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Uncertainty
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Uncertainty

Our knowledge is incomplete and changing to include 
new facts
How can we solve problems in the face of this 
incompleteness?
Logic fails in such cases - but humans are capable of 
solving problems in these situations
We need methods that can handle uncertainty
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Uncertainty

Ambiguity
Things can be interpreted in more than one way

Incompleteness
Some information missing

4

Sources of Uncertainty

Incorrectness
Human error
Equipment error
False negative - rejecting a true hypothesis
False positive - accepting a false hypothesis

Measurement
Precision, how precise e.g. cm or mm
Accuracy - calibration



5

Sources of Uncertainty

Random
Due to noise, loose wires etc.

Systematic
Due to error in reading

– e.g. user giving inches not cm

Reasoning
Wrongly formulated or learnt rules
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Example of reasoning with uncertainty

Abbott, Babbitt and Cabot are suspects in a murder 
case
Abbott’s alibi: registration in a respectable hotel in 
Albany
Babbitt’s alibi: was visiting his brother-in-law in 
Brooklyn at the time of the murder
Cabot’s alibi: watching a ski meet in the Catskills (but 
no witnesses)
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Example of reasoning with uncertainty 
(Cont’d)

We have the following beliefs:
Abbott, Babbitt, or Cabot committed the murder
Abbott did not commit the murder (alibi)

Babbitt did not commit the murder (alibi)
Cabot may have committed the murder (his alibi is weak)

We must solve this problem based on “beliefs” using “belief 
states”

I believe that Cabot is the murderer because he has the weakest 
alibi
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Example of reasoning with uncertainty 
(Cont’d)

Now consider that Cabot is able to document his alibi (someone 
took a photograph of him watching the ski meet)

Cabot’s alibi is now stronger 

Babbitt’s brother-in-law might be lying
Babbitt’s alibi is now weaker

Abbott’s registry could be forged
Abbott’s alibi is now weaker

How do we deal with such uncertainties?  What conclusion(s) 
should we draw?
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Symbolic Approaches
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Monotonic Reasoning

Conventional reasoning mechanisms, such as logic, can make 
inferences based on information that has the following 
properties: 

Inferences are made based on that the knowledge used is 
‘complete’, i.e. all facts and rules required for these inferences have 
been included in the knowledge base. 
Facts that are necessary to solve the problem are present or can
be derived from the knowledge provided in the knowledge base. 
Facts and knowledge are consistent, i.e. new facts or knowledge 
does not invalidate old ones. 
Facts are either known to be true or false 
Inferences can be established as either true or false. 

Such a reasoning mechanism is called monotonic reasoning
If any of the above properties is not satisfied, conventional logic-
based reasoning mechanisms become inadequate.
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Nonmonotonic Reasoning

Nonmonotonic reasoning addresses the following 
issues: 

extending the knowledge base so that inferences can be 
made on the basis of lack of information as well as the 
presence of it. It makes distinction between: it is known that 
a fact is not true and the fact is not known. 
updating information in the knowledge base when a new fact 
is added. New inferences will be made based on the new 
facts. 
resolving conflicts when several inconsistent inferences are 
made. This is solved either by assigned preferences or 
allowing for multi-solution inferences. 
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Nonmonotonic Reasoning Mechanisms

There are a number of reasoning mechanisms which uses 
nonmonotonic reasoning, such as

nonmonotonic logic, 
closed world assumption, 
Truth Maintenance Systems
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Non-monotonic Logic

A system where statements can be T, F or neither 
(knowledge does not have to be complete)
There is no formalism like Resolution, so we must 
develop more “ad hoc” methods.
Add an operator M to first order predicate calculus
M means “True if consistent”
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Non-monotonic Logic

Now we are able to prove things T and F with 
statements that include M because it means that we 
assume any future information will be consistent.  If 
not, our proof does not hold
Example:  

∀X, Y:  related (X,Y) ∧M Get Along (X,Y) ⇒Will Defend (X, Y)

That is, we assume that if X and Y are related then X will 
defend Y.  However, if we learn that X does not get along 
with Y then this becomes false.
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Default Logic

A logic where assumptions are made when rules are introduced

A : B --->  “If A is provable and it is
C             consistent to assume B then        

conclude C”
This is different from Non-monotonic logic by requiring the 
assumption to be made at the time a rule is introduced (i.e. you
cannot add new rules of this form)
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Abduction

Standard deduction (Modus Ponens) states that if 
you know A is true and you have the rule A ⇒ B, then 
you can conclude B is true.  This is truth preserving
In Abduction, we turn this around to read if B is true 
and you have a rule A ⇒ B then you can conclude A 
is true.  This is not truth preserving.



17

Abduction

Abduction is more often used when we have several rules A1 ⇒
B, A2 ⇒ B, A3 ⇒ B, A4 ⇒ B, etc...  
If B is true, what caused it (what was responsible for B being 
true)?  Our answer is A1 or A2 or A3 or A4, but which one?  
We can use our beliefs to pick the right one.
Abduction is often used for explanations:

diagnosis/credit assignment
theory understanding/legal reasoning
recognition/perception/natural language understanding
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Reconsider the murder case

We assume Cabot’s alibi is good because of the 
photograph.  
We assume that Abbott really went to the hotel 
because of the hotel’s reputation.  
We believe that Babbitt’s brother might lie (he has 
been known to lie before)
Therefore, we conclude that Babbitt is the murderer
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Minimalist Reasoning

In our belief model, we only know what we can currently prove 
to be true (we do not include things that may later be proven 
false -- i.e. no assumptions).  
Closed World Assumption (CWA) - if we do not know 
something is true, then it is false. 
Circumscription - Limiting conclusions (or interpretations) that 
should be derived given new axioms
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A problem with CWA

