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Knowledge Representation
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Physical Symbol System Hypothesis

Assumption of (traditional) AI work is that:
Knowledge may be represented as “symbol 
structures” (essentially, complex data structures) 
representing pieces of knowledge (objects, concepts, 
facts, rules, strategies..).

E.g., “red” represents color red.
“book1” represents my book.
red(book1) represents fact that my book is red.

And intelligent behavior can be achieved through 
manipulation of symbol structures
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Knowledge representation languages

Knowledge representation languages have been 
designed to facilitate this.
Rather than use general C++/Java data structures, 
use special purpose formalisms.
A KR language should allow you to:

represent adequately the knowledge you need for your 
problem (representational adequacy)
do it in a clear, precise and “natural” way.
allow you to reason on that knowledge, drawing new 
conclusions.
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Requirements for KR language

Representational Adequacy
Clear syntax/semantics
Inferential adequacy
Inferential efficiency
Acquisitional Efficiency
Naturalness

In practice no one language is perfect, and 
different languages are suitable for different 
problems.
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Representational adequacy

Consider the following facts:
Ali believes nobody likes beans.
Ahmet will have to finish his assignment before he can start 
working on his project.

Can all be represented as a string! But hard then to 
manipulate and draw conclusions.
How do we represent these formally in a way that can 
be manipulated in a computer program?
Some notations/languages only allow you to represent 
certain things.

Time, beliefs, uncertainty, all hard to represent.
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Well-defined syntax/semantics

Knowledge representation languages should have 
precise syntax and semantics.
You must know exactly what an expression means in 
terms of objects in the real world.

Representation
of facts in World

Real World

New 
conclusions

Real World

Computer
Computer

Map to KR language Map back to real world

Inference
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Well defined syntax/semantics

Suppose we have decided that “red1” refers to a dark 
red color, “car1” is my car, car2 is another..
Syntax of language will tell you which of following is 
legal: 

red1(car1), red1 car1, car1(red1), red1(car1&car2)?
Semantics of language tells you exactly what an 
expression means - e.g., Pred(Arg) means that the 
property refered to by Pred applies to the object 
refered to by Arg.  E.g., property “dark red” applies to 
my car.
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What is a natural representation scheme?

Our representation scheme should be intuitive and 
natural for human readers!
Could represent the fact that my book is redmy book is red using the 
notation: 

“zzzzt -> thyv”
where zzzzt refers to redness, thyv refers to by book, 
and -> used in some way to assign properties. 

Hard to understand and manipulate
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Inferential Adequacy

Representing knowledge by itself is not very 
interesting unless you can use it to make inferences:

Draw new conclusions from existing facts. 
– “If its raining John never goes out” + “It’s raining today” so..

Come up with solutions to complex problems, using the 
represented knowledge.

Inferential adequacy refers to how easy it is to draw 
inferences using represented knowledge.
Representing everything as natural language strings 
has good representational adequacy and 
naturalness, but very poor inferential adequacy.
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Inferential Efficiency

You may be able, in principle, to make complex 
deductions given knowledge represented in a 
sophisticated language.
But it may be just too inefficient.
Generally the more complex the possible deductions, 
the less efficient will be the reasoner.
Need representation and inference system sufficient 
for the task, without being hopelessly inefficient.
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The representation must also allow acquisition of 
new knowledge in a straightforward manner.

Acquisitional Efficiency
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Knowledge Representation

Knowledge vs. Data
Different Knowledge Representation formalisms

Natural language
Database systems
Logic
Rules
Semantic nets
Frames
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Information Concepts

Knowledge

Information

Data Raw facts

A collection of facts organized 
in such a way that they have 
additional value beyond the 
value of facts themselves.

