
Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

DTI APPLICATION WITH HAPTIC INTERFACES

Murat Aksoy 1, Neslehan Avcu 2, Susana Merino-Caviedes 3, Engin Deniz Diktaş 4, Miguel
Ángel Martı́n-Fernández 3, Sıla Girgin 4, Ioannis Marras 5, Emma Muñoz-Moreno 3, Erkin
Tekeli 4, Burak Acar 4, Roland Bammer 1, Marcos Martin-Fernandez 3, Ali Vahit Sahiner 4,

Suzan Üskudarli 4

1 Stanford University, School of Medicine, Dept. of Radiology, LUCAS MRS/I Center, USA
2 Dokuz Eylül University, EE Dept., Izmir, Turkey

3 University of Valladolid, Valladolid, Spain
4 VAVlab, Boğaziçi University, İstanbul, Turkey

5 AIIA lab, Aristotle University of Thessaloniki, Greece

ABSTRACT

Diffusion Tensor Magnetic Resonance Imaging (DTI) is a rather
new technique that allows in vivo imaging of the brain nervous
structure. The DTI data is a 3D second-order positive semi-
definite tensor field. DTI analysis and visualization is a chal-
lenging field due to the lack of standards and high-dimensionality
of the data. This project focused on 1) implementation of a
base DTI tool compatible with the tensor field standard (STAC)
as proposed by the SIMILAR NoE WP10 group, 2) develop-
ing haptic interfaces for effective visualization and investiga-
tion of aforementioned 3D tensor fields. Both goals have been
achieved, yet their integration could not be completed with the
Enterface2007 workshop. Howeever, the know-how built during
the workshop and the codes generated are invaluable resources
for developing the final application. VAVlab (Boğaziçi Univer-
sity, EE Dept., İstanbul, Turkey) is currently working on the in-
tegration of these components into a complete application.

KEYWORDS

DTI – Tensor Fields – Tractography – Tensor Standards – Haptic
Interfaces – 3D Interactive Interfaces for Radiology.

1. INTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging (DTI) is a rather
new technique that enables researchers and physicians to image
fiberous structures, such as nerves in brain, in vivo. Previously,
such investigations could only be done in vitro, with the un-
avoidable consequences of dissection of the brain. Furthermore,
in vivo imaging of fiber networks in brain is likely to facilitate
the early diagnosis, surgery planning and/or follow-up screening
[1, 2, 3].

DTI is based on measuring the MR signal attenuation due to
random walk (diffusion) of water molecules in restricted media,
namely inside the myelin coated nerve fibers, in response to a
special diffusion weighting gradient magnetic fields. Thus mea-
sured 3D data is called the Diffusion Weighted Imaging (DWI).
Several DWI sets can be combined to compute the DTI datasets,
which is a second order, symmetric positive semi-definite tensor
field in 3D. Each tensor represents the local physical diffusion
process upto a second order approximation.

The challenge in DTI is not only in data acquisition, which
is an active research area, but also in post-processing and visu-
alizing tensor fields and user interfaces for effective communi-
cation of the information content.

The tensor data is a high dimensional volumetric data which
is significantly different then volumetric scalar fields. For con-
ventional 3D scalar fields, one has to be careful to set the re-
lation between the data grid and the world (patient) reference
frame correct. However, for a tensor field, one has to be careful
in managing the relation between the DTI reference frame (the
reference frame with respect to which the tensors are defined)
and the world reference frame as well. Furthernore, the appli-
cation of simple geometric transformations to a tensor field can
be tricky as one has to transform the data itself together with the
data grid. Such difficulties lead to significant problems in the
absence of a tensor standard. Consequently, the SIMILAR NoE
WorkPackage10 had initiated an effort to define a general tensor
standard for use with DTI data as well in other fields. The stan-
dard proposed is called STAC (Similar Tensor Array Core) and
is designed to incorporate the essential components to define a
tensor field without ambiguity [4].

Fiber tractography is a well-known and widely used ap-
proach for visualization and analysis of DTI data. As will be
explained in more detail below, it consists of numerical integra-
tion of the principal diffusion direction (PDD) as represented
by the tensor data. The output of fiber tractography is a set
of 3D streamlines representing fiber bundles in brain. The re-
quired interface for fiber tractography should enable the users
to answer questions like “Where do the fibers passing through
region A end?”, “Are there any fibers connecting region A and
region B?”, “What is the shape of the fiber bundles around this
lesion?”, etc. All these questions require an intuitive, easy to
navigate user interface that allows the users to see volumetric
cross-sections they choose and the to shape and position region-
of-interests (ROIs).

DTInteract is a proof-of-concept application developed dur-
ing eNTERFACE 2007, İstanbul , Turkey. Its major goals are
i) to incorporate the STAC into the volumetric analysis and vi-
sualization framework (VAVframe) being developed at Boğaziçi
University, VAVlab, İstanbul, Turkey, and ii) to develop and test
the use of haptic interfaces for DTI visualization and analysis.

2. DTI DATA

2.1. Theory of DTI Tensor Calculation

It is of utmost importance to understand what the DT-MRI signal
represents in order to develop adequate analysis and visualiza-
tion methods. DT-MRI measures the average signal attenuation
within a small subvolume (i.e. a voxel) due to water molecules
spinning out-of-phase.