CWA does not take into account interactions 
between pieces of knowledge

consider our murder case, we know that murderer(A) or 
murderer(B) or murderer(C) and we have alibi(A), alibi(B), 
alibi(C), or NOT murderer(A), NOT murderer(B), NOT 
murderer(C), thus we have an inconsistency
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Implementations

Augmenting a problem solver with “UNLESS”
Dependency-Directed Backtracking
Justification-based Truth Maintenance System
Assumption-based Truth Maintenance System
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Using UNLESS

Augment rules with the Unless clause which 
introduces exceptions to a rule
Use forward chaining if the problem is data-driven
Use backward chaining if the problem is goal-driven -
this approach will not be able to determine if/when 
new information becomes available and thus is not 
as useful
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Dependency-Directed Backtracking

Consider the following example:
We want to prove F
We have a nonmonotonic rule If A ⇒ F
We have no reason not to assume A, so we assume A is 
true

F ⇒ G ∧ H
By some other facts, we can also derive M ∧ N
We learn A is not true.  Backtracking would remove F, G, H, 
M ∧ N.  F, G ∧ H may not be true, but M ∧ N were derived 
independently! 
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Truth Maintenance Systems

A Truth Maintenance System (TMS) is responsible 
for:
Enforcing logical relations among beliefs.

Generating explanations for conclusions.
Finding solutions to search problems 
Supporting default reasoning.
Identifying causes for failure and recover from 
inconsistencies.
The TMS / IE relationship is the following:

Inference
Engine TMS

Justifications, assumptions

Beliefs, contradictions

Problem Solver
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Families of TMSs

There are several families of TMSs, which differ in the 
representation scheme they use and  the functionality they 
support:

Justification-based TMSs. The language used is limited to Horn 
formulas.
Logic-based TMSs. These use a full propositional logic language.
Assumption-based TMSs. Language limited to Horn formulas, but 
several alternatives (contexts) can be explored at the same time.
Non-monotonic JTMSs. Language limited to Horn formulas, but 
allow non-monotonic justifications, thus making it possible to 
implement default reasoning.
Clause Management Systems. Their representational power is 
equivalent to LTMSs, but like ATMSs can support several contexts at 
the same time.
Contradiction-tolerant TMSs. Language limited to Horn formulas, 
but support non-monotonic and plausible reasoning and deal explicitly 
with contradictions in a single context.
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Justification-Based TMS

To justify (believe) an assertion, all items in the “IN-
list” must be believed while all items in the “OUT-list”
must be disbelieved.
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A breadth-first approach

JTMS - depth-first search of possible beliefs with 
dependency-directed backtracking
Here, backtracking is avoided by considering multiple 
belief states at one time
As the search space is expanded, any states that are 
inconsistent are pruned away reducing some of the 
search
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Numerical Approaches
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Probabilistic Reasoning
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Statistical Reasoning

Nonmonotonic reasoning can be used to model belief 
systems in which facts are believed to be true, false 
or unknown. 
However, for some problems, it is useful to be able to 
describe beliefs that are not certain but for which 
there is some supporting evidence. 
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Classes of Problems

There are two broad classes of problems. 
The first class contains problems for which there is a 
genuine randomness of the world. 

– Playing cards or throwing dice are examples of such problems. 

– These problems can be statistically modeled and it is possible 
to predict the likelihood of various outcomes, though complete 
certainty is not possible. 

The second class of problems the relevant world is not 
random. 

– Many ‘common sense tasks’ fall into this class, such as, in 
certain domains, fault diagnostic and engineering design. 

– The difficulty is that there are many more possible exceptions 
than we can enumerate explicitly. For problems like these, 
statistical measures may serve as a means to ‘summarize’ the 
world rather than modeling every eventuality or exceptions.
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Examples of Probabilistic Knowledge

Consider that your grass is wet, what caused it?
There is a 30% chance of rain
We run the sprinkler 3 times per week
The water main might break one chance in 1000

We need ways to represent and reason over this 
form of knowledge
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Why Reason Probabilistically?
In many problem domains it isn't possible to create complete, 
consistent models of the world. Therefore agents (and people) 
must act in uncertain worlds (which the real world is). 
We want an agent to make rational decisions even when there 
is not enough information to prove that an action will work. 
Some of the reasons for reasoning under uncertainty: 

True uncertainty. E.g., flipping a coin. 
Theoretical ignorance. There is no complete theory which is known 
about the problem domain. E.g., medical diagnosis. 
Laziness. The space of relevant factors is very large, and would 
require too much work to list the complete set of antecedents and 
consequents. Furthermore, it would be too hard to use the 
enormous rules that resulted. 
Practical ignorance. Uncertain about a particular individual in the 
domain because all of the information necessary for that individual 
has not been collected. 

Probability theory will serve as the formal language for 
representing and reasoning with uncertain knowledge. 
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Representing Belief about Propositions

Rather than reasoning about the truth or falsity of a proposition, 
reason about the belief that a proposition or event is true or 
false 
For each primitive proposition or event, attach a degree of 
belief to the sentence 
Use probability theory as a formal means of manipulating 
degrees of belief 
Given a proposition, A, assign a probability, P(A), such that 
0 <= P(A) <= 1, where if A is true, P(A)=1, and if A is false, 
P(A)=0. 
Proposition A must be either true or false, but P(A) summarizes 
our degree of belief in A being true/false. 
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Examples 

P(Weather=Sunny) = 0.7 means that we believe that 
the weather will be Sunny with 70% certainty. 

In this case Weather is a random variable that can take on 
values in a domain such as {Sunny, Rainy, Snowy, Cloudy}. 

P(Cavity=True) = 0.05 means that we believe there is 
a 5% chance that a person has a cavity. 

Cavity is a Boolean random variable since it can take on 
possible values True and False. 

