
A Finite Horizon DEC-POMDP Approach to Multi-robot Task
Learning

Barış Eker, Ergin Özkucur, Çetin Meriçli, Tekin Meriçli, and H. Levent Akın

Abstract—Decision making under uncertainty is one of the
key problems of robotics and this problem is even harder in the
multi-agent domain. Decentralized Partially Observable Markov
Decision Process (DEC-POMDP) is an approach to model multi-
agent decision making problems under uncertainty. There is
no efficient exact algorithm to solve these problems since the
worst case complexity of the general case has been shown to be
NEXP-complete. This paper demonstrates the application of our
proposed approximate solution algorithm, which uses evolution
strategies, to various DEC-POMDP problems. We show that
high level policies can be learned using simplified simulated
environments which can readily be transferred to real robots
despite having different observation and transition models in the
training and the application domains.

I. INTRODUCTION

In order to accomplish its task, an autonomous robot needs
to sense the environment and decide on how to act. The state
representation of the robot usually considers only the relevant
information obtained at a time, however in some cases it may
cover the past data as well. In order to be able to decide on how
to act in a given state, the robot should have a policy that maps
its states to its actions. The difficulty of a decision problem is
determined by several factors including the cardinality of the
state space, which is defined as the set of all possible states.

In most real world problems, robots can not fully observe
the environment and their sensor readings are usually noisy.
Such environments are called partially observable and Par-
tially Observable Markov Decision Process (POMDP) frame-
work is a generalization of Markov Decision Processes (MDP)
used for solving real world problems with the available partial
information. In the autonomous robots domain, planning and
navigation are some of the problems that can be modeled as
POMDPs [1], [2] The aim in POMDP problems is to find a
policy that will maximize the expected total reward of a robot
for a given horizon, which is the number of actions taken.

Decentralized POMDP (DEC-POMDP) is a generalized
version of the POMDP model, aimed to be used for solving
planning problems in dynamic environments involving mul-
tiple robots. In such problems, the reward is given to the
team instead of the individual robots. It has recently been
shown that solving DEC-POMDP problems exactly is NEXP-
complete, whereas solving POMDP is PSPACE-complete [3].
Therefore, in the last decade, only a few studies on the exact
solutions for DEC-POMDP have been made and they were

This work is supported by Boğaziçi University Research Fund through
project 09M105, and TUBITAK Project 106E172.

The authors are with the Department of Computer Engi-
neering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
{akin,baris.eker,ergin.ozkucur}@boun.edu.tr
{cetin.mericli,tekin.mericli}@boun.edu.tr

only able solve toy problems with relatively small number
of environment states due to NEXP-completeness [4], [5].
Recently, researchers have been trying to come up with
approximate solutions to these problems or new subsets of
DEC-POMDP problems which can model some real world
problems and are easier to solve [6], [7]. Although current
approximate solution algorithms are able to solve slightly more
complex problems than the exact solution algorithms, they are
still far from handling real world problems that involve very
large state spaces [8], [9].

Since solving a DEC-POMDP problem means finding a
policy that will maximize the expected team reward, these
problems can be considered as optimization problems. In this
study, we extend the method we developed for solving DEC-
POMDP problems using Evolution Strategies (ES) [10] to gen-
erate policies for autonomous robots. The original algorithm
had a scalability problem since all the policies were encoded
in the genes. As a consequence of using neural networks to
represent the policies, the number of states of the problems
is no longer a constraint. We execute the learned policies on
real robots, namely Aldebaran Nao humanoid robots [11] and
FESTO Robotino omni-wheeled robots [12] to demonstrate the
flexibility of our methodology in terms of learning high level
policies in simplified simulated environments and transferring
that knowledge to real robots despite having different observa-
tion and transition models in the training and the application
domains. The results of our experiments show that the robots
are able to achieve their tasks even though their perceptions
and actions are much noisier compared to the simulation case.

The rest of this paper is organized as follows. Section
II provides background information on DEC-POMDPs. Our
approach to the problem and applications of our solutions
to the real world realizations are elaborated in Section III.
Experiment setup and obtained results are explained in Section
IV. Section V gives the conclusions and suggestions for future
work.

II. BACKGROUND

The formal definition of DEC-POMDP can be given as a
tuple: < n,S,A,T,Ω,Obs,R> where n is the number of robots,
S is a finite set of states, A is the set of joint actions, T is
the state transition function, Ω is the set of joint observations,
Obs is the observation function, and R is the immediate reward
function.