1

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

The basis of MRI is to perturb the water molecules (the
dipoles) that were aligned in a constant magnetic field (B0 ap-
prox 1-7 Tesla) and let them re-orient themselves with B0 dur-
ing which the dipoles rotate around B0 according to the Bloch’s
Equation. This rotation causes a temporal change in total mag-
netic field which induces a time-varying current at the receiving
coils of the MR scanner. The time it takes for the dipoles to
fully relax depends on the environment (i.e. the tissue). Thus,
the amount of current induced is proportional to the number of
dipoles (i.e water concentration) and the tissue type. These cur-
rent measurements are transformed to monochromatic images in
which each pixel value is also a function of water concentration
and tissue type

In DT-MRI, extra spatially varying magnetic fields, the so
called Diffusion Weighting Gradients (DWG), G, are applied
together withB0. Due to this addedG field, the water molecules
under continuous brownian motion experience different total mag-
netic field at different locations. This causes them to rotate
at different frequencies, i.e. to be out-of-phase. The effect of
out-of-phase dipoles on the induced current is attenuation of the
MR signal. So, the amount of attenuation in the received signal
(equivalently in the diffusion weighted MR images) is a func-
tion of the brownian motion (i.e diffusion) of water molecules
and the applied G field.

This phenomenon is described by the superposition of the
Bloch’s Equation and the Diffusion Equation whose solution is

Mk = M0 exp

−
X

i=x,y,z

X
j=x,y,z

bi,j
k Di,j

!
(1)

Here, Mk is the pixel intensity in the case when diffusion
weighting is applied using the kth diffusion encoding direction,
M0 is the pixel intensity when there is no diffusion weighting, D
is the 3×3 diffusion tensor, bk is a 3×3 symmetric matrix that
is determined by the applied diffusion weighting direction and
strength and i,j are matrix indices. The six independent compo-
nents of the symmetric diffusion tensor D can be computed us-
ing at least 6 linearly independent equations of this form where

bk = bnomrkrT
k

1 (2)
bnom is a user-determined nominal b-value which is used to

adjust the amount of diffusion weighting. This can be obtained
from the header of the DICOM files containing the diffusion
weighted images (DICOM tag (0019,10b0)). An example set of
diffusion encoding directions (rk) is

r0 = [0 0 0]T

r1 = [0.707 0.707 0]T r2 = [0 0.707 0.707]T

r3 = [0.707 0 0.707]T r4 = [−0.707 0.707 0]T

r5 = [0 − 0.707 0.707]T r6 = [0.707 0 − 0.707]T

The diffusion weighted MR images are stored in
dwepi.*.grads files.

Taking the natural logarithm and using linear algebra, for
each pixel, a linear system can be obtained from multiple diffu-
sion weighted measurements:

„ ln M1
ln M2

...
ln Mn

«
| {z }

S

=

1 −bxx

1 −byy
1 −bzz

1 −2bxy
1 −2bxz

1 −2byz
1

1 −bxx
2 −byy

2 −bzz
2 −2bxy

2 −2bxz
2 −2byz

2
...
1 −bxx

n −byy
n −bzz

n −2bxy
n −2bxz

n −2byz
n

!
| {z }

M

0BB@
ln M0
Dxx
Dyy

Dzz
Dxy

Dxz
Dyz

1CCA
| {z }

d

1bi,j
k is the (i,j) component of b-matrix bk

Then, the unknown d vector can be found using pseudo-
inverse:

d = (MT M)−1MT S (3)

2.2. STAC: Similar Tensor Array Core

Diffusion Tensor (DT) images are a relatively new kind of im-
ages, that requires special features for their storage. Nowadays,
there is not a standard format for this sort of data, and there-
fore specific writers and readers must be implemented to man-
age data acquired by different equipments. In order to deal with
this, a standard has been proposed in [4] that is valid not only
for diffusion tensor images, but for general tensor fields. It is
named the Similar Tensor Array Core (STAC).

The standard consists of two parts: the general tensor stan-
dard array core (STAC) that is the basic type of storage for tensor
fields, and the extensions that provides more specific function-
alities for specific tensor types. By now, we have implemented
the core header that is the main part of the tensor standard. The
definition and implementation of an appropriate extension for
DT-MRI will be considered as a future task.

The standard core header contains the following fields:
• array dimensionality: It is the number of di-

mensions of the field.
• array size: It is the size of the field.
• array index names: It contains the name of the in-

dex of the field, therefore is an array n values, where n is
the array dimensionality. It is an optional field
that can be useful for processing issues.

• array tensor metric: It is a metric tensor that de-
scribes the metric in the array space. Thus, diagonal ele-
ments represents the scaling factor in each dimension. It
is a n× n metric tensor, where n is the array dimen
sionality. It is not a mandatory field, by default is
set to the identity.

• tensor order: It is a scalar number describing the
order of the tensor.

• tensor index types: Each tensor index can be con-
travariant or convariant. In this field, an array of m ele-
ments, where m is the tensor order, describes what
kind is each of the index.

• tensor index names: The name of the index of the
tensor elements. It is an optional field, useful for process-
ing tasks.

• tensor name: A name can be given to the tensor. It
is an optional field.

• description: Description of the tensor field can be
included. It is an optional field.

We have implemented both reader and writer for tensor stan-
dard data storage. Both of them are included as methods in the
VavDTI class. Two files are required to store the data: the first,
that has extension .stach, contains the header, whereas the
second contains the raw data and it has .stacd extension. Both
files have the same name, they only differs in the extension.

2.2.1. The Reader

The readerSTAC method receives as an input the file name
(without extension), and it assigns the appropriate values to the
VavDTI attributes. The array size is assigned to the dim-
Array variable, the spacingArray elements are set as the
values of the diagonal of the metric tensor, and a VavTensor is
built reading the data file. A value of ’0’ is returned by the
function if no error happens.

2

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

2.2.2. The Writer

The writerSTAC method has as input the file name (without
extensions) where the VavTensor data will be stored. First of all,
the header file (*.stach) is written:

• array dimensionality: Since VavDTI class is im-
plemented for 3D arrays, it is set to 3.

• array size: The size of the array is obtained from
the dimArray value.

• array index names: This is an optional field, if no
value is given for the array names is set to ’None’ by
default.

• array tensor metric: The metric information that
provides the VavDTI class is the spacingArray vari-
able. Therefore, the tensor metric is represented by a 3x3
diagonal matrix. Each diagonal element represents the
spacing in each direction.

