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ABSTRACT
This project is on multicamera audio-driven human body mo-
tion analysis towards automatic and realistic audio-driven avatar
synthesis. We address this problem in the context of a dance
performance, where the gestures or the movements of a human
actor are mainly driven by a musical piece. We analyze the re-
lations between the audio (music) and the body movements on
a training video sequence acquired during the performance of a
dancer. The joint analysis provides us with a correlation model
that is used to animate a dancing avatar when driven with any
musical piece of the same genre.
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1. INTRODUCTION

There exists little research work reported on the problem of
audio-driven human body motion analysis and synthesis. The
most relevant literature is on speech-driven lip animation [1].
Since lip movement is physiologically tightly coupled with acous-
tic speech, it is relatively an easy task to find a mapping be-
tween the phonemes of speech and the visemes of lip move-
ment. Many schemes exist to find such audio-to-visual map-
pings among which the HMM (Hidden Markov Model)-based
techniques are the most common as they yield smooth anima-
tions exploiting temporal dynamics of speech. Some of these
works also incorporates synthesis of facial expressions along
with the lip movements to make animated faces look more nat-
ural [2, 3, 4].

Humans body motion can have many purposes: To go from
one place to another, humans walk, or run. Walking is perhaps
the most thoroughly studied form of body motions. Upper body
motions, such as hand gestures can also have many aims: com-
municative, deictic or conversational. Sign language relies on
hand gestures as well as upper body motions and facial expres-
sions to convey a whole language [5]. On the other hand, some
body motions express emotions. Dancing is a special type of
body motion that has some predefined structure; as well as emo-
tional aspects. Analysis of gestures in dance with the purpose
of uncovering the conveyed emotions has been undertaken in
recent researches [6, 7].

There are several challenges involved in audio-driven hu-
man body motion analysis and synthesis: First, there does not
exist a well-established set of elementary audio and motion pat-
terns, unlike phonemes and visemes in speech articulation. Sec-
ond, body motion patterns are person dependent and open to

interpretation, and may exhibit variations in time even for the
same person. Third, audio and body motion are not physio-
logically coupled and the synchronicity in between may exhibit
variations. Moreover, motion patterns may span time intervals
of different length with respect to its audio counterparts. The
recent works [8, 9] address the challenges similar to those men-
tioned above in the context of facial expression analysis and
prosody-driven facial expression synthesis, using a multi-stream
parallel HMM structure to find the jointly recurring gesture-
prosody patterns and the corresponding audio-to-visual map-
ping.

In this work, our aim is to learn the predefined structure of
a given dance. We analyze the relations between the music and
the body movements on a training video sequence acquired dur-
ing the performance of a dancer. We track the movements of the
dancer using marker-based and markerless methods. We train an
HMM with the basic pieces from the given genre. Then, given
a music piece, we classify its genre and use the corresponding
HMM for synthesis. We use a body animation software devel-
oped in this project to animate an avatar with the motion param-
eters produced by the HMM. We analyze the audio to extract
parameters about the speed of the music and adapt the anima-
tion accordingly.

2. SYSTEM OVERVIEW

Our audio-driven body animation system is composed of multi-
modal analysis and synthesis blocks. In the analysis, we observe
the recurring body motion patterns in the video and segment the
video into partitions of meaningful dance figures. Then, we try
to learn the recurring body motion patterns by training HMMs
over these segments. In the mean time, we try to learn the audio
by looking at its beat frequency within each time window we
have for the video. We expect to have similar beat frequency
values in the time windows that correspond to the same dance
figure. However, beat frequency may vary throughout a single
musical piece, or among different musical pieces. This variation
is smaller in the former case whereas it is expected to be larger
in the latter case. Therefore, the variation in beat frequency is
used to determine the duration of dance figures as well as to
specify the genre of the given musical piece.

In the synthesis, given a musical piece of one of the types
we learn in the analysis part, we first classify the audio into the
correct audio class. Then extracting the beat information of the
given audio signal, we decide on which dance figure is going to
be generated and how much time that the expected dance figure
is going to occupy. After we obtain the outline of the dance
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Figure 1: Block diagram of the analysis-synthesis system.

figure synthesis task, we start generating the dance figures using
the corresponding HMMs for this specific set of dance figures.
Fig. 1 shows the overall analysis-synthesis system.

