root would be· I or -I .by Theorem 35.10. Since fll) 

35 ~ 0 .and /(-1) = 9 ~ 0, I has no rational ·root; and f has no divisor of 

degree one. 

Docs f E. llxl have a divisor of degree two? Iff has a monic divisor g = 
.I:(x) =ax2 +'bx + c e: Z[x[ ·of degree-two, then gv ,= x 2 + 2x + 1 e: Z3 [x), and 

so a I, b 2, c ""'· I (mod 3). Besides, a divides the leading co_efficient of/, 

and c divides .the constant term in f: thus all and ell. So a = +I and c +I. 

Without restricting generality, we may assume a I. The possible monic 

factors of f of second degree are therefore to be found among 
' ' 

. Ji (x) == .~2 +(3m+ 2)x+ I, m ·. II (x) = x 2 + (3m + 2)x :_ I m , (m E l). 

We. check if <il1y g
111 

or 11
111 

divides f. Supposing g
111

(x)lf(x) in Z[:XJ, we get 

gm( I )l}t I) 

J m + 4 I 35 

in Z 

3m + 4 E {I }i,7,35,-l.-5,-7 .-35} 

3m + 4. = 1.7.-5.-35 
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3ni + i = -1 ,s;:.. 7 ,...,.3 7, 
' gm(x) = x 2 - x + l or x2 + 5x +I or ,x2 + -1x + I or x2 + -31x + I. -

Testing- these f~ur polynomials in . turn, w~ find x2 - x + I does not divide · · · 

f(x), and x 2 + 5x + 1 dividesf(:X); in fac~ fl~) = (x2 + 5x· +~] )(x3 + 3x + J ). rrr ' 
none of the ·four polynomials divided f(x), we would repeat the argu­
ment with h~;- lri this way, w~ would -find a divisor of f(x,) or we would 
show that f(x} is irreducible. r . -. 
(c) Lemma 37.4 gives ·a very_ elegant proof of Eisenstein's criterion. in 

case the underlying ring· is ,_a principal ideal -domain. Supp_ose D is a 

principal ideal domain· and 

/l(x_) a xn + ~ xn~! + · · · + a x + a __ n_ n-1 · I. 0 

is a .nonzero polynomiaJ in DfxJ wi~h C(f)"' 1 and p is a prime element D 
f - • • 

such that 

p{an' . -.. 
plan-1'· ... , .... , pial' pla0, 

. . 2 ~ 
p 1a0• _ 

Since p is irreducible, the factor ring D /Dp is ·a field (Theorem 32.25). We 

can use Lemma 37.4 with the _natural homomorphism v: D _;.p/Dp .. The 

divisibility conditions on the coefficients of f imply 
fi·;= (a~v_)xn, anv E D/Dp_:- anv _?! 0. 

If-f had a proper, factorization /= -gh- in D [x], where 0 < deg g < n, we 

would get 
gvh v = fo = (an v)x~ 

hence gv = bvxr, hv = cvxs with 0 < r < n, 0 < s < n and bvcv = anv. 

Th~n the constant terms of g ~nd h. would be divisible by p, a~d p 2 

would be divide their product . a0 , contrary to the hypothesis: Hence f is 

irreducible over D. 

The idea (that g~(x)lj{:X) ==> g~(l)lj{l)) in Example 37.5(b) 'has been ex-_. 

pioited by L. Kronecker U823-1891). Let D be an ;.integral domain and let 

f(x) be an arbitrary.nonzero polynomial in- D[x]. To find out wheth~r f is 

irreducible -over. · b, one· must check whether glf or g trholds· for all poly­

nomials g with deg g < deg f. If D happens to be finite (and th:us a field; 

Theorem · 31.1), there are finitely many g 's with deg g < de_g f; and the 
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question whether f is irreducible over D can be decided by checking glf 
for -these the finitely many g's. If D is not finite, this argument does not 
work, and we must,' so it seems, check if g!Jfor -infinitely many polyno­
mials g E D [x]. Kronecker showed that; if D is a unique factorization doc 
main which possesses a finite number of units and if we have a method. 
for finding the irreducible· factors of any given· nol)zen:> element of D, , 

·then, to find out whether a given nonzero polynomial is irreducible or 
not, we need check glf for only a fini!e number of polynomials g in D [x]. 

His idea is that, if g(x)lf(x) in D [x], then g(a)lf(a) in D for any a E: D, and 
that a polynomial g is- determined uniquely if its values are _known at 
more than deg g elements of D (Lagrange's interpolation formula). 

Let D be· ·an .infinite unique factorization domain. Asume there ~are 
finitely many units in D, and assume that. there is a methqd . for finding 
the irreducible fl!ctors of ,any given nonzero element of D. Let f be a 
nonzero polynomial in D [x] of degree n. If n = 0, then f E: D ·and we can 
find the irreducible factors of fin D _by assumption. If n = 1, then f = eJ;, 
where e R; C(f)and J; is an irreducible poiynomial in D[x]. The irreducible 

factors- of e E: D can be found- by assumption, and thus: the irreducible 
·factors of f, too, can_ be found effectively. If n >. 2 a1_1d f is reducible, 
there is a factor g £. D [x] off with deg g .;;;;·_ n/2 (Lemma 33.3(3)): We put 
m := [n/2]. We take m + 1 distinct· t)lemerits a0,a1 ,a2, ••• ,am from D and 
evaluate f(a0).J(a1)J(a2), ... !(am) e:. D. If any f(ai) happens to be 0 € D, 

then x - ·ai is a factor off (Theorem 35.6). l.'herefore we. may assume that 
f(a0)J(ai)J(a2), ••• J(am) :tre all ~istirict from zero. Each one of them has 

finitely many divisors in . D, because D is a unique factorization domain 
and D has finitely many units. There is asumed to be a method of finding 
these divisors. Let Ni be the number of factors of f(ai). A· factor g off € 

D [x] with deg g <: m, satisfies one of the N0N;N; . .. Nm systems of 

equations 
g(a0) = c0, g(a1) = e1, g(a2) = e2, ... , g(am) =em, (t) 

where c0,C
1 
,c2, ••• ,em run'· inqependently over the divisors of the elements 

f_(a0!J(a1)J(a2), ••• J(am), respectively. For each one of these N0N1N2 ••• Nm 
choices of c0,cl'c2, ••• ;em, we build the unique polynomial g satisfying (t). 

This is done ·by Lagrange's. ~nterpolation formula; but this formula re­
quires that the underlying ·ring be in fact a field. Thus Lagrange's I inter-
polation formula gives us a list of N0N1N2 ••• Ndt polynomials g in,F[xJ, 
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where F isthefield of fradtions ofD, one for each choice c0,cl'c2 , •.• ,em of 

, the divisors of f(a0 )J(a1 )J(a2), . ,_: J(am). 

Frorn this list of polynomials, we delete those which are not in' D [x ]. If' -

ariy polynomial g remains, we divide f by g in F[x]. Thenf = qg + r, with 
q ,r e F[xJ. If r ;:! 0 or r = o· but q £ D [x], we delete g from our list.We 
delete · g from our list also . the the polynomials which are units in D. If 

any .polynomial g survives, it is a factor off. Otheqvise,f is irreducible 
over D. 

When a proper divisor g off is .~ound in this way, the same. procedure 
can be applied to g and fig. Repeating this process, we can find all irre­
ducible factors off. 

l satisfies the conditions imposed on D in Kronecker's method. Thus the 
irreducibility of a polynomial in l [x] can be determined efft;ctively. This 
in turn implies th-at the irreducibility of a polynomial in · l[x ][y] can be 
determined . effctively. By repeated application of _Kronecker's method, 
we can always decide ·whether a given polynomial in l [xl'x2 , ••• ;X

11
] is 

irreducible or reducible .. The same holds ·for polynomials in the rings 

l[i)[Xl ,.tz, : .. ;X
11

} and l ( W ][X1 ,X2, ••• ,X
11

]l 

Kronecker's method is ·very<·long and very cumbersome in any specific 

case. However; it. is import~nt philosophically, because it assures that the • 

irreducibility or reducibility · of a _polynomial can· be determined 
effectively in _a finite number of steps. 