P(A=a ∧ B=b) = P(A=a, B=b) = 0.2, where 
A=My_Mood, a=happy, B=Weather, and b=rainy, 
means that there is a 20% chance that when it's 
raining my mood is happy. 
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Obtaining and Interpreting Probabilities

There are several senses in which probabilities can be 
obtained and interpreted, among them the following: 

Frequentist Interpretation: The probability is a property of a 
population of similar events. e.g., if set S = P ∪ N, and P ∩ N is 
the empty set, then the probability of an object being in set P is 
|P|/|S|. Hence, in this interpretation probabilities come from 
experiments and determining the population associated with a 
given proposition. 
Subjectivist Interpretation: A subjective degree of belief in a 
proposition or the occurrence of an event. E.g., the probability
that you'll pass final exam based on your own subjective 
evaluation of the amount of studying you've done and your 
understanding of the material. Hence, in this interpretation 
probabilities characterize the agent's beliefs. 
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Concepts

We will assume that in a given problem domain, the 
programmer and expert identify all of the relevant 
propositional variables that are needed to reason 
about the domain. 
Each of these will be represented as a random 
variable, i.e., a variable that can take on values from 
a set of mutually exclusive and exhaustive values 
called the sample space or partition of the random 
variable.
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Types of Random Variables

Boolean random variables, always have the domain 
{true; false}. 
Discrete random variables, which include Boolean 
random variables as a special case, take on values 
from a finite domain. 

For example, the domain of Weather might be {sunny; rainy; 
cloudy; snow}. 
The values in the domain must be mutually exclusive and 
exhaustive. 

Continuous random variables take on values from 
the real numbers. The domain may be the entire real 
line or some subset such as the interval [0,1]. 
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Axioms of Probability Theory

1. All probabilities are between 0 and 1. For any 
proposition a, 

0  ≤ P(a) ≤ 1
2. Necessarily true (i.e., valid) propositions have 

probability 1, and necessarily false (i.e., 
unsatisfiable) propositions have probability 0. 
P(true) = 1 P(false) = 0

3. The probability of a disjunction is given by

P(a ∨ b) =P(a) +P(b) –P(a∧b)
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Prior probability

The unconditional or prior probability associated 
with a proposition A is the degree of belief accorded 
to it in the absence of any other information, and is 
written as P(A).
P(A) can only be used when there is no other 
information. As soon as some new information is 
known, we have to reason with the conditional 
probability of a given that new information. 
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Joint Probability Distribution

Given an application domain in which we have 
determined a sufficient set of random variables to 
encode all of the relevant information about that 
domain, we can completely specify all of the possible 
probabilistic information by constructing the full joint 
probability distribution, 

(V1=v1, V2=v2, ..., Vn=vn),
which assigns probabilities to all possible 
combinations of values to all random variables. 
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Properties of Joint Probability Table

With n Boolean variables the table will be of size 2n. 
If n variables each had k possible values, then the table 
would be size kn. 
The sum of the probabilities in the right column must 
equal 1 since we know that the set of all possible values 
for each variable are known. 
This means that for n Boolean random variables, the 
table has 2n-1 values that must be determined to 
completely fill in the table. 
If all of the probabilities are known for a full joint 
probability distribution table, then we can compute any
probabilistic statement about the domain. 
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Conditional Probabilities

Conditional probabilities formalize the process of 
accumulating evidence and updating probabilities 
based on new evidence. 
If P(A|B) = 1, this is equivalent to the sentence in 
Propositional Logic B => A. 
Similarly, if P(A|B) =0.9, then this is like saying B => 
A with 90% certainty. 
Given several measurements and other "evidence", 
E1, ..., Ek, we will formulate queries as 
P(Q | E1, E2, ..., Ek) 

meaning "what is the degree of belief that Q is true 
given that we know E1, ..., Ek and nothing else." 
Conditional probability is defined as: 
P(A|B) = P(A ∩ B)/P(B) 
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Important Rules Related to Conditional 
Probability

Rewriting the definition of conditional probability, 
we get the Product Rule: P(A ∩B) = P(A|B)P(B) 
Chain Rule: 

P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D), 
which generalizes the product rule for a joint 
probability of an arbitrary number of variables. 
Note that ordering the variables results in a different 
expression, but all have the same resulting value. 

Conditionalized version of the Chain Rule: 
P(A,B|C) = P(A|B,C)P(B|C) 
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Bayes Rule

P(A ∧ B) =P(A | B)P(B)
P(A ∧ B) =P(B | A)P(A)
Equating the two right-hand sides and dividing by P(B), we get
Bayes’ Rule:

P(B | A) = P(A | B)P(B)
P(A)

Bayes's Rule is the basis for probabilistic reasoning 
because given a prior model of the world in the form 
of P(A) and a new piece of evidence B, Bayes's Rule 
says how the new piece of evidence decreases the 
ignorance about the world by defining P(A|B). 
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Using Bayes's Rule for Medical Diagnosis

A doctor knows that the disease meningitis causes 
the patient to have a stiff neck, say, 50% of the time. 
The doctor also knows some unconditional facts: the 
prior probability of a patient having meningitis is 
1/50,000, and the prior probability of any patient 
having a stiff neck is 1/20. 
Letting s be the proposition that the patient has a stiff 
neck and m be the proposition that the patient has 
meningitis, we have
P(s | m) = 0.5, P(m) = 1/50000, P(s) = 1/20
P(m | s) = P(s | m)P(m) = 0.5 X 1/50000 = 0.0002

P(s)                1/20 
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Combining Multiple Evidence using 
Bayes's Rule

Generalizing Bayes's Rule for two pieces of 
evidence, B and C, we get: 
P(A|B ∧ C) = ((P(A)P(B ∧ C | A))/P(B,C) = P(A) * 
[P(B|A)/P(B)] * [P(C | A ∧ B)/P(C|B)] 
Again, this shows how the conditional probability of A 
is updated given B and C.
The problem is that it may be hard in general to 
obtain or compute P(C | A,B). 
But this difficulty is circumvented if we know evidence 
B and C are conditionally independent or 
unconditionally independent. 
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Independence

A is (unconditionally) independent of B if 
P(A|B) = P(A). In this case, P(A ∧ B) = P(A)P(B). 
A is conditionally independent of B given C if 
P(A|B ∧ C) = P(A|C) and, symmetrically, 
P(B|A ∧ C) = P(B|C). 

