Design and Implementation of
a Real Time Planner for Autonomous Robots

Umit Deniz Ulusar and H. Levent Akin
Department of Computer Engineering ,
Bogazici University,

34342 Bebek, Istanbul, TURKEY
uulusar@eng.marmara.edu.tr
akin@boun.edu.tr

Abstract
This work proposes a system design for real time planning for autonomous robots.
Implementing a real time autonomous planning agent which can solve complex problems is a
hard to achieve task where the planning system design must be adapted to process in real time
domain and should be able to return satisfactory results. The planning approach is developed
on the robotic soccer domain and uses fast forward planner and was tested using the Teambots
simulation environment.

1 Introduction

Implementing a real time autonomous planning agent which can solve complex problems is a
hard to achieve task. In order to achieve this task, planning system design should be adapted
to process in real time domain. A real time system can be defined as a system which can run
in the worst resource and runtime conditions and can produce the best possible results.
However, a real time planning agent can not do many of the important needs of real time
systems so for planning domain, we need a less strict definition — A real time planning system
will be any system that can return statistically satisfactory results by the required time [1].

In this work, the robotic soccer domain was chosen since soccer is the most popular sport of
the world with 22 players and millions of fans and robotic soccer is a state of the art testing
ground for Al and robotics research with several international competitions like Robocup and
FIRA. In addition, robotic soccer requires the joint work of many AI subfields like vision,
planning etc. Although planning is an important subfield of Al it was not widely used in the
robotic soccer due to the real-time nature of the domain. However, with the advances in the
planning algorithms and the processing power available on the robots, it is now worthwhile to
asses the feasibility of integrating planning systems with autonomous robot systems and make
them play robotic soccer.

In this paper integration of a general purpose planner with a simulated soccer playing robot
team is described. The rest of the paper is organized as follows; information on the planning
algorithm used and the Teambots simulation environment is given in section 2. The details of
the implementation are given in section 3. In section 4, the experiments are described. The
results of the experiments are stated in section 5 and the conclusions are given in section 6.

2 Background

2.1 Planning and Planners

Planning can be called as the task of coming up with a sequence of actions that will achieve a
goal. [2] Usually a planning algorithm has three inputs, the first one is the description of the
world called as initial state, the second is the description of the agent’s goal called as the goal
state and the last one is the description of the actions that the agent can perform, called the
domain theory. And the planner’s output is a sequence of actions which takes the agent from

initial state and ends up with the goal state. The representation of states actions and goals
require a language which is expressive enough to describe as many domains as possible but
restrictive enough for the planning algorithms to handle. The basic representation language of
a classical planner is the propositional STRIPS language. This language represents the states
of the world with conjunctions of positive literals [2].

The simplest way to build a planner is to use state space search. Many heuristic and brute
force search techniques can be immediately applicable to state space search based planning
systems. One can use various search algorithms like breadth-first, depth-first, A* search or
techniques like enforced hill climbing which is a combination of hill climbing search and
breadth first search methods [3]to find the action sequence from initial state to the goal state.
There are two types of state space search algorithms. The first one is forward state space
search, also called as progression planning. This type of planners operates by searching
forward from initial state to the goal state. The second one is backward state space search,
also called as regression planning. This type of planner searches from goal state to initial
state.

Every good search algorithm requires a good heuristic function, which estimates the distance
from a state to goal by looking at the effect of actions to the states. One of the widely used
admissible heuristic — one that does not overestimate — relaxed problem, which is based on
generating a relaxed problem from the original problem and solve it.

Planning Graphs is an add-on for the planning algorithms which can be used to give better
heuristic estimates [2] which can be described as a sequence of levels that corresponds time
steps in the plan. Each level contains a set of literals and a set of actions.

2.2 Fast Forward Planner

Fast Forward (FF) planner is a general purpose planning system developed by Hoffmann [3].
The planner is implemented in C and had won various prizes in planning competitions. The
FF is described as forward chaining heuristic state space planner which uses relaxed task
general purpose heuristic and Graphplan to support enforced hill climbing search algorithm.
In addition, some pruning and optimization techniques are used to decrease the branching
factor of the search space.