The body of guidelines and procedures 
used to select, organize, and manipulate 
data to make it suitable for a specific task.
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Definition of Knowledge

Knowledge is the symbolic representation of aspects 
of some named universe of discourse
Universe of discourse may be the actual universe of 
fictional one, one in the future, or in some belief
Examples of pieces of knowledge

Ali is an employee of NOY AŞ
All employees of NOY AŞ earn more than 100 M TL
All employees of NOY AŞ know that they should have a 
good life style.
Ali does not think that he has a good life style.
Everybody who knows that he should have a good life style 
is disappointed.
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Definition of Data

Data is the symbolic representation of simple aspects 
of some named universe of discourse.
Data in this sense is a special case of knowledge.
Examples of pieces of data:

Ayşe is married to Ali.
Ali works for NOY AŞ.
The average salary of NOY AŞ is 200M TL.
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Issues in Knowledge Representation

Are there any basic attributes of objects?
Are there any basic relationships among objects?
At what level should knowledge be represented?
How should sets be represented?
How should knowledge be accessed?
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Knowledge Representation in Natural 
Language

Expressiveness of natural languages
Very expressive, probably everything that can be expressed 
symbolically can be expressed in natural language( pictures, 
content of art, emotions are often hard to express)
Probably the most expressive knowledge representation 
formalism we have. Reasoning very complex, hard to model.

Problems with natural language
Natural Language is often ambiguous.
Syntax and semantics are not fully understood.
There is little uniformity in the structure of sentences.
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Knowledge Representation in Database 
Systems
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An Instance
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Discussion of Database Systems

Properties of database systems:
Only simple aspects of some universe of discourse. We can 
represent entities and relationships between entities, but not 
much more.
Well-suited to efficiently represent and process large 
amounts of data. Reasoning=lookup.
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Knowledge Representation in First-Order Logic

Properties of FOL
Very expressive as well as 
unambiguous syntax and semantics
No generally efficient procedure for 
processing knowledge
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LOGIC 

Logics are formal languages for representing 
information such that conclusions can be drawn
Syntax defines the sentences in the language
Semantics define the “meaning" of sentences; i.e., 
define truth of a sentence in a world, e.g., the 
language of arithmetic

x + 2 > y is a sentence; 
x 2 + y > is not a sentence
x + 2 > y is true if the number x + 2 is no less than the 
number y
x + 2 > y is true in a world where x =7 ; y =1
x + 2 > y is false in a world where x =0 ; y =6
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Propositions 

An assertion is a statement.
A proposition is an assertion which is either true or 
false, but not both.
Examples:

The moon is made of green cheese.
3 is a prime number.
x+y > 4
Are you leaving?
Buy four of them.

24

Propositional Variable

A propositional variable denotes an arbitrary 
proposition with an unspecified truth value.
We will use the letters P, Q, R,... for propositional 
variables.
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Logical Operators

Propositions as well as propositional variables can be 
combined to form new assertions using words such 
as “and”, ”or,” and “not”.
Example:

Ahmet is 170 cm tall.
There are four cows in the barn.
Ahmet is 170 cm tall and there are four cows in the barn.
Ahmet is 170 cm tall or there are four cows in the barn.
Ahmet is not 170 cm tall.
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Logical Operators

P and Q.
P or Q
not P

P and Q are called operands, and “and”, ”or,” and 
“not” are called logical operators or logical 
connectives.
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Propositional Form

An assertion which contains at least one 
propositional variable is called propositional form.
A propositional form is an expression whose truth 
value may not be determined until propositions are 
substituted for its propositional variables.
When a logical operator is used to construct a new 
proposition from old ones the truth value of the new 
proposition depends on both the logical operator and 
the truth values of the original propositions.
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Negation

The logical operator “not” is denoted by the symbol 
“¬” or “~”.
If P is a proposition, then ¬P is the negation of P.

FalseTrue

TrueFalse

¬PP
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Conjunction

The logical operator “and” is denoted by the symbol 
“∧” .
If P and Q are propositions, then “P∧Q” is a 
proposition called the conjunction of P and Q.

