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Abstract. We propose an omnivariate decision tree architecture which
contains univariate, multivariate linear or nonlinear nodes, matching the
complexity of the node to the complexity of the data reaching that node.
We compare the use of different model selection techniques including
AIC, BIC, and CV to choose between the three types of nodes on stan-
dard datasets from the UCI repository and see that such omnivariate
trees with a small percentage of multivariate nodes close to the root gen-
eralize better than pure trees with the same type of node everywhere.
CV produces simpler trees than AIC and BIC without sacrificing from
expected error. The only disadvantage of CV is its longer training time.

1 Introduction

A decision tree is made up of internal decision nodes and terminal leaves. The
input vector is composed of p attributes, x = [x1, . . . , xp]T , and the aim in
classification is to assign x to one of K mutually exclusive and exhaustive classes.
Each internal node m implements a decision function, fm(x), where each branch
of the node corresponds to one outcome of the decision. Each leaf of the tree
carries a class label. Geometrically, each fm(x) defines a discriminant in the p-
dimensional input space dividing it into as many subspaces as there are branches.
As one takes a path from the root to a leaf, these subspaces are further subdivided
until we end up with a part of the input space which contains the instances of
one class only.

In a univariate decision tree, the decision at internal node m uses only one
attribute, i.e., one dimension of x, xj . If that attribute is numeric, the decision
is of the form

fm(x) : xj + wm0 > 0 (1)

where wm0 is some constant number. This defines a discriminant which is or-
thogonal to axis xj , intersects it at xj = −wm0 and divides the input space into
two.

A linear multivariate decision tree, each internal node uses a linear combina-
tion of all attributes:

fm(x) : wT
mx + wm0 =

p∑

j=1

wmjxj + wm0 > 0 (2)
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To be able to apply the weighted sum, all the attributes should be numeric
and discrete values need be represented numerically (usually by 1-of-L encod-
ing) beforehand. Note that the univariate numeric node is a special case of the
multivariate linear node, where all but one of wmj is 0 and the other, 1. In this
linear case, each decision node divides the input space into two with a hyper-
plane of arbitrary orientation and position where successive decision nodes on
a path from the root to a leaf further divide these into two and the leaf nodes
define polyhedra in the input space.

In a nonlinear multivariate decision tree, the decision takes the form

fm(x) :
k∑

j=1

wjφj(x) > 0 (3)

where φj(x) are the nonlinear basis functions. In this work, we use a poly-
nomial basis function of degree 2 where for example for x ∈ �2, φ(x) =
[ 1, x1, x2, x

2
1, x

2
2, x1x2] which gives us a quadratic tree.

Surveys of work on constructing and simplifying decision trees can be found
in [1], [2] and [3]. A recent survey comparing different decision tree methods with
other classification algorithms is given in [4].

In this paper, we compare model selection techniques AIC, BIC and CV in
the context of decision tree induction. In Section 2, we show how to apply model
selection techniques in tree induction and we briefly explain the model selection
techniques. In Section 3 we give the related work in the literature. We give our
experiments and results in Section 4 and conclude in Section 5.

2 Tuning Model Complexity

The model selection problem in decision trees can be defined as choosing the
best model at each node of the tree. In our experiments, we use three candi-
date models, namely, univariate, linear multivariate, and nonlinear multivariate
(quadratic). At each node of the tree, we train these three models to separate
two class groups from each other and choose the best. While going from the
univariate to more complex nodes, the idea is to check if we can have a large
decrease in bias with a small increase in variance.

We have previously proposed Omnivariate Decision Tree [5], where we have
used CV to decide the best model from three different models including uni-
variate model, linear perceptron and as nonlinear model multilayer perceptron.
In this work, we have also included AIC and BIC in model selection and used
quadratic model as the nonlinear model because it learns faster than the multi-
layer perceptron model. The use of PCA to decrease model complexity is another
contribution of this work.