3. VIDEO FEATURES EXTRACTION

Body motion capture and feature extraction involves automated
capture of body motion from multiview video recorded by a
multicamera system. We will employ two different methods for
body motion tracking in parallel. One method will be based on
3D tracking of the markers attached to the person’s body in the
scene. The other method will be based on 3D reconstruction
of background segmented images of the scene. We will make
use of the multistereo correspondence information from multi-
ple cameras to obtain 3D motion information in both methods.
This task will provide us with a set of features of joint angles
over time that expresses the alignment of the body parts of the
dancer in the scene.

3.1. Marker-based Motion Capture

The motion capture process involves tracking a number of mark-
ers attached to the dancer’s body as observed from multiple cam-
eras and extraction of the corresponding motion features. Fig. 2
demonstrates our setting for this scenario. Markers in each video
frame are tracked making use of their chrominance information.
The 3D position of each marker at each frame is then determined
via triangulation based on the observed projections of the mark-
ers on each camera’s image plane.

3.1.1. Initialization

Markers on the subject are manually labeled in the first frame
for all camera views. We change the color space from RGB to
YCrCb which gives flexibility over intensity variations in the
frames of a video as well as among the videos captured by cam-
eras at different views. We assume that the distributions of Cr
and Cb channel intensity values belonging to marker regions are
Gaussian. Thus, we calculate the mean, µ, and the covariance,
Σ, over each marker region (a pixel neighborhood around the la-
beled point), where µ = [µCr, µCb]T and Σ = (c−µ)(c−µ)T ,
c being [cCr, cCb]T .

Let M be the number of markers on the subject and W
be the set of search windows, where W = [w1,w2, . . . ,wM ]
such that each window wm is centered around the location,
[xm, ym]T , of the corresponding marker. The set W is used
to track markers over frames. Thus the center of each search
window, wm, is initialized as the point manually labeled in the
first frame and specifies the current position of the marker.

3.1.2. Tracking

To track the marker positions through the incoming frames, we
use the Mahalanobis distance from c to (µ,Σ) where c is a vec-
tor containing Cr and Cb channel intensity values [cCr, cCb]T

of a point xn ∈ wm. Let X = [x1,x2, . . . ,xN ] be the set of
candidate pixels for which the chrominance distance is less than
a certain threshold. If the number of these candidate pixels, N ,
is larger than a predefined value, then we label that marker as
visible in the current camera view and update its position as the
mean of the points in X for the current camera view. The same
process is repeated for all marker points in all camera views.
Hence, we have the visibility information of each marker from
each camera, and for those that are visible, we have the list of
2D positions of the markers on that specific camera image plane.

Once we scan the current scene from all cameras and obtain
the visibility information for all markers, we start calculating
the 3D positions of the markers by back-projecting the set of
2D points which are visible in respective cameras, using trian-
gulation method. Theoretically, it is sufficient to see a marker at
least from two cameras to be able to compute its position in 3D
world. If a marker is not visible at least from two cameras, then
its current 3D position is estimated from the information in the
previous frame.

The 3D positions of markers are tracked over frames by
Kalman filtering where the filter states correspond to 3D posi-
tion and velocity of each marker. The list of 3D points obtained
by back-projection of visible 2D points in respective camera im-
age planes constitute the observations for this filter. This filter-
ing operation has two purposes:

• to smooth out the measurements for marker locations in
the current frame,

• to estimate the location of each marker in the next frame
and to update the positioning of each search window,
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Figure 2: An example scene.

Figure 3: Block diagram of the proposed tracking system.

wm, on the corresponding image plane accordingly.

Fig. 3 summarizes the overall system. Having updated the
list of 3D marker positions for the current frame and estimated
the location of the search windows for the next frame, we move
on to the next frame and search the marker positions within the
new search windows. This algorithm is repeated for the whole
video.