111

001

010

000

P ∧ QQP
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Disjunction

The logical operator “or” is denoted by the symbol 
“∨”. 
“Logical or”, “inclusive or”

If P and Q are propositions, then “P ∨ Q” is a 
proposition called the disjunction of P and Q.

111

101

110

000

P ∨ QQP
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Exclusive Or

Exclusive operator is denoted by the symbol “⊕”.

011

101

110

000

P ⊕ QQP
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Implication

The logical operator “implies” is denoted by the 
symbol “⇒” . 
If P and Q are propositions, then “P ⇒ Q” is a 
proposition called an implication.
P is called the premise, hypothesis or antecedent.
Q is called the conclusion or consequence.

111

001

110

100

P ⇒ QQP
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Implication (Cont.)

If P, then Q
P only if Q
P is a sufficient condition for Q
Q is a necessary condition for P.
Q if P.
Q follows form P
Q provided P
Q is a logical consequence of P
Q whenever P
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Implication (Cont.)

The converse of P ⇒ Q is the proposition Q ⇒ P.
The contrapositive P ⇒ Q is the proposition 
¬Q ⇒ ¬P.
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Implication (Cont.)

CAUTION:
The English language uses implication to assert a 
causal or inherent relationship between a premise 
and a conclusion.
However, in the language of propositions, the 
premise of an implication need not be related to the 
conclusion in any way.
Example

Assume:
– P represents “oranges are purple”
– Q represents “the earth is not flat”

P ⇒ Q represents “If oranges are purple, then the earth is 
not flat.”
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Equivalence

If P and Q have the same truth values, then they are 
said to be logically equivalent propositions.
The logical operator is called equivalence and is 
denoted by “⇔”.

111

001

010

100

P ⇔ QQP
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Truth Tables

Truth tables for individual operators can be used to 
construct truth tables for arbitrary complex 
propositional forms.
The truth table for a propositional form specifies its 
truth value for every possible combination of truth 
values of its propositional variables.
Each propositional variable can assume either of two 
values, true or false.
Therefore, if k variables occur in a proposition, the 
associated truth table must describe 2k cases.
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Truth Table Construction Conventions

All propositional variables occur in the leftmost 
column.
Truth values assigned to the propositional variables 
by “counting in binary” from 0 to 2k-1, where k is the 
number of propositional variables.
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Truth Table Example

[(P ∧ Q) ∨ ¬R] ⇔ P

1111011

1101111

0000101

1110001

1000110

0110010

1000100

0110000

[(P ∧ Q) ∨ ¬R] ⇔ P(P ∧ Q) ∨ ¬R¬RP ∧ QRQP
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Terminology

A tautology is a propositional form whose truth value 
is true for all possible values of its propositional 
variables.

P ∨¬P

A contradiction or absurdity is a propositional form 
which is always false.

P ∧ ¬P

A propositional form which is neither a tautology nor 
a contradiction is called a contingency.
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Logical Identities

1. P ⇔ (P ∨ P)          idempotence of  ∨
2. P ⇔ (P ∧ P)          idempotence of  ∧
3. (P ∨ Q) ⇔ (Q ∨ P) commutativity of ∨
4. (P  ∧ Q) ⇔ (Q  ∧P) commutativity of  ∧
5. [(P ∨ Q) ∨ R] ⇔ [P ∨ (Q ∨ R)] associativity of ∨
6. [(P ∧ Q) ∧ R] ⇔ [P ∧ (Q ∧ R)] associativity of ∧
7. ¬(P ∨ Q) ⇔ (¬P ∧ ¬Q) De Morgan’s Laws
8. ¬(P ∧ Q) ⇔ (¬P ∨ ¬Q) De Morgan’s Laws
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Logical Identities (Cont.)