Exercises . 

1. Using Eisenstein's ·criterion, show that the following. polynomials are 

irreducible over the ·rings indiqated: 
x4- 6~3 + 24x2 - .30x + 14 . 

x 4 + 6x3 42x2 + 51x + 78 

3_;5 + (21 - i)x4 + (14 -5i)x3 + (-10 + lli) 
x5 -7x4 .+ (3 + 2w)x3 +(2- w)x + (1- 4w) 

over Z, 
over l, 
over l[i], 
overl[w]. 
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2. Let f = x6 - 2x5 + 3x4 2x3 + 3x2 ,.. 2x + 2 € l (x]. Either prove that f is 

irreducible. over l or find all irreducible factors cif fin l [x ]. 

3. Do Ex. 2 for the polynomials x4 - 2x3 - 2x2 + .l5x + 30 and 

x~ +.Bx4 + 25x3 + 39x2 + 30x + 7 in Z[x]. 
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~ § 3 8 
Symme~ric Polynomials 

Let D be an integral domain and let f(x 1 ,x2, ... .x,) E D (x1,x2, ... ,xm]. For 

(
I 2 ... m) . 

anx permutation (j i i . i in s . the yalue off at-(xi ,xi •... ,X;. ) 
I 2 ·- · • m . m · I 2 "' 

is. a polynomial f(xil•xi2• ..• Yr:i) in D [XI .Xz: ... ,xm ], which. we can shortly 

denote by r (Definition 35. I 9). For example, if f(x ,y ,z) x2 + y2 - xz in 
l [x,y,z], then f(z,x,y) z2 +x2;- zy; .and ifg(x,y) =x 2 xy·+ y3 in l [x,y], 
then-g(y,x) = y2 - yx + x 3 E Z[x,y]. In general, f(x11 ,X12 , . .. .X1) will be a 

polynomial distinct fromj(xpx2, ..• ,xm). 

38.1 Definition: Let D ·be an integral domain and let f(xl'x2, ••. ,xm) be a 
._polynomial in D[x1,x2, .•• ,xm]: If f(x11 ,X

12
, ••• ,x1) =f(x1,x2, •.. ,xm) for all 

permutations (j = ( / t · · · ;z }in S m, then f = f(x; ,x2, ••• ,xm) is called a 
I 2 • • · m . · · .. 

symmetric polynomial in D [x1 ,x2 , ••• ,x~]. We also say that f(xl'x2, ••• ,xm) is 

symmetric. in the indeterminates xl'x2 , .••• .-:m· . 

The polynomials x + y, xy, x 2 + y 2 , x3 + y 3 are symmetric polynomials 1n 
D [x,y]. Also,. the polynomials x2 .+ y 2 + z2 -and xy + yz + zx are symmetric. · 
polynomials in .D [x,y,z]. 

The sum, difference and product of symmetric ·polynomials are­
symmetric polynomials. Indeed, if f(x 1 ,x2 , ••• ,.r:m) ·and g (x1 ,x2, ••• ,x~) are 
symmetric polynomials in D [x1 ,x2, ••• ,xm], and if 

h(xl .Xz, · · · ,xm) =f(xJ .Xz, · .. ,xm) + g(.x! ,x2, • • • ,xm) 

is their sum, -then, for any pe;mutation c} ; . . . r) in sm. we have 
!· 2 • • • m 

h(x1 ,x1 , .. :,x1 ) =f(x1 •Xi, ... ;x1 ) -1: g(x1 ,x1, ... ,x1 ) 
1 2 m ., 1 2 · m · 1 2 m 

= f(xl,x2, · · · ;xm) + g(xl ,x2, · · • ,xm) 
= h(XgX2, ... ,X~), 
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and so h (xi.x2 ~ ... .xm) is a symmetric polynomial. The ·same argume~t . 

·works also. when h = f ~ g and h = fg. This proves 

38.2 Le~'ma: Let D be ari integral domain. J:he symmetric polynomials 

in D[xi,x2; ... .Xm] form a subring of D[xl'x2, : .. .xm]. · o 

We introduce. a new indeterminate t and consider the polynomial 

f(t) = (i- xi)(t- x2) ..• (t- xm) in D[xi.x2 • ... .xmWJ. 

We see that xi.x2, ... .xm E D[xl'~' .. : .Xm] are the roots of f(t). We have 

f(t) = tm- ~I (XI.X2,. ··.Xm)tm-I + cr2(XI.X2,: .. .xm)tm-2 -+: ... + (-l)mcrm(Xl.X2'" .. .Xm) 

for some cr l'cr2, •.. ,am in D [x; .x2, ..• .Xm]. Since 

· f(t)=(l-X;)(t-x;), .. (t-:-_x;) 
I 2 m 

_ m ·( ) m-I ( • ) m-2 · ( l)m ( · ) -I - cri X; .X;, ... .X; I + cr2 X; .X;,. ··.X; I -+ · · ~ + - cr X; .X;,. ··.X; 
1 2 , ,. . I 2 ,. . m I 2 ,. 

· ·· I 2 - m · 
·for any permutation tz· i · ·. · · i ) in S-; we· have 

I 2 • · • m m 

cr
1
.(x; ,X; , ••• .x;) = cr.(xi.x2, ... .xm.) for allj ==-1,2, .•• ,m. 
• I 2 ., J · · 

38.3 . Definition: Let D be an integral domain and lei ' 

(t- x 1)(t- x 2).,.(t- xm) 

= lm ...: cr I (xl,X2, ... .Xm)tm"l + cr2(XI ,X2, ... ~m)tm-2 _:+ ... + (-l)mcrm(X-I.X2, ... .Xm). 

The symmetric polynomials cr 1,cr2, .. .':am are called the el(mentary 

symmetric polynomials in D [x1 ,x2, ... .Xm]. 

By routine computation, we find the elementary symmetric polynomials 

in explicitly. For example, 

. o
1 

=X+ y, in D'[x,y] 
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· ;cr2- = xy+ yz + zx, 
I ' •. • 

cr1 =X+ y + Z. + U, 
cr3 =xyz -J:-XYU,+XZU +Jzu·, 

cr2 =xy +xz +xu+ yz +yu +zu, 
: ,, . . . ·-

~4 = xyzu in D[i,y,z,u] 

are the ehimentarY symmetric polynomials. 

Notice_ that :(t- x1 )(t x2) •• :. (t - xm), when multiplied out, is a sum of· 
certain terms d1a2 ••• a ·, where each a. is either t or one of ~XI' -x2, ••• ~-x ; 

. • . . m .. , .• 1 _ . . 1'11. 

The term (-1Ycrixl'x2' ... ,xm)tm-us the sum of those a1a2._ •• am's for which. 

exactly m- jof the a's are equal tot. Hence (-t:Yciix1,x2, ... .x,;) is. the sum 
of all products b1 br •. bi' where b 1,b2, • ; • ,bj run independently over the 

set {-x1,-x2, ... ;-xm}. In other.words, cr/x1,x2, ... ,xm)is the sum of all ('j) 

prod~cts of x; ,X2, ••• ,xm, taken I a,t a time. Thus 

. . ..................... ·• .............. . 
t;!· =· x

1
x

2
•.;,X • · 

m · ;. m 

~ote -that "~ ." stElnds f()r many polynomials;· ~: in- D,[x1;.x2, ... .;i;m] is distinct 
J .· . . ... ' . . .· 1 ' . . . ' ' ' 

-from cr. iri D[.tpx2, ••• ,xn] whery m ;r.' n. This ambiguity ~n notation wili no.t 
·. ) . . . . . . . ' . . . . . . . . 

cause any confusion if 'we pay attention to the number of' 'indeterminates. 