What this means is that if we know P(A|C), we also 
know P(A|B ∧ C), so we don't need to store this case. 
Furthermore, it also means that 

P(A ∧ B|C) = P(A|C)P(B|C). 
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Bayes's Rule with Multiple, Independent 
Evidence

Assuming conditional independence of B and 
C given A, we can simplify Bayes's Rule for 
two pieces of evidence B and C: 
P(A | B,C) = (P(A)P(B,C | A))/P(B,C) = 
(P(A)P(B|A)P(C|A))/(P(B)P(C|B)) = 
P(A) * [P(B|A)/P(B)] * [P(C|A)/P(C|B)] = 
(P(A) * P(B|A) * P(C|A))/P(B,C) 
Furthermore, if B and C are (unconditionally) 
independent, then P(C|B) = P(C), so 

P(A | B,C) = P(A) * [P(B|A)/P(B)] * [P(C|A)/P(C)] 
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Naive Bayes Classifier

Say we have a random variable, C, which represents 
the possible ways to classify an input pattern of 
features that have been measured. 
The domain of C is the set of possible classifications, 
e.g., it might be the possible diagnoses in a medical 
domain. 
Say the possible values for C are {a, b, c}, and the 
features we have measured are E1, E2, ..., En. 
Then we can compute P(C=a | E1, ..., En), P(C=b | E1, 
..., En) and P(C=c | E1, ..., En) assuming E1, ..., En are 
independent using the above formula, and choose the 
value for C that gives the maximum probability. 
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Example

Consider the medical domain consisting of three 
Boolean variables: PickledLiver, Jaundice, 
Bloodshot, where the first indicates if a given patient 
has the "disease" PickledLiver, and the second and 
third describe symptoms of the patient. 
We'll assume that Jaundice and Bloodshot are 
independent. 
The doctor wants to determine the likelihood that the 
patient has a PickledLiver. 
Based on no other information, she knows that the 
prior probability P(PickledLiver) = 10-17. So, this 
represents the doctor's initial belief in this diagnosis. 
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Example (Cont’d)

However, after examination, she determines that the 
patient has jaundice. 
She knows that P(Jaundice) = 2-10 and P(Jaundice | 
PickledLiver) = 2-3, so she computes the new 
updated probability in the patient having PickledLiver
as:  
P(PickledLiver | Jaundice) = P(P)P(J|P)/P(J) 

= (2-17 * 2-3)/2-10

= 2-10

So, based on this new evidence, the doctor increases 
her belief in this diagnosis from 2-17 to 2-10. 
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Example (Cont’d)

Next, she determines that the patient's eyes are 
bloodshot, so now we need to add this new piece of 
evidence and update the probability of PickledLiver
given Jaundice and Bloodshot. 
Say, 

P(Bloodshot) = 2-6 and 
P(Bloodshot | PickledLiver) = 2-1. 

Then, she computes the new conditional probability:  
P(PickledLiver | Jaundice, Bloodshot) 

= (P(P)P(J|P)P(B|P))/(P(J)P(B)) 
= 2-10 * [2-1 / 2-6] = 2-5

So, after taking both symptoms into account, the doctor's 
belief that the patient has a PickledLiver is 2-5.
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Certainty Factors
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Mycin

Mycin is the oldest and best known expert system
Its function is to diagnose certain bacterial infections 
and recommend a drug treatment
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Mycin

Rules are of the form:
IF: 1) The strain of the organism is gramneg

AND
2) The morphology of the rod is coccus

THEN: 
There is strongly suggestive evidence (0.8) that 

the genus of the organism is neisseria
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Handling uncertainty: Certainty Factors

Everything in Mycin has a certainty factor associated 
with it
CFs range from –1..1

-1 means definitely not
+1 means definitely
0 means equally likely and unlikely
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Certainty Factors

User can input CFs in the range –10..10, which are 
converted to the range –1..1
These CFs are propagated through the rules
CFs in the range –0.2..0.2 are not propagated as 
their values are too small
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Propagating CFs

For a rule of the form:
If A and B and C then D

The CF associated with D is found by taking the 
minimum CF of A, B and C and then multiplying it by 
the CF associated with the rule
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Propagating CFs

For a rule of the form:
If A or B or C then D

The maximum CF associated with A, B or C is taken 
and then multiplied by the CF associated with the 
rule
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Propagating CFs

If two CFs are derived for the same conclusion 
they are combined as follows:
New CF = CF1 + CF2 – (CF1)(CF2)

If both CF1 & CF2 > 0

New CF = CF1 + CF2 + (CF1)(CF2)
If both CF1 & CF2 < 0

New CF = (CF1 + CF2) / (1- min(|CF1|,|CF2|))
Otherwise
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Comments on Certainty Factors

These calculations are not probabilistic
They assume that the conclusions are 
independent
These problems are a restriction on the 
viability of Mycin, however as long as the 
same conclusion isn’t reached too often this 
shouldn’t create a problem
Mycin has a very shallow search space
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Examples

If the following are known:
A CF(0.4)
B CF(0.7)
C CF(0.9)

And the rule
If A and B and C then E(0.4)
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Examples

For ands we take min
So min of 0.4, 0.7, 0.9 = 0.4
Multiply this by the CF for the rule (0.4)

Gives 0.16

This is < 0.2 and so is ignored
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Examples

Given:
A CF(0.4)
B CF(0.7)
C CF(0.9)