For finding the best split at a decision node we use Linear Discriminant
Analysis (LDA) [6]. Since we have binary nodes, if we have K > 2 classes, these
classes must be divided into two class groups and LDA is used to find the best
split to separate these two class groups. We use the heuristic of splitting K > 2
classes into two groups originally proposed by Guo and Gelfand [7].
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For the univariate model, we use univariate LDA and the model complexity
is two, one for the index of the used attribute and one for the threshold. For
the multivariate linear model, we use multivariate LDA and to avoid a singular
covariance matrix, we use PCA with ε = 0.99 to get k new dimensions and the
model complexity is k + 1. For the multivariate quadratic model, we choose a
polynomial kernel of degree 2 ((x1 +x2+. . . +xd+1)2) and use multivariate LDA
to find the weights. Again to avoid a singular covariance matrix, we use PCA
with ε = 0.99 to get m new dimensions and the model complexity is m + 1.
Then, we calculate the generalization error of each candidate model using the
corresponding loglikelihood and model complexity. In the last step, we choose
the optimal model having the least generalization error.

To calculate the error at a decision node, we must first assign classes to the
left and right child nodes. Assume that CL and CR are classes assigned to the
left and right nodes respectively. NL

i and NR
i are the number of instances of

class i choosing left and right branches and NCL and NCR denote the number
of instances of the classes CL and CR respectively.

NCL = arg max
i

NL
i , NCR = arg max

i
NR

i (4)

The error at the decision node will be calculated by subtracting the number of
instances of these two classes (which are correctly classified as they will label
the leaves) from the total number of instances

e =
N − NCL − NCR

N
(5)

When N is the total number of instances, Ni is the number of instances of
class i, and NL and NR are the total number of instances choosing left and right
branches respectively, the loglikelihood is given as

L =
K∑

i=1

NL
i log

NL
i

NL
+

K∑

i=1

NR
i log

NR
i

NR
(6)

Akaike Information Criterion AIC [8] is calculated as

AIC = 2(−L + d) (7)

where L represents the loglikelihood of the data and d represents the number of
free parameters of the model. We choose the model with the smallest AIC over
the three models we have.

Bayesian Information Criterion BIC [9] is calculated as

BIC = −L +
d

2
log N (8)

where N is the number of data points. Like in AIC, we choose the model with
the smallest BIC value.
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Cross-validation We use 5×2 cross-validation and train all three models and test
them on the validation set ten times and then apply the one-sided version of the
5×2 cv t test [10].

When we have two candidate models we choose the simple model, if it has
smaller or equal error rate compared to the complex model. Only if the complex
model has significantly smaller error rate then it is chosen. When we have three
candidate models, univariate U , linear multivariate L, multivariate quadratic Q
in increasing order of complexity with population error rates denoted by eU , eL,
eQ, we choose one considering both expected error and model complexity. Q is
chosen if H0 : eL ≤ eQ and H0 : eU ≤ eQ are rejected. Otherwise, L is chosen if
H0 : eU ≤ eL is rejected. Otherwise U is chosen.

Note that AIC and BIC do not require a validation set and training is done
once, whereas with CV, in each fold, half of the data is left out for validation
and training is done ten times.

3 Related Work

LDA was first used in Friedman[11] for constructing decision trees. The algorithm
has binary splits at each node, where a split is like in C4.5, i.e. xi < w0 but xi can
be an original variable, transgenerated, or adaptive. Linear discriminant analysis
is applied to construct an adaptive variable. Kolmogorof-Smirnoff distance is
used as the error measure. When there are more than K > 2 classes, it converts
the problem into K different subproblems, where each subproblem separates
one class from others. LTREE [12] is a multivariate decision tree algorithm with
binary splits. LTREE uses LDA to construct new features, which are linear
combinations of the original features. For all constructed features, the best split
is found using C4.5’s exhaustive search technique. Best of these is selected to
create the two children of the current node. These new constructed features can
also be used down the tree in the children of that node. Functional Trees [13]
make simultenaous use of functional nodes and functional leaves in prediction
problems. Bias-variance decomposition of the error showed that, the variance can
be reduced using functional leaves, while bias can be reduced using functional
inner nodes.