9. [P ∧ (Q ∨ R)] ⇔ [(P ∧ Q) ∨ (P ∧ R)] distributivity of ∧ over ∨
10. [P ∨ (Q ∧ R)] ⇔ [(P ∨ Q) ∧ (P ∨ R)] distributivity of ∨ over ∧
11. (P ∨ 1) ⇔ 1
12. (P ∧ 1) ⇔ P
13. (P ∨ 0) ⇔ P
14. (P ∧ 0) ⇔ 0
15. (P ∨ ¬P) ⇔ 1
16. (P ∧ ¬P) ⇔ 0
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Logical Identities (Cont.)

17. P ⇔ ¬(¬P) double negation
18. (P ⇒ Q) ⇔ (¬P ∨ Q) implication
19. (P ⇔ Q) ⇔ [(P ⇒ Q) ∧ (Q ⇒ P)] equivalence
20. [(P ∧ Q) ⇒ R] ⇔ [P ⇒ (Q ⇒ R)] exportation
21. [(P ⇒ Q) ∧ (P ⇒ ¬Q)] ⇔ ¬P absurdity
22. (P ⇒ Q) ⇔ (¬Q ⇒ ¬P) contrapositive
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Example for Use of Identities

Simplify [(A ⇒ B) ∨ (A ⇒ D)] ⇒ (B ∨ D)
[(¬A ∨ B) ∨ (¬A ∨ D)] ⇒ (B ∨ D)      (18)
[¬A ∨ (B ∨ D) ] ⇒ (B ∨ D)              (5, 3, 1)
¬[¬A ∨ (B ∨ D) ] ∨ (B ∨ D)              (18)
[A ∧ ¬(B ∨ D)] ∨ (B ∨ D)                  (7, 17)
(A ∨ B ∨ D) ∧ [¬(B ∨ D) ∨ (B ∨ D)] (3, 10)
(A ∨ B ∨ D) ∧ 1                                  (15)
A ∨ B ∨ D                                           (12)
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Logical Implications

1. P ⇒ (P ∨ Q) addition
2. (P ∧ Q) ⇒ P simplification
3. [P ∧ (P ⇒ Q)] ⇒ Q Modus Ponens
4. [(P ⇒ Q) ∧ ¬Q] ⇒ ¬P Modus Tollens
5. [¬P ∧ (P ∨ Q)] ⇒ Q disjunctive syllogism
6. [(P ⇒ Q) ∧ (Q ⇒ R)] ⇒ (P ⇒ R) hypothetical syllogism
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PREDICATE CALCULUS
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Predicates

He is tall and blonde ( x is tall and blonde).
She lives in the city (x lives in y)
These assertions are formed using variables in a 
“template” which expresses a property of an object or 
a relationship between objects.
These templates are called predicates.
Examples

“x + y = z” can be denoted S(x, y, z)
“x is a female” can be denoted female(x)
“x is married to y” can be denoted married(x,y)
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Predicate Definitions

Predicate constant: The symbol which denotes a 
specific predicate.

married()

Individual variable: A variable which appears in the 
parenthesized list after a predicate.

X

Consider P(x1, x2, ... , xn) 
P: predicate constant
x1, x2, ... , xn individual variables

– P has n arguments, 
– arity of P is n,
– P is an n-place predicate
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Universe of Discourse

Values of the individual variables must be drawn from 
a set called the universe of discourse.
If P is an n-place constant and values c1, c2, ... , cn
are assigned to each of the individual variables, the 
result is a proposition.
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Suppose the universe of discourse is U.
If the value of P(c1, c2, ... , cn ) is true for every choice 
of arguments c1, c2, ... , cn selected from U, then P is 
said to be valid in the universe U.
If the value of P(c1, c2, ... , cn) is true for some (but 
not necessarily all) choices of arguments selected 
from U, then P is said to be satisfiable in the universe 
U, and the values c1, c2, ... , cn which make P(c1, c2, 
... , cn) true are said to satisfy P.
If P is not satisfiable in the universe U, then it is 
called unsatisfiable in U.
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Predicates and Propositions

A predicate constant with no arguments is a 
proposition.
In order to change a predicate into a proposition, 
each individual variable of the predicate must be 
bound.
Binding can be done in two ways:

By assigning each individual variable a value
By quantification of the variables
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Assigning Values to Variables

Consider P(x,y) to be “x+y=3”
P(1,2) 1+2=3 is true
P(2,6) 2+6=3 is false
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Quantifiers

Universal
Existential
Uniqueness
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Universal Quantifier

If P(x) is a predicate with the individual variable x as 
an argument, then the assertion

“For all x, P(x)”
which is interpreted as
“For all values of x, the assertion P(x) is true,”
is a statement in which the variable x is said to be 
universally quantified.