And the rule:
If A or B or C then E(0.4)
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Examples

For or’s we take max
So max of 0.4, 0.7, 0.9 gives 0.9.
Multiplying by CF of rule (0.4)

Gives 0.36

This is > 0.2 so the CF for E becomes 0.36
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Examples

Given:
A CF(0.7)
B CF(0.8)
C CF(0.5)
E CF(0.4)

And the rule
If A or B or C then E (0.7)
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Examples

Or’s so max of 0.7, 0.8, 0.5 = 0.8
Multiply this by CF for rule 0.8*0.7 = 0.56
> 0.2 so new CF for E is 0.56
Already have a CF for E of 0.4
Need to combine them
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Examples

As both > 0 1st rule applies
New CF = CF1 + CF2 – (CF1)(CF2)

= 0.4 + 0.56 – 0.4 * 0.56
= 0.96 – 0.224
= 0.736

New CF for E is therefore 0.736
This reinforces existing CF
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Theoretical Flaws in Mycin

Mycin assumes that a failure to establish the truth of 
something, despite attempts to do so means that it is 
false
The threshold of 0.2 is arbitrary
Mycin detects and rejects circularity in rules such as:

If A then B
If B then C
If C then A

By ignoring the first rule
This is not always the best approach

71

Theoretical flaws in Mycin

Self referencing rules cause a problem
Example

Ident = pseudomonas CF(0.3)
Burn = true CF(1.0)
Skinless = true CF(0.3)
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Theoretical flaws in Mycin

Given the following rules:
1) If burn = true and ident = pseudomonas then

• ident = pseudomonas with CF(1.0)

2) If skinless = true and ident = pseudomonas then
• ident = pseudomonas with CF(1.0)
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Theoretical flaws in Mycin

If rule 1 fires first the CF of the premise is 0.3, so the 
rule gives a new CF for pseudomonas of 0.3*1 = 0.3
Combining this with the existing CF gives

0.3 + 0.3 – 0.3*0.3 = 0.51

After applying rule 2 this is updated to
0.51 + 0.3 – 0.51 * 0.3 = 0.657
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Theoretical flaws in Mycin

If rule 2 fires first the CF of the premise is 0.3 so the 
rule gives a new CF for pseudomonas of 0.3*1.0 = 
0.3
Combining this with the existing CF gives

0.3 + 0.3 – 0.3 * 0.3 = 0.51

After applying rule 1 this is updated to
0.51 + 0.51 – 0.51 * 0.51 = 0.7599

The ordering of the rules is ∴ important
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Bayesian Networks

A Bayesian network is a directed graph in which the 
following holds:

1. A set of random variables makes up the nodes of the 
network. Variables may be discrete or continuous.

2. A set of directed links or arrows connects pairs of nodes. 
If there is an arrow from node X to node Y , X is said to 
be a parent of Y .

3. Each node Xi has an associated conditional probability 
distribution P(Xi | Parents(Xi )) that quantifies the effect 
of the parents on the node.

4. The graph has no directed cycles (hence is a directed, 
acyclic graph, or DAG).
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Bayesian Networks
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Properties of Bayesian Networks

Bayesian Networks are a space-efficient data structure 
for encoding all of the information in the full joint 
probability distribution for the set of random 
variables defining a domain. 
Represents all of the direct causal relationships 
between variables 
Space efficient because it exploits the fact that in many 
real-world problem domains the dependencies 
between variables are generally local, so there are a lot 
of conditionally independent variables 
Captures both qualitative and quantitative relationships 
between variables 
Can be used to reason 
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Semantics

Global semantics defines the full joint distribution as 
the product of the local conditional distributions

Local semantics: each node is conditionally 
independent of its nondescendants given its parents
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Compactness

In Bayesian networks, it is reasonable to suppose that 
in most domains each random variable is directly 
influenced by at most k others, for some constant k.
If we assume  n Boolean variables for simplicity, then 
the amount of information needed to specify each 
conditional probability table will be at most  2k numbers, 
and the complete network can be specified by  n2k

numbers. 
In contrast, the joint distribution contains  2n numbers. 
Example: 

Suppose we have 30 nodes (n=30) and each has at most 5 
parents (k=5 ).
Then the Bayesian network requires 960 numbers, but the full 
joint distribution requires over a billion.
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Markov blanket

Each node is conditionally 
independent of all others given its 
Markov blanket:

parents + children  + childrens parents
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Example

Weather is independent of the other three variables and 
Toothache and Catch are conditionally independent 
given Cavity.
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Burglary Example

You have a new burglar alarm 
installed at home. It is fairly reliable at 
detecting a burglary, but also 
responds on occasion to minor 
earthquakes. 
You also have two neighbors, John 
and Mary, who have promised to call 
you at work when they hear the 
alarm. 
John always calls when he hears the 
alarm, but sometimes confuses the 
telephone ringing with the alarm and 
calls then, too.
Mary, on the other hand, likes rather 
loud music and sometimes misses 
the alarm altogether. 
Given the evidence of who has or 
has not called, we  would like to 
estimate the probability of a burglary.
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Example

The probability of the event that the alarm has 
sounded but neither a burglary nor an earthquake 
has occurred, and both John and Mary call. 
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Reasoning with Bayesian Networks

Inference in Bayesian networks means computing 
the probability distribution of a set of query variables, 
given a set of evidence variables. 
predictive reasoning (causal reasoning)
Forward (top-down) from causes to effects 
diagnostic reasoning
Backward (bottom-up) from effects to causes 
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Constructing Belief Networks

Need a method such that a series of locally testable 
assertions of conditional independence guarantees 
the required global semantics
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Example Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce 
parameters
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Example: Car insurance
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Fuzzy Logic
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Fuzzy Thinking

Experts rely on common sense when they solve problems.
How can we represent expert knowledge that uses vague 
terms?
Fuzzy logic is not logic that is fuzzy, but logic that is used to 
describe fuzziness. 
Fuzzy logic is the theory of fuzzy sets, sets that calibrate 
vagueness.
Fuzzy logic is based on the idea that all things admit of degrees. 

