Uncertainty

Uncertainty

1
m Our knowledge is incomplete and changing to include
new facts

m How can we solve problems in the face of this
incompleteness?

m Logic fails in such cases - but humans are capable of
solving problems in these situations

m We need methods that can handle uncertainty

Uncertainty

===
m Ambiguity
> Things can be interpreted in more than one way

m Incompleteness
> Some information missing

Sources of Uncertainty

m Incorrectness

Human error

Equipment error

False negative - rejecting a true hypothesis
False positive - accepting a false hypothesis

m Measurement

> Precision, how precise e.g. cm or mm
> Accuracy - calibration
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Sources of Uncertainty

m Random
> Due to noise, loose wires etc.
m Systematic

> Due to error in reading
— e.g. user giving inches not cm

m Reasoning
> Wrongly formulated or learnt rules

Example of reasoning with uncertainty

m Abbott, Babbitt and Cabot are suspects in a murder
case

m Abbott’s alibi: registration in a respectable hotel in
Albany

m Babbitt’s alibi: was visiting his brother-in-law in
Brooklyn at the time of the murder

m Cabot’s alibi: watching a ski meet in the Catskills (but
no witnesses)

Example of reasoning with uncertainty
(Cont’d)

m We have the following beliefs:
> Abbott, Babbitt, or Cabot committed the murder
> Abbott did not commit the murder (alibi)
> Babbitt did not commit the murder (alibi)
> Cabot may have committed the murder (his alibi is weak)
m We must solve this problem based on “beliefs” using “belief
states”

> | believe that Cabot is the murderer because he has the weakest
alibi

Example of reasoning with uncertainty
(Cont’d)

m Now consider that Cabot is able to document his alibi (someone
took a photograph of him watching the ski meet)
> Cabot’s alibi is now stronger
m Babbitt’s brother-in-law might be lying
> Babbitt’s alibi is now weaker
m Abbott’s registry could be forged
> Abbott’s alibi is now weaker
m How do we deal with such uncertainties? What conclusion(s)
should we draw?




Symbolic Approaches

Monotonic Reasoning

m Conventional reasoning mechanisms, such as logic, can make
inferences based on information that has the following
properties:

> Inferences are made based on that the knowledge used is
‘complete’, i.e. all facts and rules required for these inferences have
been included in the knowledge base.

> Facts that are necessary to solve the problem are present or can
be derived from the knowledge provided in the knowledge base.

> Facts and knowledge are consistent, i.e. new facts or knowledge
does not invalidate old ones.

> Facts are either known to be true or false
> Inferences can be established as either true or false.
m Such a reasoning mechanism is called monotonic reasoning

m [f any of the above properties is not satisfied, conventional logic-
based reasoning mechanisms become inadequate.

Nonmonotonic Reasoning

m Nonmonotonic reasoning addresses the following
issues:

> extending the knowledge base so that inferences can be
made on the basis of lack of information as well as the
presence of it. It makes distinction between: it is known that
a fact is not true and the fact is not known.

> updating information in the knowledge base when a new fact
is added. New inferences will be made based on the new
facts.

> resolving conflicts when several inconsistent inferences are
made. This is solved either by assigned preferences or
allowing for multi-solution inferences.

Nonmonotonic Reasoning Mechanisms

m There are a number of reasoning mechanisms which uses
nonmonotonic reasoning, such as

> nonmonotonic logic,
> closed world assumption,
> Truth Maintenance Systems




Non-monotonic Logic

m A system where statements can be T, F or neither
(knowledge does not have to be complete)

m There is no formalism like Resolution, so we must
develop more “ad hoc” methods.

m Add an operator M to first order predicate calculus
m M means “True if consistent”

Non-monotonic Logic

m Now we are able to prove things T and F with
statements that include M because it means that we
assume any future information will be consistent. If
not, our proof does not hold

m Example:
> VX, Y: related (X,Y) AM Get Along (X,Y) =Will Defend (X, Y)

= That is, we assume that if X and Y are related then X will
defend Y. However, if we learn that X does not get along
with Y then this becomes false.

Default Logic

m A logic where assumptions are made when rules are introduced

A:B---> “If Ais provable and it is
C consistent to assume B then
conclude C”

m This is different from Non-monotonic logic by requiring the
assumption to be made at the time a rule is introduced (i.e. you
cannot add new rules of this form)

Abduction

m Standard deduction (Modus Ponens) states that if
you know A is true and you have the rule A = B, then
you can conclude B is true. This is truth preserving

m In Abduction, we turn this around to read if B is true

and you have a rule A = B then you can conclude A
is true. This is not truth preserving.




Abduction

m Abduction is more often used when we have several rules A1 =
B, A2 =B, A3= B, A4 = B, etc...

m If B is true, what caused it (what was responsible for B being
true)? Our answer is A1 or A2 or A3 or A4, but which one?
m We can use our beliefs to pick the right one.
m Abduction is often used for explanations:
> diagnosis/credit assignment
> theory understanding/legal reasoning
> recognition/perception/natural language understanding

Reconsider the murder case

1
m We assume Cabot’s alibi is good because of the
photograph.

m We assume that Abbott really went to the hotel
because of the hotel’s reputation.

m We believe that Babbitt’'s brother might lie (he has
been known to lie before)

m Therefore, we conclude that Babbitt is the murderer

Minimalist Reasoning

m In our belief model, we only know what we can currently prove
to be true (we do not include things that may later be proven
false -- i.e. no assumptions).

m Closed World Assumption (CWA) - if we do not know
something is true, then it is false.

m Circumscription - Limiting conclusions (or interpretations) that
should be derived given new axioms

A problem with CWA

m CWA does not take into account interactions
between pieces of knowledge

> consider our murder case, we know that murderer(A) or
murderer(B) or murderer(C) and we have alibi(A), alibi(B),
alibi(C), or NOT murderer(A), NOT murderer(B), NOT
murderer(C), thus we have an inconsistency
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Implementations

1
m Augmenting a problem solver with “UNLESS”
m Dependency-Directed Backtracking
m Justification-based Truth Maintenance System
m Assumption-based Truth Maintenance System
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Using UNLESS

m Augment rules with the Unless clause which
introduces exceptions to a rule

m Use forward chaining if the problem is data-driven

m Use backward chaining if the problem is goal-driven -
this approach will not be able to determine if/when
new information becomes available and thus is not
as useful
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Dependency-Directed Backtracking

m Consider the following example:

> We want to prove F

> We have a nonmonotonic rule If A = F

> We have no reason not to assume A, so we assume A is
true

-~ F=GAH

> By some other facts, we can also derive M A N

>~ We learn A is not true. Backtracking would remove F, G, H,
M A N. F, G A H may not be true, but M A N were derived
independently!