When confusion is likely, we 'writ~ f.1}Xl~x~ .... ,xm) instead of (Jl 
'' ·:: -' . . 

Now _cr 1,cr2 ,·; •• ,f.1m are symmetric polynomialS in D [x1,x1, ... ~m], and; by 
reapeated ·application of Lemq1a 38.2, we conclude that g( 1'.11'1'.12, ••• ,f.1m) is 
also a symmetric -polynomial, where g is· any . polynomial in m in deter:: 

minates. Hence the. set {g( cr 1 ,~2, :. ; ,f.1m) :g E D[ui ,u2, : . • ,u;nJr co~sist only of' . 
symmetric· polynomials. We, will prove conversely that every symmetric 
polynomial is in. this, set (the subring of symmetric polynomials in 

D[XJ .Xi, . ~. ,xm] is the subrlng.of D [x1,x2, ... .Xm] generated by 0' 1,cr2; ••• ;f.1m). 

38.4 Theorem (Funda~endal theorem on sym~etric polynomi-. 
als): LetD be ·an lnu!gral· domain an_d f(xl'x2 , ... ,xm) a symmetric poly~· 
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nomialin D[x1 ,x2, ••. .xm ]. Tlien 'there )s a uniq(le polynomial g(Uj ,u2, ••• ,11m) 

in D[ul'i12, ••• ,umr:mch that f is the value of g at-(ol'o2, ... ,om): · 

f(xl'x2,.: .,x) · g(ol'o2, ... ,om) E: D[x1,x2,,. .. .,.1:m}. 

'\ 

Loos~ly . speaking, every symmetric polynomial is a polynomial in· the· 

elementary sy_m:n:'etric polynomials ; 0 l'C12, ••• ,am: We introduced ;nt?W in-
. de~erminates u 1,c12 , •.• ,um_ in order to distinguish. clearly between g and 

g(oj.o2 , ... ,am). 

For example;f(x,y) x 2 +y2 
E: Z[x,yj is a symmetric polynomial, and we 

have· x 2 + y~ (x ;1- y) 2 - 2xy =. o} 2o 2 • Hevcef(x,y) = g(o l'o2 ),· where 

g(u,v) = u2 2v E: Z[!!,v}. Like!Vise; if f(x,y,z) is the symmetric polynomial 

x 2y + xy2 + x 2z + xz2 + y 2z +yz2 in .Z1i.y ,z], we hilVe 
f(x,y,z) = (x + y + z)(xy + yz + zx) - 3xyz a 1a2 - 3a 

3
• Thus f(x,y,z) = 

g(a1,a2,a3), where g(u,v,w) = uv- 3w E: Z[u,v,w]. 

The proof of the fundemental theorem requires some p:eparation. First 
we need an ordering of m-tuples. Given any two m-tuples (r 1,r2, ... ,rm)' 

(sl's2, ... ,s~) of nonnegative integers, we will say (rl'r2'• ... ,rm) is hfghen 

than (s1,s2, ... ,sm), or (s1,s2, .. .',sm) is lower !lian (r1,r2, ... ,rm) when r1 :> .s1• 

lf r, = sl' we will say (r, ·'2' ... ,r m) is higher than (sl's2, ... ,sm)~ or 
(s11s2 , ·~··sm) is lower than (rl'r2, ... ,rm) when r2 > s2 • If r1 = s1 and r2 = s2, 

we will compare 'J and SJ, etc. This is very much like, the' ordering of 
words alphabetically, .and will be referred to as the alphabetical or 

lexigografJhical ordering of m-tuples. Stated differently, (rl'r2, :. :. ,rm) is 
higher· than (s 1,s2, ••• ,sm) if and only if the first nonzero difference 
among 

. r1 -s1,.r2 -s2, ••• ,rm-sm. 

is positive. Clearly, if (r1,r2, ... ,rm) is higher than· (s1 ,s2, ... ,sm) and 

(s1,s2, ... ,sm) is higher than (ll't2, ••. ,tm), then (rl'r2, .;.,rin) is higher than 

( t1:t2, ... ,lm).· 

Now letf be a polynomial in D(x1,x2, ... ,xm]. Sof isa sum of,_rtu;momials 

ax/'x/2 ... xmk"', where a E: D imd (k 1,k2, ... ,km) is an m-tuple of non,nega-

tive integers. Here there may be several monomia.ls a x
1 

k1 x
2 

k2 • •• xm k .. , 

hx, k,x2 k2• ; • . • i:m k,., ex, k1x/i ... xmk..; etc. with the same exponent system 

( kl ,k1 , •• ~ ,k ). In this case, we collect these monomials into a single one 
~ m 
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(a+ b+ c + ·· · )x/ 1x/z .... xm k,.._ We ~ssume this has been done for each of 
the exponent systems, so that each m -tuple (k 1 ,_k2, • ':. • ,km) o<;curs as an 

exponent syst~m . of a monomi~l at most ~nee. If, after this collectio'Ii 
process, a mono~i<ll ax/'x/2 ... xm k., occuring in f has a non~ero 'coeffi-

'Cient a E D, we will s;1y that a appe_ars in f.· 

Let us now assume f?! 0. We order. the monomials appearing· in f by the 
alphabetical ordering of their exp_onent sy~tems. First we wrjte the 
monomiaL appearing in f whose exponent sy§tem is highest (i.e., higher . 
t.han the exponent systems of all other mono~ials appearing in f). 
Among the remaining monomials appearing in f,. we find the one with • 
the hi~hest expont?nt system· and write it in the second place: Among the· 
remaining monomials appearing in f, .. the . one with the highest exponent. 
system . will be written it in . .the ·third place, and so on. In this. ordering of 

. monotriials, the one that .is written in the first place, that is to say, the 
one with the highest exponent system will be called the leading mono­
mial of the. nonzero polynomial fED [xi,X2,- ... ;xml: ,. Note that the coeffi-

cients of mono111ii!IS play no- role in this ordering. On_ly the exponent 
systems are relevant. 
. ' . ' . 

For instance, f(x,y,z) = xz5 + z7 + 2x3 + 5x2y + 100x2y 2 -x2y 2z ·E l [x,y,z] 

will be written as 2x3 - x2y2~ + 100x2y 2 + 5x 2y + xzs + z7 when we order . 
the monomials in the described manner. The leading monomial of f(x,y,z) 

is 2x3• 

38.5 LemmafLet D. be an integral domain and f,g E D[XpXz•. ~. ,x~J\{0}. 

If ax/Ix/z ... xm k,. is. the leading m~nomia( off and bx
1 
ntx2nz ... xm n., is the _ 

leading monomial of g, then, abx
1 
k,+n 1x

2 
k2+~z .. . : xm k,.-+'n,. is the leading . 

monomial .of fg. 

Proof: By hypothesis, a ;;e 0, b ;;e 0, so ab ~ 0. Now fg ;;e o·andfg is the sum 
of all products (cxt'1x2' 2 •• • xm'"')(dx1s1x/2 ... xms"'), where CXJ'1Xz'2 

••• xm'"' · 

and dxtstx
2

s2 • .. xm s,.. run through all monomials . appearing in f and g, 

respectively. We contend that, among all these products, the highest 
exponent system is_ (k1 + 111 ,k2 + n2, ••• ,km + nm)' and that this exponent 
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system arises.only from. the product (a~1 k.lx/2 ... xmk.'")(bx
1

111x2
11z ••• xm11

"'). 