The symbol ∀ called the universal quantifier, is used 
to denote the phrase “for all”.

∀x P(x) ⇒ P(c)
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Universal Quantification Examples

Let U=Ζ
∀x [x < x+1] 
∀x [x = 3]

Let  U=Z

∀x ∀y [x +y > x]
What if U=Z+ ?
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Existential Quantifier

If P(x) is a predicate with the individual variable x as 
an argument, then the assertion
“For some x, P(x)”

which is interpreted as
“There exists a value of x, for which the assertion P(x) is 

true,”
is a statement in which the variable x is said to be 
existentially quantified.

The symbol ∃ called the existential quantifier, is used 
to denote the phrase “there exists”.

P(c) ⇒ ∃ x P(x)
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Existential Quantification Examples

Let U=Ζ
∃ x [x < x+1] 
∃ x [x = 3]
∃ x [x =  x+1]
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Uniqueness Quantifier

There is one and only one element of the universe of 
discourse which makes a predicate true.

The symbol ∃! called the uniqeness quantifier, is 
used to denote the phrase “there exists a unique”.
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Uniqueness Quantification Examples

Let U=Ζ
∃! x [x < x+1] 
∃! x [x = 3]
∃! x [x =  x+1]
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Relationship between quantified variables 
and propositions

Let U={1, 2, 3}

∀x P(x) ⇔ P(1) ∧ P(2) ∧ P(3)
∃x P(x) ⇔ P(1) ∨ P(2) ∨ P(3)
∃! x P(x) ⇔ [P(1) ∧ ¬P(2) ∧ ¬P(3)]∨
[¬P(1) ∧ P(2) ∧¬ P(3)] ∨ [¬P(1) ∧ ¬P(2) ∧ P(3)]
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Interaction of Predicates, Operators and 
Quantifiers

An assertion involving predicate variables is valid if it 
is true for every universe of discourse no matter how 
the predicate variables are interpreted.
An assertion is satisfiable if there exists a universe 
and some interpretation of predicate variables which 
makes it true.
If an assertion is not true for any universe or 
interpretation, it is unsatisfiable.
Valid, satisfiable and unsatisfiable assertions are the 
analogs of tautologies, contingencies, and 
contradictions in the language of propositions.
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Equivalent Assertions

Two assertions A1 and A2 are said to be logically 
equivalent if and only if for every universe of 
discourse and every interpretation of the predicate 
variable, A1 is true if and only if A2 is true.
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Negation and Quantifiers

¬ ∀x P(x) ⇔ ∃x ¬ P(x) 
¬ ∃x P(x) ⇔ ∀x ¬ P(x) 
Example:

¬ ∃x ∀y ∀zP(x, y, z) ⇔ ∀x ¬ ∀y ∀z P(x, y, z) 
⇔ ∀x ∃y ¬ ∀z P(x, y, z) 
⇔ ∀x ∃y ∃z ¬P(x, y, z) 

64

Scope of a quantifier

The scope of a quantifier is the part of an assertion in 
which variables are bound by the quantifier.
Examples:

A ∨ ∀x [P(x) ∨ Q(x) ]
[ ∀x P(x)] ⇒ [∃ x Q(x) ]
∀x P(x) ∨ Q(x) 



65

Quantifiers and Disjunctions and 
Conjunctions

∀x [A(x) ∨ P] ⇔ [∀x A(x) ∨ P] 
∀x [A(x)  ∧ P] ⇔ [∀x A(x)  ∧ P]
∃x [A(x) ∨ P] ⇔ [∃x A(x) ∨ P] 
∃x [A(x)  ∧ P] ⇔ [∃x A(x)  ∧ P]

∀x [P(x) ∨ Q(y)] ⇔ [∀x P(x) ∨ Q(y)]
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Distribution over ∧

Universal quantifier distributes over ∧. 