Temperature, height, speed, distance, beauty - all come on a 
sliding scale. 
The motor is running really hot. 

Ali is a very tall person.
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History

Fuzzy, or multi-valued logic was introduced in the 
1930s by Jan Lukasiewicz, a Polish philosopher.
While classical logic operates with only two values 1 
(true) and 0 (false), Lukasiewicz introduced logic that 
extended the range of truth values to all real numbers 
in the interval between 0 and 1. 
He used a number in this interval to represent the 
possibility that a given statement was true or false. 
This work led to an inexact reasoning technique often 
called possibility theory.
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History

In 1965 Lotfi Zadeh, published his famous paper 
"Fuzzy sets". 
Zadeh extended the work on possibility theory into a 
formal system of mathematical logic, and introduced 
a new concept for applying natural language terms.
This new logic for representing and manipulating 
fuzzy terms was called fuzzy logic.
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Fuzzy Logic

Set of mathematical principles for knowledge 
representation based on degrees of membership.
Unlike two-valued Boolean logic, fuzzy logic is multi-
valued. 
It deals with degrees of membership and degrees 
of truth. 
Fuzzy logic uses the continuum of logical values 
between 0 (completely false) and 1 (completely true). 
Instead of just black and white, it employs the 
spectrum of colors, accepting that things can be 
partly true and partly false at the same time.
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Why use fuzzy logic?

Pros:
Conceptually easy to understand with “natural” mathematics
Tolerant of imprecise data
Universal approximation: can model arbitrary nonlinear 
functions
Intuitive
Based on linguistic terms
Convenient way to express expert and common sense 
knowledge

Cons:
Not a cure-all
Crisp/precise models can be more efficient and even 
convenient
Other approaches might be formally verified to work
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Fuzzy sets

Boolean/Crisp set A is a mapping for the elements of S to the 
set {0, 1}, i.e., A: S {0, 1}
Characteristic function:

µA(x) = { 1 if x is an element of set A

0 if x is not an element of set A

• Fuzzy set F is a mapping for the elements of S to the interval [0, 1], 
i.e., F: S [0, 1]

• Characteristic function:  0 ≤ µF(x)  ≤ 1
• 1 means full membership, 0 means no membership and anything in 

between, e.g., 0.5 is called graded membership
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Fuzzy Set Example: Tall Men

1.00
1.00
0.98
0.82
0.78
0.24
0.15
0.06
0.01
0.00

1
1
1
1
0
0
0
0
0
0

208
205
198
181
179
172
167
158
155
152

Ali
Cemal
Hasan
İsmail
Orhan
Ahmet

Abdullah
Barış
Çetin
Sezai

Membership 
Fuzzy

Degree of
Crisp

Height, cmName
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Fuzzy Set Example: Tall Men
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Membership functions: S-function

The S-function can be used to define 
fuzzy sets
S(x, a, b, c) =

0 for x ≤ a
2(x-a/c-a)2 for a ≤ x ≤ b
1 – 2(x-c/c-a)2 for b ≤ x ≤ c
1 for x ≥ c

a b c

98

Membership functions: P-Function

P(x, a, b) = 
S(x, b-a, b-a/2, b) for x ≤ b
1 – S(x, b, b+a/2, a+b) for x ≥ b

E.g., close (to a)

b-a b+a/2b-a/2 b+a

a

a
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Simple membership functions

Piecewise linear: triangular etc.

Easier to represent and calculate ⇒ saves computation
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Other representations of fuzzy sets

A finite set of elements:

F = µ1/x1 + µ2/x2 + … µn/xn

+ means (Boolean) set union

For example:

TALL = {0/1.0, 0/1.2, 0/1.4, 0.2/1.6, 0.8/1.7, 1.0/1.8}
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Fuzzy set operators

Equality A = B
µA (x) = µB (x) for all x ∈ X
Complement A’
µA’ (x) = 1 - µA’(x) for all x ∈ X
Containment A ⊆ B
µA (x) ≤ µB (x) for all x ∈ X
Union A ∪B
µA ∪ B (x) = max(µA (x), µB (x)) for all x ∈ X
Intersection A ∩ B
µA ∩ B (x) = min(µA (x), µB (x)) for all x ∈ X
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Example fuzzy set operations

A’

A ∩ B A ∪ B

A B 
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Linguistic Hedges

Modifying the meaning of a fuzzy set using hedges 
such as very, more or less, slightly, etc.

Very F = F2

More or less F = F1/2

etc. tall

More or less tall

Very tall
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Fuzzy relations

A fuzzy relation for N sets is defined as an extension of the crisp 
relation to include the membership grade.

R = {µR(x1, x2, … xN)/(x1, x2, … xN)  | xi ∈ X, i=1, … N}

which associates the membership grade, µR , of each tuple.

E.g. 