23

Truth Maintenance Systems

m A Truth Maintenance System (TMS) is responsible
for:

m Enforcing logical relations among beliefs.
> Generating explanations for conclusions.
> Finding solutions to search problems
> Supporting default reasoning.

> ldentifying causes for failure and recover from
inconsistencies.

= The TMS / |E relationship is the following:

Justifications, assumptiops

Inference
Engine T™S

Beliefs, contradictions

Problem Solver

24




Families of TMSs

m There are several families of TMSs, which differ in the
representation scheme they use and the functionality they
support:

> Justification-based TMSs. The language used is limited to Horn
formulas.

> Logic-based TMSs. These use a full propositional logic language.

> Assumption-based TMSs. Language limited to Horn formulas, but
several alternatives (contexts) can be explored at the same time.

> Non-monotonic JTMSs. Language limited to Horn formulas, but
allow non-monotonic justifications, thus making it possible to
implement default reasoning.

> Clause Management Systems. Their representational power is
equivalent to LTMSs, but like ATMSs can support several contexts at
the same time.

> Contradiction-tolerant TMSs. Language limited to Horn formulas,
but support non-monotonic and plausible reasoning and deal explicitly
with contradictions in a single context.
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Justification-Based TMS

m To justify (believe) an assertion, all items in the “IN-
list” must be believed while all items in the “OUT-list”
must be disbelieved.

Seamer Aot Supported Belief

Jostification

IMdi=t QOUT di=t
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A breadth-first approach

m JTMS - depth-first search of possible beliefs with
dependency-directed backtracking

m Here, backtracking is avoided by considering multiple
belief states at one time

m As the search space is expanded, any states that are
inconsistent are pruned away reducing some of the
search
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Numerical Approaches

28




Probabilistic Reasoning

29

Statistical Reasoning

m Nonmonotonic reasoning can be used to model belief
systems in which facts are believed to be true, false
or unknown.

m However, for some problems, it is useful to be able to
describe beliefs that are not certain but for which
there is some supporting evidence.
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Classes of Problems

m There are two broad classes of problems.

> The first class contains problems for which there is a
genuine randomness of the world.

— Playing cards or throwing dice are examples of such problems.

— These problems can be statistically modeled and it is possible
to predict the likelihood of various outcomes, though complete
certainty is not possible.

>~ The second class of problems the relevant world is not
random.

— Many ‘common sense tasks’ fall into this class, such as, in
certain domains, fault diagnostic and engineering design.

— The difficulty is that there are many more possible exceptions
than we can enumerate explicitly. For problems like these,
statistical measures may serve as a means to ‘summarize’ the
world rather than modeling every eventuality or exceptions.
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Examples of Probabilistic Knowledge

m Consider that your grass is wet, what caused it?
> There is a 30% chance of rain
> We run the sprinkler 3 times per week
> The water main might break one chance in 1000
m We need ways to represent and reason over this
form of knowledge
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Why Reason Probabilistically?

® In many problem domains it isn't possible to create complete,
consistent models of the world. Therefore agents (and people)
must act in uncertain worlds (which the real world is).
m We want an agent to make rational decisions even when there
is not enough information to prove that an action will work.
m Some of the reasons for reasoning under uncertainty:
> True uncertainty. E.g., flipping a coin.
> Theoretical ignorance. There is no complete theory which is known
about the problem domain. E.g., medical diagnosis.

> Laziness. The space of relevant factors is very large, and would
require too much work to list the complete set of antecedents and
consequents. Furthermore, it would be too hard to use the
enormous rules that resulted.

> Practical ignorance. Uncertain about a particular individual in the
domain because all of the information necessary for that individual
has not been collected.
m Probability theory will serve as the formal language for
representing and reasoning with uncertain knowledge.
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Representing Belief about Propositions

m Rather than reasoning about the truth or falsity of a proposition,
reason about the belief that a proposition or event is true or
false

m For each primitive proposition or event, attach a degree of
belief to the sentence

m Use probability theory as a formal means of manipulating
degrees of belief

m Given a proposition, A, assign a probability, P(A), such that
0 <= P(A) <=1, where if A is true, P(A)=1, and if A is false,
P(A)=0.

m Proposition A must be either true or false, but P(A) summarizes
our degree of belief in A being true/false.
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Examples
=== —

m P(Weather=Sunny) = 0.7 means that we believe that

the weather will be Sunny with 70% certainty.

> In this case Weather is a random variable that can take on
values in a domain such as {Sunny, Rainy, Snowy, Cloudy}.

m P(Cavity=True) = 0.05 means that we believe there is

a 5% chance that a person has a cavity.

> Cavity is a Boolean random variable since it can take on
possible values True and False.

m P(A=a A B=b) = P(A=a, B=b) = 0.2, where
A=My_Mood, a=happy, B=Weather, and b=rainy,
means that there is a 20% chance that when it's
raining my mood is happy.
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Obtaining and Interpreting Probabilities

m There are several senses in which probabilities can be
obtained and interpreted, among them the following:

> Frequentist Interpretation: The probability is a property of a
population of similar events. e.g., ifsetS=P UN,andP nNis
the empty set, then the probability of an object being in set P is
|P|/|S|. Hence, in this interpretation probabilities come from
experiments and determining the population associated with a
given proposition.

