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Problem Solving and Search
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Outline

Introduction to Problem Solving
Complexity
Uninformed search

Problem formulation

Search strategies: depth-first, breadth-first

Informed search
Search strategies: best-first, memory bounded

Heuristic functions
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Building a Problem Solving Program

Define the problem precisely
Analyze the problem
Represent the task knowledge
Choose and apply representation and reasoning 
techniques
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To Specify a Problem

Define the state space
Specify the initial states
Specify the goal states
Specify the operations



5

Production Systems

A set of rules
Knowledge/databases
A control strategy
A rule applier
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Problem Characteristics

Is the problem decomposable?
Can solution steps be ignored or undone?
Is the problem’s universe predictable?
Is a good solution absolute or relative?
Is the desired solution a state of the world or a path to a 
state?
Is a large amount of knowledge absolutely required to solve 
the problem, or is it important only to constrain the search?
Must problem-solving be interactive?
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The Water Jug Problem

Given:
one three- liter jug, 

one four- liter jug 
tap that can fill the jugs with 
water

Goal: exactly two liters of 
water in the four- liter jug 
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Water Jug Problem
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Water Jug Problem
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Examples of task environments and their 
characteristics.
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Problem-Solving Agent

Note: This is offline problem-solving.  Online problem-solving involves 
acting without complete knowledge of the problem and environment
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Problem types

Deterministic, fully observable ⇒ single-state problem
Agent knows exactly which state it will be in, solution is a 
sequence

Non-observable ⇒ sensorless problem (conformant)
Agent may have no idea where it is, solution (if any) is a 
sequence

Nondeterministic and/or partially observable ⇒
contingency problem

Percepts provide new information about current state
Solution is a contingent plan or a policy
Often interleave search, execution

Unknown state space ⇒ exploration problem 
(“online")
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Example: Vacuum world

Single-state, start in #5. 
Solution?? [Right, Suck]

Sensorless, start in {1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}. 
Solution?? [Right, Suck, Left, Suck]

Contingency, start in #5
Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution?? Initial belief state is {5, 7}
[Right, if dirt then Suck]
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Example: Romania

In Romania, on vacation. Currently in Arad.
Flight leaves tomorrow from Bucharest.
Formulate goal:

be in Bucharest

Formulate problem:
states: various cities
operators: drive between cities

Find solution:
sequence of cities, such that total driving distance is minimized.
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Example: Traveling from Arad To 
Bucharest
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Well-defined problems

The initial state that the agent starts in.
A description of the possible actions available to the agent.

Given a particular state , SUCCESSOR-FN(x) returns a set of 
action successor ordered pairs, where each successor is a state 
that can be reached from x.
A path in the state space is a sequence of states connected by a 
sequence of actions.

The goal test, which determines whether a given state is a goal 
state.
A path cost function that assigns a numeric cost to each path.
A solution to a problem is a path from the initial state to a goal 
state.

Solution quality is measured by the path cost function
An optimal solution has the lowest path cost among all solutions. 
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Selecting a state space

Real world is absurdly complex
state space must be abstracted for problem solving

(Abstract) state = set of real states
(Abstract) action = complex combination of real actions

e.g., “Arad ! Zerind" represents a complex set of possible routes, 
detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad“ must get to 
some real state “in Zerind"

(Abstract) solution
= sequence of abstract actions
= set of real paths that are solutions in the real world

Each abstract action should be “easier" than the original 
problem!
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Example: 8-puzzle

State:
Operators:
Goal test:
Path cost:
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Example: 8-puzzle

State: integer location of tiles (ignore intermediate locations)
Operators: moving blank left, right, up, down (ignore jamming)

Goal test: does state match goal state?
Path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Back to Vacuum World

State:
Operators:
Goal test:
Path cost:
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Back to Vacuum World

State: integer dirt and robot locations (ignore dirt amounts etc.)
Operators: Left, Right, Suck, NoOp
Goal test: no dirt

Path cost: 1 per action (0 for NoOp)
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Example: Robotic Assembly

State:

Operators:

Goal test:

Path cost:
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Example: Robotic Assembly

State: real-valued coordinates of robot joint angles and parts of the 
object to be assembled
Operators: continuous motions of robot joints

Goal test: complete assembly with no robot included!

Path cost: time to execute
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Real-life example: VLSI Layout

Given schematic diagram comprising components (chips, 
resistors, capacitors, etc) and interconnections (wires), find 
optimal way to place components on a printed circuit board, 
under the constraint that only a small number of wire layers are
available (and wires on a given layer cannot cross!)
“optimal way”??

minimize surface area
minimize number of signal layers
minimize number of connections from one layer to another
minimize length of some signal lines (e.g., clock line)
distribute heat throughout board
etc.
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A Design Tool
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Search algorithms

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Basic idea: offline, systematic exploration of simulated 
state-space by generating successors of explored states 
(expanding)
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Tree Search Algorithms
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General search example
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General search example

30

General search example
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Implementation: states vs. nodes

STATE: the state in the state 
space to which the node 
corresponds.
PARENT-NODE: the node in 
the search tree that generated 
this node.
ACTION: the action that was 
applied to the parent to 
generate the node.
PATH-COST: the cost of the 
path from the initial state to the 
node, as indicated by the parent 
pointers. The path cost is 
traditionally denoted by g(n)
DEPTH: the number of steps 
along the path from the initial 
state.

