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ABSTRACT

The aim of this project is to monitor a room for the purposes of
analysing the interactions and identities of a small set of individ-
uals. We work with multiple uncalibrated sensors that observe a
single environment and generate multimodal data streams. These
streams are processed with the help of a generic client-server
middleware called SmartFlow. Modules for visual motion de-
tection, visual face tracking, visual face identification, visual op-
portunistic sensing, audio-based localization, and audio-based
identification are implemented and integrated under SmartFlow
to work in coordination across different platforms.
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1. INTRODUCTION

The localization and recognition of spatio-temporal events are
problems of great theoretical and practical interest. Two specific
scenarios are nowadays of special interest: home environment
and smart rooms. In these scenarios, context awareness is based
on technologies like gesture and motion segmentation, unsuper-
vised learning of human actions, determination of the focus of
attention or intelligent allocation of computational resources to
different modalities. All these technologies pose interesting and
difficult research questions, especially when higher levels of se-
mantic processing is taken into account for complex interaction
with the users of the environment (See Fig. 1).

It is possible to envision a useful sensor-based system even
without an elaborate hierarchical reasoning structure in the home
environment, where low-cost sensor equipment connected to a
home computer can be used for activity monitoring and in help-
ing the user in various settings. In smart rooms, more sophis-
ticated equipment is usually used, allowing for more robust ap-
plications. Furthermore, wearable sensors, sensor-instrumented
objects and furniture are also used frequently [4].

This paper inspects some of the problems that arise from the
use of non-calibrated, low-cost sensors for observing the room.
Through the observation and subsequent processing, we try to
determine some basic facts about the persons in the room: iden-
tity, spatial position and interactions between people. Using this
knowledge, the application can also aim at higher level goals,
such as controlling a door.

In the proposed application, a set of cameras and micro-
phones continuously monitor a room. Each person entering the
room is identified (by means of a camera aimed at the entrance

Figure 1: The conceptual design of a human-centered smart en-
vironment (From [31]).

door and also using the microphones inside the room). Then, the
persons are tracked inside the room so that its spatial position
is always known. Interactions between people can be detected
by using their positions, ID, head orientations and information
about if they are speaking or not. Tracking can help determining
if a given person is approaching some specific part of the room
(i.e. the door) so that a convenient action can be taken. Tracking
need not to be continuously and people can be out of sight of
camera’s and/ or microphone. The challenge is to still have a
good knowledge about the whereabouts.

There are many possible applications of such an approach.
Tracking babies, kids, or elderly people for particular events,
intrusion detection, gesture or speech based controlling of envi-
ronmental parameters (e.g. lights, audio volume of the TV set,
etc.) can be implemented. The aim of the project is to imple-
ment the tools as black-box modules that would allow straight-
forward application to flexible scenarios. Some possible tech-
nologies needed to fulfill these goals are motion detection (vi-
sual), person identification (visual, acoustic), tracking (visual,
acoustic), speech detection, head pose estimation (visual, acous-
tic), gesture recognition (visual) and gait analysis.

This paper is organized as follows. In Section 2, we de-
scribe the setup of the room, and the low-cost sensors we have
employed. We also briefly describe the SmartFlow middleware
developed by NIST for cross-platform sensor communication in
Section 2.3. Section 3 describes the separate software modules
we have implemented and interfaced to SmartFlow. A discus-
sion and our conclusions follow in Section 4.
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Figure 2: The design of the room. The ceiling cameras are shown as circles at the corners of the room, and one camera that is roughly
placed at eye-level is facing the door. The microphones are placed on the walls and on the table in the centre of the room.

Figure 3: Sample recordings from the ceiling cameras. The il-
lumination conditions and quality of images are very different,
also because the cameras were of different models.

2. THE BU SMART ROOM

The BU smart room is established for the whole duration of the
Enterface Workshop in Boğaziçi University. Since there is no
sensor calibration, the actual installation was fast. We have used
five cameras and fourteen microphones. The sensor equipment
is low-cost, but five computers are used to drive the sensors in
the absence of dedicated cheaper hardware. The sensors are con-
nected to the computers via USB interface, and the computers
are connected to an Ethernet switch for communication.

The design of our smart room is given in Fig. 1. There are
four ceiling cameras in the corners of the room, and one cam-
era facing the door. The microphones are placed in three groups
of four microphones on three walls, plus a group of two micro-
phones in the middle of the room. The room has windows on
one side, which change the illumination conditions for each of

the cameras. The ceiling illumination is fluorescent, and there
are reflections from the ground tiles. The focus and resolutions
of the cameras are minimally adjusted.

2.1. Visual Sensors

We have used two Philips 900 NC cameras, two Philips 700 NC
cameras, and a Logitech UltraVision camera. The Philips cam-
eras are placed at the ceiling corners, and the Logitech camera
faces the door. All cameras have narrow angles of view, and this
equipment costs less than 400$. Fig. 3 shows images acquired
from these cameras at a given time. As it is evident from these
images, the illumination, saturation and resolution properties are
not consistent across the cameras.

Figure 4: The home-made low-cost microphone array.

2.2. Audio Sensors

For the audio equipment, 14 cheap USB microphones were taken,
and their protective casings were removed. The microphone ar-
rays are constructed by attaching the stripped microphones to
cardboard panels with equal spacing. Fig. 4 shows one such mi-
crophone array. The presence of five computers in the room and
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the large amount of ambient noise makes the audio system very
challenging.

2.3. The SmartFlow Middleware

The SmartFlow system, developed by NIST, is a middleware
that allows the transportation of large amounts of data from sen-
sors to recognition algorithms running on distributed, networked
nodes [20, 23]. The working installations of SmartFlow is re-
portedly able to support hundreds of sensors [28].

The SmartFlow provides the user with a way of packaging
algorithms into processing blocks, where the data are pictured
as a distributed flow among these blocks. Sensor data are cap-
tured by clients, cast into a standard format, and a flow for each
data stream is initiated. The processing blocks are themselves
SmartFlow clients, and they can subscribe to one or more flows
to receive the data required for their processing. Each client can
output one or more flows for the benefit of other clients.

The design of a working system is realized through a graphi-
cal user interface, where clients are depicted as blocks and flows
as connections. The user can drag and drop client blocks onto a
map, connect the clients via flows, and activate these processing
blocks.

There are two versions of SmartFlow. Version 1 is only us-
able under Unix OS, whereas Version 2 is usable with Windows
OS. Our final system contains components that were developed
under Linux and Windows, therefore we chose Version 2 as our
platform. However, some issues are not completely solved in
Version 2, and designs with many components suffer.