This will imply 

fg = abx/t+lltx/2+nz ..• xm k..,+n 

+ [a sum of monomials, each with an exponent 
system lower than (k1 ~ n1 ,k2 +, ~· ... ,km + nm)], 

and, since ab ;:t 0, the leading monomial of fg will be equal to 
· abx kj+n1x k.z+nz x: k.,+n,.. ' . 

I · 2 • •• m · • 

To prove our contention, let cx(1~2'z .•. xm''" be a monomial appearing in f 
and let d x/1x2sz • •• xm s .. be one. appearing ifi g, but assume that· either 

cx;'1x2'z. , , Xm. "'~' is. distinct from a x
1 

k. 1x/z . .. xm k., or d x
1 
• 1x

2
• 2 ••• xms,. is 

distinct from bi,. 11 tx2 n2 . .. xmn... We ·are to show that the exponent system 

(r1 + s1 ,r2 + s2, ... ,r m + sm) is lower than (k1 + n1 ,k2 + n2, ... ,krn + nm). Now 

(rl ,r2, ... ,r m) is lower than (kl ,k2, ..• ,k:n) or equal to it; .and (sl's2, ..... ,sm) is 
lower than (n 1,n2 , ••. ·,nm) or eq~al to it, but the. case of simultaneous 

equality. is excluded. Hence. the· first nonzero integer in 
kl- rl, k2 r2, ··:• km- rm . 

is positive, or (k
1 
,k2,: •. ,km) = (r

1
,r

2
, ••• ,rm), and the first nonzero integer 

in n1 - si'_n2 - s2~ •••.• nm- sm 
. is positive, or. (nl'n2, :·· ,n,n) = (s1,s2, ••• ,sm). Since simultaneous equality is 

excluded, there are nonzero integers i.n 
(kl- rl) + (nl- sl)' (k2- r2) + (n2 ;_ s2), ... , (km- rm)'+ (nm- sm) 

and ·the first of them, being a sum of two positive integers or a sum of a . 
positive integer and zero, is certainly positive. This . means that 

(k 1 + n1,k2+ n2, .'",'km"+ nm) is higher than Y1 + s1,r2 + s2, .•. ,rm + sm). 

Since the exponent system (k1 + n1,k2 +n2, ••• ,km + nm) does arise from 

the product (ax/ 1x/2 . •• xm k.,)(bx1 n
1x2 nz . .. Xm 11

"'), .it is indeed the highest 

.exponent system of all the products (cx{ 1xz'2 •.. xm' .. )(dx1 s
1x/2 • •• xm•'") 

where cxl' 1x2'z .. . xmr. .. and dxl•lx2s2 •.. xms .. run through all monomials 

· appearing in f and g, respectively .. This proves our contention, and also 
the ·lemma. [J 

By ind!Jction, we obtain 
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38.6 . Lemma: Let D ·be an integral 'dqmain i:md·J;,fi, ... J; be · nonzero 

. polynomials in D[x1 ,x2, •.• . 'xm]. Then the leading monomial of !jf2 .• • J; is 
the product of the leading monomials of J; ,[2, ... J;. 0 

38.7 Lemma: Let D be an integral domt:Jil!,a·€. D\lO}, and·let crl'cr2, ... ,crm 

be· the elementary symmetric polynomials in D[x1 .Xi• •.. ,xm]. 

If k1 >- k2 >- k3 >- ... >- km >- 0 are inJegers, then the leading monomial 

ofacr{t-klc42-k3 ... cr!z"'.::.t~k., cr!"' is ax/lx/2 . .. x!-:·lxmk ... 
. ,, ~ 

Proof: The leading monomials. of cr 1',cr2,cr3,cr4 , ••• ,crm' are respectively xl'­

x1x2, x 1x_2x3 , x 1x 2x3x4 , ... , x 1x2 ... xm, because crj is a sum ·or (j) monomials, 

each of which is a. product of j indeterminates from xl'x2 , .•• ,Xm. In view . 

of Lemma 38.6, the leading monomial. of acr~t-kzc4rk3 .•• cr!"'.Sk., cr!"' is . 

0 

We need one more lemma for the proof of the fundamental theorem. 

38.8 Lemma: Let D be an integr~l domain and let f(x1,x2, ••• ,xm) be a 

nonzero symmetric P()lynoi1J.ial in D[x1 ,x2 , ••• ,xm]. Let ax/1x/2 . . xm k., be 

the leading monomial off (here a E D, a ~ 0 and fs ,k2 , •.•• ,km are no nne". 

gative integers). 
(1) We have k1 >- k2 >- ... >- km-l >- km. 

(2) If bx/1x{2 •• xm'"' is a monomial appearing in J, then 

- k 1 ;;;... rvk! >-r2, ••• ,k1 >- rm. 

Proof: Let cr be any permutation in S m and let -r be the inve~se of cr. 

(1) As ax/tx/2 . . xm k., appea~s i? f(xl'x2, ... ,xm), . . . . 

ax1 k1x
2 

k2 .. x k., appears in f(x
1 

,x
2
· , ... ,x ) =F=f=f(x1.x2 .... ,xm), 

T 1' mT · · · \ · T t m-r · · · . 

ax/to x.}2o . xm k.,., appears in f('x 1 ,x2, ... ,xm), 

and, since ax/tx/2 •• xmk., is the leading m~:momial of./, we obtain: · 

for all~ e:,Sm~ (l~l'h·· ... ,km)is higher than or equal to (k}.,,k;_.,, ... ,km.,). 
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Using thiswith o = (12) € Sm, we see (k1,k2, .:J;,km) is higher th.an oi equl!-1 
to (k2,kl' .. ~ ,km)' so k1 ;.,. k2" And o :;;;: (23) yields' that (kl'k2,k3 •.• ,km) is 
higher than or equal to .(kl'k3 ,k2,_. .. ,km)' sq 'k2 ;a. k3 . In. like manner, 

when we .choose o = (34); ... , (m-l,m) €Sm. we ge(k3 ;;;a._k4 , •• ~ ,km-l -~ k;n. 
This_ prove's-(1). . . 

(2) As bx-/txirz .• xmr.. appears in l(x1,x2.-••• ,x~)~ . 

bxhrtx2/z· .xm/"' appears in f<i~;.Xu .:.,xm't>:;;;: .f =I= l(x1,x2 .... ,xm), _ 

bxlrl.x2rz •.. xmr,.. appears in l(xl,x2, ... ,xm), 

and so: 

Thus k1 > r 1a for all o € Sm. Here 1-e assumes all values 1,2, .. : ,m as o 
runs through S ~· and hence k1 > r 1, k1' > r2, ••• , k 1 > r m· __ • o 

Proof of the fundamental theorem: Throughout the proof, the num-
. ber m of the indetermin_ates will be fixed. We make indu~tion on the 

exponent system or'·tbe leading monomial of }he symmetric polyn'omial. 

This will be explained shortly .. 

Let F be a nonzero symmetric' polynomial in D [Xj ,x2, .•• ,xm] and let 

aX} k 1x/~-. xm~"' be. its leadirig monom.ial. 

First we claim: if (k1 ,k2,, ••• ,k~) = (0,0, •.. ,0)~ then there is a polynomial g 
in m indeterminates ul'u2; . .• ,um over D such that l(x1 ,x2 ,_ ••• ,xm) is equal 

to g(o 1,o2, •• : ,o~) .. This is very easy to prove. Indeed, if (k1 ,k2, ... ,km) =,. 
(0,0, ... ,0), then, by Lemma 38.2(2), the exponent system of ·any mono­

mial appe~ring in I is (0,0! ... ,0), so I is the constant polynomial a in 

D[x1,x2, ... ,xm]. T~en 'of course l(x1,x2, ..• ,xm) g(o!'o2, .. :,om)' where g is 

the constant P?lynomial a in D [u1,u2, ... ,uml· 

__ Now· suppose that (k1,k
2

, ••• ,km) is higher than (0,0, .... ,0) and thill, for 

any nonzero symmetric polynomial 11 € D[x1..:t2, •.• .xmJ ·whose leading 

monomial has a lower-. exponent system than (kl'k2, •.• ,km)' there is a 

polynomial g 1 in D[u1-,u2, ••• ,um] such that 11 (x1 ,x2, ••• ,xm) = g~(o;,o2, •.. ,om). 