∀x [P(x) ∧ Q(x)] ⇔ ∀x P(x) ∧ ∀x Q(x)

Existential quantifier does not distribute over ∧.
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Distribution over ∨

Existential quantifier distributes over ∨. 

∃ x [P(x) ∨ Q(x)] ⇔ ∃ x P(x) ∨ ∃ x Q(x)

Universal quantifier does not distribute over ∨.
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LOGICAL INFERENCE



69

Definitions

A theorem is a mathematical assertion which can be 
shown to be true.
A proof is an argument which establishes the truth of 
a theorem.
Rules of inference specify conclusions which can be 
drawn from assertions known or assumed to be true.
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Rules of Inference

Modus tollens[¬Q ∧ (P ⇒ Q ) ] ⇒ ¬P¬Q 

P ⇒Q
∴ ¬P

NameTautological FormRule of Inference

Modus ponens[P ∧ (P ⇒ Q ) ] ⇒ QP 

P ⇒Q
∴ Q

simplification(P ∧ Q ) ⇒ PP∧Q

∴ P 

additionP ⇒ (P ∨ Q)P  

∴ P ∨ Q
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Rules of Inference (Cont.)

NameTautological FormRule of Inference

conjunction[P ∧ Q ] ⇒ (P ∧ Q)P 
Q

∴ P ∧ Q

Hypothetical
syllogism

[(P ⇒ Q) ∧ (Q ⇒ R)] ⇒ (P ⇒R)P ⇒ Q

Q ⇒ R
∴ P ⇒ R 

Disjunctive
syllogism

[(P ∨ Q) ∧ ¬ P] ⇒ QP ∨ Q
¬ P  

∴ Q
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Common Fallacies

The Fallacy of Affirming the Consequent
If the butler did it, he will be nervous when interrogated.
The butler was very nervous when he was interrogated.
Therefore, the butler did it.

Q 

P ⇒Q
∴ P
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Common Fallacies (Cont.)

The Fallacy of Denying the Antecedent
If the butler’s hands are covered with blood, then he did it.
The butler is impeccably groomed.
Therefore, the butler is innocent.

¬P

P ⇒Q
∴¬Q
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Proof Example

Theorem:
If horses fly or cows eat artichokes, then the mosquito is the 
national bird. If the mosquito is the national bird, then peanut
butter tastes good on hot dogs. But peanut butter tastes terrible 
on hot dogs. Therefore, cows don’t eat artichokes.

Let
F ⇔ “horses fly”
A ⇔ “cows eat artichokes”
M ⇔ “the mosquito is the national bird”
P ⇔ “peanut butter tastes good on hot dogs”

(F ∨ A) ⇒ M
M ⇒ P

¬P    
∴¬A
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Proof Example (Cont.)

Proof: 

Step 7 and simplification8. ¬A 

Step 6 and commutativity of ∧7. ¬A ∧ ¬F 

Step 5 and DeMorgan’s law6. ¬F ∧ ¬A

Steps 3 and 4 and modus tollens5. ¬ (F ∨ A) 

Hypothesis 34. ¬P

Steps 1 and 2 and hypothetical
syllogism

3. (F ∨ A) ⇒ P

Hypothesis 22. M ⇒ P

Hypothesis 11. (F ∨ A) ⇒ M

ReasonsAssertion
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Rules of Inference concerning Quantifiers

Universal Instantiation
∀x P(x)

∴P(c)

Universal Generalization
P(x)

∴ ∀x P(x)

Existential  Instantiation
∃ x P(x)
∴P(c)
c not arbitrary!