The synchronization of the clients is achieved by synchro-
nizing the time for each driving computer, and timestamping the
flows. The network time protocol (NTP) is used to synchronize
the clients with the server time, and this functionality is provided
by SmartFlow. A separate client is used to start the processing
clients simultaneously. The video streams are not completely in
one-to-one correspondence, as clients sometimes drop frames.

2.4. Data Collection

We have used three different datasets to train the speech/non-
speech classes. In addition to the RT05 and RT06 datasets [33]
a new dataset was collected for adaptation to the BU smart room
acoustics. This dataset contains segments of silence (i.e. ambi-
ent noise) and a host of non-silence events. Non-silence events
include sounds of chairs moving, keyboard typing, claps, coughs,
switching on/off the light, knocking on the door, laughs, and
steps. A total of 10 minutes of 14 different microphone streams
were recorded, leading to a total of 840, 000 frames at a rate of
10ms. for each of the speech/non-speech classes.

For person localization, we have recorded a long sequence
of frames (about eight minutes) from the four ceiling cameras
simultaneously. During this sequence, the group members en-
tered the room one by one, and walked on a pre-determined path
through the room, visiting each location and stopping briefly on
marker areas (centres of floor tiles). While walking, the mem-
bers were asked to talk continuously to provide ground truth data
for the audio based localization system, as well as the speaker
identification system.

For gesture recognition, we have collaborated with Enter-
face Group 12, and a dataset of 90 persons was collected through
their efforts. Each session contains a hand gesture part, where
four gestures are repeated three times in sequence. These ges-
tures are typically associated with turn-on (clacking the finger),
turn off (cutting off the head), volume up (increase indication)
and volume down (decrease indication) events. This dataset also

contains sequences where the head was moved from right to left
during ordinary speech.

3. SOFTWARE MODULES

3.1. Motion Detection Module

The motion detection module attempts to separate the foreground
from the background for its operation. Foreground detection us-
ing background modeling is a common computer vision task
particularly in the field of surveillance [29]. The method is
based on detecting moving objects under the assumption that
images of a scene without moving object show regular behavior
which can be modeled using statistical methods.

In a practical environment like our smart room illumination
could change according to the need of the user or it could also
change due to gradual sun lighting change. In order to adapt
changes we can update the training set by adding new sam-
ples. Each pixel observation consist of color measurement. At
any time, t, pixel value at pixel i can be written as Xi,t =
[Ri,t, Gi,t, Bi,t].

The recent history of every pixel within an image is stacked
which can be represented as [Xi,1, Xi,2, ..., Xi,t−1] and is mod-
eled as a set of Gaussian distributions. Now the probability of
the current observation at a pixel i can be estimated using the
model built from previous observations.

P (Xi,t|Xi,1, ..., Xi,t−1) =
X

wi,t−1∗η(Xi,t, µi,t−1, σ
2
i,t−1)

(1)
where η is the Gaussian probability density function. µi,t−1

and σ2
i,t−1 are mean and covariance matrix of the Gaussian.

wi,t−1 is the weight associated with the Gaussian. To make the
process on-line, a matching process is carried out; a new pixel
is considered to be background if it matches with the current
Gaussian component, i.e. if the distance between the pixel and
the mean of the Gaussian in question is less than ε. In this study
we have chosen ε = 2 ∗ σ. If a current pixel doesn’t match
the mean of the given distribution, then the parameters of the
distribution are updated with a higher weight, otherwise it is up-
dated with a lower weight w(i, t). The adaptation procedure is
as follows:

wi,t = (1− α)wi,t−1 + αMi,t (2)

where α is learning rate, α ∈ [0, 1] and 1/α determines the
speed of the adaptation process. And Mi,t = 1 if the current
pixel matches a model, otherwise it is 0 for rest of the models.
In a similar vein µ and σ are updated as follows:

µi,t = (1− λ)µi,t−1 + λXi,t (3)

σ2
i,t = (1− λ)σ2

i,t−1 + λ(Xi,t − µi,t)T (Xi,t − µi,t) (4)

where
λ = αη(Xt|µi,t−1, σi,t−1) (5)

One significant advantage of this technique is, as the new values
are allowed to be part of the model, the old model is not com-
pletely discarded. If the new values become prominent over-
time, the weighting changes accordingly, and new values tend to
have more weight as older values become less important. Thus,
if there is a movement of furniture with the room, the back-
ground model is updated rather quickly; and the same is true for
lighting changes.

Fig. 5 shows a sample frame and the detected moving fore-
ground.

73



Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 5: A frame with motion, and the detected moving fore-
ground.

3.2. Face Detection Module

Face detection is needed for face identification and opportunis-
tic sensing modules. In this module, the face of each person
present in the scene must be detected roughly (i.e. a bounding
box around a face will be the output of this module). We use the
OpenCV face detection module that relies on the adaboosted
cascade of Haar features, i.e. the Viola-Jones algorithm [35].
The client that performs face detection receives a video flow
from a client that in its turn directly receives its input from one
of the cameras, and outputs a flow that contains the bounding
box of the detected face.

3.3. Face Identification Module

The face recognition module is semi-automatic, in that it takes
motion tracking and face detection for granted. This module
therefore subscribes to the face detection flow that indicates face
locations, and to the video flow to analyze the visual input to
a camera. A technique for face recognition in smart environ-
ments [16, 34] is used. The technique takes advantage of the
continuous monitoring of the environment and combines the in-
formation of several images to perform the recognition. Models
for all individuals in the database are created off-line.

The system works with groups of face images of the same
individual. For each test segment, face images of the same in-
dividual are gathered into a group. Then, for each group, the
system compares these images with the model of the person.
We first describe the procedure for combining the information
provided by a face recognition algorithm when it is applied to
a group of images of the same person in order to, globally, im-
prove the recognition results. Note that this approach is inde-
pendent of the distance measure adopted by the specific face
recognition algorithm.