Under this as_~umption, we ·will prove ·the existence of a polynomial. g in 

D[~,ui,: .. ,um ]with Jtx1 ;x2, ... ,xm) = g(o 1,cr2, • .. ·,om)._ This will establish the 
fundamental theorem because (0,0, ... ,0) is the lowest possibie exponent 
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system and the theorem has been prov~d in. this case above-; Moreover: 

as· there are only a finite . number of _m ~tuples -lower than. (k
1
,k

2
, ••• ,krn), 

the· rriethod· of proof can be used effectively to find the polynomial .g ex· 

plicitly in concrete cases. !Basically, we write the m-tuples L 1,L2 ,L3, ••• i_n 

alphabetical order and prove that· (I) the theorem is true for all nonzero 

symmetric 'polynonli;tfs whose leading 'monomials have the' exponent 

system L;c:::: (0,0, ... ,0) and that (2) for any s > 1'; if the the()rem is true 

· for all nonzero. symmetric polynomials whose leading monomials have 

exponent systems equal to one of· Li ,L2, ••. Ls_-1, then the theorem is. also 

true for all nonzero ;symmetric polynomials _whose leading monomials 

• have the_ exponent system Ls. Once the l~ading monomial of a symmetric 

·polynomial is given, there can be only. a finite number of exponent' 

systems Of monomials appearing in that symmetric polynomial (Lemma 

38.8(2).] 

By Lemma 38.8(1), the integers k1 k2 , k2 - k3, .. .', krn - krn~;, krn are non­

negative and, by Lemma'3S.7, the polynomial aaVk1~r:k3 ... cr!t.:.';k'"-cr!"' 

has the· same. _leading monomial. :ts f. Let f 1,; f- acr~'-k 2 ~2-k3 : •• cr!"'.:.'[k"' cr!"'. 

Thus / 1 is. a symmetric polyn~mi:il in .b[x1,x2 , •.. ,xrn ]. If / 1 = 0, then f 
a~t-kz~2-k3 .... o!,'".:.'j'k"' cr!"' ;md/= g(crl'cr2, ... ,crrn), \~here g . . 

a tlrk2uk:rk3. ':it !~:.ljk~ U~"' E: D [ul ,112'.;. ,urn]'' and the proof is completed in 

this case. If / 1 ;r. 0, then A . has a leading m<?nomial. The exp~ment system 

of this leading. monomial of / 1 is the exponent system of a. monomial ap­

pearing. in for in acr1 1;_k1~z-k~ .•• ~"'.:.'j'k., cr!"' (or in. both). This_ exponent. 

system· is diJ>tinct from '(k1 ;k2 , ... ,krn). Sii)ce it arises from a_ monomial 

appearing in f. or in aak,-k1~.· 1-k,-• •• ~ .. ,t-k'!' ak'" it is lo.;_,er than the common 
. . . .·I 2 rn- I rn ' . ·. - ·. . 

exponent system (k1,k2, · •.. ,krn) o( the le~ding monomials of I and 

adit-k2cr~2-kJ ... ~,;.:.';k ... cr!;. By :hypothesis, . there is a polynomial g I in 

D[~,u2, ... ,urn] such that fi(-x},x2, ••• ,irn) = g1(cr1,cr2, ... ,crrn). Hence 

J =ft +acr1l-k2~2-k3 ... o!,m.:.ljkm a!m . . 
- ( ' ) + a k1-k2 ,J_rkJ k.,.J-km k,. 
-gial'0 2''."'0 rn · 0 1. ·2· "' 0 rn-1 °rn 

and there is a polynomial g in D [ttl'u2, ••• ,_u;,J. namely 

gi + a~~r:-k2 11 ~2-k3.~.u!:-fk"' u~"', 
such thatJ(x1;x2, ... ,xrn) =g(a 1,cri, ~ •. ;crrn). 

This completes the proof of the existence of. g.· It remains to show the 

uniqueness of g. Suppose now f is a nonzero symmetric polynomial in 

D[x1 ,x2, • .. ,x,J and assume that g ,h E: D [ul'u2, ... ,am] with g( cr l'cr2, ... ,crrn) 
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f(x 1,x2, ... ,xm) = h(ol'o2, ... ,om). If g were distinct from h, then g- h ;;r 0 

would have. a leading monomial whiCh we. may write in the form 

u St-S2u S2-SJ ••• U 5"'·l-s,lls .. where s > s > ··'· > s C·> s . Then b =!-· f 
1 2 . m - 1 m ' I 2 ' m-1 m 

= g( ol'o2 , ••• ;ani) h( o Po2, ••• ,am) in D [xl'x2 , · .•• ,xm] would have .a leadi,ng 

monomial bx1 
51x2

5
2,. x~-:lxms .. , a contradiction.· Hence. g lz, as was to be 

proved. 0 

The fundamental theorem can be summarized by saying that the 

substitution mapping 
T: Q[u1,u2, .... ,um] __:_. S 

_ 'g(ui,u2, . .. ,um)- g(o 1,o2, ... ,om) 

is a ring isomorphism, where S is the subring of D [x1 ,x2, .•. ,xm] consisting 

of the symmetric polynomials in D [x1 ~-r2 , , • .-,xm). 

38.9 Examples: {a) We express the polynomial 

f(x,y;z) = 5xyz + x 2y + xy2 +'xz2 + yz2 + y 2z + x 2z € l fx,y,z] 
in terms of ol'o2,o3. 

We first arrange the monomials (lppearing in f in the· alphabetical order 

of their- exponent systems: 

f(x,y,z) = x 2y + x 2z · +xy2 + 5xyz + xz2 + y 2z + yz2• · 

The leading monqmial of f is Ix2y 1 z0 • We therefore· subtract l a /-1a/·0 a3 ° . -

from f and get 

!- 0102 = (x2y +x2z + xy2 + 5xyz + xz2 + y 2z + yz 2 )- (x + y ::1- z)(xy + yz + zx) 

2xyz. 
The leading monomial off- a

1
o2 is 2x 1y 1z 1. So we subtract 2cr 1Ho21-la3

1 

from. f- a 1 o2 .and get 

· if -·o 1o2)- 2~~ = 2xyz -- 2xyz = 0. 
lienee f(x,y,z) a 1o2 + 2cr

3
• 

(b) We express 

f(x,y,z,w) =x3 + y3 + z3 + w3 € lfx,y,zJ 
in terms of ol'o2,o

3
,a4 • The monomials are in ·alphabetical order, and the 

leading monomial of f is Ix3y0z0w0 • So we subtract I cr 1
3-ocr

2 
°-Do

3 
o-ocr/ from 

,- . 

f anti get 
f o I 3 = (x:l + y3 + z3 + w3) (X+ y + z + w)3 
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-3y2w .: 3yw 2 -3;2w- 3zw2 - 6xyz 6xyw- 6xzw- 6yzw. 
The leading monomial of j- a 1

3 is -3x.2y -3x2y 1 z0 w <1. We therefore 

subtract -3cr 2-1cr 1-oa o-oa 0 from f- a 3 and get 12 34 I. . . 

({- cr 1
3) ~ (-3cr 1a 2) = ({- a 1

3) + 3(x + y + z + w)(xy + xz + xw + yz + yw + zw) 

· == 3xyz + 3xyw + 3xzw + 3yzw 
3a3. 