> Subjectivist Interpretation: A subjective degree of belief in a
proposition or the occurrence of an event. E.g., the probability
that you'll pass final exam based on your own subjective
evaluation of the amount of studying you've done and your
understanding of the material. Hence, in this interpretation
probabilities characterize the agent's beliefs.

36




Concepts

m We will assume that in a given problem domain, the
programmer and expert identify all of the relevant
propositional variables that are needed to reason
about the domain.

m Each of these will be represented as a random
variable, i.e., a variable that can take on values from
a set of mutually exclusive and exhaustive values
called the sample space or partition of the random
variable.
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Types of Random Variables

m Boolean random variables, always have the domain
{true; false}.

m Discrete random variables, which include Boolean
random variables as a special case, take on values
from a finite domain.

>~ For example, the domain of Weather might be {sunny; rainy;
cloudy; snow}.

> The values in the domain must be mutually exclusive and
exhaustive.
m Continuous random variables take on values from
the real numbers. The domain may be the entire real
line or some subset such as the interval [0,1].
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Axioms of Probability Theory

1. All probabilities are between 0 and 1. For any
proposition a,
0 <P(a)<1

2. Necessarily true (i.e., valid) propositions have
probability 1, and necessarily false (i.e.,
unsatisfiable) propositions have probability 0.
P(true) = 1 P(false) =0

3. The probability of a disjunction is given by
P(a v b) =P(a) +P(b) —P(axb)
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Prior probability
T E EEE==——
m The unconditional or prior probability associated
with a proposition A is the degree of belief accorded
to it in the absence of any other information, and is
written as P(A).

m P(A) can only be used when there is no other
information. As soon as some new information is
known, we have to reason with the conditional
probability of a given that new information.
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Joint Probability Distribution

m Given an application domain in which we have
determined a sufficient set of random variables to
encode all of the relevant information about that
domain, we can completely specify all of the possible
probabilistic information by constructing the full joint
probability distribution,

(V,=vy, Vo=v,, ..., V =v,),
m which assigns probabilities to all possible
combinations of values to all random variables.

4

Properties of Joint Probability Table

m With n Boolean variables the table will be of size 2.

m If nvariables each had k possible values, then the table
would be size k".

m The sum of the probabilities in the right column must
equal 7 since we know that the set of all possible values
for each variable are known.

m This means that for n Boolean random variables, the
table has 2"-1 values that must be determined to
completely fill in the table.

m If all of the probabilities are known for a full joint
probability distribution table, then we can compute any
probabilistic statement about the domain.
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Conditional Probabilities

m Conditional probabilities formalize the process of
accumulating evidence and updating probabilities
based on new evidence.

m If P(A|B) = 1, this is equivalent to the sentence in
Propositional Logic B => A.

m Similarly, if P(A|B) =0.9, then this is like saying B =>
A with 90% certainty.

m Given several measurements and other "evidence",
E,, ..., E,, we will formulate queries as

P(QQ|E,, E,, ..., E))

m meaning "what is the degree of belief that Q is true
given that we know E,, ..., E, and nothing else."

m Conditional probability is defined as:

P(A|B) = P(A n B)/P(B)
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Important Rules Related to Conditional
Probability

m Rewriting the definition of conditional probability,
we get the Product Rule: P(A nB) = P(A|B)P(B)
m Chain Rule:
~ P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D),
> which generalizes the product rule for a joint
probability of an arbitrary number of variables.
> Note that ordering the variables results in a different
expression, but all have the same resulting value.
m Conditionalized version of the Chain Rule:
P(A,B|C) = P(A|B,C)P(B|C)
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Bayes Rule

P(A A B) =P(A | B)P(B)
P(A A B) =P(B | A)P(A)
Equating the two right-hand sides and dividing by P(B), we get
Bayes’ Rule:
P(B|A)=P(A|B)P(B)
P(A)

m Bayes's Rule is the basis for probabilistic reasoning
because given a prior model of the world in the form
of P(A) and a new piece of evidence B, Bayes's Rule
says how the new piece of evidence decreases the
ignorance about the world by defining P(A|B).
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Using Bayes's Rule for Medical Diagnosis

m A doctor knows that the disease meningitis causes
the patient to have a stiff neck, say, 50% of the time.

m The doctor also knows some unconditional facts: the
prior probability of a patient having meningitis is
1/50,000, and the prior probability of any patient
having a stiff neck is 1/20.

m Letting s be the proposition that the patient has a stiff
neck and m be the proposition that the patient has
meningitis, we have

P(s | m) = 0.5, P(m) = 1/50000, P(s) = 1/20
P(m | s) = P(s | m)P(m) = 0.5 X 1/50000 = 0.0002
P(s) 1/20
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Combining Multiple Evidence using
Bayes's Rule

m Generalizing Bayes's Rule for two pieces of
evidence, B and C, we get:
P(AIB A C) = ((P(A)P(B A C | A))/P(B,C) = P(A) *
[P(BIA)/P(B)] * [P(C | A A B)/P(C|B)]

m Again, this shows how the conditional probability of A
is updated given B and C.

m The problem is that it may be hard in general to
obtain or compute P(C | A,B).

m But this difficulty is circumvented if we know evidence
B and C are conditionally independent or
unconditionally independent.
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Independence

m A is (unconditionally) independent of B if
P(A|B) = P(A). In this case, P(A A B) = P(A)P(B).
m A is conditionally independent of B given C if
P(A|B A C) = P(A|C) and, symmetrically,
P(B|A A C) = P(B|C).
> What this means is that if we know P(A|C), we also

know P(A|B 4 C), so we don't need to store this case.
Furthermore, it also means that

~ P(A 4 B|C) = P(A|C)P(B|C).
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Bayes's Rule with Multiple, Independent
Evidence

m Assuming conditional independence of B and
C given A, we can simplify Bayes's Rule for
two pieces of evidence B and C:

P(A | B,C) = (P(A)P(B,C | A))/P(B,C) =
(P(A)P(BIA)P(C|A))/(P(B)P(C|B)) =
P(A) * [P(B|A)/P(B)] * [P(C|A)/P(C|B)] =
(P(A) * P(BJA) * P(C|A))/P(B,C)
m Furthermore, if B and C are (unconditionally)
independent, then P(C|B) = P(C), so
P(A|B,C) = P(A) * [P(B|A)/P(B)] * [P(C|A)/P(C)]
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Naive Bayes Classifier

m Say we have a random variable, C, which represents
the possible ways to classify an input pattern of
features that have been measured.

m The domain of C is the set of possible classifications,
e.g., it might be the possible diagnoses in a medical
domain.

m Say the possible values for C are {a, b, c}, and the
features we have measured are E;, E,, ..., E,.

m Then we can compute P(C=a | E,, ..., E,), P(C=b | E;,
..., Ey) and P(C=c | E,, ..., E,) assuming E;, ..., E, are
independent using the above formula, and choose the
value for C that gives the maximum probability.
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Example

m Consider the medical domain consisting of three
Boolean variables: PickledLiver, Jaundice,
Bloodshot, where the first indicates if a given patient
has the "disease" PickledLiver, and the second and
third describe symptoms of the patient.

m We'll assume that Jaundice and Bloodshot are
independent.

m The doctor wants to determine the likelihood that the
patient has a PickledLiver.

m Based on no other information, she knows that the
prior probability P(PickledLiver) = 10-7. So, this
represents the doctor's initial belief in this diagnosis.
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Example (Cont’d)

m However, after examination, she determines that the
patient has jaundice.

m She knows that P(Jaundice) = 2-° and P(Jaundice |
PickledLiver) = 2-3, so she computes the new
updated probability in the patient having PickledLiver
as:

m P(PickledLiver | Jaundice) = P(P)P(J|P)/P(J)

= (217 * 2:8)/2-10
— 2-10

m So, based on this new evidence, the doctor increases

her belief in this diagnosis from 2-17 to 2-1°.
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Example (Cont’d)

m Next, she determines that the patient's eyes are
bloodshot, so now we need to add this new piece of
evidence and update the probability of PickledLiver
given Jaundice and Bloodshot.

m Say,
> P(Bloodshot) = 26 and
> P(Bloodshot | PickledLiver) = 2-1.

m Then, she computes the new conditional probability:
P(PickledLiver | Jaundice, Bloodshot)
= (P(P)P(J|P)P(B|P))/(P(J)P(B))
=210*[21/26] =25
m So, after taking both symptoms into account, the doctor's
belief that the patient has a PickledLiver is 2-°.
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Certainty Factors
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Mycin

m Mycin is the oldest and best known expert system

m lts function is to diagnose certain bacterial infections
and recommend a drug treatment

Mycin

m Rules are of the form:
IF: 1) The strain of the organism is gramneg
AND
2) The morphology of the rod is coccus
THEN:

There is strongly suggestive evidence (0.8) that
the genus of the organism is neisseria
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Handling uncertainty: Certainty Factors

m Everything in Mycin has a certainty factor associated
with it
m CFs range from —1..1
> -1 means definitely not
> +1 means definitely
> 0 means equally likely and unlikely
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Certainty Factors

m User can input CFs in the range —10..10, which are
converted to the range —1..1

m These CFs are propagated through the rules

m CFsin the range —0.2..0.2 are not propagated as
their values are too small
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Propagating CFs

m For a rule of the form:
> If Aand B and C then D
m The CF associated with D is found by taking the
minimum CF of A, B and C and then multiplying it by
the CF associated with the rule

Propagating CFs

m For a rule of the form:
> If AorBor CthenD

m The maximum CF associated with A, B or C is taken
and then multiplied by the CF associated with the

rule
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Propagating CFs

m If two CFs are derived for the same conclusion
they are combined as follows:
m New CF = CF1 + CF2 — (CF1)(CF2)
> If both CF1 & CF2 >0
m New CF = CF1 + CF2 + (CF1)(CF2)
> If both CF1 & CF2< 0
m New CF = (CF1 + CF2) / (1- min(|CF1[,|CF2|))

> Otherwise
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Comments on Certainty Factors

m These calculations are not probabilistic

m They assume that the conclusions are
independent

m These problems are a restriction on the
viability of Mycin, however as long as the
same conclusion isn’t reached too often this
shouldn’t create a problem

m Mycin has a very shallow search space
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Examples

m If the following are known:
~ A CF(0.4)
~ B CF(0.7)
~ C CF(0.9)
m And the rule
> If A and B and C then E(0.4)
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Examples

m For ands we take min
m Sominof0.4,0.7,0.9=0.4

m Multiply this by the CF for the rule (0.4)
> Gives 0.16

m This is < 0.2 and so is ignored
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Examples

m Given:
~ A CF(0.4)
~ B CF(0.7)
~ C CF(0.9)
m And the rule:
> If A or B or C then E(0.4)
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Examples

m For or's we take max
m So max of 0.4, 0.7, 0.9 gives 0.9.
m Multiplying by CF of rule (0.4)
> Gives 0.36
m This is > 0.2 so the CF for E becomes 0.36
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Examples

m Given:

~ E CF(0.4)
m And the rule
> |f Aor B or C then E (0.7)
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Examples

m Or's so max of 0.7, 0.8, 0.5=0.8

m Multiply this by CF for rule 0.8*0.7 = 0.56
m > 0.2 so new CF for E is 0.56

m Already have a CF for E of 0.4

m Need to combine them
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Examples

m As both > 0 15t rule applies
> New CF = CF1 + CF2 — (CF1)(CF2)
=0.4+0.56-0.4*0.56
=0.96 — 0.224
=0.736
New CF for E is therefore 0.736
This reinforces existing CF
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Theoretical Flaws in Mycin

m Mycin assumes that a failure to establish the truth of
something, despite attempts to do so means that it is
false

m The threshold of 0.2 is arbitrary

m Mycin detects and rejects circularity in rules such as:

>~ [f Athen B
> [f Bthen C
> [fCthen A
m By ignoring the first rule

m This is not always the best approach
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Theoretical flaws in Mycin

m Self referencing rules cause a problem
m Example

> |dent = pseudomonas CF(0.3)

> Burn = true CF(1.0)

> Skinless = true CF(0.3)
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Theoretical flaws in Mycin

m  Given the following rules:
1) If burn = true and ident = pseudomonas then
e ident = pseudomonas with CF(1.0)

2) If skinless = true and ident = pseudomonas then
e ident = pseudomonas with CF(1.0)
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Theoretical flaws in Mycin

m [f rule 1 fires first the CF of the premise is 0.3, so the
rule gives a new CF for pseudomonas of 0.3*1 = 0.3
m Combining this with the existing CF gives
~ 0.3+0.3-0.3*0.3 =0.51
m After applying rule 2 this is updated to
~ 0.51 +0.3-0.51*0.3 =0.657
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Theoretical flaws in Mycin

m If rule 2 fires first the CF of the premise is 0.3 so the
rule gives a new CF for pseudomonas of 0.3*1.0 =
0.3
m Combining this with the existing CF gives
~ 0.3+0.3-0.3%0.3=0.51

m After applying rule 1 this is updated to
~ 051 +0.51-0.51*0.51 = 0.7599

m The ordering of the rules is .. important
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Bayesian Networks

A Bayesian network is a directed graph in which the
following holds:

1. A set of random variables makes up the nodes of the
network. Variables may be discrete or continuous.

2. A set of directed links or arrows connects pairs of nodes.
If there is an arrow from node X to node Y , X is said to
be a parentof Y .

3. Each node X; has an associated conditional probability
distribution P(X; | Parents(X; )) that quantifies the effect
of the parents on the node.

4. The graph has no directed cycles (hence is a directed,
acyclic graph, or DAG).
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Bayesian Networks
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Properties of Bayesian Networks
|
m Bayesian Networks are a space-efficient data structure
for encoding all of the information in the full joint
probability distribution for the set of random
variables defining a domain.
m Represents all of the direct causal relationships
between variables

m Space efficient because it exploits the fact that in many
real-world problem domains the dependencies
between variables are generally local, so there are a lot
of conditionally independent variables

m Captures both qualitative and quantitative relationships
between variables

m Can be used to reason
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Semantics

m Global semantics defines the full joint distribution as
the product of the local conditional distributions

P(Xla-'-aXn) - ;:T!=1P(Xi-
e.g., P(JAMAAN-BA-E)is given by??

= P(‘IB)P(‘\E)P(A'ﬂB A ﬂE)P(J'A)P(ﬂ/ﬂA)

Parents(X;))

m Local semantics: each node is conditionally
independent of its nondescendants given its parents
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Compactness

m In Bayesian networks, it is reasonable to suppose that
in most domains each random variable is directly
influenced by at most k others, for some constant k.

m |f we assume n Boolean variables for simplicity, then
the amount of information needed to specify each
conditional probability table will be at most 2 numbers,
and the complete network can be specified by n2k
numbers.

In contrast, the joint distribution contains 2" numbers.

m Example:
> Suppose we have 30 nodes (n=30) and each has at most 5
parents (k=5 ).
> Then the Bayesian network requires 960 numbers, but the full
joint distribution requires over a billion.
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Markov blanket

m Each node is conditionally
independent of all others given its
Markov blanket:

parents + children + childrens parent
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Example

Toothache @

m Weather is independent of the other three variables and
Toothache and Catch are conditionally independent
given Cavity.
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Burglary Example

Burglary Earthquake I'::,:

-

':J‘l‘)" AT T
- T|
s il

You have a new burglar alarm
installed at home. It is fairly reliable at
detecting a burglary, but also
responds on occasion to minor
earthquakes.

You also have two neighbors, John
and Mary, who have promised to call
you at work when they hear the
alarm.

John always calls when he hears the
alarm, but sometimes confuses the
telephone ringing with the alarm and
calls then, too.

Mary, on the other hand, likes rather
loud music and sometimes misses
the alarm altogether.

Given the evidence of who has or
has not called, we would like to

estimate the probability of a burglary.
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Example

m The probability of the event that the alarm has
sounded but neither a burglary nor an earthquake
has occurred, and both John and Mary call.

P(HAmAanN—bN—e)
= P(jla)P(ml|a)P(al=b A —e)P(=b) P(=e)
= 0.90 x 0.70 x 0.001 x 0.999 x 0.998 = 0.00062
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Reasoning with Bayesian Networks

m Inference in Bayesian networks means computing
the probability distribution of a set of query variables,
given a set of evidence variables.

m predictive reasoning (causal reasoning)
Forward (top-down) from causes to effects

m diagnostic reasoning

Backward (bottom-up) from effects to causes
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Constructing Belief Networks

m Need a method such that a series of locally testable
assertions of conditional independence guarantees
the required global semantics

1. Choose an ordering of variables X3,..., X,
2. Fori=1ton
add X, to the network
select parents from X, ..., X, such that
P(X,-|Pa*rent5(X;_)) = P(.Ygl."(l, ey .Y,'_l)

This choice of parents guarantees the global semantics:
P(X,,....X,) =II'_ P(X)|X,, ..., Xi—1) (chain rule)
= II'_,P(X;|Parents(X;)) by construction
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Example Car diagnosis

m [nitial evidence: car won't start
m Testable variables (green), “broken, so fix it" variables (orange)

m Hidden variables (gray) ensure sparse structure, reduce
parameters
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Example: Car insurance

.
NS

MedicalCos
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Fuzzy Logic
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Fuzzy Thinking
1
m Experts rely on common sense when they solve problems.
m How can we represent expert knowledge that uses vague
terms?
m Fuzzy logic is not logic that is fuzzy, but logic that is used to
describe fuzziness.
m Fuzzy logic is the theory of fuzzy sets, sets that calibrate
vagueness.
m Fuzzy logic is based on the idea that all things admit of degrees.