3.3.1. Combining groups of images

Let {x}i = {x1, x2, ..., xP } be a group of P probe images of
the same person, and let {C}j = {C1, C2, ..., CS} be the dif-
ferent models or classes stored in the (local or global) model
database. S is the number of individual models. Each model Cj
contains Nj images, {yn}j = {y1

j , y2
j , ..., yNj

j} where Nj
may be different for every class. Moreover, let

d(xi, yn
j) : RQxRQ → R (6)

be a certain decision function that applies to one element of {x}i
and one element of {y}jn, where Q is the dimension of xi and
yjn. It represents the decision function of any face recognition
algorithm. It measures the similarity of a probe image xi to a
test image yjn. We fix a decision threshold Rd so that xi and yjn
represent the same person if d(xi, y

j
n) < Rd. If, for a given xi

the decision function is applied to every yjn ∈ Cj , we can define
the δ value of xi relative to a class Cj , δij as

δij = #{yjn ∈ Cj |d(xi, y
j
n) < Rd} (7)

That is, δij counts the number of times that the face recog-
nition algorithm matches xi with an element of Cj . With this
information, the δ-Table is built, and based on this table we de-
fine the following concepts:

• Individual Representation of xi: It measures the repre-
sentation of sample xi by class Cj :

R(xi, Cj) =
δij
Nj

(8)

• Total representation of xi: It is the sum of the individual
representations of xi through all the classes:

R(xi) =
1

P

SX
j=1

R(xi, Cj) =

SX
j=1

δij
Nj

(9)

• Reliability of a sample xi given a class Cj : It measures
the relative representation of sample xi by class Cj con-
sidering that sample xi could be represented by other
classes:

ρ(xi, Cj) =

8<:
R(xi,Cj)

R(xi)
=

δij/NjPS
k=1

δik
Nk

R(xi) > 0

1 R(xi) = 0
≤ 1

• Representation ofCj : It estimates the relative representa-
tion of a group of samples {x}i by a class Cj . Weighting
is performed to account for the contribution of the group
{x}i to other classes:

R(Cj) =
1

P

PX
i=1

ρijδij (10)

• Match LikelihoodM for classCj : It relates a class repre-
sentation and its match probability. If r = R(Cj), then:

M(Cj) =
1− e

−r2
σ2

1− e
−N2

j

σ2

(11)

where σ adjusts the range of R(Cj) values.

• Relative Match Likelihood for a class Cj : It relates the
M of a classCj and the maximumM of the other classes:

RML(Cj) =

(
M(Cj)

maxk 6=j(M(Ck))
M(Cj) ≥ 0.5

0 M(Cj) < 0.5
(12)

This measure determines if the selected class (that with
the maximumM ) is widely separated from other classes.
A minimum value of M is required, to avoid analyzing
cases with too low M values.

Relying on the previous concepts, the recognition process is
defined, in the identification mode, as follows:

• Compute the δ-Table.

• Compute the match likelihood M for every model.

• Compute the RML of the class with the highest M(Cj).
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The group is assigned to the class resulting in a highest
RML value In this work, a PCA based approach [14] has been
used. This way, the decision function is the Euclidean distance
between the projections of xi and yjn on the subspace spanned
by the first eigenvectors of the training data covariance matrix:

d(xi, y
j
n) = ||WTxi −WT yjn|| (13)

where WT is the projection matrix.
The XM2VTS database [18] has been used as training data

for estimating the projection matrix and the first 400 eigenvec-
tors have been preserved. Only frontal faces are used for identi-
fication. Note that, in our system, models per each person have
been automatically generated, without human intervention. All
images for a given individual in the training intervals are candi-
dates to form part of the model. Candidate face bounding boxes
are projected on the subspace spanned by the first eigenvectors
of the training data covariance matrix WT . The resulting vector
is added to the model only if different enough from the vectors
already present in the model.

3.4. Opportunistic Sensing Module

The opportunistic sensing module aims at identifying persons
in the room when the face information is not available, or not
discriminatory. The primary assumption behind the operation
of this module is that the variability in a users appearance for a
single camera is relatively low for a single session (this case is
termed intra session in [34]), and a user model created on-the-fly
can provide us with useful information [32]. We use the follow-
ing general procedure for this purpose: Whenever the face iden-
tification module returns a reliable face identification, cameras
with access to the area with the detected face consult the motion
detection module, and grab a window from the heart of the mo-
tion blob. The pixel intensities within this window are modeled
statistically, and this statistical model is then used to produce
the likelihood values for every candidate person for which the
system stored a mixture model.

The general expression for a mixture model is written as

p(x) =

JX
j=1

p(x|Gj)P (Gj) (14)

where Gj stand for the components, P (Gj) is the prior proba-
bility, and p(x|Gj) is the probability that the data point is gen-
erated by component j. In a mixture of Gaussians (MoG), the
components in Eq. 14 are Gaussian distributions:

p(x|Gj) ∼ N (µj ,Σj) (15)

In a MoG, the number of parameters determine the complexity
of the model, and the number of training samples required for
robust training increases proportionally to the complexity of the
model. Introducing more components means that the ensuing
mixture will be more complex, and more difficult to train on the
one hand, but potentially more powerful in explaining the data,
as complex models usually go.

One way of controlling the complexity is to state some as-
sumptions regarding the shape of the covariance matrix. A com-
plete covariance matrix Σj for a d-dimensional data set has
O(d2) parameters, and specifies a flexible and powerful statis-
tical model. Learning a sample covariance of this shape often
creates serious overfitting issues and singularities due to lim-
ited training data. Frequently, a diagonal covariance matrix is
adopted, which means the covariances between dimensions are
discarded, and only the variances are modeled.

To build our statistical models for the users of the smart
room, we use a factor analysis (FA) approach, which repre-
sents a trade-off between model complexity and modeling co-
variances. In FA, the high dimensional data x are assumed to be
generated in a low-dimensional manifold, represented by latent
variables z. The factor space spanned by the latent variables
is similar to the principal space in the PCA method, and the
relationship is characterized by a factor loading matrix Λ, and
independent Gaussian noise ε:

x− µj = Λjz + εj (16)

The covariance matrix in the d-dimensional space is then repre-
sented by Σj = ΛjΛ

T
j + Ψ, where Ψ is a diagonal matrix and

εj ∼ N (0,Ψ) is the Gaussian noise. We obtain a mixture of
factor analysers (MoFA) by replacing the Gaussian distribution
in Eq. 14 with its FA formulation.

In the opportunistic sensing module, the surface features are
modeled with mixture models. A single frame is used to produce
a training set for the MoFA model. If the the number of com-
ponents and the number of factors per component are specified
beforehand, the maximum likelihood parameters can be com-
puted with the Expectation-Maximization (EM) algorithm [9].
With no prior information, an incremental algorithm can be used
to determine model parameters automatically [26]. The incre-
mental MoFA algorithm (IMoFA) starts with a one-factor, one-
component mixture and adds new factors and new components
until the likelihood is no longer increased on the validation set.

For component addition, a multivariate kurtosis-based mea-
sure is adopted to select components that look least like uni-
modal Gaussians:

γj = {bj2,d − d(d+ 2)}

"
8d(d+ 2)PN

t=1 h
t
j

#− 1
2

(17)

bj2,d =
1PN
l=1 h

l
j

NX
t=1

htj

h
(xt − µj)

TΣ−1
j (xt − µj)

i2
(18)

with htj ≡ E[Gj |xt], and the component with greatest γj is
selected for splitting.

For factor addition the difference between sample covari-
ance and modeled covariance is monitored and the component
with the largest difference is selected for factor addition. The
new factor is the principal axis of the residual error vectors.