Hence f(x,y,z,w) =a 1
3 - 3a 1a2 + 3a3" 

We now derive formulas connecting the sum of the kcth . powers of 
x1 ,x2, ••• ,xm · with the elementary ·symmetric polynomials. These formulas 

are due to I. Newton (1642-1727). 

38 .. 10 Theorem (Newton): Let D ·be an ·integral domain and x1 ,x2, ••• ,xm 

indeterminates over D. Fork= 1,2,3, ... , 

so that sk € D[x1,x2, ••• ,xm]. Then 
0 = S·- cr I I \ 
0 s2 -a1s1 +2a2 

0=s3-0"IS2+cr2SI 3o-3 

and 

- k " k we put· sk - x1 + x2 + .. ~ + xm , 

0 = sm - alsm-1 + cr2sm-2 +··< + (-,l)m-2crm-2s2+ (-l)m-lam-lsl + (-l)mmam 

0 = sm+l- a Ism+ a2sm~l + ..• + (-l)m-2crm-2s3 '+ (-1)m-lcrm-ls2 + (-l)mo-m~l 

" ............. " ...................... ,. ..... * ...................... ,. ............... ~ .... .. 

Proof: We make use of the polynomial /(t) = (t- x1)(t- x2) ••• (t- ~m). We 

know that 
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- .. . . 

and that xi ix2, •.• .xm are the roots of f(l) E D [xi ,x2, •• • ,xm]. Hence 

0 

for alii:' I,2, . ·.· ,m . . Multiplying both sides of this equation by x/. where' 

f= O,I,2,3~ .. , , we get 
0 ::;: x.m+j_ cr x.m+j-I +-cr x.m+j-2 - ... + ( -l)m-I cr xf+l +( -l)mcr x/ 
. I · 'I I 2 I · . m- J I .m I 

for all i = I ,2, ... ~tit. Adding these m equations side by side, we obtain 0 = 

m m m m m 
"' X .m+j - cr "'x m+j-1 +cr "'x. m+j-2 - + ... + (-})m-1 cr . "' X j+ I + (-l)mcr "' Xi 
L.., I ~· I L.., . I 2 L.4 I . m-I L.., I m L.., I 

· i= 1 i= 1 i= J • . i= I - i= I 

. i.e ..• 

O=s . m+J 

This est~blishes all the equations except the first m - I of them .. The first 
m I equation~ will be established by a similar reasoning. Thi·s time we 
make use of the derivative of f(l). By Lemma 35.I6(2), we have 

f(t) = (t-x2)(t-x3) ... (t-xm) + (t~xi)(t-_x3) ... (t-xm) + ··· + (t-x1)(t-x2) .. :(1-xm-I) 

= /(t) + 
t - X 

1 

Fori= 1,2, . .. ,m, we put 

f(t) . = q (i) 1m-l + q (i) 1m-2+ •.. + qCi} + q<O 
t - x. .m-l · . m-2 1 0 · 

I. . 

Hence mim-,I - (m- I)cr Ilm-2+ (in- 2)cr
2
tm-J- + · .. + (-l)m-lcrm_ 1 ·= j'(t) 

= ~ .f(t) = ~ ( q <t> 1m~t + q w 1m-2+ ••• + q<i} + q<O) 
L.. t X. f.- m-l . m-2 I 0 
i= 1 · · I . t= 1 . . .. 

m . m-~ m m 

= CI Cf,~~~)~m- 1 + CI q ~~z)tm-2 + ... + CI qV>)t + CI q~>), 
i= 1 i= '1 i= I i= 1. 

so that 
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m 
m = "\"' Q. (i) L m-1' 

i=l 
.m 

m 
(-I )·m-22cr = "\"' q ( i) 

m-2 L . 1' 
i=l 

, (-I )m-1 cr = "" lf ( i), ("') 
. m-1 L o· 

bl . 

On the other• hand; tm- cr tm-l +:a·tm-2 '+ ··· +(-l)m-la t + (-l)ma 
I 2 m-1 · m 

= fi(l) = (l- x.)({/ (i) 1m-1 + q (I) 1m-2+ ••• + ·q(i)j + qU>) 
. 1 m-1 . nl-2 · 1 · 0 

q (i) lm + lf (i) lm-1 + q (i) lm-2 + •. • + q(i)t2 + q(i)l 
m-1 m-2 ·' m-3 1 0 

_ q (il'x.tm~1 _ q (i) x.tln-2 _ ••• _ qO>x .12 ::. qU>x .t _ qU>x .• 
m-1 I · m-2 I 2 I · 1 I 0 I 

Comparing the coefficients . of powers of t on both sides, we get 

1 = q (i) 
m-1 

-a· = q. (i) - q (i) x. 
1 m-2 . m-1 1 

+cr = q (i) - q ( i) x. 
2 m-3 · m.,-2 1 

_; = q (i) - q (i) X 
3 .. m-4 m-3 i 

which may be written 
(i) 

qm-1 

q. (i) ,.; -d + q' (i) x. 
m-2 1 m-1 1 

q (i) = +cr + q (i) x . . 
m-3 2 m-2 1 

q (i) = -cr + q (i) X. 
. m-4 3 · m-3 1 

. Qbi) = (-1)m-10'm'-1 + q}iJxi 

0 = (-l)mcrm. + QdiJxi' 

So, for each i = 1,2, ... ,m, 

q (i) 
m-2 

q (i) 
m-3 

q (i) 
m-4 

q (i) (-l)m-10" + ((-l)m-2cr. + (-l)m-30' x. + ... +(-I)cr x.m-3 +xm-2)x. 

(1)' 

(2) 

(3) 

0 m-1 m-2 m-3 I 1 I I I 

= (-1)m-1crm-1+ (-l)m-2cr;n_2xi + (-l)m-3crm-3x/ + ... + (-l)crlxt:.2 +xt. (m- I) 

We add 'the m equations (1) together, also ·the m equations (2), the m 
equations (3)

1 
... , tlie ·m equations (m-:- I) (fori= 1,2, ... ,m). Using (•), we 

obtain 
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· -(m - l)a 
1 

= -ma1 + s
1 

+(m- 2)a2 = +ma2 - a 1s 1 + s2 

-(m- 3)a 3 = -mo3 + a2s1 - a 1s2 + s3 
•l ' r ................................... 

··. which are equivalent to 

st·..:at =0 
s2 - a 1s1 + 2a2 ='0 
s

3
- o 1s2 + a2s

1
- 3a

3
,;, 0 

This completes the proof. 0 

Newton's formulas express_ sk recursively in terms of .~ 1 •• ~2 •••• ,s k-l and of 
al'a2, ... ,am. We can eliminate SI'S2, ... ,sk-1. and \Vrite sk solely· in terms of 
ol'a2, .•• ,a~; Fo~ instance: · 

sl =at· . 

s2 = a;s1 - 2a2 a 1d1 - 2a2 = a 1
2 - 2~2 , 

s.3 a 1s2 - a 2s 1 + 3a~ = a 1(a1
2 .- 2a2)- a 2a 1 + 3o3 = a 1

3 -·3a 1a2 + 3a3_ 
. . . 3 . ·. . . 2 . . . 

s4 =a 1s
3 

a 2s2 +a
3
s1 4o4=a

1
(a 1 -3a 1a2 +3a

3
)-a2{a1 -2a

2
)+o

3
a

1
-4a4 

. . == 9 1
4 -4~ 1 2a2 + 4o 1a 3 + 2a/- 4a4 ' 

(here aj should be replaced by 0 whe11J> m). 

. . 