We define A, the set of joint actions, as the cartesian product
of Ai,(i = 1,2, . . . ,n), which is the set of actions available to
Roboti. Each Roboti selects an action from its action set Ai at
each time step and the collection of selected actions constitutes



a joint action. Similarly, Ω, the set of joint observations,
is the cartesian product of Ωi,(i = 1,2, . . . ,n), which is the
set of observations available to Roboti. At any time step the
robots receive a joint observation o = (o1,o2, . . . ,on) from the
environment. We assume that Roboti has access to only oi and
oi is a member of the Ωi observation set. The observation
function Obs specifies the probability of an observation given
a joint action and the current state. It also has the Markov
property and is stationary. The immediate reward function R
is a function of the current state and the joint action taken,
and it is basically used to specify the goal of the robots.

The DEC-POMDP model allows us to represent the envi-
ronment simply as the set of possible states together with the
state transition probabilities. Since the robots have uncertain
or incomplete information about the states, for each robot
we keep a belief state, which is the probability distribution
over S, summarizing the robot’s knowledge about the current
state. Transition from one state to another depends on the joint
actions of the robots and the past states; however, the outcomes
of the actions are non-deterministic. The transitions are also
assumed to be stationary; that is, they do not change over time.

In our work, we deal with “finite horizon” processes. At
each time step, each robot selects an action, receives a local
observation, and a global reward is given to the team. The aim
is to find the policy that will maximize the expected sum of
rewards for the given horizon. It is also assumed that the given
reward decreases with some discount factor γ and 0 ≤ γ < 1.

III. PROPOSED DEC-POMDP SOLUTION

In our ES implementation, the aim is to find a chromosome
to be used by the robots as their policies that will maximize the
robot team’s expected reward. The application of the learned
policy based on DEC-POMDP approach on various real robot
platforms is the novel contribution of this study. The stages of
our method can be listed as follows.

A. Encoding

In our algorithm, the team policy is represented as a chromo-
some. For each robot, we have multiple multi-layer perceptron
type neural networks, each corresponding to one action. We
used the sigmoid function as the activation function. The
inputs consist of the state variables. We have a single layer
and the number of hidden neurons are determined empirically
for each problem. The output is the Q(s,a) value, which is
defined to be the expected discounted sum of future payoffs
obtained by taking action a from state s and following an
optimal policy thereafter. The action to take at particular state
is determined by finding the maximum of these values. The
chromosome consists of the weight values of all the neural
networks. The structure of a neural network and the part of
a chromosome that corresponds to this neural network can be
seen in Figure 1.

It can easily be seen that the chromosome size is indepen-
dent of the size of the state space. It is a function of the number
of robots and number of available actions. This means that this
approach can be used in problems with very large state spaces.

Fig. 1. The neural network and the corresponding part of a chromosome.

B. Fitness Calculation

In DEC-POMDP problems, calculating fitness is a very time
consuming task, which is exponential in terms of horizon.
Since the fitness is used to sort the chromosomes in our case,
the exact reward values are not needed. The aim is to generate
as many generations as possible and test their fitnesses in
order for our algorithm to converge quickly so that it can be
used in larger real life problems. There are several methods
to approximate the fitness function; however, no matter which
method is used, it is very difficult to obtain a globally correct
approximation model. In this study, we use the method given
in [10].

C. Convergence Criteria

We determined three possible criteria to terminate evolution.
1) Stop when there is no change
2) Stop when the reward is sufficiently close to optimal
3) Stop after some certain number of generations
The first criterion may fail in cases where the fitness value

do not change at the beginning until a policy giving a positive
reward is obtained for harder problems. The possible pitfall
in using the second criterion may be keeping the algorithm
from reaching better solutions by setting a predefined upper
limit for the maximum reward value. Therefore, in order to
see the progress of evolution for fixed periods and compare
several runs better, the algorithm was always run for 2000
generations, which was sufficient for all of our problems.

D. Generating the Next Generation

The population size is empirically set as 30 and the initial
set is populated with random chromosomes. The best 10 of
them are selected and put in a separate place as potential
solutions. These chromosomes do not take place in evolution.
If a chromosome having a better fitness value appears during
evolution, the worst one is taken out and the new chromosome
is put into this set. At the end of 2000 generations, the best
chromosomes in this set are tested again in order to find
the best one more accurately. The best chromosome obtained
corresponds to the team policy. Each robot uses the part that is
related with it from this policy; therefore, the individual robot



policies may be different from each other. Recombination and
mutation operations are used for creating the next generation.

IV. EXPERIMENTS & RESULTS

Our experiments mainly consist of two phases; first the
policies are learned for the problems at hand in simulation,
then they are validated in real world settings using real robots.

A. Learning Policies in Simulation

Several test cases were considered in our experiments where
the grid dimensions, available information to the robots, and
the level of uncertainty in the robots’ actions changed from one
test case to another. For each test case, the ES algorithm was
run 10 times and 10 different team policies were obtained.
In order to obtain a more accurate value for the expected
reward of these policies, we get 100000 samples with each of
these policies, and report the average reward and the standard
deviation of the best policy for each test case.