There are currently no accuracy results for the opportunistic
sensing module, since the recorded data is not annotated with
ground truth. However, visual inspection shows that this model
is successful under two conditions:

• The training frame should be discriminative.

• The overall image intensity conditions during operation
should be consistent with the training conditions.

In Fig. 6 three sample training frames are shown. To ensure
fast operation, only a portion of these frames is used for train-
ing. 5 × 5 pixels with RGB values are concatenated to form
75−dimensional vectors, which are then modeled with IMoFA
mixtures.

Fig. 9 shows the detection results for each of the three peo-
ple in the system. Since we use generative models, an increase in
the number of subjects does not decrease the localization accu-
racy of the system, but considering additional candidates brings
a computational cost. The client that performs likelihood com-
putation pre-loads the mixture parameters, computes inverse co-
variance and determinant parameters, and waits for data packets.
The real-time operation is ensured by dropping data frames.
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(a) (b) (c)

Figure 6: Training frames for a) Albert, b) Ramon, c) Onkar.

Fig. 7 shows the effect of a non-discriminative frame. The
presence of generic intensities results in a too general mixture,
and many data packets produce high likelihoods.

(a) (b)

(c) (d)

Figure 7: a) Non-discriminative training frame for class Onkar.
b) A more discriminative training frame for class Onkar. c)
Detection of Onkar results in many false-positives with the
non-discriminative training frame. d) The discriminative frame
works fine.

3.5. Speaker Identification Module

The Speaker ID module (SID) segments the audio data, iden-
tifying the silences and the speaker changes. Furthermore, the
algorithm is able to identify different speakers with the help of
prior knowledge. With this purpose, a small database of ten per-
sons was collected in the BU smart room. The speaker models
are computed off-line.

The speaker identification system is composed of several
modules developed in the SmartFlow framework, and it can be
inspected in three groups. The Speech Activity Detection (SAD)
is in charge of detecting the speech activity in the room and dis-
criminating it from non-speech events. The Acoustic SEgmenta-
tion (ASE) module retrieves speech information from the SAD
and provides the Speaker IDentification (SID) stage with ho-
mogenous acoustic data from a single identity. All three stages

work in parallel, continuously computing the high level infor-
mation, speech/non-speech segmentation, acoustic change de-
tection and frame-score accumulation for the identity labels, the-
reby monitoring the room constantly in real time. However, an
identity label is only provided in the case that the acoustical in-
formation is sufficient, and homogenously collected from a sin-
gle person, and the speech data is sufficient for discrimination.

Fig. 8 depicts the SmartFlow map employed in the SID im-
plementation. The frequency downsampling stage produces a-
coustic signals at a rate of 16.000 KHz for the remaining stages,
for a total of 14 microphones. The flow connections indicate the
feedback and interactions between the three main modules.

Figure 8: Smarflow Map implementation of the SID module. The
first stages are related to capturing signal modules and down-
sampling. The SelectChannel box gathers all the input channels
coming from different machines and selects one of them based
on a simple energy threshold decision.

3.5.1. Speech Activity Detection

The SAD module used in this work is based on a support vector
machine (SVM) classifier [27]. The performance of this system
was shown to be good in the 2006 Rich Transcription SAD Eval-
uations (RT06) [33]. A GMM-based system that ranked among
the best systems in the RT06 evaluation was selected as a base-
line for performance comparison [33].

For classical audio and speech processing techniques that
involve GMMs, the training data are in the order of several hun-
dred thousand examples. However, SVM training usually in-
volves far less training samples, as the benefit of additional sam-
ples is marginal, and the training becomes infeasible under too
large training sets. Some effective methods should be applied to
reduce the amount of data for training without losing accuracy.
Therefore, we employ Proximal SVMs (PSVM) in the same way
as proposed in [33].

Proximal Support Vector Machine (PSVM) has been recently
introduced in [8] as a result of the substitution of the inequality
constraint of a classical SVM yi(wxi + b) ≥ 1 by the equality
constraint yi(wxi + b) = 1, where yi stands for a label of a
vector xi, w is the norm of the separating hyperplane H0, and
b is the scalar bias of the hyperplane H0. This simple modifi-
cation significantly changes the nature of the optimization prob-
lem. Unlike conventional SVM, PSVM solves a single square
system of linear equations and thus it is very fast to train. As a
consequence, it turns out that it is possible to obtain an explicit
exact solution to the optimization problem [8].

Depending on the speech activity inside the room, we should
penalize the errors from the Speech class more than those from
the Non-Speech class, in the case of a meeting for example.
It is possible to selectively penalize errors for the SVM in the
training stage by introducing different costs for the errors in two
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classes by introducing different generalization parameters C−
and C+. This approach will adjust the separating hyperplane
H0, and it will no longer be exactly in the middle of the H−1

andH1 hyperplanes (Fig. 9). It is worth mentioning that favour-
ing a class in the testing stage (after the classifier is trained) is
still possible for SVM through the bias b of the separating hy-
perplane.

Figure 9: Proximal Support Vector Machine based SVM.

3.5.2. Bayesian Information Criterion based Segmentation

Audio segmentation, sometimes referred to as acoustic change
detection, consists of exploring an audio file to find acoustically
homogeneous segments, detecting any change of speaker, back-
ground or channel conditions. It is a pattern recognition prob-
lem, since it strives to find the most likely categorization of a se-
quence of acoustic observations. Audio segmentation becomes
useful as a pre-processing step in order to transcribe the speech
content in broadcast news and meetings, because regions of dif-
ferent nature can be handled in a different way.

The ALIZE Toolkit was used in this work to implement a
XBIC-based segmentation system, making use of the algorithms
for the GMM data modeling and the estimation of the parame-
ters. The ALIZE toolkit is a free open tool for speaker recog-
nition from the LIA, Université d’Avignon [1]. The “Bayesian
Information Criterion” (BIC) is a popular method that is able to
perform speaker segmentation in real time.

Let the set Θ = {θj ∈ <d | j ∈ 1 . . . N}, a sequence of N
parameter vectors, the BIC is defined as:

BICΘ = L− αP (19)

where P is the penalty and α a free design parameter. L is the
logarithm of the probability performed by the set of observations
Θ over the model λi,

L = P (Θ|λi) =

NX
k=1

log(θk|λi) (20)

Let an instant θj ∈ Θ, it can be defined two partitions of Θ:
Θ1 = {θ1 . . . θj} and Θ2 = {θj+1 . . . θN} with length N1 and
N2. In order to take a decision about a change in the speakers,
two different hypotheses can be considered:

• H0: An unique class λ is better at modeling the data from
the whole set of observations Θ.