> Temperature, height, speed, distance, beauty - all come on a
sliding scale.

> The motor is running really hot.
> Aliis a very tall person.
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History

m Fuzzy, or multi-valued logic was introduced in the
1930s by Jan Lukasiewicz, a Polish philosopher.

m While classical logic operates with only two values 1
(true) and 0 (false), Lukasiewicz introduced logic that
extended the range of truth values to all real numbers
in the interval between 0 and 1.

m He used a number in this interval to represent the
possibility that a given statement was true or false.

m This work led to an inexact reasoning technique often
called possibility theory.
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History

. _______________________________________________________________________________|
m In 1965 Lotfi Zadeh, published his famous paper
"Fuzzy sets".
m Zadeh extended the work on possibility theory into a
formal system of mathematical logic, and introduced
a new concept for applying natural language terms.
m This new logic for representing and manipulating
fuzzy terms was called fuzzy logic.
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Fuzzy Logic
==
m Set of mathematical principles for knowledge
representation based on degrees of membership.

m Unlike two-valued Boolean logic, fuzzy logic is multi-
valued.

m It deals with degrees of membership and degrees
of truth.

m Fuzzy logic uses the continuum of logical values
between 0 (completely false) and 1 (completely true).
Instead of just black and white, it employs the
spectrum of colors, accepting that things can be
partly true and partly false at the same time.
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Why use fuzzy logic?

Pros:
m Conceptually easy to understand with “natural” mathematics
m Tolerant of imprecise data

m Universal approximation: can model arbitrary nonlinear
functions

| Intuitive
m Based on linguistic terms

m Convenient way to express expert and common sense
knowledge

Cons:
m Not a cure-all

m Crisp/precise models can be more efficient and even
convenient

m Other approaches might be formally verified to work

Fuzzy sets

m Boolean/Crisp set A is a mapping for the elements of S to the
set {0, 1}, i.e., A: S > {0, 1}
m Characteristic function:

B 1 if X is an element of set A
pa(x) =

0 if X is not an element of set A
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* Fuzzy set F is a mapping for the elements of S to the interval [0, 1],
ie., F:S >0, 1]
* Characteristic function: 0 < pg(x) <1

* 1 means full membership, 0 means no membership and anything in
between, e.g., 0.5 is called graded membership
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Fuzzy Set Example: Tall Men

Name Height, cm Degree of Membership
Crisp Fuzzy

Al 208 1 1.00
Cemal 205 1 1.00
Hasan 198 1 0.98
Ismail 181 1 0.82
Orhan 179 0 0.78
Ahmet 172 0 0.24
Abdullah 167 0 0.15
Baris 158 0 0.06
Cetin 155 0 0.01
Sezai 152 0 0.00
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Fuzzy Set Example: Tall Men

Degree of ;
Mombershi Crisp Scts
10
0.8
0.6
0.4
02+
06 T T T T T T T T T T
150 160 176 180 190 200 210
Teight, cm
Degree of
Minbership Fuzzy Sets
1.0
0.8
8.6
04+
B2
0.0 T T T T T T T T T T T
150 160 170 180 190 200 210
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Membership functions: S-function Membership functions: P-Function

m The S-function can be used to define B P(xab=
fuzzy sets >~ S(x, b-a, b-a/2, b) forx<b
B S(x ab )= > 1—-S(x, b, b+a/2, a+b) for x> b
- 0 forx<a
> 2(x-a/c-a)? fora<x<b
>~ 1-2(x-c/c-a)? forb<x<c
- 1 | forx=c - E.g., close (to a)

405

01 C
§ 16 |1'7 1|3 19 2
el 0 20 40 80 80 100
o7 b-a b-a’2 a b+a/2 b+a
Simple membership functions Other representations of fuzzy sets

m Piecewise linear: triangular etc. m A finite set of elements:
m Easier to represent and calculate = saves computation
F =X+ p/X +...op/X,

+ means (Boolean) set union

m For example:

TALL = {0/1.0, 0/1.2, 0/1.4, 0.2/1.6, 0.8/1.7, 1.0/1.8}
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Fuzzy set operators

m Equalty A=B

ta (X) = pg (X) forallx e X
m Complement A’

pa (X) =1 - pa(x) forallx e X
m Containment A< B

Ha (X) < pg (X) forallx e X

m Union A UB
Haus (X) = max(uy (x), g (x)) for all x € X
m Intersection AN B
B 8 (%) = min(, (%), g (X)) for all x € X
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Example fuzzy set operations

Aa

ANB AVE
A B

Woomoo® & m & o7
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Linguistic Hedges
L |
m Modifying the meaning of a fuzzy set using hedges
such as very, more or less, slightly, etc.

m VeryF=F
More or less F = F'2 ; [ B
m elc. o0

o8

More or less tal
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Fuzzy relations

m A fuzzy relation for N sets is defined as an extension of the crisp
relation to include the membership grade.

R = {ﬂH(X1, X2, XN)/(X1, X2, XN) | X,' EX, ’=1, IV}
which associates the membership grade, w5, of each tuple.
m Eg.