B. Validation of the Learned Policies on Real Robots

We used two Aldebaran Nao humanoid robots [11] and two
FESTO Robotino robots [12] to validate the learned policies
in a real world setting. The three software modules developed
and used for the experiments are perception, planning, and
motion, details of which are explained below. We formed 3×3
and 4×3 grids on the floor, each cell being 550mm×550mm.
These dimensions are picked in such a way to make sure that
the cells are big enough for two robots to fit while the whole
grid is small enough to be covered by the overhead camera.

• Perception: Although our robots are able to localize
themselves in the environment, we decided to use our
overhead camera system to track the robots since we
surrounded the grid region with cardboard walls and
they might cause misperception of the landmarks. We
placed unique markers on top of the robots to be able to
determine their locations and orientations in the environ-
ment (see Figure 2). Using the overhead camera system
does not mean that the robots have perfect localization
information though. Since the robots are high from the
ground and the humanoid robots sway from side to side
while walking, their perceived locations by the overhead
camera system are not their exact locations; hence noise
is present in the location information, which may be up to
200mm. Another source of noise is the imperfectness of
the odometry information provided by the robots. These
make the experiment environment definitely partially ob-
servable.

• Motion: The actions provided in the definitions of
grid meeting and U-grid meeting problems are U p,
Down, Le f t, Right, and Stay, and TurnLe f t, TurnRight,
MoveForward, and Stay for the cooperative box pushing
problem. The directions are the global directions. When
the grid world is observed through an overhead camera,
the top left corner is denoted as (0,0). In this case Right
denotes the cell on the right of the current cell, Down
denotes the cell at the bottom of the current cell, and so

Fig. 2. The Nao humanoid robot with a special marker placed on top of its
head.

on. We made the humanoid robots walk straight between
two cells, in order to to move faster. Therefore, when the
robot picks an action to perform, the lower level planning
module makes the robot first turn towards the direction
that it wants to walk in, then the robot walks straight to
change its cell.

• Planning: The policies learned in the simulation phase
are encoded by training a neural network for each action
of each robot. For the grid meeting and U-grid meeting
problems, each neural network takes the 2D coordinates
of the cell the robot resides in as input, and for the
cooperative box pushing problem, the neural networks
take 5 observations of the robots as input, and they give
the Q(s,a) value as the output. When each of the neural
networks are fed with the same information, the action
that corresponds to the network that gives the highest
value is performed since that would be the action resulting
in the highest reward.

C. Problems Considered

The problems we considered were the grid meeting problem,
the U-grid meeting problem, and the cooperative box pushing
problem [10]. Below we present the results for both the
simulation and real world validation phases for each problem.

1) The Grid Meeting Problem: The goal of this experiment
is to have the robots learn how to meet in the 3×3 grid world
regardless of their initial locations. In this problem there are
81 states. As we expected, the robots obtain better reward
values when they know their initial states completely. When
the robots know their initial locations and their actions are
deterministic.

At the end of the training period run in simulation, the
robots learn the policy illustrated in Figure 3.

In this problem, the robots start from the top left and bottom
right corners, and meet inside the top right cell. The initial and
final states of the robots are shown in Figure 4.

Figure 5 shows the path followed by each robot recorded
via the overhead camera. The noise in the location information
reported by the overhead camera system can be observed in



Fig. 3. Learned policy for the grid meeting problem.

Fig. 4. Start states of the robots and the final state when the robots meet.

this figure. We observed that, regardless of where they start,
the execution of the learned policy by the neural network based
planning module made the robots successfully walk to the top
right cell, where they had met most of the time during the
training period, and wait there.

Fig. 5. Paths followed by the two robots during the execution of the learned
policies for the grid meeting problem.

2) The U-Grid Meeting Problem: The U-grid meeting
problem is a modified version of the grid-meeting problem,
where the robots can only move over the outermost cells of
the grid, except the topmost part. The robots can not meet in
the U-grid meeting problem by always performing the same
action, as it is possible in the grid-meeting problem. Hence,
they need to learn a more complex policy.

We ran the experiments on a 3× 3 grid and as expected,
lower reward values are obtained for this problem, because
in the optimal case, the robots need to perform an additional

action in this problem. As in the grid meeting problem, the
optimal reward value is obtained when the robots know the
initial state and the actions are deterministic.

The learned policy after the training runs in simulation is
illustrated in Figure 6. As was the case for the grid meeting
experiment, we again observed the robots performing the
learned policy successfully in real world.

Fig. 6. Learned policy for U-grid meeting problem.