• tensor order: The diffusion tensors are second or-
der tensors, so this field is set to 2.

• tensor index types: The diffusion tensor is a con-
travariant tensor, so both index are of contravariant type.

• tensor index names: This is an optional field, if
no value is given for the array names is set to ’None’ by
default.

• tensor name: The tensor is named DT (Diffusion Ten-
sor)

• description: We include a brief description of the
tensor field in this field.

After writing the header file, the data are written in the *.stacd
file in raw format.

2.3. VAVframe Data Structure

In VavFrame, three data classes are generated for three main
data types. These are: VavScalar, VavVector and VavTensor for
scalar, vectoral and tensor fields. And VavData class is gen-
erated as an abstract data class for these three data types of
VavFrame. All data classes are inherited from this class.

VavData class includes 3-dimensional vectors for dimen-
sion, space and origin information for each direction x,y,z. And
two vtk objects are member of it. They are used to store data
fields. These variables are common for three data classes, but
the size of data components are not the same for all of them.
There are one component for VavScalar, three components for
VavVector, nine components for VavTensor classes for each voxel
in the field.

Data are stored in VtkImageData type object. It is one di-
mensional array, but data is in three dimension. So, we hold data
in order of x,y,z. And, the common reference frame with respect
to the anatomy is as follows:

• 1st dimension (X): Left→ Right

• 2st dimension (Y): Posterior→ Anterior

• 3st dimension (Z): Inferior→ Superior

VavDTI class is created to hold DTI specific data and man-
age DTI operations. It includes dimension, space and origin
information; diffusion tensor field, eigenvectors and eigenval-
ues of this tensor field, mean diffusivity, B0 images, fractional
anisotropy, lattice index, coherence index, diffusion weighted
images, bmatrices and a header information. These variables
are instances of VavScalar, VavVector and VavTensor classes
according to their types. There are reader functions for diffu-
sion tensor data from different formats in VavDTI class, such as

Stanford DTI data and PISTE DTI data. Also it includes a con-
version function from DWI to DTI and an eigen decomposition
function for DTI data.

2.4. Stanford DTI Data

There are two types of DTI data format that is being used at
Stanford University. The first one is the diffusion weighted im-
age DICOM (DWI-DICOM) format, and the second one is the
tensor raw data.

The DWI-DICOM data simply consists of the diffusion wei-
ghted images belonging to each slice, diffusion weighted direc-
tion and scan repetition. All these files are in DICOM format,
which is currently the standard file format used in the area of
medical imaging 2. These DICOM files are ordered consec-
utively and the file format is Ixxxx.dcm, where xxxx is a
number which starts with 0001 and goes up to the total num-
ber of images. The DICOM file ordering, from the outermost
to the innermost loop, is as follows: scan repetition→ diffusion
weighting direction→ slice (Figure 1).

The second file format consists of pre-calculated raw ten-
sor data 3. This consists of two sets of files: The first set is the
TensorElements.float.xxx files, where xxx denotes the
slice number. These contain the tensor element in the order:
Dxx, Dyy , Dzz , Dxy , Dxz , Dyz . In this case, the pixels are the
innermost loop, i.e., for an image resolution of n × n, the n2

Dxx elements are written first, followed by n2 Dyy elements,
and so on.

The second set is the Tensor.float.xxx files. Here,
the following n × n images are written to the file consecu-
tively: Mean diffusivity (units x106 mm2/s), maximum eigen-
value, medium eigenvalue, minimum eigenvalue, x component
of the maximum eigenvector (values between -1 and 1), y com-
ponent of the maximum eigenvector, z component of the maxi-
mum eigenvector, Fractional Anisotropy (FA, multiplied by 1000)
and b=0 image (arbitrary units).

2.5. PISTE DTI Data

DT-MRI based tractography techniques have been proposed to
propagate fiber trajectories in diffusion tensor fields. For the ac-
curacy and acceptability of these tracking methods, there must
be a general data set to evaluate the algorithms and their results.
PISTE, developed on behalf of the ISMRM Diffusion/Perfusion
Study Group, following an initiate at the 2003 Toronto meet-
ing, is intended as a resource for researchers interested in Dif-
fusion Tensor Magnetic Resonance Imaging and Tractography.
The aim is to provide a general database of simulated common
fiber tract trajectories that can be used for testing, validating and
comparing various tractography algorithms.

To evaluate the performance of tractography algorithms and
analyze the influence of several factors on tracking, PISTE in-
cludes several datasets differing with respect to

• signal-to-noise ratio,

• tensor field anisotropy,

• fiber geometry,

• interpolation and

• step-size.

For each setup there are 5 datasets provided:

• A T2-weighted image;

• The 6 elements of the diffusion tensor;

2http://medical.nema.org/
3http://rsl.stanford.edu/moseley/tensorcalc/

3

http://medical.nema.org/
http://rsl.stanford.edu/moseley/tensorcalc/

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 1: Structure of DICOM files for DWI data. The data is acquired nr times for each one of the nd diffusion gradient directions.
nd must be at least 6 to recover the diffusion gradient and nr is usually selected to be 4. The repeated data acquisition is performed
for noise suppression.

• The 3 eigenvalues and eigenvectors;

• An image containing the tract initiation point or region
of interest;

• A calibration image showing the positive X,Y and Z di-
rections.

3. DTINTERACT

3.1. System Components

DTInteract application is a proof-of-concept C++ application
built on the VAVframe infrastructure. It consists of three main
components, the data standardization, fiber tractography, hap-
tic interfaces for tractography. The first component has been
explained in Section 2. Its major concern is to load 3D ten-
sor fields (and related data) into a common workplace, which
is chosen to be the VAVframe environment. We have currently
dealt with two datasets, the DTI data provided by Stanford Uni-
versity, LUCAS MRS/I Center, CA4 and the PISTE phantom
DTI dataset. The second component is composed of 4th order
Runge-Kutta based fiber tractography (PDD tracking). This is
the most well-known and widely used method for tractography.
Despite its drawbacks, we have decided to use it in this proof-of-
concept application. The final component is the haptic interface.
It is used to position orthogonal slices (axial, sagittal, coronal) in
3D, as well as to shape and locate 3D ROIs (region-of-interest).
These will be discussed in more detail in the following.