3D positions of each marker is used to extract the euler an-
gles for each joint by using inverse kinematic chain structure.
The derivation of the euler angles that belong to neck is given
exactly here and the other derivations results are given in Fig. 5
which are calculated in an analogous way with the given neck
angles. In Fig. 4, the derivation of the angles in neck are de-
lineated. The given vector p demonstrates the vector from neck
joint to head centroid in the torso-centered coordinate system,
these are defined as:

~p = R−1
0 × (~pneck − ~pheadCen). (1)

~R0 is the rotation matrix of torso ~v0 is the vector along z axis,
~v1 is the projection on x-z plane and ~v2 is the projection on y-z
plane.

We can write the vectors as:

~v0 =
ˆ

0 0
p
x2 + y2 + z2

˜T
(2)

,
~v1 =

ˆ
x 0

p
y2 + z2

˜T
(3)

Figure 4: The vector that connects neck joint and head centroid.

,
~v2 =

ˆ
0 y z

˜T (4)

and with these given vectors we can calculate the angles for neck
as given below:

Θ1 = − arccos((e3v2)÷ (‖v2‖))sign(y) (5)

Θ2 = arccos((e3v1)÷ (‖v1‖))sign(x) (6)

3.2. Markerless Motion Capture

Retrieving the body configuration in terms of its defining pa-
rameters, i.e. joint angles, from unlabeled video data presents
a number of challenges. The main advantage of this technique
is that no intrusive markers are required. However, the preci-
sion of the output may no be as accurate as the one obtained
from marker based techniques since the input data is corrupted
by noise.

3.2.1. 3D Data generation

For a given frame in the video sequence, a set of N images are
obtained from the N cameras. Each camera is modeled using
a pinhole camera model based on perspective projection with
camera calibration information available. Foreground regions
from input images are obtained using a segmentation algorithm
based on Stauffer-Grimson’s background learning and substrac-
tion technique [10] as shown in Fig. 6b.

63



Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Angle Formula Vector v Vector p =
ˆ
x y z

˜T
Neck: θ1 θ1 = −arccos(e3v)sgn(y) v = 1√

y2+z2

ˆ
0 y z

˜T p = RT
0 (p1 − p10)

Neck: θ2 θ2 = arccos(e3v)sgn(x) v = 1√
x2+y2+z2

ˆ
x 0

p
y2 + z2

˜T p = RT
0 (p1 − p10)

Left shoulder: θ3 θ3 = arccos(e2v)sgn(z) v = 1√
y2+z2

ˆ
0 y z

˜T p = RT
0 (p2 − p11)

Right shoulder: θ4 θ4 = arccos(e2v)sgn(z) v = 1√
y2+z2

ˆ
0 y z

˜T p = RT
0 (p3 − p12)

Left shoulder: θ5 θ5 = −arccos(e2v)sgn(x) v = 1√
x2+y2+z2

ˆ
x
p
y2 + z2 0

˜T p = RT
0 (p2 − p11)

Right shoulder: θ6 θ6 = arccos(e2v)sgn(x) v = 1√
x2+y2+z2

ˆ
x
p
y2 + z2 0

˜T p = RT
0 (p3 − p12)

Left shoulder: θ7
θ7 = −arccos(R3R5e3(v2 × v1))· v1 = RT

0 (p2 − p15)
sgn(v1(v2 × (v2 × v1))) v2 = RT

0 (p6 − p15)

Right shoulder: θ8
θ8 = −arccos(R4R6e3(v1 × v2))· v1 = RT

0 (p3 − p16)
sgn((v2 × (v1 × v2))v1) v2 = RT

0 (p7 − p16)

Left elbow: θ9 θ9 = π − arccos(v1v2)
v1 = RT

0 (p2 − p15)
v2 = RT

0 (p6 − p15)

Right elbow: θ10 θ10 = −π + arccos(v1v2)
v1 = RT

0 (p3 − p16)
v2 = RT

0 (p7 − p16)

Left hip: θ11 θ11 = arccos(−e3v)sgn(y) v = 1√
y2+z2

ˆ
0 y z

˜T p = RT
0 (p4 − p13)

Right hip: θ12 θ12 = arccos(−e3v)sgn(y) v = 1√
y2+z2

ˆ
0 y z

˜T p = RT
0 (p5 − p14)

Left hip: θ13 θ13 = −arccos(−e3v)sgn(x) v = 1√
x2+y2+z2

ˆ
x 0

p
y2 + z2

˜T p = RT
0 (p4 − p13)

Right hip: θ14 θ14 = −arccos(−e3v)sgn(x) v = 1√
x2+y2+z2

ˆ
x 0

p
y2 + z2

˜T p = RT
0 (p5 − p14)

Left knee: θ15 θ15 = π − arccos(v1v2)
v1 = RT

0 (p8 − p19)
v2 = RT

0 (p4 − p19)

Right knee: θ16 θ16 = π − arccos(v1v2)
v1 = RT

0 (p9 − p20)
v2 = RT

0 (p5 − p20)

Figure 5: The formulas for calculation of joint euler angles.