• H1: Two independent classes λ1 and λ2 are better in
jointly modeling the before and after of the postulated
instance of speaker change θj .

The best hypothesis is chosen by evaluating the following
expression:

∆BIC = BICH0 −BICH1 = BICΘ− (BICΘ1 +BICΘ2)
(21)

Therefore, and looking at Eqs. 19 and 20 the criterion of
change speaker turn at time i can be defined by evaluating the
following expression:

∆BIC(i) = P (Θ|λ)− P (Θ1|λ1)− P (Θ2|λ2)− αP (22)

where the penalty term depends on the number of parameters
(complexity) employed to estimate the whole model λ and the
two sub-models λ1,λ2. This constant is set to a low value, since
it only affects the decision threshold around 0.

In overall, a speaker change turn is decided at the time in-
stant i for which ∆BIC(i) > 0, which means that the dual
model is now better adapted to the observation data in compar-
ison to the single model. Taking into account the definition of
the Rabiner distance, the distance among two Hidden Markov
Models is

Drab =
D(λa, λb) +D(λa, λb)

2
(23)

with D as,

D(λa, λb) =
1

Nb

„ NbX
k=1

log p(θk|λa)−
NaX
k=1

log p(θk|λb)
«
(24)

Assuming that the two data segments have the same dura-
tion, and sorting the terms of the Eq. 23, we obtain a probabilis-
tic definition of the Rabiner distance,

D′rab =
`
P (Θ1|λ2)+P (Θ2|λ1)

´
−
`
P (Θ1|λ1)+P (Θ2|λ2)

´
(25)

where P (Θi|λj) is defined in Eq. 20. Eq. 25 is similar to the one
presented in the BIC procedure 19, but using a second shared
term: P (Θ1|λ1) + P (Θ2|λ2), which changes as the models
adapt to the training set.

The first term of both equations, Eq. 19 and Eq. 25, measure
how well the whole audio segment is adapted to a single model
or to two models, respectively. In both cases a high probability
is obtained if the segment belongs to the same speaker.

Figure 10: Segmentation example.

In the case of the Eq. 25, when two acoustically similar seg-
ments are evaluated, the measure oscillates around the 0 value.
When a speaker change occurs, the XBIC distance peaks, mostly
due to the cross probability term. By this reason the XBIC mea-
sure is defined as:

XBIC(i) = P (Θ1|λ2) + P (Θ2|λ1) (26)

If a suitable threshold is chosen, the speaker change can be
determined at the time instant i as XBIC(i) < thresholdXBIC
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3.5.3. Speaker Identification

The Person Identification (PID) problem consists of recogniz-
ing a particular speaker from a segment of speech spoken by a
single speaker. Matched training and testing conditions and far-
field data acquisition are assumed, as well as a limited amount
of training data and no a priori knowledge about the room envi-
ronment. The algorithm implemented in this work was tested
in the CLEAR’07 PID evaluation campaign, obtaining the best
position in mean in all test/train conditions [17].

The algorithm commences by processing each data window
by subtracting the mean amplitude, supposing the DC offset is
constant throughout the waveform. A Hamming window was
applied to each frame and a FFT is computed. The FFT am-
plitudes are then averaged in 30 overlapped triangular filters,
with central frequencies and bandwidths defined according to
the Mel scale. Their output represents the spectral magnitude
in that filter-bank channel. Instead of the using Discrete Cosine
Transform, such as in the Mel-Frequency Cepstral Coefficients
(MFCC) procedure [5], the samples are parametrised using the
Frequency Filtering (FF):

H(z) = z − z−1 (27)

over the log of the filter-bank energies. Finally, we obtain 30
FF coefficients. A vector of parameters is calculated from each
speech segment. The choice of this setting was justified through
experimental validation, showing that FF coefficients result in
higher accuracies than MFCC coefficients for both speech and
speaker recognition tasks, as well as being more robust against
noise and computationally more efficient [19]. Additionally, the
FF coefficients are uncorrelated, and they have an intuitive in-
terpretation in the frequency domain.

In order to capture the temporal evolution of the parame-
ters, the first and second time derivatives of the features are ap-
pended to the basic static feature vector. The so-called ∆ and
∆-∆ coefficients are also used in this work. Note that the first
coefficient of the FF output, which is proportional to the signal
energy, is also employed to compute the model estimation, as
well as its velocity and acceleration parameters. Next, for each
speaker that the system has to recognize, a model of the prob-
ability density function of the parameter vectors is estimated.
Gaussian Mixture Models with diagonal covariance matrices are
employed, and the number of components is set to 64 for each
mixture. The large amount of components assure that the statis-
tical learning is robust, and is further justified by the availability
of a very large training set.

The parameters of the models are estimated from speech
samples of the speakers using the well-known Baum-Welch al-
gorithm [24]. Given a collection of training vectors, the maxi-
mum likelihood model parameters are estimated using the itera-
tive Expectation-Maximisation (EM) algorithm. The sensitivity
of EM to cases with few training data is well-known, yet under
the present training conditions (with ample data), 10 iterations
are demonstrably enough for parameter convergence. This pa-
rameter is retained for both training conditions and for all the
client models.

In the testing phase of the speaker identification system, a
set of parameters O = {oi} is computed from the speech signal.
Next, the likelihood of obtaining the signal under each client
model O is calculated and the speaker model with the largest
posterior probability is chosen,

s = arg max
j

˘
L
`
O|λj

´¯
(28)

where s is the recognised speaker, and L is the likelihood func-
tion from a linear combination of M unimodal Gaussians of di-

mension D [3]. Therefore, L
`
O|λj

´
is the likelihood that the

vector O has generated by the speaker model λj .

3.6. Sound Based Localization Module

Conventional acoustic person localization and tracking systems
usually consist of three basic stages. In the first stage, estimation
of such information as Time Difference of Arrival or Direction
of Arrival is usually computed by the combination of data com-
ing from different microphones. The second stage involves a
set of relative delays or directions of arrival estimations to de-
rive the source position that agrees most with the data streams
and with the given geometry. In the third (and optional) stage,
possible movements of the sources can be tracked according to
a motion model. These techniques need several synchronized
high-quality microphones. In the BU Smart Room setting we
have only access to low-quality, uncalibrated and unsynchro-
nized microphones. As explained in the room setup description,
only pairs of microphones within an audio capture device are
synchronized, there is no synchronization across different cap-
ture devices. Moreover, the channels within a single capture
device have a highly correlated noise of the same power level as
the recorded voice, thus estimating the position of speakers in
this environment is a very difficult and challenging task.