3.2. Base Application

The programming language used for the interface development
is C++, given the availability of libraries of classes written in
this language for visualization, haptics and user interface devel-
opment. In addition, C++ performance, although not as efficient
as C, is comparable to it.

Three C++ libraries have been used: VTK (Visualization
Toolkit) [5], CHAI-3D [6] and Qt [7], which will be described
below. VTK and CHAI-3D are open source and free. The open
source version of Qt was employed for this project.

VTK is a widely used C++ class library for visualization
tasks and image processing, and it provides high level classes
for computer graphics. It makes use of the underlying low level

4Courtesy of Prof. Roland Bammer, PhD.

graphics library, like for example OpenGL. VTK provides tools
for creating complex visualization scenes, and is multiplatform.

The application uses a Sensable Phantom Omni as haptic
input device for the interaction with the user. In order to control
it, the library CHAI-3D is employed, which provides classes for
the management of a wide variety of haptic devices and real-
time simulations.

Qt is a C++ object library with a rich variety of resources
for user interfaces development. It also provides a signal-slot
paradigm for communication between objects. Signals and slots
can be connected, so that when a signal is sent, the slots it is
attached to are executed. This mechanism provides the funda-
mental communication system of our interface.

The main classes that intervene in the application are VavDTI,
TestApplication, VavDTIViewer and the classes involved in hap-
tic management, which will be explained here below.

3.2.1. VavDTI

This class is able to load and save DTI data in Stanford and
STAC formats, extract some of the tensor characteristics. The
methods for computing tractographies and visualizing the dif-
ferent DTI data are also included in this class.

3.2.2. TestApplication

This class provides the interface management and interconnec-
tivity of the different parts of the application. It gives func-
tionality to the interface and manages the methods provided by
VavDTI. It also provides functions for connecting the haptic
classes for user interaction.

3.2.3. VavDTIViewer

This class inherits from the class vav3DViewer, which has as
a consequence that it encapsulates both a QVTKWidget and a
vtkRenderer object. This class is used to provide a display for
the visualization of the DTI components and provide haptic in-
teraction to the application, along with the class TestApplica-
tion.

The application uses orthogonal slices of scalar voumes for
the fractional anisotropy, mean diffusivity and B0 coefficients.
The major eigenvector field is visualized using lines at each
point of the slices, and the tracts are visualized as tubes (Fig-
ure 2).

4

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 2: GUI for the base DTI Application.

3.3. DTI Tractography

Since water diffusion in brain is constrained by the myelin cov-
ering of the axons, it is possible to assess the fiber structure by
tracking the direction given by the DT major eigenvector. This
eigenvector represents the maximum diffusion direction, and for
this reason, it is supposed to be tangent to the fiber bundles
at each voxel. In this way, the integration of the vector filed
will provide the diffusion path. Some numerical methods can
be used in order to integrate the vector fields, such as Euler or
Runge-Kutta integration methods. In this implementation, we
have considered a 4th order Runge-Kutta integration method,
which is detailed just below.

3.3.1. 4th order Runge-Kutta method

The integration method must start from an initial or seed point
ro, from which the diffusion path is defined. The points that
belongs to the path are iteratively computed according to the
next equation [8]:

rn+1 = rn + hVn+1 (4)

h stands for the step length parameter, that is a parameter
set by the user in our implementation. Vn is a vector computed
by the next equation that is actually the 4th order Runge-Kutta
method:

Vn+1 =
1

6
(k1 + 2k2 + 2k3 + k4) (5)

Where k1, k2, k3, k4 are defined as a function of a continu-
ous Vector field E(r):

k1 =
VnE(rn)

VnE(rn)
· E(rn)

k2 =
VnE(rn + h

2
· k1)

VnE(rn + h
2
· k1)

· E(rn +
h

2
· k1)

k3 =
VnE(rn + h

2
· k2)

VnE(rn + h
2
· k2)

· E(rn +
h

2
· k2)

k4 =
VnE(rn + h · k3)

VnE(rn + h · k3)
· E(rn + h · k3)

This definition of the coefficients ensures that the angle between
consecutive vectors is smaller than 90◦.

3.3.2. Implementation

The Runge-Kutta method is implemented by the RungeKuttaIn-
tegration method, that has three input parameters, the curvature
threshold, the step length and the anisotropy threshold, that are
more detailed below. It returns 0 value if there is not error. The
resulting streamlines are stored in the streamlineList attribute of
the VavDTI class that is a vtkPolyData object. Next, we com-
ment some implementation details.

• Seed Points: In our implementation, we consider as
seed point every voxel whose anisotropy is higher than a
given threshold value set by the user. Since fibers belongs
to the white matter, that is the area where anisotropy is
higher, it only makes sense to compute streamlines in ar-
eas of high anisotropy. Moreover, the voxels that belongs
to a previously computed streamline are not used as seed
points.

• Initial conditions: For each seed point ro, a
streamline is computed following the Runge-Kutta inte-
gration method. The initial value of Vn is Vo = e(ro),
that is, the eigenvector in the initial point.

• Stop criteria: The streamline computation from a
given seed point stops when one of the following condi-
tions is achieved:

– The line arrives to a region of lower anisotropy,
that is, the fractional anisotropy is lower than the
threshold set by the user.

– The angle between successive streamlines segments
is higher than a threshold value set by the user. This
criteria is based on a priori anatomical knowledge:
the fiber curvature is small.