Friend = {0.9/(Ali, Niyazi), 0.1/(Ali, Demir),
0.8/(Ayse, Melih), 0.3/(Ayse, Cemal)}
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Fuzzy Inference Systems (FIS)

mAlso known as
> Fuzzy models
> Fuzzy associate memories (FAM)
> Fuzzy controllers

Rule base Data base |
(Fuzzy rules) (MFs)

input B> \ / output

Fuzzy reasoning J
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Fuzzy inference

1
Fuzzy logical operations

Fuzzy rules

Fuzzification

Implication

Aggregation

[
[
[
[
[
m Defuzzification
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Fuzzy Inference

m Process of mapping from a given input to an output
using fuzzy set theory

m In Fuzzy Logic system all rules fire in parallel
Rules may fire partially

m Monotonic Selection - Truth membership grade of
rule consequent can be estimated directly from the
truth membership grade in the antecedent
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Fuzzy Inference

m Rules may have multiple antecedents
> All parts are calculated simultaneously and
resolved to a single number using set operations
m Rules may have multiple consequents
> All parts are affected equally by the antecedents
> The output of each rule is a fuzzy set

> Need to obtain single crisp number representing
expert system output
— Aggregate output fuzzy sets into single output fuzzy set
— Defuzzifies resulting set into single number
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Fuzzy Rules

m Conclusions that fuzzy systems arrive at are
fuzzy facts with degrees of membership
> E.qg. risk is low with membership of 0.5
m Outcome must however be a concrete
decision e.g. loan money etc
m Process of transforming fuzzy fact into crisp
fact is defuzzification
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Defuzzification

m Converts fuzzy value into single crisp value

m Fuzzy set may not be easily translated into
into crisp values
m Methods
> Max-membership
> Centroid method
> Weighted average method
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Fuzzy logical operations

m AND, OR, NOT, efc. From the
following truth

tables it is seen
that fuzzy logic is
a superset of
Boolean logic.

m NOTA =A =1-pp(x)
m AANDB=ANB =min(u, (X), pug (X))
B AORB =AuUB =max(u, (x), ug (x))

min(A,B) max(A,B) 1-A
A B AandB A B AoB A notA
0 0 0 0 0 1
0 1 0 0o 1 1 1 0

1 0 0 1 0 1
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If-Then Rules

m Use fuzzy sets and fuzzy operators as the subjects and verbs
of fuzzy logic to form rules.

if xis Athenyis B
where A and B are linguistic terms defined by fuzzy sets on the
sets X and Y respectively.
This reads
ifx==Atheny=B

12




Fuzzy If-Then Rules

* Mamdani style
If pressure is high then volume is small

T

e Sugeno style
If speed is medium then resistance = 5*speed

edium
A -::> resistance = 5*speed
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Evaluation of fuzzy rules

m In Boolean logic: p=q
if p is true then q is true

m In fuzzy logic: p=q
if p is true to some degree then q is true to some degree.

0.5p => 0.5q (partial premise implies partially)

m How?
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Evaluation of fuzzy rules (cont’d)

==
m Apply implication function to the rule

m Most common way is to use min to “chop-off” the
consequent (prod can be used to scale the
consequent)
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Summary: If-Then rules
. _____________________________________________________________________________|
m Fuzzify inputs
Determine the degree of membership for all terms in
the premise.
If there is one term then this is the degree of support
for the consequence.

m Apply fuzzy operator
If there are multiple parts, apply logical operators to
determine the degree of support for the rule.

m Apply implication method
Use degree of support for rule to shape output fuzzy
set of the consequence.

m How do we then combine several rules?
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Multiple rules

m We aggregate the outputs into a single fuzzy set which
combines their decisions.

m The input to aggregation is the list of truncated fuzzy sets
and the output is a single fuzzy set for each variable.

m Aggregation rules: max, sum, etc.

m As long as it is commutative then the order of rule exec is
irrelevant.
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max-min rule of composition

m Given N observations E; over X and hypothesis H; over Y we
have N rules:

if E; then H,
if E, then H,

if Ey then Hy

By = max[min(ugq), Min(pgy), ... Min(pgy)]
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Defuzzify the output

m Take a fuzzy set and produce a single crisp number that
represents the set.

m Practical when making a decision, taking an action etc.

Xy X Center of gravity

/N

Center of largest area
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Fuzzy Inference System

m Mamdani-style inference
> Step 1: Fuzzification of input variables
> Step 2: Rule Evaluation
> Step 3: Aggregation of Rule Outputs
> Step 4: Defuzzification
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Fuzzy Inference - Mamdani

Rule1: Rulet:

. . . IF project_funding is adequate OR
IF xis A3ORYyis B1 THEN zis C1 project_staffing is small THEN risk
Rule2: is low
IF x is A2 AND y is B2 THEN z is C2 Rule2:
Rule3: IF project_funding is marginal AND

ules: project_staffing is large THEN risk is
IF xis A1 THEN z is C3 normal
Rule3:

X= prolect funding, ) IF project_funding is inadequate THEN
A1l=inadequate, A2=marginal, A3- risk is high

adequate on universe of discourse X
y=project staffing,

B1=small, B2=large on universe of
discourse Y

z=risk

C1=low, C2=normal, C3=high on
universe of discourse Z
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Fuzzy Inference - Mamdani

m Step1 : Fuzzification

> Take crisp inputs x, and y, and determine the degree to which
inputs belong to fuzzy sets

> X, and y, are limited to universes of discourse X and Y
> Experts determine range of universe
> Some can be measured directly, others only on basis of expert
opinion
m Our example
> Universe X and Y are from 0 to 100%

> Suppose our crisp input x1 is 35% and has been rated as
falling into inadequate and marginal to degrees of 0.5 and 0.2
respectively

> Crisp input y, is 60% which falls into small and large with
degrees of 0.1 and 0.7 respectively
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Fuzzy Inference - Mamdani

m Step 2: Rule Evaluation

> Take fuzzified inputs and apply them to
antecedents of rules

> |f rule has multiple antecedents then fuzzy
operator is used to get single number to represent
result