The acoustic localization system used in this project is based
on the SRP-PHAT localization method, which is known to per-
form robustly in most scenarios [6]. The SRP-PHAT algorithm
(also known as Global Coherence Field ) tackles the task of
acoustic localization in a robust and efficient way. In general,
the basic operation of localization techniques based on SRP is
to search the room space for a maximum in the power of the
received sound source signal using a delay-and-sum or a filter-
and-sum beamformer. In the simplest case, the output of the
delay-and-sum beamformer is the sum of the signals of each mi-
crophone with the adequate steering delays for the position that
is explored. Concretely, the SRP-PHAT algorithms consists in
exploring the 3D space, searching for the maximum of the con-
tribution of the PHAT-weighted cross-correlations between all
the microphone pairs. The SRP-PHAT algorithm performs very
robustly due the the PHAT weighting, keeping the simplicity of
the steered beamformer approach.

Consider a smart-room provided with a set of N micro-
phones from which we choose M microphone pairs. Let x
denote a R3 position in space. Then the time delay of arrival
TDOAi,j of an hypothetic acoustic source located at x between
two microphones i, j with position mi and mj is:

TDOAi,j =
‖ x−mi ‖ − ‖ x−mj ‖

s
, (29)

where s is the speed of sound.
The 3D room space is then quantized into a set of posi-

tions with typical separations of 5-10cm. The theoretical TDOA
τx,i,j from each exploration position to each microphone pair
are precalculated and stored.

PHAT-weighted cross-correlations of each microphone pair
are estimated for each analysis frame [21]. They can be ex-
pressed in terms of the inverse Fourier transform of the esti-
mated cross-power spectral density (Gm1m2(f)) as follows:

Rmimj (τ) =

Z ∞
−∞

Gmimj (f)

|Gmimj (f)|e
j2πfτdf, (30)

The estimated acoustic source location is the position of the
quantized space that maximizes the contribution of the cross-
correlation of all microphone pairs:

x̂ = argmax
x

X
i,j ∈ S

Rmimj (τx,i,j), (31)
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where S is the set of microphone pairs. The sum of the contri-
butions of each microphone pair cross-correlation gives a value
of confidence of the estimated position, which can be used in
conjunction with a threshold to detect acoustic activity and to
filter out noise. In our work, we use a threshold of 0.5 per clus-
ter of 4 microphones. It is important to note that in the case of
concurrent speakers or acoustic events, this technique will only
provide an estimation for the dominant acoustic source at each
iteration.

3.7. Gesture Tracking Module

Hand gestures used in human–computer interaction (HCI) sys-
tems are either communicative or manipulative. Manipulative
hand gestures are used to act on virtual objects or parameters,
whereas communicative gestures are combination of dynamic
acts and static symbols that have communication purposes. HCI
applications often focus on a subset of these classes of gestures
and consider only these classes as meaningful. The hand ges-
ture recognition module we have designed for the smart room
application is aimed to use both communicative and manipu-
lative gestures for HCI and to automatically distinguish these
in real time. This module is based on the work presented in
[11, 12, 13].

The gesture recognition module is the main channel of in-
teraction with between the users and the computers in BU Smart
Room, since it allows the users to give commands to the under-
lying smart system. The gesture recognition system our module
is based on, handles the event recognition problem using two
primary methods:

• by manipulative gestures, i.e. by allowing direct trans-
lation of the hand trajectory and shape into continuous
events, such as manipulation of virtual objects, or

• by communicative gestures, i.e. by recognizing certain
patterns performed by the user and firing high level dis-
crete events.

In order to make use of both of these methodologies, we have
designed a simple extendible gesture language that consists of
actions and objects. The structure of each command consists
of a combination of one action and one object, the former cor-
responding to a certain pattern and the latter to a simple hand
movement, specifically in this order to prevent false positives.
The reasoning behind this is based on the fact that communica-
tive gestures are chosen in a way that they are unlikely to be per-
formed unintentionally, wheras the manipulative ones may cor-
respond to very common hand movements. Since we restrict the
objects to follow actions, the intentional manipulative gestures
corresponding to the objects can unambiguously be recognized.

Gestures are performed by the flexible hands in 3D space.
The motion and change in the shape of the hand have differ-
ent characteristics. Thus, they are often modeled separately and
considered to be different modalities. Both appearance based
and 3D model based approaches have been pursued for com-
puter vision based hand shape modeling. 3D models are com-
plex geometrical models using a priori knowledge about hand
geometry, while appearance based models use features extracted
from the projected intensity image of the hand. In general, most
of the computer vision techniques extract the silhouettes of the
hands first.

To simplify the hand segmentation problem, either simple
backgrounds are assumed, or colored markers are used. Since
hands are homogeneously colored, hand tracking can be accom-
plished using color–based features. However, other skin colored
regions such as the face make this task difficult and time con-
suming. Due to real time execution considerations, markers are

used in our system to detect the hand in each image. The choice
of color for the marker is not predefined, but is restricted to col-
ors that are significantly different than the skin color.

In the case of smart rooms, simple backgrounds can not be
assumed. By employing colored markers, it is possible to ro-
bustly detect and track the hands by using simple color based de-
tection algorithms. We have developed two different techniques
for marker detection in BU Smart Room, which basically make
use of different color systems, namely RGB and HSV. While
the RGB–based method uses either fixed or floating ranges to
connect neighboring colors for segmentation, the HSV–based
method calculates the Hue–Saturation histogram of the marker
and uses it as a signature. These methods will be explained in
more detail in the following section.

The choice of the hand features extracted from the hand re-
gion primarily depends on the target application. Real time HCI
applications often prefer to employ simpler models, while estab-
lishing a certain amount of variability and descriptive power for
specific hand postures. The features used may range from the
easily detectable motion of the hand and openness or closeness
of the fingers, to the angles of each finger articulation, which
might be needed for an advanced sign language recognition sys-
tem. Since the setup or the quality of the cameras in different
smart room environments are likely to be subject to consider-
able change, the system is assumed to consist of the most basic
cameras. Therefore, simple appearance–based methods are pre-
ferred for our application.

Appearance–based approaches are not based on prior and
explicit knowledge of the hand model. Therefore, model pa-
rameters are not directly derived from the 3D spatial description
of the hand. Such methods learn to relate the appearance of a
given hand shape image to its actual posture.

The most common appearance–based approach is using low
level features derived from the images to model hand shapes.
These parameters include image moments, image eigenvectors,
i.e. “eigenhands”, contours and edges, orientation histograms
and Hu or Zernike moments. Currently, the training and recog-
nition algorithms rely on Hu moments and the angle of the hand
image. The Smartflow environment allows to plug in different
feature extractors in a simple manner. Therefore the feature ex-
traction module can easily be replaced with other methods for
testing. Yet, the training phase should be repeated with the new
feature extraction module.