Now let D,E be integral domainsand Dr;;_ E. Let 
p(t) ~ eolm +eltm-1 + •.. +em-Il+ em 

be a nonzero polynomial of degree m in D[t), and assume that there are 
exactly m roots a1,a2, • .-.,am ·of p .in E (counted with multiplicities). Then 

. p(l) == c0(1- a1)(r- a2) ... (1- am) . in Eltl. · 
lienee p(l) e: Eltl.is' obtained from 

L(/( t) = e0(t - x1 ){I - x2).:. (t - Xm) . E Dtx1 .Xt, ... ,:XmJitJ 
by substituting ai for x1 (i = I ,2, ... ,m >: I\' ow cof(t) 

- (il(tm.,. o't(x,~t2, , .. ,xm)lm-1 +az<xf,X2, ... ,xm)lm-2_+ ... +(-l)ma,;..(xl,x2, .>.,xm)) 

antf. since suostitution .1s a .homomorphism -(Lemma 35.20), we have 
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p(t) = • 
c0(tm - crj(al'a2, . :. ,am)(m-l + oial'a2, ... ,am)tni-2_-+ .. • + (-I)mom(al'~' ... ,am)). 

Therefore c1 -c:ocr 1 (al'~' _ ... ,am) 
c2 +c.0cr~(a 1 ,a~-, .. . ,a ) ._ ... m. 
c3 = -c0cr3(al,a2, ... ,am) 

-'( )m-1 · 
cni-1 - -l 0 m-l(al,a2, ... ,am) 

em = (-l)mom(al,a2, ... ,am); 
in words: the values· of the elementarY symmetric polynomials at the 
roots o-f a polynomial are equal to the coefficients of that polynomial, 

except for a· factor + c0, where c0 is the leading coefficient of the poly­

nomial. The equations above tell· us that (i) o t<a 1 ,a2; ... ,am) belong to D if 

c0 is a unit in D;· (ii) cr1(a1,a2, ... ,am) belong to the field of fractions of D ln 
any case; (iii) in particular, o 1(a1,a2, ... ,am) belong to D if D is a.field. 
Moreover, if h(x1 ,x2, ... ,xm) € D[xl'x2, ... ,xm] is a symmetric polynomial, 

then h(x1,x2 , ••• ,xm) = g(~l'o2 , ... ,o~) for some polynomial in m 
indeterminates over D, and substitution- yields 

h(al'a2, ••• ,am)= g(o; (a!'~' ... ,am), oia1 ,a2, , .. ,am), ... , ~m(al'a2, ... ,am)) 
so that (i) h(al'a2, . , .. ,am) belongs to /) if c0 is a unit in D; (ii)h(a1,a2, ... ,am) 
belongs to the field of fractions of D in any case;(iii)h(a1,a2, ... ,am) belongs· 

to D ifD is. a field. We summarize this discussion in the next theorem. 

38.11 Theorem: Let D be an integral domain aizd let 
p(t) = c

0
tm + c

1
tm-l .:+ ·~· + cm_1t+ em a polynomial ove; D. Assume' that p(t) 

has exactly m roots al'~' ... ,am in an integral domain containing D. 

(I)c1=(-1)1om(al'ad • ... ,am) fori= 1,2, ... ,m. 
(2) .If h is any symmetric polynomial 'in· m indeterminates over D, then 

h(al'a2, ••• ,am), which is an element of .the integral domain conta,ining the 
roots of p(t), is in fact an element. of the field of fractions of D. · 
(3) If, in addition, the leading coefficient of p(t) is a unit in D, then 

h(al'a2, ... ,am)belongs to D. 
(4) If, in particular, D. is a field, then h(a 1 ,~, ••• ,am) belongs ·to D.· o 
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It is true that any nonzero polynomial of degree m over· an integral do­
main· D has exactly m roots· in sqme ii'ltegral domain· containing D. This 

wiH be_ proved late~ (Theorem 53.6). I~ the f611owing. ex~mples, we .wiil 

assume tha_t the polynomials have as many. roots as their -degrees in 

some integral domain. 

Example's: (a) Let us. evaluate a2b2 +a2c2 + a 2d 2 + ·b2c2 + b 2d2 + c2d2 , 

where a,b,c~d are the roots of t4 - t2 + I E l lt]. Tothis end, we express 

the symmetric. polynomial x2y2 + x2z2 + x 2u2 + y2z2 + y2u2 + z2u2 in. terms 
of"crl'a2,cr3,a4 • Subtracting Iai-z~-o~-o~ from this polynomial, we get 

(xiy 2 + ... + z~u2)- a 2 
2 = -2~2yz- · · · ~ 6xyzu, · 

and (X2y 2 + •••/+ z2u2)- a 2 -(-2a2-l o:!-1 OJ-Qcf!) =···· = o· -·· 2.1234- ' 
so x2y2+ x2z2 + x2u2 + y2z2 + y2u2 + z2u2 = a 2 _ a a . 

' . . . 2 . l .3 
Then - a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2 _ 

= (ab + ~e +ad+ be + bd + cd)2 - 2(a + b +: e +d)( abc + abd + acd +bed}. 
Here a,b,e,d are .the roots of t4 - t2 + I, so 

a + b + c + d = -0, ab + ae + ad + be + bd + ed = +(-I), 

abc +. abd + acd + bed = -0, abed= +I 
and therefore a2b2 + a 2e2+ a2d2 '+ b2c2 + b2d2 +c2d2 = (-1)2 :.. 2(0)(0) = 1; 

(b) We ~ind a. polynomial of· degree three in Z [I] whose roots are the 

cubes _of the roots of t3 + 2t2 + 3t + 4 E l [1] .. Let us denote the roots ~f 
this polynomial by a,b,c, so that a+ b + e =·-2, ab + ac +be =3, abc = 4. 
We put t 3 + q1t

2 + q2t +-q3 = (1 a 3)(t- b 3)(1- c3). 

From T.hem:em 38.11, we ·know that 
q1 = a3 + b3 + c3, q2 = a3b3 .+ a3e3 + b3c3,. q3 = a3b3c3. 

3 . . ' . 
Since s3 =cr1 - 3a1cr2 +3cr3, we conclude 

q I = a3 + p3 + c3 

=(a+ b + c)3 - 3(a+ b +e)(ab + ac +be)+ 3(abc) 
-= f-2)3 - 3(-2)(3) + 3(..;1) 
. = ~2. 

We find easily that x~y3 + x3z3 + y3z3 :::; a 2
3 - 3a 1cr2a3 + 3~/; ·hence 

_- q2 = a3b3 + a3c3 + b3c3. , 

= (ab + ac + be)3 .- 3(a + b+c )(ab + ae + bc)(abc) + 3(abe)2 

=.(3)3 :... 3(-2)(3)(-4) + 3(.,-4)2 

=,3. 



Finally, q
3 

= a 3b3c3 

= (abc) 3 

;, (-4)3 

·v 

. =-64. 
Thus 

t3 - (-2)12 + (3)t~ (-64):::: t3 + 2t2 + 3t + 64 E Z[x] 

is a polynomial whose roots are the cubes of the roots of 't3 + 2t2 + 3t-+ 4. 

Exercises 

1. Express the following symmetric polynomials over Z in terms of the 

elem~ntary· symmetric polynomials: 
{a) x3y2 + x2y3 + x3z~ +. x2z3 + y3z2 + y2z3; 

(li) x2y2 + x2z2 + x2u2 + y2z2 + y2u2 + z2u2; · 

(c) . xs + ys +xs +x4y+ y4x +x4z + z:4x + _y4z+ z4y~ 

2 .. Find a polynomial over Z whose roots are the 

(a) squart::s of the roots of t3 + 5t2 + 11 + 1 ~ z [t]; 
(b) squares of the roots of t5 + 514 - 613 + t2 - 1t - 4 € Z[t]; 

(c) cubes of the roots of 14 - 3t3 + 212 + 2 € Z (t] ~ . . 