Figure 7 shows the initial and final states of the robots in
the U-grid world setting while Figure 8 illustrates the paths
followed by the robots during the execution of the learned
policy. In this experiment, the robots started from the top left
and top right cells, and met inside the bottom middle cell as
shown in the figures. The black region in Figure 8 indicates
the blocked cells.

Fig. 7. Start states of the robots and the final state when the robots meet.

Fig. 8. Paths followed by the two robots during the execution of the learned
policies for the U-grid meeting problem.



3) Cooperative Box Pushing Problem: In the original prob-
lem definition, there are two types of boxes in the environment
and the agents aim to move them to the target area. Small
boxes can be pushed by a single robot, however large boxes
need two robots to be pushed. The robot gets a deterministic
observation from the environment describing the situation in
front of it. The possible observations are: empty field, wall,
other agent, small box, and large box. The robots get negative
reward for spending too much time, bumping into a wall, or
not being able to push a box, and positive reward for being
able to push the boxes to the target area. In our experiments,
in order to simplify the setup we removed the small boxes
from the environment.

Figure 9 shows the initial and final positions of the robots
in cooperative box pushing setting. The paths followed by the
robots during execution are illustrated in Figure 10.

Fig. 9. Start states of the robots and the final state when pushing is completed.

Fig. 10. Paths followed by the two robots during the execution of the learned
policies for the cooperative box pushing problem.

V. CONCLUSIONS AND FUTURE WORK

We developed a new algorithm for approximately solving
DEC-POMDP problems using evolution strategies and verified
the solutions in real world using real robots. It has been
shown that this algorithm can find good quality approximate
solutions for DEC-POMDP problems and it is also scalable.
Our method can be used to solve much larger problems than
reported before. Since the ES algorithm searches for a policy,
the algorithm can be modified to continue until the user agrees
that a good quality solution is found or the search can continue

as long as the time permits. These are among the advantages
of using ES for solving DEC-POMDP problems.

The results of our experiments demonstrate that the policies
that are learned in simplified simulated environments can
successfully be used in complex and noisy real world envi-
ronments. That may be a sign for the possibility of learning
complex tasks like playing soccer and collaborative search
and rescue in simplified simulation environments in relatively
less time rather than trying to learn it in real world or in
realistic simulation environments, which requires a significant
amount of time. Observing that motivated us for applying the
developed method to robot soccer as the first step by learning
the necessary skills in simplified simulated environments and
using the learned policies on real robots. Therefore, as a future
work we plan to use this approach to generate policies for
multi-robot teams in real environments.

REFERENCES

[1] E. Lòpez, R. Barea, L. M. Bergasa, and M. Escudero, “Visually
augmented POMDP for indoor robot navigation,” in Applied Informatics,
2003, pp. 183–187.

[2] M. T. J. Spaan and N. A. Vlassis, “A point-based POMDP algorithm
for robot planning,” in ICRA, 2004, pp. 2399–2404.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman, “The complexity
of decentralized control of markov decision processes,” in
UAI ’00: Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 32–37. [Online]. Available:
http://portal.acm.org/citation.cfm?id=719912

[4] E. A. Hansen, “Dynamic programming for partially observable stochas-
tic games,” in Proceedings of the Nineteenth National Conference on
Artificial Intelligence, 2004, pp. 709–715.

[5] D. Szer and F. Charpillet, “MAA*: A heuristic search algorithm for
solving decentralized pomdps,” in Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, 2005, pp. 576–583.

[6] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman, “Solving
transition independent decentralized markov decision processes,”
Journal of Artificial Intelligence Research, vol. 22, pp. 423–455,
December 2004. [Online]. Available: http://mas.cs.umass.edu/paper/368

[7] C. V. Goldman and S. Zilberstein, “Decentralized control of cooperative
systems: Categorization and complexity analysis,” Journal of Artificial
Intelligence Research, vol. 22, p. 2004, 2004.

[8] D. S. Bernstein, “Bounded policy iteration for decentralized pomdps,”
in Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, 2005, pp. 1287–1292.

[9] R. Nair and M. Tambe, “Taming decentralized pomdps: Towards efficient
policy computation for multiagent settings,” in IJCAI, 2003, pp. 705–
711.

[10] B. Eker and H. L. Akin, “Using evolution strategies to solve
DEC-POMDP problems,” Soft Computing - A Fusion of Foundations,
Methodologies and Applications, vol. 14, pp. 35–47, 2010. [Online].
Available: http://dx.doi.org/10.1007/s00500-008-0388-7

[11] “Aldebaran-Nao humanoid robot,” http://www.aldebaran-
robotics.com/eng/Nao.php.

[12] “FESTO Robotino,” http://www.festo-didactic.com/int-en/learning-
systems/education-and-research-robots-robotino/.