> Result is then applied to consequent membership
function

> Result can be produced by clipping or scaling
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Fuzzy Inference - Mamdani

m Our Example
> Rulet:
~ IF x is A3 (0.0) or y is B1(0.1) THEN z is C1(0.1)
> Rule2:
~ IF x is A2(0.2) AND y is B2(0.7) THEN z is C2(0.2)
> RuleS:
~ IF x is A1(0.5) THEN z is C3(0.5)

m Clipped or scaled

> Rule1 =0.0 + 0.1 - 0.0x0.1=0.1
> Rule2=0.2x0.7=0.14

124




Fuzzy Inference - Mamdani

m Step3: Aggregation of Rule outputs
> Unification of outputs of all rules

> Take rule outputs and combine into a single fuzzy
set

> One fuzzy set for each variable
m Our Example
> zis C1(0.1), zis C2(0.2), z is C3(0.5)
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Fuzzy Inference - Mamdani

m Step4: Defuzzification
> Need to provide a crisp number
> Most popular technique is centroid technique

> Finds the point where a vertical line would slice the
aggregate set into two equal masses

COG - D ()X,

B Zﬂi (@)
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Fuzzy Inference- Mamdani

m Our Problem

(0+10+20)x0.1+(30+40+50+60)x 0.2+ (70+80+90+100) x 0.5
0.1+0.1+0.1+02+02+0.2+02+0.5+0.5+0.5+0.5

COG =

=67.4
So
z=67.4
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Sugeno Style

If speed is low then resistance = 2
If speed is medium then resistance = 4*speed
If speed is high then resistance = 8*speed

MFs low medium high
.8
3
A
2 Speed

Rule1: w1 =0.3;r1 =2
Rule 2: w2 = 0.8; r2 = 4*2 Resistance = X(wi*ri) / Zwi

Rule 3: w3 = 0.1; r3 = 8*2 =7.12
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First-Order Sugeno FIS

* Rule base
If Xis A1and Y is B1 then Z = p1*x + q1*y + 11
If Xis A2and Y is B2 then Z = p2*x + q2*y + I2

* Fuzzy reasoning
/‘Y /\B1 Z1 =
wi * *
) J k P1*X+q1*y+r
X Y
~ Az B: 2= m
f \ f k W2 po*X+Q2ty+r2
X

Y

x=3 y=2 z= W *Z1+W2*2Z2
P - Wi+W2
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Limitations of fuzzy logic

m How to determine the membership functions?
Usually requires fine-tuning of parameters

m Defuzzification can produce undesired results
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Distinctions to Probabilities

m Why both fuzzy sets and probabilities use real
numbers to “describe” a degree of membership they
differ:

= membership functions are not necessarily based on statistic
distributions

> fuzzy logic deals with deterministic plausibilities

> probabilities deal more with non-deterministic but stochastic
events and their likelihoods
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Dempster-Shafer Theory
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Dempster-Shafer Theory

m mathematical theory of evidence
> uncertainty is modeled through a range of probabilities
— instead of a single number indicating a probability
> sound theoretical foundation

> allows distinction between belief, disbelief, ignorance (non-
belief)

> certainty factors are a special case of DS theory
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Frame of Discernment

m Universe of Discourse 0, also called a Frame of
Discernment, is a set of mutually exclusive
alternatives.

> Given the example of determining the disease of a patient, 6
would be the set consisting of all possible diseases.

m Subsets of 6 are the class of general propositions in
the domain.

>~ For example, the proposition "The disease is infectious"
corresponds to the set of the elements of 6 which are
infectious, i.e. {"Influenza", "Small Pox",...}.
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DS Theory Notation

m environment ® = {O,, O,, ..., O,}
> set of objects O, that are of interest
~ ©={0,,0,,..., 0}

m frame of discernment FD (Universe of Discourse)
> A set of mutually exclusive alternatives

B mass probability function m

> assigns a value from [0,1] to every item in the frame of
discernment

> describes the degree of belief in analogy to the mass of a
physical object
m mass probability m(A)
> portion of the total mass probability that is assigned to a specific
element A of FD
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Belief and Certainty

m belief Bel(A) in a set A
> sum of the mass probabilities of all the proper subsets of A
— all the mass that supports A
> likelihood that one of its members is the conclusion
> also called support function
m plausibility PIs(A)
> maximum belief of A
> upper bound for the range of belief
m certainty Cer(A)
> interval [Bel(A), Pls(A)]
— also called evidential interval
> expresses the range of belief
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Combination of Mass Probabilities

m combining two masses in such a way that the new
mass represents a consensus of the contributing
pieces of evidence

> set intersection puts the emphasis on common elements of
evidence, rather than conflicting evidence
mm®&m;,(C) =Z x ny My(X) " my(Y)
=C m,(X) * my(Y)/ (1- X NY)
=C m,(X) * my(Y)
where

X, Y are hypothesis subsets and

Cis theirintersectonC=XnNY

@ is the orthogonal or direct sum
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Differences Probabilities - DF Theory

Aspect Probabilities Dempster-Shafer
Aggregate Sum 2 Pi=1 m(®) < 1
Subset X c Y P(X) < P(Y) m(X) > m(Y) allowed
relationship X, =X P(X) + P (=X) =1 m(X) + m(—X) < 1
(ignorance)
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Evidential Reasoning

m extension of DS theory that deals with uncertain,
imprecise, and possibly inaccurate knowledge

m also uses evidential intervals to express the
confidence in a statement

> lower bound is called support (Spt) in evidential reasoning,
and belief (Bel) in Dempster-Shafer theory

> upper bound is plausibility (Pls)

140




Evidential Intervals

Completely true [1,1]

Completely false [0,0]

Completely ignorant [0,1]

Tends to support [Bel,1] where 0 < Bel < 1
Tends to refute [0,PIs] where 0 < PIs < 1

Tends to both support and refute | [Bel,PIs] where 0 < Bel < Pls< 1

Bel: belief; lower bound of the evidential interval
Pls: plausibility; upper bound

Advantages and Problems of Dempster-
Shafer

m advantages
> clear, rigorous foundation
> ability to express confidence through intervals
— certainty about certainty
> proper treatment of ignorance
m problems
> non-intuitive determination of mass probability
> very high computational overhead
> may produce counterintuitive results due to normalization
> usability somewhat unclear
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