Dynamic hand gestures are sequential data that involve both
temporal and spatial context. Hidden Markov Models (HMMs),
which can deal with the temporal invariability of signals are of-
ten employed for gesture recognition [15, 25, 36, 37]. In the
recognition process, a given trajectory in the model parameter
space of the gestures is tested over the set of trained HMMs in
the system. The model that gives the highest likelihood is taken
to be the gesture class the trajectory belongs to.

HMM is a powerful tool for sequential data modeling and
recognition. Yet, it is not directly extendible to multiple syn-
chronous or asynchronous data sequences. HMM variants such
as coupled HMMs have been proposed to overcome this prob-
lem. Input–Output HMMs, which are proposed by Bengio et
al. in [2] are neural network–HMM hybrids, which attack the
shortcomings of HMMs by representing the local models, i.e.
the hidden states, with possibly nonlinear and flexible complex
structures such as Multi Layer Perceptrons (MLPs). IOHMMs
condition the stochastic architecture of HMMs on an input se-
quence that has no independence assumptions. The architecture
can be conditioned on any function of observable or system pa-
rameters. Therefore, the stochastic network of an IOHMM is
not homogeneous. Due to their inhomogeneity, IOHMMs are
expected to learn long time dependencies better than HMMs.
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The gesture recognition module in BU Smart Room is designed
to make use of discrete, continuous and input–output HMMs.

In the following section, the marker registration tool and the
marker color signatures used in the BU Smart Room system will
be explained in detail.

3.7.1. Marker Registration and Detection

The marker registration client developed for Smartflow, namely
“ipl marker registrar”, aims to learn the parameters of the chosen
marker. This module employs two different methodologies:

• RGB–based manual detection method

• HSV–based automatic detection method

The capabilities of the client are accessible in run–time by press-
ing “h”, which displays a help screen. This screen shows how to
switch modes, methods and settings. The manual and automatic
detection modes make use of different parameters and therefore,
they have different user interfaces.

In the manual registration mode, the user needs to click on
the marker with the left button to run a connected components
algorithm, starting with the pixel clicked. The connection crite-
ria is euclidean distance:

• between the first pixel and the pixel being considered in
the fixed range mode (activated by pressing “f”), or

• between the last pixel connected and its neighbors in the
floating range mode (activated by pressing “g”).

Figure 11: Effect of low settings for the fixed range mode

Typically, fixed range mode needs much higher thresholds
to be set than the floating mode. Examples of too low, too
high and good settings for both of the modes are given in Fig-
ures 11, 12, 13, 14, 15 and 16. The settings in the user interface
are simply the asymmetric range thresholds for values higher
and lower than the original pixel. The best settings can be se-
lected and visually confirmed by the user, which are then saved
for further utilization by the hand tracking module.

There are two problems with this approach. First of all,
this mode of execution requires human intervention for marker
registration, which might cause a problem if the computer is not
inside the smart room. Also, RGB color space based tracking

Figure 12: Effect of high settings for the fixed range mode

Figure 13: Good settings for the fixed range mode
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Figure 14: Effect of low settings for the floating range mode

Figure 15: Effect of high settings for the floating range mode

is not robust to illumination changes, which would make the
registration settings obsolete. Therefore, a second method is
implemented, which is an automatic HSV based approach. This
method can be used to detect markers without the supervision of
a user, and the corresponding tracking method is more robust to
illumination changes.

The main difference of the automatic method from its man-
ual counterpart is that a supervisor does not need to click on the
marker. Instead, by assuming that the marker has the fastest mo-
tion in an image sequence, this module attempts to distinguish
the marker from image differences, i.e. motion. It first captures
two images separated by a few frames, smoothes them with a
Gaussian filter and finds their difference. The difference image
is thresholded according to a user setting, and the pixels that
are too dark or too bright are also eliminated using two more
thresholds, also selectable via user settings. The final image is
converted into HSV color space and the 2D Hue–Saturation his-
togram is calculated. The main consideration in this method is
that the pixels corresponding to the marker fall to a single bin.
In order to ensure this the number of hue and saturation bins
should not be selected too high. Selecting the numbers too low
on the other hand, causes the final bin to not only correspond to
the marker, but possibly to some other colors, and accordingly,
to other objects.

The settings in the automatic mode are as follows:
• RGB threshold - Used to determine the pixels to consider

in the difference image
• Dark threshold - Leaves out the pixels that are too dark
• Bright thresold - Leaves out the pixels that are too bright
• # Hue bins - Number of hue bins in the histogram
• # Saturation bins - Number of saturation bins in the his-

togram
The effects of choosing wrong numbers for the RGB, dark and
bright thresholds are straightforward. To clarify the effect of
selection of number of bins, two cases are reproduced that cor-
respond to very high and good selection of number of bins for
hue and saturation in Figures 17 and 18.

In the case of automatic registration, the marker signature is
the histogram bin with the maximum number of pixels. This bin
is back–projected in the tracking phase to detect the marker in
the incoming frames. The tracking and feature extraction mod-
ules are explained in the following section.

3.7.2. Hand Tracking and Gesture Recognition

The hand detection module attempts to track the hand using the
algorithm corresponding to the method used during the final reg-
istration phase. For the manual case, as explained in the previ-
ous section, the low and high thresholds and a reference color
are needed to detect the hand. In order to enhance the method,
double thresholding is applied. The algorithm first looks for pix-
els that are close enough to the refence pixel, using a threshold
that is 1

5
of the saved user settings. Starting from such pixels,

the algorithm connects the neighboring pixels according to the
criteria supplied by the registration module.

In the automatic registration case, the detection module back–
projects the hue–saturation histogram calculated by the registra-
tion module and employs a region growing algorithm, where
each connected pixel falls into the selected bin.

Even though the hue–based algorithm is more robust to il-
lumination changes, both methods may generate noisy results in
more challenging conditions. Therefore filtering is a necessity,
especially if recognition is to be performed on the data. Due to
high framerate, the marker can be assumed move linearly be-
tween the frames, and the state change can be described by a
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Figure 16: Good settings for the floating range mode

Figure 17: Effect of too many bins. The majority of pixels fall
into two bins.

Figure 18: Example of a good setting for number of bins.

linear dynamic system. Therefore, a Kalman filter is directly ap-
plicable. This filtering method is used in the gesture recognition
system recognition module is shown to significantly enhance the
accuracy of the results [11, 12, 13].

3.7.3. Feature Extraction and Gesture Recognition

The current design of the gesture recognition module is using
Hu moments and the hand image angle as features. Shape fea-
tures are only necessary when the defined gestures cannot be
distinguished otherwise. If each gesture has a unique trajectory,
discrete HMMs can be used for the recognition phase. The ges-
tures chosen for the BU Smart Room require shape information
to be present. Therefore, discrete HMMs cannot be used unless
hand shapes are quantized, which is undesirable. Therefore, our
current design produces two data streams; one corresponding to
the motion vector of the hand for each frame, and one consisting
of the Hu moments and the angles.