Redundancy among cameras is exploited by means of a Sha-
pe-from-Silhouette (SfS) technique [11]. This process generates
a discrete occupancy representation of the 3D space (voxels).
Each voxel is labelled as foreground or background by checking
the spatial consistency of its projection on of the N segmented
silhouettes. The data obtained with this 3D reconstruction is
corrupted by spurious voxels introduced due to wrong segmen-
tation, camera calibration inaccuracies, etc. A connectivity fil-
ter is introduced in order to remove these voxels by checking its
connectivity consistency with its spatial neighbors. An example
of the output of the whole 3D processing module is depicted in
Fig. 6c. For the research presented whithin this paper, it is as-
sumed that only one person is present in the scene. Let us refer
to the obtained voxel data as V .

3.2.2. Human Body Model

In order to analyze the incoming data V , an articulated body
model will be used. This body model allows exploiting the un-
derlying antropomorphic structure of the data; let us refer to this
model as H. Model based analysis of humans as been already
addressed in the literature in [12, 13]. The employed model is
formed by a set of joints and links representing the limbs, head
and torso of the human body and a given number of degrees of
freedom (DoF) are assigned to each articulation (joint). Partic-
ularly, our model has 22 DoF to properly capture the possible
movements of the body: position of the center of the torso (3
DoF), rotation of the torso (3 DoF), rotation of the neck (2 DoF),
rotation of the shoulders (3+3 DoF), rotation of the elbows (1+1
DoF), rotation of the hips (2+2 DoF) and rotation of the ankles
(1+1 DoF). An example of this body model is depicted in Fig. 7.

(a) (b)

(c)

Figure 6: 3D data generation. In (a), one of the original N
images. In (b), the foreground/background binary segmentation
and, in (c), the projection of the voxels defining the input 3D
data.

The equations driving the behavior of the joints rely on kine-
matic chains formulated by means of exponential maps [14, 15].

3.2.3. Human Body Tracking

Particle Filtering (PF) [16] algorithms are sequential Monte Carlo
methods based on point mass (or “particle”) representations of
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probability densities. These techniques are employed to tackle
estimation and tracking problems where the variables involved
do not hold Gaussianity uncertainty models and linear dynam-
ics. In the current scenario, the hidden state to be estimated, that
is the set of 22 DoF of the human body model, falls in the afore-
mentioned conditions hence particle filtering techniques may ef-
ficiently retrieve this state vector.

Two major issues must be addressed when employing PF:
likelihood evaluation and propagation model. The first one, es-
tablishes the observation model, that is how a given configura-
tion of a the body matches the incoming data. The propagation
model is adopted to add a drift to the angles of the particles in
order to progressively sample the state space in the following
iterations [16]. For complex PF problems involving a high di-
mensional state space such as in this articulated human body
tracking task [13], an underlying motion pattern is employed
in order to efficiently sample the state space thus reducing the
number of particles required. This motion pattern is represented
by the kinematical constrains and physical limits of the joints of
the human body.

Likelihood evaluation being a crucial step is described as
follows. For any particle, a volumetric representation of the hu-
man body using hyper-ellipsoids is generated, H̃ (see Fig. 7 for
an example). Within this representation, every limb of the gen-
erated model is denoted as Lk. Likelihood

p(H̃j |V) =

KY
k=0

Lk ∩ V, (7)

where ∩ operator denotes the volumetric intersection between
the limb of the model Lk and the incoming data V . Individual
likelihoods of each limb are assumed to be independent in order
to generate the global human body likelihood function. Current
research involves employing more informative measures includ-
ing color information.