Existential Generalization
P(c)

∴ ∃ x P(x)
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Resolution

Resolution Principle: If there is an axiom of the form 
E1∨ E2, and there is another axiom of the form          
¬ E2∨ E3, then E1∨ E3 logically follows.
E1∨ E3 is called the resolvent.
Resolution can be generalized to any number of 
disjuncts.
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Proof by Refutation

Assume that the negation of the theorem is TRUE.
Show that the axioms and the assumed negation of 
the theorem together determine something to be 
TRUE that cannot be TRUE.
Conclude that the assumed negation of the theorem 
cannot be TRUE since it leads to contradiction.
Conclude that the theorem must be TRUE since the 
assumed negation of the theorem cannot be TRUE.
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Resolution Example

Theorem:
Feathers(Cikcik)

∀x[Feathers(x)⇒Bird(x)]
∴Bird(Cikcik)

Proof:
Feathers(Cikcik) (Axiom 1)

¬Feathers(Cikcik) ∨ Bird(Cikcik) (axiom 2 &u.g.)
¬ Bird(Cikcik) (negation of conclusion)
Bird(Cikcik) (Resolve 1 and 2)

Nil (Resolve 3 and 4 ⇒ Contradiction)
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Conversion to Clause Form

Clause form: disjunction of literals
Given

The brick is on something that is not a pyramid.
There is nothing that the brick is on and that is on the 
brick as well.
There is nothing that is not a brick and the same 
thing as a brick. 

∀x[Brick(x)⇒ (∃y[On(x,y) ∧¬Pyramid(y)]
∧ ¬∃y[On(x,y) ∧On(y,x)]
∧ ∀y[¬Brick(y) ⇒ ¬Equal(x,y)])]
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Eliminate Implications

(Substitute ¬E1 ∨ E2 for E1 ⇒ E2).
∀x[¬Brick(x) ∨ (∃y[On(x,y) ∧¬Pyramid(y)]

∧ ¬∃y[On(x,y) ∧On(y,x)]
∧ ∀y[¬(¬ Brick(y)) ∨ ¬Equal(x,y)])]
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Move negations down to atomic formulas

(Use De Morgan’s laws and negation of quantifiers)

∀x[¬Brick(x) ∨ (∃y[On(x,y) ∧¬Pyramid(y)]
∧ ∀y[¬On(x,y) ∨ ¬ On(y,x)]
∧ ∀y[Brick(y) ∨ ¬Equal(x,y)])]
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Purge existential quantifiers

Use skolem functions.

∃y[On(x,y) ∧¬Pyramid(y)]
y=Magic(x)

On(x, Magic(x)) ∧¬Pyramid(Magic(x))]
Magic(x)=Support(x)

∀x[¬Brick(x) ∨ (On(x, Support(x)) 
∧¬Pyramid(Support(x)))

∧ ∀y[¬On(x,y) ∨ ¬ On(y,x)]
∧ ∀y[Brick(y) ∨ ¬Equal(x,y)])]
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Rename Variables

(No two variables should be the same. Scope of 
universal quantifiers!)

∀x[¬Brick(x) ∨ ((On(x, Support(x)) 
∧¬Pyramid(Support(x)))

∧ ∀y[¬On(x,y) ∨ ¬ On(y,x)]
∧ ∀z[Brick(z) ∨ ¬Equal(x, z)])]



85

Move Universal Quantifiers to the left

∀x ∀y ∀z[
¬Brick(x) ∨ ((On(x, Support(x)) ∧¬Pyramid(Support(x)))

∧ ¬On(x,y) ∨ ¬ On(y,x)
∧ Brick(z) ∨ ¬Equal(x, z))]
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Move the disjunctions down to the literals

Use distribution laws
∀x ∀y ∀z[

(¬Brick(x) ∨ (On(x, Support(x)) ∧¬Pyramid(Support(x))))
∧ (¬Brick(x) ∨ ¬On(x,y) ∨ ¬ On(y,x))
∧ (¬Brick(x) ∨ Brick(z) ∨ ¬Equal(x, z))]
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Move the disjunctions down to the literals 
(Cont.)