In CART [14], parameter adaptation is through backfitting: At each step, all
the coefficients wmj except one is fixed and that coefficient is tuned for possible
improvement in terms of impurity. One cycles through all j until there is no
further improvement. In OC1 [15], an extension to CART is made to get out of
the local optima. A small random vector is added to wm once there is conver-
gence through backfitting. Adding a vector perturbs all coefficients together and
makes a conjugate jump in the coefficient space. Another extension proposed is
to run the method several (20-50) times and choose the best solution in terms
of impurity.

In FACT [16], with K classes a node can have K branches. Each branch
has its modified linear discriminant function calculated using LDA and an in-
stance is channeled to the ith branch to minimize an estimated expected risk.
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QUEST [17] is a revised version of FACT and uses binary splits at each deci-
sion node. It solves the problem of dividing K classes into two classes by using
unsupervised 2-means clustering on the class means of the data. QUEST also
differs from FACT in the way that it does not assume equal variances and uses
Quadratic Discriminant Analysis (QDA) to find the two roots for the split point
and uses the appropriate one. CRUISE[18] is a multivariate algorithm with K-
way nodes. Like FACT, CRUISE finds K − 1 splits using LDA. The departure
from FACT occurs when the split assigns the same class to all its K children.
Because such a split is not useful, the best next class is chosen. Another depar-
ture occurs while assigning a class to a leaf: When there are two or more classes
which have the same number of instances in that leaf, FACT selects randomly
one of them but CRUISE selects the class which has not been assigned to any
leaf node.

In LMDT [19], with K classes, as in FACT, a node is allowed to have K
branches. For each class, i.e., branch, there is a vector of parameters, and the
node implements a K-way split. There is an iterative algorithm that adjusts the
parameters of classes to minimize the number of misclassifications, rather than
an impurity measure as entropy or Gini.

In Logistic model trees [20], logistic classification is used to find the best split
at each decision node. They use a stagewise fitting process to construct logistic
classification models that can select relevant attributes in the data.

4 Experiments

The proposed omnivariate trees are compared on twenty-two datasets from the
UCI machine learning repository [21]. We compare pure univariate, linear and
quadratic trees with omnivariate trees based on AIC, BIC, and CV. Our com-
parison criteria are generalization error (on the validation folds of 5×2 cross-
validation), complexity (as measured by the total number of free parameters in
the tree) and learning time (seconds on a Pentium Xeon 2.7). The error, model
complexity and learning time figures contain boxplots, where the box has lines
at the lower quartile, median, and upper quartile values. The whiskers are lines
extending from each end of the box to show the extent of the rest of the data.
Outliers, shown with ‘+’, are data with values beyond the ends of the whiskers.

In Section 4.1, we give our results in two datasets, pendigits and segment in
detail and in Section 4.2, we give our results on all twenty-two datasets.

4.1 Results on Pendigits and Segment

Figures 1 and 2 show the expected error, model complexity and learning time
plots for pendigits (pen) and segment (seg) respectively. On pendigits, the pure
quadratic tree is more accurate than the pure linear tree which in turn is more
accurate than the pure univariate tree. On segment, the pure univariate tree is
more accurate than the pure linear tree which in turn is more accurate than the
pure quadratic tree. On pendigits, omnivariate trees have expected error close
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Fig. 1. The expected error, model complexity and learning time plots for pendigits
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Fig. 2. The expected error, model complexity and learning time plots for segment

to the pure quadratic tree and on segment, they have expected error close to
that of the pure univariate tree showing that they can automatically adapt to
the problem. Omnivariate tree with CV produces smaller trees (in terms of the
total number of parameters in the tree) than AIC and BIC. AIC and BIC have
similar performances with respect to tree complexity even though BIC penalizes
the complex models more. Due to this reason, on pendigits, AIC selects quadratic
nodes more, which makes it better in terms of expected error compared to BIC
and CV. Since CV uses 5×2 cross-validation, its learning time is higher than
that of AIC and BIC. AIC and BIC trees also have their postpruning stages
where the AIC (or BIC) of a subtree is compared to that of a leaf to possibly be
replaced by it.