• Interpolation: Let’s notice that the Runge-Kutta
algorithm considers a continuous vector field, but the eigen-
vector field is defined in a discrete grid. For this reason,
interpolation of the vector field is required. In this im-
plementation, we have computed a linear interpolation
among the nearest eigenvectors.

• Tracking Parameters: Three parameters are set
by the user to carry out the tractography algorithm:

– Fractional anisotropy threshold: The voxels whose
anisotropy is higher than this threshold will be con-
sidered as white matter, and the fibers will be com-
puted from them. By default is set to 0.15.

– Curvature threshold: It represents the maximum
angle of curvature allowed for a streamline. If the
angle is higher, the streamline tracking is stopped.
The default value is π/6 rad.

– It is the value of the step length h in the Runge-
Kutta algorithm. By default is set to 0.9, that is one
half of the voxel size in the smallest dimension.

3.4. Haptic Interface

Haptic devices are capable of enhancing the space comprehen-
sion in a user interaction with the virtual environment, by pro-
viding many Degrees-of-Freedom (DoF) for the input as well
as force-feedback, thus achieving an increased realism for the
perception of the scene contents. The primary goal of haptic in-
troduction into the DTI application is to allow the user to interact
with both the volumetric and DTI data in a better way.

5

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

3.4.1. Application Environment

The haptic device that was used in this project was the Phan-
tom Omni from SensAble. Phantom Omni provides 6-DoF input
(position + orientation) and 3-DoF of force-feedback. In order
to control the haptic device, the CHAI-3D library was used. In
addition, VTK and Qt were used for visualization and GUI, re-
spectively.

Since VTK and CHAI-3D consume each much time for
their own main-loops, Qt timers were used to provide the nec-
essary time distribution for both loops. The correlation between
the two loops is accomplished by Qt’s signal-slot mechanism.
Whenever an event occurs in the haptic environment, such as
creation or modification of a new ROI, a Qt-signal is sent from
the haptic loop, which is later caught by a QVTK widget for fur-
ther processing. The integration of Qt, VTK and CHAI-3D has
been the primal concern in this effort.

3.4.2. Haptic Slicer

In the haptic environment the first problem to be solved is the
representation of the three perpendicular and discriminated slices,
as they exist in VTK environment. As a result, the user will be
able to move those slices in the local coordinate system accord-
ing to this specific perpendicular schema. The basic model for
these slices is stored as an external WRL file. The haptic envi-
ronment loads the above file during the initialization through a
Qt-signal and afterwards reads the position of the slices from
the VTK. This position is in the form of a vector ~PV TK =
(px, py, pz) and the values px, py , pz correspond to the posi-
tion of the planeXY , Y Z andXZ, respectively. As mentioned
before, the user will be able to rotate the entire scene using the
haptic cursor. This means that if the user has already changed
the position of the slices in VTK environment before the initial-
ization of the haptic environment or has rotated the entire scene
using the haptic device, the application should be able to move
the slices in the appropriate motion direction. One should won-
der here how can the haptic understand the direction in which
should it move the slices. The haptic proxy, during collision de-
tection, returns the 3D point in the local coordinate system. This
information is not adequate in order to find the direction of mo-
tion for the slice with which the proxy has collided. One solution
is to analyze the vector of the haptic cursor in order to find the
direction according to which the user “pushes” the current slice.
On could ask what happens if we have only collision detection
and almost zero vector force in this point? A better solution for
this problem would be to replace each one of the prototype slices
with two discriminate slices on either side that are extremely
close to the prototype slice’s position. Thus, if for example the
position of the XY plane is px then the two slices will have the
positions px − 0.005 and px + 0.005 , respectively. The small
distance between the slices makes this trick invisible to the user
and enables the application to work properly without the need to
store any immediate information regarding the rotations of the
scene. It also doesn’t depend on the rotations the user has per-
formed through the VTK environment. In this case, the result-
ing wrl file consists of six slices. Each slice has a specific name
p.e. for the XY plane we have two slices: XY Plane Back and
XY Plane Front. The two slices can be moved along the vector
~V = (0, 0, 1) by adding a positive number for the first one while
adding a negative number for the second one, to their current
positions. In case the user has loaded the haptic environment
but has rotated the scene in VTK, a Qt-signal is enough for the
calculation of the new positions in order for the application to
obtain balance between the two autonomous environments. The
range of this position vector depends on the size of the volu-

metric dataset, which has been loaded in the VTK environment.
To overcome this limitation, the wrl file includes slices of size
2, meaning that each slice could be positioned between [−1, 1].
Thus, the vector ~PVTK is transformed in the haptic environment
to ~Phaptic as follows:

~Phaptic = (
px

Nz
,
py

Nx
,
pz

Ny
) (6)

where Nz , Nx, Ny are the z,x,y dimensions of the plane per-
pendicular correspondingly to each slice. When the user rotates
the scene in the local coordinate system of the slices, the coor-
dinates remain unaltered, so the vectors along which the slices
that could be moved do not changed.

The haptic slicer application consists of two display win-
dows: the first window is an OpenGL window that contains the
haptic scene whereas the second one is a VTK-window that con-
tains the main environment for the DTI application.

In order to control the VTK world, several objects are placed
into the haptic scene. Three orthogonal planes in the haptic
world represent the slices in the VTK-world. Pushing these
slices without pressing a key rotates the scene, while pushing
them while pressing the key, translates the planes along that di-
rection so that different slices in the VTK-world can be seen.

3.4.3. Haptic ROI Manipulations

The second aim of the haptic environment was the creation of
the ROI’s. By default, a ROI is a sphere which is provided to
the system as an external wrl file. In this point we should men-
tion that in the beginning the slices consist of a separate and
autonomous object in the local coordinate system. When the
user loads a ROI then the sphere becomes a child of this object
and it is placed in an default position. When the haptic device
collides with an ROI and the user presses the button in the haptic
device then the current ROI becomes a child of the world object
and afterwards it is moved accordingly by the haptic cursor. In
that way, the user is able to “capture” a ROI, with the haptic,
and can rotate the scene in order to find the desirable without
placing the ROI somewhere else in the scene. The realistic per-
ception of the 3D scene is one of the main advantages of the
haptic device. When the user chooses an appropriate position
for the ROI, he releases the button of the haptic device and thus
the ROI becomes again a child of the local coordinate system
now having the position the user decided. As mentioned before,
the placement the ROI results in a different coordinate system
whose child we wish to become, having a specific position.