2.3 TeamBots

Teambots simulation environment is developed in Java programming language by Tucker
Balch [5]. The simulation environment is designed for multiagent robotics. In each time step
it asks the Robots to take their actions. Depending on the design the system, environment is
dynamic or static. If all the planning process is done in each step then the simulation
environment freezes until the planning process finishes. This type of system can be assumed
as static. If there is another class extended from thread and the planning process is done by
that thread then environment may be assumed as dynamic because agent does not have to wait
for planner to finish planning process and while planning process takes place environment
may change. There are various simulation domains and one of them is soccer. The simulation
robot developers extend a base class called ControlSS and implement their robots.

The TeamBots simulation environment has the following environmental characteristics:

o Fully Observable- The environment is fully observable, every agent in the system can
obtain the location of its teammates, opponents, ball, its own goal and opponent’s goal.

e Strategic- The environment is deterministic except for the other agents.

e Sequential - The environment is sequential for two reasons, first the actions of the robot
have effects on the future actions of robot and second, to take an action the simulation
robot has to take many sub actions. For Example: If the agent wants to kick ball to goal
then it has to come close to ball with a special angle so it can push ball to goal.

e Multiagent — Soccer requires team coordination and competition with an opponent team
so the environment is multiagent and both competitive and cooperative.

3 Implementation

The PlannerTeam developed in this study is mainly composed of three modules. The first one
is the fast forward planner and the second one is the problem file dynamically generated by
the PlannerTeam class and the third component is the planning soccer domain.

geore: 000 shot: 59

| oo S [=] -

M1 T2 T3 T4 ball) Cgoal (and (o
) iballkicked TM2)) (ActionTaken T3
Th1) (ActionTaken Th2) (or (shotT:
aken Th2) 31

T e T T T

(StateMldﬂeld TME)
(GameStatesttac

(Teammais TM1)
(TearmpMate Th2)
(TearfiMate Th3)

reafmate TMa) Soccer Problem Generated
gront_ciear TMoBy Observing The

(cleakshot TMO)
’Environment
ffront_chear Tt)

(frnnt_clearTME) =
FLAYMIDFIELD W
PLAYDEFENDER TM1

DRIVEAMZ Generated Plan
KICKBALLTOPLAYER TM3 T4
KICKBALDTOGOAL TM3

KICKBALLTOP LA 4
REACH-GOAL

pLevoer€uoer Assigned Actions To
FLAaYMIDRIELD The Players

Figure 1.PlannerTeam playing against Sche
The PlannerTeam class observes the teammates, opponents and ball locatlons and updates its

internal representation. With the obtained location information, it also updates environment
variables listed below.

e Clearshot: If there is no player between the opponents goal and teammate.
o Closeenough: If the player is close to the opponents’ goal.
e closest to_ball: Determines the closest player to the ball.

e goalarea_free: Determines if the goal area is free. (There are at most 2 players in the
goal area)

front_clear: Determines if the front of the player is clear.

good _play angle: If the angle with the ball is suitable for action.

good_getball dist: Determines if the player is close enough to the ball.

good_getball angle: Determines if the player has good angle with the ball.

CanKick: Determines if the player can kick the ball.

ActionTaken: Determines if any action is set to the player. This is mainly required for
goal definition.

The next process is to generate a planning problem file with the specified variables. Planning
problem file is generated by the Planner class. The Planner class schedules replanning
whenever necessary and obtains a plan by using FF planner. If the planner returns a plan, the
planner class parses the plan and generates or updates the action list (see Figure 1).

3.1 The Soccer Planning Domain

The soccer domain determines the available actions of the simulation robot. In order to
generate a plan, planners require a planning domain and a problem file. The domain is named
with domain name which is ‘soccer’. An action is represented with four fields. The first one is
for the name of the action. The second one is for the parameters; the third one is for the
preconditions and the last one is for the effects of action (see Figure 2).