Figure 7: Articulated human body model with 22 DoF and
hyper-ellipsoids to represent the limbs.

4. AUDIO FEATURES EXTRACTION

An appropriate set of features will be extracted from the audio
signal that is synchronized with the body motion parameters.
The mel frequency cepstral coefficients (MFCC) along with ad-
ditional prosodic features can be considered as audio features.
Audio feature extraction will be performed using the well known
HTK Tool.

Figure 8: Markers positions (10 to 15 for lower body, 2 to 7 for
upper body).

5. ANALYSIS

The feature sets resulting from body motion and audio will jointly
be analyzed to model the correlation between audio patterns and
body motion patterns. For this purpose, we plan to use a two-
step HMM-based unsupervised analysis framework as proposed
in [5]. At the first step, the audio and motion features will sep-
arately be analyzed by a parallel HMM structure to learn and
model the elementary patterns for a particular performer. A
multi-stream parallel HMM structure will then be employed to
find the jointly recurring audio-motion patterns and the corre-
sponding audio-to-visual mapping. All the simulations at this
second step will be implemented by using the HTK Toolkit.

The body motion synthesis system will take an audio signal
as an input and produce a sequence of body motion features,
which are correlated with the input audio. The synthesis will be
based on the HMM-based audio-body motion correlation model
derived from the multimodal analysis. The synthesized body
motion will then be animated on an avatar.

5.1. Video Analysis

Human body motion analysis will be tackled through HMMs.
Dance motion can be addressed by analyzing patterns that are re-
peated sequentially by the dancer and a set of HMMs is trained
separately for each dance figure. Data employed to train the
HMMs are the normalized 3D positions of some landmarks de-
fined on the body (typically the body joints) and tracked along
time by means of the two vision based analysis systems. For
each figure, two sub-HMMs are defined to better capture the dy-
namics behavior of the upper and lower part of the body. The
HMM modelling the upper part of the body addresses the arms
movement (described by the (x, y, z) positions of the six land-
marks placed in shoulders, elbows and wrists) while the other
HMMs accounts for the legs (described by the (x, y, z) position
for the six landmarks placed in hips, knees and ankles) (Fig 8).

To start evaluating the performance of the system presented
in this report, a simple HMM is adopted. Typically, dance fig-
ures always contain a very concrete sequence of movements
hence a left-right HMM structure is employed (Fig 9). Each
of the parameters is represented by a single Gaussian function
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Figure 9: Simple left-right HMM structure.

and one full covariance matrix is computed for each state. This
rather simple scheme leads to satisfactory results hence no fur-
ther complexity is added to the simple. All computation as been
done by means of the ”Hidden Markov Model Toolkit” (HTK)
package developed at the Cambridge University. This packages
allowed us to efficiently model the HMM structures employed
within this project.

5.2. Audio Analysis

Figure 10: From top to bottom: time waveform, spectrogram
and spectral energy flux of four seconds of Salsa music audio
file.

Both for Salsa and Belly dance music audio files we mea-
sure tempo in terms of beats per minute (BPM) using the esti-
mation algorithm suggested in [17]. Tempo estimation can be
broken down into three sections: onset detection, periodicity es-
timation and beat location estimation. Onset detection aims to
point out where musical notes begin and tempo is established by
periodicity of the detected onsets. It is straight forward to detect
beat locations after periodicity estimation.

First, we detect onsets based on the spectral energy flux of
the input audio signal that signify the most salient features of the
audio file as shown Fig. 10. Onset detection is important, since
beat tends to occur at onsets. Algorithm works best for four
second analysis window with 50% overlap. The below figure
belongs to the first four seconds analysis window of the Salsa
music audio file.

Next, we estimate the periodicity of the detected onsets us-
ing the autocorrelation method. The distance between the largest
peak in the interval from 300 ms to 1 s of the autocorrelated sig-
nal and its origin gives the periodicity value. Once the period-
icity is determined we can calculate tempo in terms of number
of beats per minute, which lies between the values 60 and 200
BPM. For Salsa music audio file we estimate tempo as 185 BPM
and for the Belly dance it is 134 BPM.