The next step is to use the haptic to place the ROI mesh
in a specific location ~Proi and afterwards set the ROI mesh as
a child of the slice system, by locating it in the same position
~Proi. To achieve that we have to set the local position of ROI
mesh, which is relative to the slice system, equal to the global
position of the proxy, since the position of an object is relative to
its parent. If the slice system has no rotation, the two mentioned
positions should be the same., If the slice system has a rotation,
we need to compute the position of the proxy relative to slice
system’s frame and set ROI mesh’s position equal to that. The
slice system is constantly moving so we need to calculate its
position for every iteration. Let ~Proi,final be the position of the
ROI in the slice system local coordinate system, Rscene be the
global rotation matrix of the scene and ~Pdevice be the global
position of the device. Then the appropriate transformation is
defined as:

~Proi,final = [Rscene]
T ∗ (~Pdevice − ~Proi) (7)

where [.]T denotes the transpose of a matrix.

6

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Figure 3: The snapshot of the haptic interface demonsration.
The left panel is the VTK display which works in parallel with
the right panel which is a graphical representation of the data
volume, three orthogonal slices and the spherical ROI. The tip
of the 3D haptic pointer is shown touching (holding) the ROI for
positioning.

Apart from creating a ROI, the user is able to destroy, en-
large or shrink a ROI by selecting it with the haptic cursor and
applying the desired procedures. At the right part of the hap-
tic world there are two spheres that can be used for the addition
and removal of the sphere-shaped ROIs. When the bottom-right
sphere is selected, a ROI is added to the center of the scene. This
ROI can be translated by touching it, pressing the haptic button
and moving it around the scene. If the ROI is placed inside the
bounding box of the volumetric data, it will stay there. But if
the user tries to place the ROI outside the bounding box, it will
automatically be placed at the center of the scene. In order to
remove the ROI is removed, someone should drag and drop it to
the upper thus erasing it from the scene.

At the left part of the haptic world there are two additional
spheres that are used to increase and decrease the size of the
ROI. By selecting the ROI and dropping it at the upper sphere it
grows. If it is dropped at the lower sphere, the ROI shrinks.

The step factor for changing the size of a ROI is determined
from the user. For the time being, the shape of the ROI’s are just
spheres and their shapes cannot be modified. Figure 3 shows a
screenshot of the haptic interface demonstration.

4. DISCUSSION

The DTI project’s goals can be grouped into three: The im-
plementation of a baseline application, the implementation of
the STAC standard and the development of haptic interaction
tools. The development was done within the VAVframe frame-
work. VAVframe is a C++ library that uses VTK, ITK and
Qt. VAVframe has two goals: To provide a unified and stan-
dardized environment for code development and documentation,
to function as a repository of the R&D at VAVlab (http://
www.vavlab.ee.boun.edu.tr) for the continuation and
progress of research efforts. It is a common problem of research
labs that many invaluable contributions that cost significant time
and money, become unusable as soon as the individuals who de-
veloped them move. VAVframe aims at avoiding this problem.
The project team achieved all goals, yet the integration of these
components could not be completed during the workshop.

The major problem that we have encountered was the in-
tegration of the VTK library, that VAVframe uses extensively,
and the open-source CHAI-3D library used for haptic devices.
Part of the project team worked exclusively on finding solutions
for this integration. The current implementation is a proof-of-
concept application which allows the users to rotate 3D volume,
slide cross-sectional planes, position a spherical ROI and change

its size. One of the unfulfilled goals was to develop haptic in-
terface to modify the shape of 3D ROI. Using FEM for shape-
modification seems a promising approach but it will certainly
add some overhead due to real-time calculations. This is left for
future work. In addition to the haptic controls discussed so far,
haptics could also be used to move along individual fibers (like
a bead sliding along a space-curve) for enhancing the percep-
tion of the topological properties of the fibers by the user, like
curvature, torsion of the curve representing the fiber. In such
a case, the haptic device could be used as a play-back device
that moves the user’s hand along the fiber or as a passive device
that applies constraint forces whenever the haptic cursor tends
to move away from the curve. Another option would be to send
high force-magnitudes to the haptic device in regions where the
fiber intensity is high so that the user can “feel” regions of high
neural activity & concentration in the brain.

The base implementation and integration of the STAC with
the software was completed. However, due to the unforeseen de-
lays in the development of haptic interface, we could not demon-
strate the final goal of the project. The goal was to demonstrate
the use of real-time haptic ROI manipulations (shaping and po-
sitioning) with tractography results within a dynamic ROI query
paradigm. The target application was envisioned to display the
fiber tracts that intersect with a 3D ROI which is manipulated
with a haptic device, in real time. Although this goal could not
be achieved, the invaluable know-how that was developed dur-
ing the workshop regarding the integration of different software
libraries is a big step forward.

5. CONCLUSION

A proof-of-concept DTI application was aimed during the project.
Several issues, including the integration of STAC, implemen-
tation of DWI to DTI conversion (tensor estimation), integra-
tion of CHAI-3D and VTK through Qt were solved during the
project. Although the final application could not be completed,
the know-how generated during the workshop is invaluable. Cur-
rent efforts are concentrated on the integration of these compo-
nents with the addition of original DTI analysis algorithms.

The project was run by VAVlab, Boğaziçi University, İstan-
bul, Turkey, in collaboration with Stanford University, School
of Medicine, Department of Radiology, LUCAS MRS/I Center,
CA, USA, University of Valladolid, Valladolid, Spain and Aris-
totle University of Thessaloniki, Thessaloniki, Greece.