(:action KickBallToGoal
:parameters (?player)

:precondition (and (or (good getball dist ?player) (CanKick
?player)) (clearShot ?player))
reffect (and (ballkicked ?player) (ActionTaken ?player)

(shotTaken ?player) (not(CanKick ?player))))

Figure 2. Example of a soccer action.
In order to visualize the available actions we can represent some of them similar to extended
domain networks as shown in Figure 3. [4]

A 4

GameStateAttack [* Game State GameStateDefence

KickBallToGoal KickBallToPlayer

B> or (good getball dist) or (good_getball dist)
(CanKick) (CanKick)
[[

->| clearShot | | clearShot |
(ballkicked) (and (ballkicked)
(ActionTaken) (ActionTaken)

(shotTaken) (shotTaken)
(not (CanKick)) (not (CanKick))))

Figure 3. Plannnner Soccer Domain as extended domain networks

Other available actions are

Drive: The attacker players can drive if their front is clear.

MoveToBall: The closest player which is close enough moves to the ball.
GetBall: 1f the player in a good position and angle gets the ball.
TakePositionAttack: Depending on the strategy player takes attack position.
TakePositionDefense: Depending on the strategy player takes defense position.
PlayMidfield: Plays as a midfield player.

PlayDefender: Plays as a defense player.

Both the action definitions and the goal can be changed dynamically. This leads us to generate
adaptive domain and action definitions depending on the tactics of the opponents.

3.2 Planning Soccer Problem File

Planning Soccer Problem (PSP) file is generated by the planner class by observing the
environment. PSP is composed of virtual environment variables which were listed before.
After the problem file is generated, the PlannerTeam class asks the FF planer to generate a
plan which can accomplish the goals. In most cases the FF generates a plan suitable for the
current state but if it can not find a plan, the players start to chase the ball. The goal of the
system is to score and is also defined in PSP as shown in Figure 4. We defined scoring as
shotTaken. In order to take a shot the player should be in an appropriate position and with a
suitable angle to the goal. Besides, all the active players should take at least one action.

(:goal (and (or (ballkicked TM3) (ballkicked TM4) (ballkicked TM2))
(ActionTaken TM3) (ActionTaken TM4) (ActionTaken TM1) (ActionTaken TM2)
(or (shotTaken TM3) (shotTaken TM4) (shotTaken TM2))))

Figure 4. Definition of goal

3.3 Team Coordination

Soccer is a complex game in which the soccer players have to consider many tasks at the
same time. A soccer team has to defend its goal and if it is possible attack and score to the
opponents goal. In order to achieve successful team coordination, team players should carry
different roles and whenever necessary they have to position themselves at appropriate
strategic positions on the field. Some roles assigned to the players are listed below.

StateAttackerLeft: Is one of the attacker players.

StateAttackerRight: 1s the second attacker player.

StateDefender: Is the defender player.

StateMidfield: 1s the midfield player.

The Planner generates no detailed actions so the PlannerTeam members should determine
what is necessary to do to achieve the action given by the planner. Two of the complex tasks
which can be given by planner are fakeAttackLocation and the takeDefenceLocation. The
player has to consider the optimum defense and attack positions [4].

3.4 Plan Commitment, Plan Failure and Re-planning

After a successful plan is generated, the actions of the players are stored in an action link list.
When a player asks its action to the planner class, the planner class returns the defined action

to the player. The player takes the abstract action, for example kick ball to player 3. It, then
calculates the necessary moving direction and speed. If it is a kick ball action and the player
has the ball then and the necessary ordering is acceptable then it kicks the ball.

Instead of detecting plan failures, we scheduled re-planning in every state change. We
schedule re-planning when the planner CanKick variable changes or five pixel location
change of players, opponents or ball. When re-planning is scheduled, the planning thread
observes the environment and generates a problem file and asks the planner to generate a
plan. Until a new plan is generated the planner stores and returns the previously defined
actions of the players.