Friend = {0.9/(Ali, Niyazi), 0.1/(Ali, Demir),
0.8/(Ayşe, Melih), 0.3/(Ayşe, Cemal)}
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Fuzzy Inference Systems (FIS)

Also known as
Fuzzy models
Fuzzy associate memories (FAM)
Fuzzy controllers

Rule base
(Fuzzy rules)

Data base
(MFs)

Fuzzy reasoning

input output
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Fuzzy inference

Fuzzy logical operations
Fuzzy rules
Fuzzification
Implication
Aggregation
Defuzzification
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Fuzzy Inference

Process of mapping from a given input to an output 
using fuzzy set theory
In Fuzzy Logic system all rules fire in parallel
Rules may fire partially
Monotonic Selection - Truth membership grade of 
rule consequent can be estimated directly from the 
truth membership grade in the antecedent
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Fuzzy Inference

Rules may have multiple antecedents
All parts are calculated simultaneously and 
resolved to a single number using set operations 

Rules may have multiple consequents
All parts are affected equally by the antecedents 
The output of each rule is a fuzzy set
Need to obtain single crisp number representing 
expert system output

– Aggregate output fuzzy sets into single output fuzzy set
– Defuzzifies resulting set into single number
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Fuzzy Rules

Conclusions that fuzzy systems arrive at are 
fuzzy facts with degrees of membership

E.g. risk is low with membership of 0.5

Outcome must however be a concrete 
decision e.g. loan money etc
Process of transforming fuzzy fact into crisp 
fact is defuzzification
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Defuzzification

Converts fuzzy value into single crisp value
Fuzzy set may not be easily translated into 
into crisp values
Methods

Max-membership
Centroid method
Weighted average method
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Fuzzy logical operations

AND, OR, NOT, etc.

NOT A    = A’ = 1 - µA’(x)
A AND B = A ∩ B  = min(µA (x), µB (x))
A OR B   = A ∪ B  = max(µA (x), µB (x))

A B A and B

0 0 0

0 1 0

1 0 0

1 1 1

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

A not A

0 1

1 0

1-Amax(A,B)min(A,B)

From the 
following truth 
tables it is seen 
that fuzzy logic is 
a superset of 
Boolean logic.
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If-Then Rules

Use fuzzy sets and fuzzy operators as the subjects and verbs
of fuzzy logic to form rules.

if x is A then y is B
where A and B are linguistic terms defined by fuzzy sets on the 
sets X and Y respectively.
This reads
if x == A then y = B
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Fuzzy If-Then Rules

• Mamdani style
If pressure is high then volume is small

high small

• Sugeno style
If speed is medium then resistance = 5*speed

medium
resistance = 5*speed
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Evaluation of fuzzy rules

In Boolean logic: p ⇒ q
if p is true then q is true

In fuzzy logic: p ⇒ q
if p is true to some degree then q is true to some degree.

0.5p => 0.5q (partial premise implies partially)

How? 
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Evaluation of fuzzy rules (cont’d)

Apply implication function to the rule
Most common way is to use min to “chop-off” the 
consequent (prod can be used to scale the 
consequent)
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Summary: If-Then rules

Fuzzify inputs
Determine the degree of membership for all terms in 
the premise.
If there is one term then this is the degree of support 
for the consequence.
Apply fuzzy operator
If there are multiple parts, apply logical operators to 
determine the degree of support for the rule.
Apply implication method
Use degree of support for rule to shape output fuzzy 
set of the consequence.

How do we then combine several rules?
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Multiple rules

We aggregate the outputs into a single fuzzy set which 
combines their decisions.  
The input to aggregation is the list of truncated fuzzy sets 
and the output is a single fuzzy set for each variable.
Aggregation rules: max, sum, etc.
As long as it is commutative then the order of rule exec is 
irrelevant.
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max-min rule of composition

Given N observations Ei over X and hypothesis Hi over Y we 
have N rules: 

if E1 then H1

if E2 then H2

if EN then HN

µH = max[min(µE1), min(µE2), … min(µEN)]
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Defuzzify the output

Take a fuzzy set and produce a single crisp number that 
represents the set.
Practical when making a decision, taking an action etc.

Σ µI x
Σ µI

Center of largest area

Center of gravity
I=
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Fuzzy Inference System

Mamdani-style inference
Step 1: Fuzzification of input variables
Step 2: Rule Evaluation
Step 3: Aggregation of Rule Outputs
Step 4: Defuzzification
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Fuzzy Inference - Mamdani

Rule1:
IF x is A3 OR y is B1 THEN z is C1
Rule2:
IF x is A2 AND y is B2 THEN z is C2
Rule3:
IF x is A1 THEN z is C3

Rule1:

IF project_funding is adequate OR 
project_staffing is small THEN risk 
is low

Rule2:
IF project_funding is marginal AND 

project_staffing is large THEN risk is 
normal

Rule3:

IF project_funding is inadequate THEN 
risk is high

x = project funding, 
A1=inadequate, A2=marginal, A3-
adequate on universe of discourse X
y=project staffing, 
B1=small, B2=large on universe of 
discourse Y
z=risk 
C1=low, C2=normal, C3=high on 
universe of discourse Z
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Fuzzy Inference - Mamdani

Step1 : Fuzzification
Take crisp inputs x1 and y1 and determine the degree to which 
inputs belong to fuzzy sets
x1 and y1 are limited to universes of discourse X and Y
Experts determine range of universe
Some can be measured directly, others only on basis of expert 
opinion

Our example
Universe X and Y are from 0 to 100%
Suppose our crisp input x1 is 35% and has been rated as 
falling into inadequate and marginal to degrees of 0.5 and 0.2 
respectively
Crisp input y1 is 60% which falls into small and large with 
degrees of 0.1 and 0.7 respectively
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Fuzzy Inference - Mamdani

Step 2: Rule Evaluation
Take fuzzified inputs and apply them to 
antecedents of rules
If rule has multiple antecedents then fuzzy 
operator is used to get single number to represent 
result
Result is then applied to consequent membership 
function
Result can be produced by clipping or scaling
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Fuzzy Inference - Mamdani

Our Example
Rule1:
IF x is A3 (0.0) or y is B1(0.1) THEN z is C1(0.1)
Rule2:
IF x is A2(0.2) AND y is B2(0.7) THEN z is C2(0.2)
Rule3:
IF x is A1(0.5) THEN z is C3(0.5)

Clipped or scaled
Rule1 = 0.0 + 0.1 - 0.0x0.1=0.1
Rule2= 0.2 x 0.7 = 0.14
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Fuzzy Inference - Mamdani