Figures 3 and 4 show the number of times of univariate, multivariate lin-
ear and multivariate quadratic nodes are selected at different levels of tree for
pendigits and segment respectively. We see that more complex nodes are selected
early in the tree, closer to the root where the problem is more complex and where
there is more data. As we go down the tree, we have less data and complex nodes
overfit and get rejected. Since pure quadratic tree is the best on pendigits and
pure univariate tree is the best on segment, and since the omnivariate tree fol-
lows the best model, it selects the quadratic node on pendigits and the univariate
node on segment more in the upper levels of the tree. AIC selects more complex
nodes than BIC, which selects more complex nodes than CV, though in terms
of the overall number of nodes, CV has the least because CV-based postpruning
prunes more than AIC-based or BIC-based postpruning.
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Fig. 3. The number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for pendigits
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Fig. 4. The number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for segment

4.2 Results on all Datasets

The average and standard deviations of expected error and model complexity
of decision trees produced by different model selection techniques and univari-
ate, multivariate linear and multivariate quadratic decision trees for twenty-two
datasets are given in Tables 1, 2, and 3 respectively. Since there are more than
two decision tree algorithms to compare, we give two tables where in the first
table the raw results are shown. The third table contains pairwise comparisons;
the entry (i, j) in this second table gives the number of datasets (out of 22) on
which method i is statistically significantly better than method j with at least
95% confidence. In the third table, row and column sums are also given. The
row sum gives the number of datasets out of 22 where the algorithm on the
row outperforms at least one of the other algorithms. The column sum gives the
number of datasets where the algorithm on the column is outperformed by at
least one of the other algorithms.

In general, omnivariate trees are more accurate than pure trees in terms of
expected error. The number of wins of omnivariate trees against pure trees is
more than the number of wins of pure trees against omnivariate ones. We also
see that if there is a significant difference between the pure trees, the omnivariate
tree follows the better tree. For example, on balance, the pure linear tree is the
most accurate and omnivariate trees have similar accuracy to the linear tree by
including many linear nodes. On car, pure univariate and linear trees are the best
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Table 1. The average and standard deviations of expected errors of omnivariate deci-
sion trees and pure trees