4 Experiments

The PlannerTeam played against three teams with different strategies. The first team is
AIKHomoG which uses dynamic role assignment and potential fields for player movement.
Most of the game period, two of the team players always stay in the two corners of the goal
area and one player usually stays close to center. Generally, goals of AIKHomoG team are
scored by our goalkeeper. The second team is Kechze which uses role assignment for strategy
and geometric calculations as the assignment criteria [5]. Beside these techniques, Kechze
team uses one of its players to block the opponents’ goal keeper in left side of the goal and try
to score that way. The third team is FemmeBotsHeteroG which defends its goal with two
players.

4.1 Metrics

In order to compare the performance of the PlannerTeam with other teams we used five of the
previously designed metrics [6] [7]. These metrics are; three possession metrics
BallPossessionHome, BallPossessionCenter, BallPossessionOpponent measure the
possession of the ball on the field during the game. BallPossessionHome and
BallPossessionOpponent are the semicircle areas with radius of 9 times robot radius from the
center of goals, the remaining area is called as BallPossessionCenter as shown in Figure 5.
Average of Our Scores and Average of Opponent Scores are the remaining two metrics.

GetBall

' kgallTuF lgyer

@

Flayl n—TH; Bl

]

Figure 5. BallPossessionHome, BallPossessionCenter, BallPossessionOpponent areas are
shown. The PlannerTeam is playing against AIKHomoG.

5 Results

A total of 30 matches were played against the three opponent teams, 10 for each and the
results are given in Table 1. We set the simulator maxtimestep parameter to 8 and timeout
parameter to 240000 milliseconds. Maxitimestep statements set the maximum time (in
milliseconds) that can transpire between discrete simulation steps. The games against Kechze
and FemmeBotsHeteroG have better statistics than the game against AIKHomoG.

Table 1. Experiment Results

Opponent Avg. Our Avg. Ball. Pos. Ball. Pos. Ball. Pos.
Team Score Opponent Score Home. Opp. Center
AIKHomoG 0.4 0.5 0.352131 0.235115 0.412753
Kechze 0.9 0.2 0.126392 0.530549 0.343059
Femme 0.4 0.3 0.166722 0.394454 0.438825

6 Conclusions

In this work we integrated a general purpose planner with a multiagent simulation
environment. Although our PlannerTeam is good at playing soccer we had many problems
generating applicable plans. There are many reasons for that. First, the planner should return
not only one plan but many plans. Secondly, in many cases a complete plan is not useful.
Third the applicability of the plan is not considered by the planner. It always generates and
returns the first plan it finds. On the other hand, this kind of agent planner integration is
applicable to solve many problem types.

As a future work, we need to define a success ratio for each action and design a planner which
considers the success ratio of those actions and generate all possible plans for a defined step
length. Besides some state evaluation functions may be useful for positions in which a plan
can not be generated. With this evaluation function the planner can chose the best possible
state and return actions which leads us to that state. The planner domain and the goal
definitions should be developed more.

References

1. A. Garvey and V. Lesser, 4 Survey of Research in Deliberative Real-Time Artificial
Intelligence, UMass Computer Science Technical Report, 93—84 November 19, 1993.

2. S Russell and P Norvig. Artificial Intelligence: A Modern Approach Second Edition.
Prentice-Hall International, 2003.

3. J. Hoffmann, “The FF Planning System: Fast Plan Generation Through Heuristic Search”
The Journal of Artificial Intelligence Research 14, 253-302, 2001.

4. T. Wigel, J.-S., Gutman, M. Dietl, A. Kleiner, B. Nebel, “CS Freiburg: Coordinating
Robots for Successful Soccer Playing”, Lecture Notes in Computer Science, 2019, p.52,
2001.

5. T. Balch, “Teambots,” http://www.teambots.org , 2003

6. K. Kaplan, “Design and Implementation of Fast Controllers for Mobile Robots,” Master
Thesis, Bogazici University, January 2003.

7. H. Kose, C. Mericli, K. Kaplan, and H. L. Akin, “All Bids for One and One Does for All:
Market-Driven Multi-Agent Collaboration in Robot Soccer Domain”, ISCIS XVIII The
Sixteenth International Symposium on Computer and Information Sciences (ISCIS 2003),
Springer-Verlag, Lecture Notes in Computer Science Series, 2003