Step3: Aggregation of Rule outputs
Unification of outputs of all rules
Take rule outputs and combine into a single fuzzy 
set
One fuzzy set for each variable

Our Example
z is C1 (0.1), z is C2(0.2), z is C3(0.5)
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Fuzzy Inference - Mamdani

Step4: Defuzzification
Need to provide a crisp number
Most popular technique is centroid technique
Finds the point where a vertical line would slice the 
aggregate set into two equal masses

∑
∑=

)(
).(
a

xa
COG

i

ii

µ
µ
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Fuzzy Inference- Mamdani

Our Problem

= 67.4
So 

z = 67.4

0.5  0.5  0.5  0.5  0.2  0.2  0.2  0.2  0.1  0.1  0.1
0.5 x 100)  90  80  (70  0.2 x 60) 50  40  (30 0.1 x 20)  10  (0

++++++++++
++++++++++

=COG
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Sugeno Style

If speed is low then resistance = 2
If speed is medium then resistance = 4*speed
If speed is high then resistance = 8*speed

Rule 1: w1 = 0.3; r1 = 2
Rule 2: w2 = 0.8; r2 = 4*2
Rule 3: w3 = 0.1; r3 = 8*2

Speed2

.3

.8

.1

low medium high

Resistance = Σ(wi*ri) / Σwi
= 7.12

MFs
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First-Order Sugeno FIS

• Rule base
If X is A1 and Y is B1 then Z = p1*x + q1*y + r1

If X is A2 and Y is B2 then Z = p2*x + q2*y + r2

• Fuzzy reasoning

A1 B1

A2 B2

x=3

X

X

Y

Yy=2

w1

w2

z1 =
p1*x+q1*y+r1

z =

z2 =
p2*x+q2*y+r2

w1+w2

w1*z1+w2*z2

P
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Limitations of fuzzy logic

How to determine the membership functions?  
Usually requires fine-tuning of parameters

Defuzzification can produce undesired results
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Distinctions to Probabilities

Why both fuzzy sets and probabilities use real 
numbers to “describe” a degree of membership they 
differ:

membership functions are not necessarily based on statistic 
distributions
fuzzy logic deals with deterministic plausibilities
probabilities deal more with non-deterministic but stochastic 
events and their likelihoods
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Dempster-Shafer Theory
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Dempster-Shafer Theory

mathematical theory of evidence
uncertainty is modeled through a range of probabilities

– instead of a single number indicating a probability

sound theoretical foundation
allows distinction between belief, disbelief, ignorance (non-
belief)
certainty factors are a special case of DS theory
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Frame of Discernment

Universe of Discourse θ, also called a Frame of 
Discernment, is a set of mutually exclusive 
alternatives. 

Given the example of determining the disease of a patient, θ
would be the set consisting of all possible diseases.

Subsets of θ are the class of general propositions in 
the domain. 

For example, the proposition "The disease is infectious" 
corresponds to the set of the elements of θ which are 
infectious, i.e. {"Influenza", "Small Pox",...}.
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DS Theory Notation

environment Θ = {O1, O2, ..., On}
set of objects Oi that are of interest
Θ = {O1, O2, ..., On}

frame of discernment FD (Universe of Discourse)
A set of mutually exclusive alternatives

mass probability function m
assigns a value from [0,1] to every item in the frame of 
discernment
describes the degree of belief in analogy to the mass of a 
physical object

mass probability m(A)
portion of the total mass probability that is assigned to a specific 
element A of FD
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Belief and Certainty

belief Bel(A) in a set A 
sum of the mass probabilities of all the proper subsets of A

– all the mass that supports A

likelihood that one of its members is the conclusion
also called support function

plausibility Pls(A)
maximum belief of A
upper bound for the range of belief

certainty Cer(A)
interval [Bel(A), Pls(A)]

– also called evidential interval

expresses the range of belief
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Combination of Mass Probabilities

combining two masses in such a way that the new 
mass represents a consensus of the contributing 
pieces of evidence

set intersection puts the emphasis on common elements of 
evidence, rather than conflicting evidence 

m1 ⊕ m2 (C) = Σ X ∩ Y m1(X) * m2(Y)
=C m1(X) * m2(Y) / (1- ΣX ∩ Y)
=C m1(X) * m2(Y) 

where 
X, Y are hypothesis subsets and 
C is their intersection C = X ∩ Y
⊕ is the orthogonal or direct sum
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Differences Probabilities - DF Theory

relationship X, ¬X
(ignorance)

Subset X ⊆ Y

Aggregate Sum

Aspect

m(X) + m(¬X) ≤ 1P(X) + P (¬X) = 1

m(X) > m(Y) allowedP(X) ≤ P(Y)

m(Θ) ≤ 1∑i Pi = 1

Dempster-ShaferProbabilities
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Evidential Reasoning 

extension of DS theory that deals with uncertain, 
imprecise, and possibly inaccurate knowledge
also uses evidential intervals to express the 
confidence in a statement

lower bound is called support (Spt) in evidential reasoning, 
and belief (Bel) in Dempster-Shafer theory
upper bound is plausibility (Pls)
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Evidential Intervals

[Bel,1] where 0 < Bel < 1Tends to support

[0,Pls] where 0 < Pls < 1Tends to refute

[Bel,Pls] where 0 < Bel ≤ Pls< 1Tends to both support and refute

[0,1]Completely ignorant

[1,1]Completely true

[0,0]Completely false

Meaning Evidential Interval

Bel: belief; lower bound of the evidential interval
Pls: plausibility; upper bound
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Advantages and Problems of Dempster-
Shafer

advantages
clear, rigorous foundation
ability to express confidence through intervals

– certainty about certainty

proper treatment of ignorance

problems
non-intuitive determination of mass probability
very high computational overhead
may produce counterintuitive results due to normalization
usability somewhat unclear