In our design, the produced data streams are to be used
in a continuous HMM or IOHMM based recognition frame-
work. Both frameworks are implemented and tested for differ-
ent databases, but are not ported into Smartflow system yet. This
is left as a future work. Once implemented, the module will be
able to recognize the gestures in Table 1 automatically from con-
tinuous streams. The first column in Table 1 corresponds to the
possible actions, and the second column corresponds to the ob-
jects that can be embedded in commands. Any combination of
actions and objects is allowed, as long as actions precede the ob-
jects. Using this system, the users will be able to turn on–off or
dim the lights, open–close the door gradually or entirely, com-
mand a program running on the computer or answer the phone
remotely by performing hand gestures.

3.8. User Interface of the BU Smart Room System

To monitor the activity and interactions in the smart room, we
implemented a graphical user interface module using OpenGL
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Action Object
Turn On Door
Turn Off Light
Turn Up Phone

Turn Down Computer

Table 1: Defined gestures for the BU Smart Room setting.

[22] and GLUT libraries [10], and integrated it into the Smart-
Flow system. For visualization purposes, we were inspired by
the Marauder’s Map in the Harry Potter book series. The basic
idea is that the map is covered with tiny ink dots accompanied
by minuscule names, indicating every person’s location in Hog-
warts, the magic academy. In a similar manner, we have created
an abstract 2D map of the room and represented people inside
the room with color coded feet.

After identifying a person using recognition modules, his
state is set “online” in the flow providing the UI module with the
necessary data. On the members list of the interface, people who
are present in the room are represented with higher opacity and
absent ones are represented with decreased opacity. Currently,
the members list is fixed. As an improvement to the module,
we want to connect it to a database and create an editable room
member list. Thus, a flexible UI will be provided by preserving
the object-oriented structure.

Sound based localization module feeds the UI module with
coordinates relative to the microphone arrays. The data are con-
verted to screen coordinates and an approximate location of the
person inside the room is marked on the map grid. As shown
in Fig. 19, the map grid represents the tiles in the smart room
in a smaller scale. The map elements include the server tables,
cameras and simply the entrance of the room, which constitute
the obstacles of the room. As a further improvement, we want
to visualize specific activities and interactions between multi-
ple people by integrating the audio domain with visual domain.
Another visualization method can be implemented on an aug-
mented reality interface. Such an innovative interface can be
implemented by annotating the people with virtual text labels
containing their name on the real-time video capture [7]. More-
over, interactions can be represented by registering computer
graphics objects to the video capture. Thus, the cameras in the
room will provide more information than the appearance to an
ordinary viewer of the smart room.

4. CONCLUSIONS AND FUTURE WORK

The aim of this project is to monitor a room for the purposes
of analyzing the interactions and identities of a small set of in-
dividuals. We worked with different modalities from multiple
uncalibrated sensors to observe a single environment and gener-
ate multimodal data streams. These streams are processed with
the help of a generic client-server middleware called SmartFlow
and signal processing modules.

Modules for visual motion detection, visual face tracking,
visual face identification, visual opportunistic sensing, gesture
recognition, audio-based localization, and audio-based identi-
fication were implemented and integrated under SmartFlow to
work in coordination across two different platforms (Linux and
Windows).

A graphical interface was implemented to visualize the func-
tionalities which was inspired by the Marauder’s Map in the
Harry Potter series. In its current state, it shows an identified
person and his or her position in the room, based on audio-visual
data.

Figure 19: First version of the GUI inspired by the Marauder’s
Map.

Although SmartFlow is a powerful tool to manage different
datastreams, it has its problems, primarily due overload of hard-
ware and limitations of network bandwidth. However in the phi-
losophy of our project, we have attempted to solve these prob-
lems not by increasing the available computational resources, or
by employing better sensors, but by intelligent allocation of the
available resources to different datastreams. This was mainly
achieved by allowing different framerates for video. A second
objective was to tune this framerate according to various quality
measures that indicate the relevance of a given datastream with
respect to the identification task. This part was implemented for
audio, where the quality is based on the energy of the signal.

The first stage of the project concerned setting up the ar-
chitecture, collecting the datasets, implementing different mod-
ules, and experimenting with them. Since we were working
with sensors of much lower cost and quality than related ap-
proaches in the literature (see for instance the results of the Inter-
national Evaluation Workshop on Classification of Events, Ac-
tivities, and Relationships (CLEAR 2006) [30]), we have identi-
fied two subgoals at the start of the project: opportunistic sens-
ing and multimodal fusion. The former aims at identifying per-
sons in the absence of robust (face) recognition. Our opportunis-
tic sensing was implemented to build a statistical model of the
pixels representing a person entering the room on the fly, for
each of the cameras. Our second aim (fusion of audio-visual in-
formation) will be the starting point for future research between
the participants after the project. In particular, we have identi-
fied the following future research questions:

• In our project we have managed to localize persons into
the smart room using audio as well as video streams. In
UPC, research has been done on event recognition us-
ing audio signals. Different modules have been written
for the recognition of speech-non speech identification,
hand clapping, footstep recognition, keyboard typing etc.
Some of these modules were tested in the BU room. We
like to work on visual recognition algorithms that can be
used to make this recognition process more robust.

• Another possible research direction is implementing a bi-
ologically motivated focus of attention in order to limit
the amount of (video) data processing. By allowing qual-
ity measures in the recognition process we can ignore
some datastreams and/or call upon another modality or
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sensor to support the recognition process. In the cur-
rent version of our system, audio and video streams are
used continuously to process the data. In many cases this
means processing irrelevant data and overloading the sys-
tem.

• For better identification and tracking results we will ex-
periment with the fusion of the different modalities, using
different methodologies (score level, decision level etc.),
to improve robustness. Also, modalities can be used to
support other modalities; e.g. the head pose module can
improve the results for the face recognition. We will ex-
periment with simple, limited-context discriminative pat-
terns. A typical example is the hair colour to identify per-
sons in the cases that the face is seen from the back, and
the face recognition module can not be used.

• Finally, we want to improve our visualization modules.
Determining the orientation and focus of attention is of
interest in several settings (e.g. museums). If the camera
projection matrices could be retrieved accurately, local-
ization data could be represented in a 3D virtual environ-
ment in real-time. Diverse types of interaction modules
can be integrated to the system. Orientation of people can
be tracked by letting people wear objects with inertial ori-
entation sensors or digital compasses, or by tracking the
walk trajectory and predicting the next move.
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