Pure Decision Trees Omnivariate Decision Trees
Set UNI LIN QUA AIC BIC CV
bal 25.89± 4.92 12.00± 1.92 24.10± 2.96 13.22± 1.56 12.70± 2.03 10.62± 1.13
bre 5.69± 1.65 4.41± 0.54 3.72± 0.87 5.06± 1.12 4.92± 0.90 4.63± 1.33
bup 40.17± 6.31 33.86± 4.17 41.22± 1.44 37.80± 4.06 37.44± 4.00 35.94± 4.80
car 7.38± 1.67 8.52± 1.64 21.32± 1.93 5.83± 1.07 6.08± 0.85 7.29± 1.77
der 6.99± 1.88 3.33± 1.01 8.75± 1.99 5.74± 1.69 5.69± 1.48 7.70± 1.75
eco 22.42± 3.78 18.17± 2.37 19.45± 2.62 21.41± 3.13 19.23± 2.30 19.74± 3.21
fla 11.15± 0.54 11.39± 0.75 11.15± 0.54 14.79± 3.28 12.14± 2.49 11.21± 0.63
gla 40.48± 9.06 42.71± 3.02 43.59± 6.21 36.80± 3.72 34.30± 3.12 38.40± 6.20
hab 26.54± 0.21 26.47± 0.16 26.41± 0.97 33.58± 4.08 26.47± 0.16 26.60± 0.39
hep 21.67± 1.95 20.39± 0.87 18.33± 2.88 22.57± 3.85 21.93± 4.26 21.93± 3.22
iri 5.47± 4.10 3.07± 1.41 4.80± 3.51 4.14± 1.93 4.27± 2.07 5.73± 1.99
iro 14.14± 2.80 11.56± 2.25 9.51± 2.62 11.51± 2.24 13.79± 1.65 12.71± 2.10
mon 20.79± 7.39 27.50±10.65 16.90± 2.21 10.42± 3.58 9.21± 3.30 20.65± 6.61
pen 7.50± 0.93 3.70± 0.38 1.52± 0.37 1.86± 0.20 2.57± 0.44 3.83± 0.79
pim 29.77± 3.90 23.10± 1.18 26.69± 3.04 30.70± 1.89 29.61± 2.90 30.78± 5.52
seg 6.19± 0.75 9.05± 1.66 10.92± 1.47 4.96± 0.53 4.72± 0.77 6.27± 1.07
tic 13.69± 4.47 29.42± 2.12 27.94± 4.83 18.89± 3.63 8.39± 1.67 16.41± 4.20
vot 4.83± 1.32 5.34± 2.04 8.69± 1.99 5.98± 1.73 5.98± 1.75 4.32± 0.54
wav 25.86± 1.09 14.77± 0.57 15.52± 0.46 20.47± 0.39 20.64± 1.04 16.25± 1.49
win 15.95± 4.16 3.15± 1.91 7.42± 4.00 5.40± 1.68 7.16± 4.59 6.15± 3.76
yea 48.99± 4.04 45.09± 2.50 47.72± 3.64 51.07± 2.03 50.89± 1.63 49.96± 4.95
zoo 10.70± 4.29 22.61± 5.07 21.50± 5.85 5.32± 2.73 5.32± 2.73 11.22± 4.69

and the omnivariate trees select univariate and linear nodes more. On wave and
wine, pure linear and quadratic trees are more accurate than the pure univariate
tree and the omnivariate trees have expected error close to the expected error of
those trees. The model complexity table shows that CV constructs simpler trees
than AIC and BIC. It has more wins (22 against 10 and 15) and less losses (6
against 20 and 22). We see that, CV chooses smaller trees but with more complex
nodes and the trees constructed by CV are as accurate as trees constructed by
AIC and BIC. Since omnivariate trees try all possible models, they have learning
time more than those of trees and because CV tries all possible models ten times
(because of 5×2 cross-validation), it has the longest learning time.

The number of times the univariate, multivariate linear and multivariate
quadratic nodes are selected in omnivariate decision trees produced by AIC,
BIC and CV are given in Table 4. We see that, as expected, quadratic nodes are
selected the least and the univariate nodes are selected the most. Although CV
has the smallest tree complexity, it has the highest percentage of multivariate
nodes (linear 22 percent, nonlinear 1.74 percent). AIC and BIC trees do not
prune as much as the CV tree and therefore their node counts are higher than
the CV tree.
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Table 2. The average and standard deviations of model complexities of omnivariate
decision trees and pure trees