Furthermore, we estimate beat locations regarding the peri-
odicity value in the previous step. We generate an artificial pulse
train with the estimated periodicity and cross - correlate with the
onset sequence where maximum value of the cross - correlation
gives the starting beat location. Successive beats are expected in
every beat period T.

Analyzing the results from labeling of the dance figures
in the video frames, we conclude that each Salsa figure corre-
sponds to 8 beats in the Salsa music audio file and each Belly
dance figure corresponds to 3 beats in the Belly dance music.
We also use this information during the synthesis time to deter-
mine the beginning and ending frames of a dance figure.

6. SYNTHESIS

Given a audio track, the generated classifier is used to classify
the tracks as belly or salsa. The classified track beats is extracted
by the method explained in section 4 and the beat periods of each
track are used to generate figures that are learnt by HMMs in the
motion analysis part. The appropriate HMM that would gener-
ate figures with the given audio track is used by the synthesizer.
We have one HMM model for salsa which generates the basic
figure with the given salsa track. Belly dance sequence is more
complicated than the salsa dance sequence. It yields three inde-
pendent figures with just one beat period. An HMM is trained
for this scenario. We will generate a coupled HMM with indi-
vidual HMM models in each state that correspond to different
figures that are recognized during training. The state transitions
are determined according to the dancer sequence and the transi-
tion probabilities are calculated from the co-occurrence matrices
of audio beat numbers and video labels.

6.1. Audio Classification

This part is a simple music genre classification problem. We
have two types of music audio files where one is Salsa and
the other is Belly dance. We use supervised HMMs and the
well - known Mel Frequency Cepstral Frequency coefficients
(MFCCs) to discriminate the 16 kHz, 16 bit mono PCM wave-
files. The music audio signals are analyzed over 25 ms Ham-
ming window for each 10 ms frame. Finally, 13 MFCC coef-
ficients together with the accelaration and the delta parameters,
adding up to 39 features, form the audio feature vectors. Use of
MFCCs as the only audio feature set is sufficient for the clas-
sification problem, since we have only two kinds of audio files.
For the extraction of parameters and classification steps, we use
HTK toolkit.

Using the HMMs generated in the analysis step we first clas-
sify the input music audio files as Salsa or Belly dance as de-
picted in Fig. 11, below. Then, we estimate the beat signal for
the detected music audio file following the steps onset detection,
periodicity estimation and beat location. Next, we identify the
beat segmentation times in the music audio and determine the
duration (in terms of frame numbers) of figures to be performed
during the animation. Precalculated beats per frame information
that we got in the analysis section is used for this purpose. For
example, for Salsa, each figure corresponds to a time segment
of eight beats, so by multiplying the start and end time of the
each segment with the number of frames per second (30 in our
case), we simply get the beginning and ending frame numbers
for Salsa dance figures.

6.2. Body Motion Parameters Generation

Once we have the list of durations and types of consecutive
dance figures in a file, we can use that file to generate the ap-
propriate values for the animation parameters according to the
mean and standard deviation values of the corresponding HMM
states. This file basically determines how much time each dance
figure takes in the sequence. This helps us to allocate exactly
the necessary amount of time to perform each dance figure.
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Figure 11: Audio processing steps in the synthesis part.

7. VISUALIZATION

For avatar model, we used a free 3D model named Douglas F.
Woodward shown in Figure 12 with 9599 vertices and 16155
faces. The model comes with segmented hierarchy, which let us
create a kinematic chain of segments in a conventional directed
acyclic graph (DAG) structure.

We decided to implement a generic synthetic body represen-
tation and animation tool instead of relying on a single model.
Our tool, namely Xbody, can open models in 3DS format and
display the DAG and submesh info and enables labeling of the
segments for animation as can be seen in Figure 12. For render-
ing, Xbody relies on OpenGL and existing Xface [18] codebase.
We implemented an additional forward kinematics pipeline for
rendering and animation of DAG.

Figure 12: Xbody DAG view and labelling pane.

As for animation, the generated data from analysis and syn-
thesis part can be fed to Xbody and animated with the same
frame per second of video. The previewing interface of the tool
enables us to inspect each frame by entering the frame number
and using rotation, zooming in/out and panning the model on
the screen. In Figure 13, previewing of frame 180 for markerles
tracking analysis result for ”Zeybek” dance is shown. The tool
can also export the animation as video in avi format.