A state is a (representation of) a physical
conguration
A node is a data structure constituting part
of a search tree
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Evaluation of search strategies

A search strategy is defined by picking the order of node 
expansion.
Search algorithms are commonly evaluated according to the 
following four criteria:

Completeness: does it always find a solution if one exists?
Time complexity: number of nodes generated/expanded
Space complexity: maximum number of nodes in memory
Optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of:
b: maximum branching factor of the search tree
d: depth of the least-cost solution
C*: path cost of the least-cost solution
m: maximum depth of the state space (may be infinity)
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Complexity

Why worry about complexity of algorithms?
because a problem may be solvable in principle but may 
take too long to solve in practice

How can we evaluate the complexity of algorithms?
through asymptotic analysis, i.e., estimate time (or number 
of operations) necessary to solve an instance of size n of a 
problem when n tends towards infinity
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Complexity example: Traveling Salesman 
Problem

There are n cities, with a road of length Lij joining city i to city j. 
The salesman wishes to find a way to visit all cities that is optimal 
in two ways: each city is visited only once, and the total route is as 
short as possible.    

This is a hard problem: the only known algorithms (so far) to solve 
it have exponential complexity, that is, the number of operations 
required to solve it grows as en for n cities.
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Why is exponential complexity “hard”?

It means that the number of operations necessary to 
compute the exact solution of the problem grows 
exponentially with the size of the problem (here, the 
number of cities).
e1 = 2.72
e10 = 2.20 104 (daily salesman trip)
e100 = 2.69 1043 (monthly salesman planning)
e500 = 1.40 10217 (music band worldwide tour)
e250,000 = 10108,573 (postal services)
Fastest computer = 1012 operations/second
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So…

In general, exponential-complexity problems 
cannot be solved for any but the smallest 
instances!
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Complexity

Polynomial-time (P) problems: we can find algorithms that will 
solve them in a time (=number of operations) that grows 
polynomially with the size of the input.
for example: sort n numbers into increasing order: poor 
algorithms have n2 complexity, better ones have n log(n)
complexity.
Since we did not state what the order of the polynomial is, it 
could be very large!  Are there algorithms that require more 
than polynomial time?
Yes (until proof of the contrary), for some algorithms, we do not 
know of any polynomial-time algorithm to solve them.  These 
are referred to as non-polynomial-time (NP) algorithms.
for example: traveling salesman problem.
In particular, exponential-time algorithms are believed to be NP.
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Note on NP-hard problems

The formal definition of NP problems is:
A problem is nondeterministic polynomial if there exists some 
algorithm that can guess a solution and then verify whether or 
not the guess is correct in polynomial time.

(one can also state this as these problems being 
solvable in polynomial time on a nondeterministic 
Turing machine.)
In practice, until proof of the contrary, this means that 
known algorithms that run on known computer 
architectures will take more than polynomial time to 
solve the problem.
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Complexity and the human brain

Are computers close to human brain power?
Current computer chip (CPU):

– 103 inputs (pins)

– 107 processing elements (gates)
– 2 inputs per processing element (fan-in = 2)
– processing elements compute boolean logic (OR, AND, NOT, etc)

Typical human brain:
– 107 inputs (sensors)
– 1010 processing elements (neurons)
– fan-in = 103

– processing elements compute complicated functions

Still a lot of improvement needed for computers, but
computer clusters come close!
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Uninformed search strategies

Uninformed strategies use only the information 
available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
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Breadth first Search

Breadth-first search is a simple strategy in which 
the root node is expanded first, then all the 
successors of the root node are expanded next, then 
their successors, and so on.
In general, all the nodes are expanded at a given 
depth in the search tree before any nodes at the next 
level.
Implementation:

fringe is a FIFO queue, i.e., new successors go at end
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Breadth-first search:

Move 
downwards, 
level by 
level, until 
goal is 
reached.

SS

AA DD

BB DD AA EE

CC EE EE BB BB FF

DD FF BB FF CC EE AA CC GG

GG

GGGG FFCC
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Properties of breadth-first search

Completeness: Yes, if b is finite
Time complexity: 1+b+b2+…+bd = O(b d+1) 
Space complexity: O(b d+1) (keeps every node in memory)
Optimality: No, unless step costs are constant

Space is the big problem; can easily generate nodes at 
100MB/sec
so in 24hrs  8640GB can be generated.
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Time complexity

If a goal node is found on depth d of the tree, all 
nodes up till that depth are created.

mm
GGbb

dd

Thus:  O(bd) 
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QUEUE contains all         and        nodes.  (Thus: 4) .

In General: bd

Space complexity

Largest number of nodes in QUEUE is reached on 
the level d of the goal node.