Pure Decision Trees Omnivariate Decision Trees
Set UNI LIN QUA AIC BIC CV
bal 11.7± 4.7 17.9± 1.3 106.9± 0.9 45.5± 5.9 43.2± 10.0 17.0± 0.0
bre 6.0± 3.2 10.2± 0.4 37.1± 1.0 28.0± 10.0 22.4± 5.0 17.1± 12.0
bup 5.3± 4.9 7.3± 2.8 6.1± 9.8 52.3± 5.3 45.1± 16.8 7.9± 4.6
car 28.6± 4.7 19.9± 2.5 110.1± 1.4 67.9± 9.8 63.0± 10.3 27.3± 6.5
der 7.2± 1.2 33.7± 0.5 112.2± 1.5 25.7± 14.7 13.3± 2.1 6.4± 0.7
eco 5.5± 2.9 10.7± 1.3 21.0± 1.4 30.5± 7.8 26.8± 2.8 4.8± 1.2
fla 0.3± 0.9 3.9± 8.2 0.0± 0.0 17.8± 3.4 2.4± 5.1 0.4± 1.3
gla 6.9± 3.7 11.3± 2.4 21.9± 2.6 29.7± 3.7 30.2± 3.9 7.6± 2.3
hab 1.0± 3.2 0.0± 0.0 3.3± 5.3 36.1± 3.7 0.0± 0.0 0.7± 2.2
hep 2.1± 3.2 5.8± 9.3 28.8± 24.9 12.8± 3.2 13.3± 2.2 2.6± 5.9
iri 3.6± 1.0 5.7± 0.5 10.5± 0.5 4.5± 1.4 4.1± 1.7 3.0± 0.0
iro 4.2± 1.9 29.6± 0.7 57.4± 2.9 36.8± 7.9 18.2± 2.5 17.2± 14.5
mon 9.1± 3.6 8.4± 3.6 26.2± 0.4 37.5± 5.4 29.8± 2.2 17.1± 11.8
pen 72.0± 8.2 41.4± 2.0 97.4± 2.2 146.0± 7.7 171.5± 11.5 38.5± 10.0
pim 7.4± 7.6 9.5± 0.8 36.0± 12.7 101.1± 15.6 92.2± 10.5 4.0± 5.3
seg 22.8± 4.1 26.3± 6.7 41.7± 4.9 58.0± 9.8 57.9± 8.0 21.0± 5.4
tic 21.4± 3.5 21.5± 3.0 96.6± 66.7 185.0± 58.1 52.8± 9.6 20.3± 9.2
vot 2.9± 1.5 16.9± 0.7 82.8± 2.4 13.6± 3.0 10.0± 3.9 2.4± 1.3
wav 35.9± 14.3 26.6± 1.7 221.0± 1.2 406.2± 96.4 331.2± 10.4 23.8± 0.9
win 4.0± 0.7 14.0± 0.0 48.0± 1.2 14.3± 0.7 11.4± 4.2 13.1± 3.6
yea 20.0± 10.3 20.2± 4.7 37.6± 3.9 287.9± 13.8 281.3± 13.4 6.9± 3.6
zoo 6.7± 0.8 15.8± 0.9 25.7± 1.6 8.1± 0.9 8.1± 0.9 6.2± 1.1

Table 3. Pairwise comparisons of expected error and model complexities of omnivariate
decision trees and pure trees

Expected Error Model Complexity
AIC BIC CV UNI LIN QUA

∑
AIC BIC CV UNI LIN QUA

∑

AIC 0 2 5 7 7 10 14 AIC 0 1 0 0 3 9 10
BIC 4 0 5 9 7 10 15 BIC 10 0 0 0 5 11 15
CV 5 3 0 5 4 8 15 CV 21 18 0 3 11 20 22
UNI 4 1 1 0 3 6 8 UNI 21 19 6 0 12 19 21
LIN 9 6 5 10 0 9 17 LIN 17 14 2 3 0 19 21
QUA 7 6 3 6 3 0 11 QUA 12 9 0 0 0 0 12∑

14 10 12 17 8 13
∑

22 20 7 4 15 20

The number of times univariate, multivariate linear and multivariate
quadratic nodes selected at different levels of tree for AIC, BIC and CV is given
in Figure 5. We see that AIC selects quadratic nodes more than BIC. This is in
accordance with the literature stating that BIC has a tendency to choose simple
models [22]. BIC selects more quadratic nodes than CV in the early levels of the
tree. For linear nodes, their percentages are close to each other.
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Table 4. The number of times univariate, multivariate linear and multivariate
quadratic nodes selected in decision trees produced by AIC, BIC, and CV