3 L .K .b fi. ld A. . . . I f . - /(Xt ,Xl, ... .Xm) · ·K[ . ] 
. et e a 1e . · ratlona unc_tion ( ) m x1,x2, •• • ,xm 

· g X1,X2, • • • .Xm · 
is said to be a symmetic rational function over K if 

f(Xl o .X2a, ••• · .Xma) /(X!,X2, •.. .Xm) 
g(XIo,X2o,'· • • .Xmo) g(XI,X2, • •• .Xm) 

for all a € Sn. Prove that a symmetic. rational function over- K can be 

expressed as a fr;lction of tw~ symmetic polynomials over K~ Conclude­

that any . symmetic rational function over K cim be Written as 
p(crt,02, • • • ,crm) 
q( O"},C12, • • • ,O"m) 

with suitable polynomials p,qin K[ul'u2, .•• ,um]. {Loosely speaking, any 

symmetic rational function is a ·rational func'tion of the . elementary 

symmetric polynomials.) 

4. . Ex pres's. the following rational functions over l in terms of the 

elementary symmetric polynomials: 

{a) :!;;+1..+~+!.+1..+.!.; 
.)'.X Z X Z y 

. - 4'73 



(b) 

(c). 

x2 y2 z2 
-+-+-· 
y:z xz xy' 
i 1 1 -+-+-··, 

1-x 1-y 1-z 

5. Prove: for ·a·ny symmetric polynomial /(i.1,X2, •.• .xm~ over.~, there is a 

·polynomial h(ul'u2, ••• ,um) in \1Jl{u 1,u2; .•• ,um] such that f(x 1.x2 ••• •• .x~) =:: 
h(s1 ,s2, ••• ,sm)' where sf are the power sums of xi . 

. 6. Write the s.ymmctric ·polynomials in Ex. I as polynomials in si over 0. 


	260201000
	260201001
	260201002
	260201003
	260201004
	260201005
	260201006
	260201007
	270201001
	270201002
	270201003
	270201004
	270201005
	270201006
	270201007
	270201008
	270201009
	270201010
	270201011
	270201012
	270201013
	270201014
	270201015
	270201016
	270201017
	270201018
	270201019
	270201020
	270201021
	270201022
	270201023
	270201024
	270201025
	270201026
	270201027
	270201028
	270201029
	270201030
	270201031
	270201032
	270201033
	270201034
	270201035
	270201036
	270201037
	270201038
	270201039
	270201040
	270201041
	270201042
	270201043
	270201044
	270201045
	270201046
	270201047
	270201048
	270201049
	270201050
	270201051
	270201052
	270201053
	270201054
	270201055
	270201056
	270201057
	270201058
	270201059
	270201060
	270201061
	270201062
	270201063
	270201064
	270201065
	270201066
	270201067
	270201068
	270201069
	270201070
	270201071
	270201072
	270201073
	270201074
	270201075
	270201076
	270201077
	270201078
	270201079
	270201080
	270201081
	270201082
	270201083
	270201084
	270201085
	270201086
	270201087
	270201088
	270201089
	270201090
	270201091
	270201092
	270201093
	270201094
	270201095
	270201096
	270201097
	270201098
	270201099
	270201100
	270201101
	270201102
	270201103
	270201104
	270201105
	270201106
	270201107
	270201108
	270201109
	270201110
	270201111
	270201112
	270201113
	270201114
	270201115
	270201116
	270201117
	270201118
	270201119
	270201120
	270201121
	270201122
	270201123
	270201124
	270201125
	270201126
	270201127
	270201128
	270201129
	270201130
	270201131
	270201132
	270201133
	270201134
	270201135
	270201136
	270201137
	270201138
	270201139
	270201140
	270201141
	270201142
	270201143
	270201144
	270201145
	270201146
	270201147
	270201148
	270201149
	270201150
	270201151
	270201152
	270201153
	270201154
	270201155
	270201156
	270201157
	270201158
	270201159
	270201160
	270201161
	270201162
	270201163
	270201164
	270201165
	270201166
	270201167
	270201168
	270201169
	270201170
	270201171
	270201172
	270201173
	270201174
	270201175
	270201176
	270201177
	270201178
	270201179
	270201180
	270201181
	270201182
	270201183
	270201184
	270201185
	270201186
	270201187
	270201188
	270201189
	270201190
	270201191
	270201192
	270201193
	270201194
	270201195
	270201196
	270201197
	270201198
	270201199
	270201200
	270201201
	270201202
	270201203
	270201204
	270201205
	270201206
	270201207
	270201208
	270201209
	270201210
	270201211
	270201212
	270201213
	270201214
	270201215
	270201216
	270201217
	270201218
	270201219
	270201220
	270201221
	270201222
	270201223
	270201224
	270201225
	270201226
	270201227
	270201228
	270201229
	270201230
	270201231
	270201232
	270201233
	270201234
	270201235
	270201236
	270201237
	270201238
	270201239
	270201240
	270201241
	270201242
	270201243
	270201244
	270201245
	270201246
	270201247
	270201248
	270201249
	270201250
	270201251
	270201252
	270201253
	270201254
	270201255
	270201256
	270201257
	270201258
	270201259
	270201260
	270201261
	270201262
	270201263
	270201264
	270201265
	270201266
	270201267
	270201268
	270201269
	270201270
	270201271
	270201272
	270201273
	270201274
	270201275
	270201276
	270201277
	270201278
	270201279
	270201280
	270201281
	270201282
	270201283
	270201284
	270201285
	270201286
	270201287
	270201288
	270201289
	270201290
	270201291
	270201292
	270201293
	270201294
	270201295
	270201296
	270201297
	270201298
	270201299
	270201300
	270201301
	270201302
	270201303
	270201304
	270201305
	270201306
	270201307
	270201308
	270201309
	270201310
	270201311
	270201312
	270201313
	270201314
	270201315
	270201316
	270201317
	270201318
	270201319
	270201320
	270201321
	270201322
	270201323
	270201324
	270201325
	270201326
	270201327
	270201328
	270201329
	270201330
	270201331
	270201332
	270201333
	270201334
	270201335
	270201336
	270201337
	270201338
	270201339
	270201340
	270201341
	270201342
	270201343
	270201344
	270201345
	270201346
	270201347
	270201348
	270201349
	270201350
	270201351
	270201352
	270201353
	270201354
	270201355
	270201356
	270201357
	270201358
	270201359
	270201360
	270201361
	270201362
	270201363
	270201364
	270201365
	270201366
	270201367
	270201368
	270201369
	270201370
	270201371
	270201372
	270201373
	270201374
	270201375
	270201376
	270201377
	270201378
	270201379
	270201380
	270201381
	270201382
	270201383
	270201384
	270201385
	270201386
	270201387
	270201388
	270201389
	270201390
	270201391
	270201392
	270201393
	270201394
	270201395
	270201396
	270201397
	270201398
	270201399
	270201400
	270201401
	270201402
	270201403
	270201404
	270201405
	270201406
	270201407
	270201408
	270201409
	270201410
	270201411
	270201412
	270201413
	270201414
	270201415
	270201416
	270201417
	270201418
	270201419
	270201420
	270201421
	270201422
	270201423
	270201424
	270201425
	270201426
	270201427
	270201428
	270201429
	270201430
	270201431
	270201432
	270201433
	270201434
	270201435
	270201436
	270201437
	270201438
	270201439
	270201440
	270201441
	270201442
	270201443
	270201444
	270201445
	270201446
	270201447
	270201448
	270201449
	270201450
	270201451
	270201452
	270201453
	270201454
	270201455
	270201456
	270201457
	270201458
	270201459
	270201460
	270201461
	270201462
	270201463
	270201464
	270201465
	270201466
	270201467
	270201468
	270201469
	270201470
	270201471
	270201472
	270201473
	270201474