As its current state, Xbody can be used for better analyzing
the results of motion tracking algorithms and HMM based mo-
tion generation. In the future, we plan to improve on Xbody and
implement full support for MPEG-4 Body Animation by parsing
BAP and BDP formats.

Figure 13: Xbody preview pane.

Figure 14: Evolution of the logarithmic probability per frame
for the 4 HMMs types.

8. EXPERIMENTS AND RESULTS

As we modeled two dance figures (salsa and belly dancing) and
that the whole body movement modeling was splitted into two
HMMs, we had four HMMs to train.

The training of the HMM was performed using the HTK
function HERest. It takes as input the data parameters file in
HTK format, a prototype of the HMM containing its structure,
and the transcription of the data file. In our case, we trained only
one HMM at a time, and the transcription is only a succession
of the same HMM name.

At the end of each training iteration, HERest gives an av-
erage logarithmic probability per frame. The evolution of this
parameter enables us to follow the progression of the learning
process and the accuracy of the trained model.

As we had no prior knowledge of the optimal number of
states, we trained HMMs with an increasing number of states
(from 4 to 30) and compared their average logarithmic probabil-
ity per frame. The evolution of this parameter for the four types
of HMMs we trained is shown in figure 14.

As the arms are hardly moving in the belly dance and as the
salsa motion pattern is much more complicated than the belly
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Figure 15: Comparison of the means of the Gaussian distribu-
tions for 22 states of the belly dance HMM (in red) to the evo-
lution of the 3 corresponding parameters during 4 dance figures
(in blue) (x,y and z values of the left hip) during one salsa figure.

Figure 16: Comparison of the HMM Gaussian means and the
corresponding parameter (left knee) in 4 occurrence of the belly
figure where the inter occurrence variability is very high

dance one, we can see that the number of states required is
linked to the complexity of the motion to model. For belly danc-
ing, the optimal number is clear (around 20 for the legs and 10
for the arms), but in salsa there is no decrease in the logarithmic
probability parameter before 30 states. For the salsa motion, we
decided to keep around 20 states for both legs and arms as sat-
uration began around that number and that the number of states
(and thus the complexity of the HMM model) has to be kept
reasonable.

In order to verify that the modeling of the data parameters
was correct, we compared, for each parameter, the evolution of
the mean of its Gaussian distribution across the states to the evo-
lution of the same parameter for a few occurrence of the dance
figure in the training dataset. The shape of the evolution can
clearly be recognized (Fig. 15), even if some parameters vary
highly between two occurrences of the same dance figure in the
training set and are thus more difficult to model (Fig. 16).

9. CONCLUSIONS AND FUTURE WORK

In this research work, we first developed an automated human
body motion capture system based solely on image processing
and computer vision tools using standard digital video cameras.
Second we provided a framework for joint analysis of loosely
correlated modalities such as motion and audio and demonstrate
how this framework can be used for audio-driven motion syn-
thesis.

10. SOFTWARE NOTES

As a result of this project, the following resources are available:

• Dance databases

• Color-marker-based motion tracking software
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in July 2004. Since August 2004 she is
with the Momentum Digital Media Tech-
nologies. Her research interests are speech
synthesis, speech - driven 3D facial ani-
mation analysis and synthesis and emotion

recognition from speech.
Email: ebozkurt@momentum-dmt.com

Cristian Canton-Ferrer received the
Electrical Engineering degree from the
Technical University of Catalonia (UPC),
Barcelona, Spain, in 2003. He is currently
working towards the PhD degree at the Im-
age and Video Processing Group in the
UPC. He made his Ms. Thesis at the Sig-
nal Processing Institute at the Swiss Fed-
eral Institute of Technology (EPFL). He
has contributed to European projects such

as IST CHIL and NoE SIMILAR and MUSCLE. His research
interests focuses in multiview image analysis, gesture recogni-
tion, human body motion and gait analysis.
Email: ccanton@gps.tsc.upc.edu

Yasemin Demir received her B.S de-
gree in Telecommunication Engineering
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Joëlle Tilmanne holds an Electrical En-
gineering degree from the Faculté Poly-
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