GG
mmbb

dd

GG
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Time and memory requirements for 
breadth-first search

The numbers shown assume branching factor   b=10, 10,000 
nodes/second, 1000 bytes/node.
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Uniform-cost search

Uniform-cost search expands the node  with the 
lowest path cost, instead of expanding the shallowest 
node.
A refinement of the breadth-first strategy: 
Breadth-first = uniform-cost with path cost = node 
depth
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Uniform-cost search
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Uniform-cost search
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Romania with step costs in km
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Uniform-cost search
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Properties of uniform-cost search
Completeness: Yes, if step cost ≥ ε >0
Time complexity: # nodes with g ≤ cost of optimal solution, ≤

where C* is the cost of theoptimal solution

Space complexity: # nodes with g ≤ cost of optimal solution, ≤

Optimality: Yes, nodes expanded in increasing order of g(n)
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Depth-first search

Select a child 
convention: left-to-right

Repeatedly go to next child, 
as long as possible.

Return to left-over 
alternatives (higher-up) only 
when needed.

BB

CC EE

DD FF

GG

SS

AA

Implementation:
fringe = LIFO queue, i.e., put successors at front
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Properties of depth-first search

Completeness: No 
fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
complete in finite spaces

Time complexity: O(b m)
terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space complexity: O(bm)
i.e., linear space!

Optimality: No
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Time complexity

In the worst case: 
the (only) goal node may be on the right-most branch,

GG

mmbb

Time complexity  ==  bm + bm-1 + … + 1 = bm+1 -1
Thus:  O(bm) b b -- 11
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Space complexity

Largest number of nodes in QUEUE is reached in 
bottom left-most node.
Example: m = 3,  b = 3 :

......

QUEUE contains all         nodes.  Thus: 7.
In General:  ((b-1) * m) + 1
Order:  O(bm)



21

Depth-limited search

Is a depth-first search with depth limit λ
Implementation: Nodes at depth λ have no 
successors.
Complete: if cutoff chosen appropriately then it is 
guaranteed to find a solution.
Optimal: it does not guarantee to find the least-cost 
solution
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Depth limited search
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Depth limited search example
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Depth limited search example
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Depth limited search example

26

Depth limited search example
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Iterative deepening search
Combines the best of breadth-first and depth-first search 
strategies.

• Completeness: Yes,
• Time complexity: O(b d)
• Space complexity: O(bd)
Optimality: No, unless step costs are constant

Can be modied to explore uniform-cost tree
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Iterative deepening complexity
Iterative deepening search may seem wasteful because so many 
states are expanded multiple times.
In practice, however, the overhead of these multiple expansions 
is small, because most of the nodes are towards leafs (bottom) of 
the search tree:
thus, the nodes that are evaluated several times (towards top of
tree) are in relatively small number.
In iterative deepening, nodes at bottom level are expanded once,
level above twice, etc. up to root (expanded d+1 times) so total
number of expansions is:

(d+1)1 + (d)b + (d-1)b2 + … + 3b (d-2) + 2b(d-1) + 1bd = O(bd)
In general, iterative deepening is preferred to depth-first or 
breadth-first when search space large and depth of solution not 
known.
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Bidirectional search

Both search forward from initial state, and backwards 
from goal.
Stop when the two searches meet in the middle.

Problem: how do we search backwards from goal??
predecessor of node n = all nodes that have n as 
successor
this may not always be easy to compute!
if several goal states, apply predecessor function 
to them just as we applied successor (only works 
well if goals are explicitly known, may be difficult if 
goals only characterized implicitly).
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Evaluation of search strategies
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Repeated states

Failure to detect repeated states can cause exponentially more 
work!
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Avoiding repeated states

In increasing order of effectiveness and computational 
overhead:

do not return to state we come from, i.e., expand function 
will skip possible successors that are in same state as node’s 
parent.

do not create paths with cycles, i.e., expand function will 
skip possible successors that are in same state as any of 
node’s ancestors.

do not generate any state that was ever generated before,
by keeping track (in memory) of every state generated.
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Graph search

34
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Summary

Problem formulation usually requires abstracting 
away real-world details to define a state space 
that can feasibly be explored
Variety of uninformed search strategies
Iterative deepening search uses only linear 
space and not much more time than other 
uninformed algorithms
Graph search can be exponentially more efficient 
than tree search

36

Searching With Partial Information

Sensorless problems (also called conformant problems): 
If the agent has no sensors at all, then it may be in one of several possible 
initial states, and each action may therefore lead to one of several possible 
successor states.

Contingency problems: 
If there is uncertainty about action outcomes, or if the environment is 
partially observable, then the agent’s percepts provide new information after 
each action. 
Each possible percept defines a contingency that must be planned for.
A problem is called adversarial if the uncertainty is caused by the hostile 
actions of another agent.

Exploration problems: 
When the states and actions of the environment are unknown, the agent 
must act to discover them. 
Exploration problems can be viewed as an extreme case of contingency 
problems. 