Set AIC BIC CV
UNI LIN QUA UNI LIN QUA UNI LIN QUA

bal 261 34 0 251 21 0 0 10 0
bre 143 18 1 119 14 1 18 8 2
bup 416 44 8 400 26 1 21 9 0
car 452 77 0 433 47 0 101 22 0
der 64 14 0 123 0 0 51 3 0
eco 232 30 4 230 18 0 32 6 0
fla 164 3 1 22 0 0 3 0 0
gla 273 9 5 283 7 2 65 1 0
hab 309 21 13 0 0 0 6 0 0
hep 116 2 0 123 0 0 4 1 0
iri 26 8 1 22 9 0 20 0 0
iro 93 11 6 172 0 0 20 11 0
mon 107 5 13 35 3 10 28 1 7
pen 465 65 66 742 92 18 176 137 2
pim 799 40 9 853 23 1 4 4 0
seg 454 48 13 487 24 3 174 22 4
tic 596 8 11 516 2 0 160 10 7
vot 122 4 0 89 1 0 14 0 0
wav 2792 59 5 3072 30 0 1 27 0
win 8 14 0 31 7 0 10 12 0
yea 2401 157 60 2662 102 18 50 8 1
zoo 71 0 0 71 0 0 52 0 0∑

10364 671 216 10736 426 54 1010 292 23
% 92.12 5.96 1.92 95.72 3.80 0.48 76.22 22.04 1.74
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Fig. 5. Number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for AIC, BIC and CV

5 Conclusion

We propose a novel decision tree architecture, the omnivariate decision tree,
which contains both univariate, multivariate linear, and multivariate quadratic
nodes. The ideal node type is determined via model selection using AIC, BIC or
CV. Such a tree, instead of assuming the same bias at each node, matches the
complexity of a node with the data reaching that node.
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Our simulation results indicate that such an omnivariate architecture general-
izes better than pure trees with the same type of node everywhere. As expected,
the quadratic node, is selected the least, followed by the linear node and the
univariate node. More complex nodes are selected early in the tree closer to the
root. Since there are more nodes in the lower levels, the percentage of univariate
nodes is much higher (> 90% for AIC and BIC, > 75% for CV). This shows that
having a small percentage of multivariate (linear or quadratic) nodes is effective.

CV finds simpler trees than BIC which in turn finds simpler trees than AIC.
Although omnivariate CV trees are simple, they contain complex nodes (multi-
variate linear and nonlinear) more than AIC and BIC. All three methods have
nearly the same error rate. CV produces simpler models without sacrificing from
the expected error. But it has the disadvantage that its training time is longer
due to multiple cross-validation runs.

In the literature, in choosing between nodes or choosing node parameters,
accuracy (information gain or some other measure calculated from fit to data)
is used in growing the tree and some other measure (cross-validation error on
a pruning set or MDL) has been used to prune the tree; the same is also true
for rule learners such as Ripper [23]. Our work proposes to use one criterion
(AIC, BIC, CV) in both growing the tree and pruning it. We believe this makes
more sense than many approaches where separate criteria are used to grow the
tree and then to prune it to alleviate overfitting. Because our approach allows
choosing among multiple models, it is also possible to have different algorithms
for the same node type and choose between them. That is, one can have a palette
of univariate nodes (one by LDA, one by information gain, etc) and the best one
will then be chosen. The same also holds for linear or nonlinear (quadratic, other
kernels, etc) nodes. Our emphasis is on the idea of an omnivariate decision tree
and the sound use of model selection in inducing it, rather than the particular
type of nodes we use in our example decision tree. The nice thing about LDA is
that the same criterion can be used in training univariate, linear and quadratic
nodes and we know that any difference is due to node complexity.

The same model selection idea can also be applied in regression trees by
creating an omnivariate regression tree where at each node there are three can-
didate models, namely, univariate model, linear multivariate model and linear
quadratic model. Then the candidate models at each node try to minimize the
sum of mean square errors of child nodes. For CV based model selection, the
same 5×2 paired t test can be used for comparing the mean square errors of
the candidate models. One can also include different type of models in the leaf
nodes such as linear models and can make model selection for the leaf nodes for
both classification and regression trees.
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