6. ACKNOWLEDGMENTS

This work is conducted as part of EU 6th Framework Programme,
SIMILAR NoE, eNTERFACE 2007 workshop organized at Bo-
ğaziçi University, İstanbul, Turkey. The project is in part sup-
ported by SIMILAR NoE grants and Tubitak KARIYER-DRESS
(104E035) research grants.

7. REFERENCES

[1] P. Basser, “Inferring microstructural features and the phys-
iological state of tissues from diffusion-weighted images”,
NMR Biomed, vol. 8, pp. 333–344, 1995. 1

[2] P. Basser and C. Pierpaoli, “Microstructural and physiolog-
ical features of tissues elucidated by quantitative diffusion
tensor MRI”, J. Magn. Reson., vol. B 111, pp. 209–219,
1996. 1

[3] R. Bammer, B. Acar, and M. Moseley, “In vivo MR Trac-
tography Using Diffusion Imaging”, European J. of Radiol-
ogy, vol. 45, pp. 223–234, 2002. 1

7

http://www.vavlab.ee.boun.edu.tr
http://www.vavlab.ee.boun.edu.tr

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

[4] A. Brun, M. Martin-Fernandez, B. Acar, E. M. noz Moreno,
L. Cammoun, A. Sigfridsson, D. Sosa-Cabrera, B. Svens-
son, M. Herberthson, and H. Knutsson, “Similar Tensor Ar-
rays - A framework for storage of tensor data”, tech. rep.,
Las Palmas, Spain, 2006. 1, 2

[5] W. Schroeder, K. Martin, and B. Lorensen, The Visualiza-
tion Toolkit. An Object Oriented Approach to 3D Graphics.
Kitware, Inc., 2002. 4

[6] “The Open Source Haptics Project”, August, 8 2002.
http://www.chai3d.org. 4

[7] J. Blanchette and M. Summerfield, C++ GUI Programming
with Qt 3. Pearson Education, 2004. 4

[8] C. R. Tench, P. S. Morgan, M. Wilson, and L. D. Blumhardt,
“White Matter Mapping Using Diffusion Tensor MRI”,
Magnetic Resonance in Medicine, vol. 47, pp. 967–972,
2002. 5

8. BIOGRAPHIES

Murat Aksoy is a PhD student at Stanford
University LUCAS MRS/I Center, CA,
USA.
Email: maksoy@stanford.edu

Neslehan Avcu graduated from Dokuz
Eylül University, Department of Electri-
cal and Electronics Engineering, in 2006
and currently she is a MS student in Dokuz
Eylül University, The Graduate School of
Natural and Applied Science, Electrical
and Electronics Engineering Department.
She has been a scholarship student, funded
by TUBITAK since 2006. She is now a re-
search assistant in Control Laboratory, and

researcher in Control and Intelligent Systems Research Labora-
tory, DEU, Department of Electrical and Electronics Engineer-
ing. Her research interests include ANNs and their signal pro-
cessing applications, cognitive science, fuzzy logic and pattern
classification.
Email: neslihan.avcu@deu.edu.tr

Susana Merino-Caviedes graduated in
Telecommunications Engineering from
the University of Valladolid in 2005, and
she is currently a PhD student in the afore-
mentioned university. She is a member
of the Image Processing Laboratory at the
University of Valladolid. She is a partici-
pant of the SIMILAR NoE and a national
research project focused on DTI. Her re-
search interests are medical image pro-

cessing, DTI visualization, user interfaces, image segmentation
and level set algorithms.
Email: smercav@lpi.tel.uva.es

Engin Deniz Diktaş was born in İstanbul-
Turkey, in 1978 and is currently a PhD stu-
dent at Computer Engineering Department
at Boğaziçi University. He received his BS
degree in Mechanical Engineering and MS
degree in Systems & Control Engineering
from Boğaziçi University. His research in-
terests include computer graphics, compu-
tational geometry, haptic rendering & in-
terfaces and real-time simulation.

Email: denizdiktas@gmail.com

Miguel Ángel Martı́n-Fernández re-
ceived his M.S. degree in Electronical
Engineering from the University of Val-
ladolid in 1999, and currently he is a teach-
ing assistant and PhD student at the same
received University. He has participated in
several national and international research
projects as member of the Image Process-
ing Laboratory at the University of Val-

ladolid. His research work is related to medical image pro-
cessing, specially registration algorithms and analysis of med-
ical images.
Email: migmar@tel.uva.es

Sıla Girgin was born in Bayburt, Turkey
in 1982. She received the BS degree from
the Department of Computer Engineering
of Boğaziçi University, in 2005. She is
currently a researcher and MS student at
the same university. She is a member of
VAVLab (Volumetric Analysis and Visu-
alization Laboratory) in the Departments
of Electrical and Electronics Engineering

and MediaLab in the Department of Computer Engineering, at
the Boğaziçi University. Her current interests are medical infor-
mation visualization, computer graphics and computer vision.
Email: silagirgin@gmail.com

Ioannis Marras was born in Karditsa,
Greece in 1980. He received the BS de-
gree from the Department of informatics
of Aristotle University of Thessaloniki in
2005. He is currently a researcher and
teaching assistant and studies towards the
Ph.D. degree at the Department of Infor-
matics, in the Artificial Intelligence Infor-
mation Analysis (AIIA) laboratory, at the
Aristotle University of Thessaloniki. His

current research interests lie in the areas of medical image anal-
ysis, signal and image processing, pattern recognition and com-
puter vision.
Email: imarras@aiia.csd.auth.gr

8

http://www.chai3d.org
mailto:maksoy@stanford.edu
mailto:neslihan.avcu@deu.edu.tr
mailto:smercav@lpi.tel.uva.es
mailto:denizdiktas@gmail.com
mailto:migmar@tel.uva.es
mailto:silagirgin@gmail.com
mailto:imarras@aiia.csd.auth.gr

Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, İstanbul, Turkey, July 16 - August 10, 2007

Emma Muñoz-Moreno received her M.S.
degree in Electronical Engineering from
the University of Valladolid in 2003, and
currently she is a PhD student at the same
received University. She has participated
in several national and international re-
search projects as member of the Image
Processing Laboratory at the University of

Valladolid. Her research work is related to medical image pro-
cessing, specially registration algorithms of DT-MRI and surgi-
cal simulation.
Email: emunmor@lpi.tel.uva.es

Erkin Tekeli was born in İzmit, Turkey in
1980. He received the BS degree from the
Department of Mechatronics Engineering
of Sabanci University, in 2004 and his MS
degree from the Department of Electri-
cal and Electronics Engineering and Com-

puter Sciences of Sabanci University, in 2007. He is currently
a Phd. student at the Department of Electrical and Electron-
ics Engineering of Boğaziçi University. He is a member of
VAVLab (Volumetric Analysis and Visualization Laboratory) in
the Departments of Electrical and Electronics Engineering at the
Boğaziçi University. His current interests are computer vision,
medical image processing, shape spaces, content based image
retrieval, texture analysis and segmentation.
Email: erkin.tekeli@boun.edu.tr

Roland Bammer, PhD, is an assistant
professor at Stanford University, LUCAS
MRS/I Center, CA, USA.
Email: rbammer@stanford.edu

Burak Acar was born in Izmir in 1972.
He received his BS, MS and PhD de-
grees, all in Electrical & Electronics Engi-
neering, from Bilkent University, Ankara,
Turkey, in 1994, 1996 and 2000, respec-
tively. He worked on ECG signal process-
ing during his PhD. He worked at Uni-
versity of London, St. George’s Hospi-
tal Medical School, London, UK, between
1998-1999. He was at Stanford University

Medical School, Department of Radiology, 3D Lab, CA, USA,
between 2000-2003, where he worked on medical image analy-
sis and computer aided detection/diagnosis. He joined Boğaziçi
University, Electrical & Electronics Engineering Department in
2003. His main research interests are 3D data (ranging from
images to tensors) analysis and visualization with emphasis
on medical applications. Further information can be found at
http://www.vavlab.ee.boun.edu.tr.
Email: acarbu@boun.edu.tr

Marcos Martin-Fernandez received the
Ingeniero de Telecomunicacion degree
and the PhD degree from the University
of Valladolid, Valladolid, Spain, in 1995
and 2002 respectively. He is Associated
Professor at the ETSI Telecomunicacion,
University of Valladolid where he is cur-

rently teaching and supervising several Master and PhD stu-
dents. From March 2004 to March 2005, he was a Visiting As-
sistant Professor of Radiology at the Laboratory of Mathemat-
ics in Imaging (Surgical Planning Laboratory, Harvard Medi-
cal School, Boston, MA). His research interests are statistical
methods for image segmentation and filtering in multidimen-
sional (tensor) signal processing. He is also with the Labora-
tory of Image Processing (LPI) at the University of Valladolid
where he is currently doing his reseach. He was granted with
a Fullbright fellowship during his visit at Harvard. He is re-
viewer of several scientific journals and member of the scien-
tific committee of the IEEE International Conference on Image
Processing (ICIP), the International Conference on Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI),
European Signal Processing Conference (EUSIPCO) and IEEE
International Symposium on BioInformatics and BioEngineer-
ing (BIBE). He also participates in fellowship evaluation for the
National Competence Centre in Biomedical Imaging (NCCBI),
Switzerland. He has more than 50 papers in scientific Journals
and Conferences.
Email: marcma@tel.uva.es

Ali Vahit Sahiner was born in Ankara,
Turkey in 1956. He received his PhD.
in Computer Science from University of
Westminster, London, UK, in 1991. He
is currently working as an instructor at
Boğaziçi University, İstanbul, Turkey. His
interests include Computer Graphics, Vi-
sualization and Animation, Video and TV
technologies, Graphic design and Typog-
raphy.

Email: alivahit.sahiner@boun.edu.tr

Suzan Üskudarli is a faculty member of
The Computer Engineering Department at
Boğaziçi University. After receiving her
doctorate degree at University of Amster-
dam, she worked in Palo Alto, California.
She joined Boğaziçi University in 2005.
Her interests include software engineering
and cooperation technologies. She is part

of the VAVlab team, where she contributes to the software de-
velopment aspects.
Email: suzan.uskudarli@boun.edu.tr

9

mailto:emunmor@lpi.tel.uva.es
mailto:erkin.tekeli@boun.edu.tr
mailto:rbammer@stanford.edu
http://www.vavlab.ee.boun.edu.tr
mailto:acarbu@boun.edu.tr
mailto:marcma@tel.uva.es
mailto:alivahit.sahiner@boun.edu.tr
mailto:suzan.uskudarli@boun.edu.tr

	1 Introduction
	2 DTI Data
	2.1 Theory of DTI Tensor Calculation
	2.2 STAC: Similar Tensor Array Core
	2.2.1 The Reader
	2.2.2 The Writer

	2.3 VAVframe Data Structure
	2.4 Stanford DTI Data
	2.5 PISTE DTI Data

	3 DTInteract
	3.1 System Components
	3.2 Base Application
	3.2.1 VavDTI
	3.2.2 TestApplication
	3.2.3 VavDTIViewer

	3.3 DTI Tractography
	3.3.1 4th order Runge-Kutta method
	3.3.2 Implementation

	3.4 Haptic Interface
	3.4.1 Application Environment
	3.4.2 Haptic Slicer
	3.4.3 Haptic ROI Manipulations

	4 Discussion
	5 Conclusion
	6 Acknowledgments
	7 References
	8 Biographies