∀x ∀y ∀z[   (¬Brick(x) ∨ On(x, Support(x)) 
∧(¬Brick(x) ∨ ¬Pyramid(Support(x)))
∧ (¬Brick(x) ∨ ¬On(x,y) ∨ ¬ On(y,x))
∧ (¬Brick(x) ∨ Brick(z) ∨ ¬Equal(x, z))]
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Eliminate the conjunctions

Write each part of the conjunction as a separate 
axiom.

∀x [¬Brick(x) ∨ On(x, Support(x)] 
∀x [¬Brick(x) ∨ ¬Pyramid(Support(x))]
∀x ∀y [¬Brick(x) ∨ ¬On(x,y) ∨ ¬ On(y,x)]
∀x ∀z [¬Brick(x) ∨ Brick(z) ∨ ¬Equal(x, z)]
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Rename all the variables

∀x [¬Brick(x) ∨ On(x, Support(x)] 
∀w [¬Brick(w) ∨ ¬Pyramid(Support(w))]
∀u ∀y [¬Brick(u) ∨ ¬On(u, y) ∨ ¬ On(y, u)]
∀v ∀z [¬Brick(v) ∨ Brick(z) ∨ ¬Equal(v, z)]
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Purge the universal quantifiers

¬Brick(x) ∨ On(x, Support(x) 
¬Brick(w) ∨ ¬Pyramid(Support(w))
¬Brick(u) ∨ ¬On(u, y) ∨ ¬ On(y, u)
¬Brick(v) ∨ Brick(z) ∨ ¬Equal(v, z)
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To put Axioms into Clause Form

Eliminate implications
Move negations down to the atomic formulas.
Purge existential quantifiers.
Rename variables, if necessary.
Move the universal quantifiers to the left.
Move the disjunctions down to the literals.
Eliminate the conjunctions.
Rename variables, if necessary.
Purge the universal quantifiers.
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Procedure for doing Resolution Proof

Negate the theorem to be proved and add the result 
to the list of axioms.
Put the list of axioms into clause form.
Until the empty clause, Nil, is produced or there is no 
resolvable pair of clauses, find the resolvable 
clauses, resolve them, and add the result to the list of 
clauses.
If the empty clause is produced, report that the 
theorem is TRUE. If there are no resolvable clauses, 
report that the theorem is false.
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Unification

A variable may be replaced by a constant. {v1→ C}
A variable may be replaced by a variable. {v2→ v3}
A variable may be replaced by a function expression 
as long as the function expression does not contain 
that variable. {v4→ f(...)}

94

Resolution Proof Example

On(B,A)
On(A, Table)

∴ Above(B, Table)
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Proof

Additional axioms

∀x ∀y[On(x,y)⇒Above(x,y)]
∀x ∀y ∀z[Above(x,y) ∧ Above(y,z))⇒Above(x,z)]

Clause form:

¬On(u,v) ∨Above(u,v)
¬Above(x,y) ∨ ¬Above(y,z) ∨ Above(x,z)
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¬On(u,v) ∨Above(u,v)                           (1)
¬Above(x,y) ∨ ¬Above(y,z) ∨ Above(x,z) (2)
On(B,A)                                                   (3)
On(A, Table)                                            (4)
¬ Above(B, Table)                                    (5)
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Resolve (2) and (5) by specializing x to B and z to 
Table.

¬Above(B,y) ∨ ¬Above(y,Table) ∨ Above(B,Table) (2)
¬ Above(B, Table)                                                    (5)

¬Above(B,y) ∨ ¬Above(y,Table)                               (6)
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Resolve (1) with (6) replacing u with y and 
specializing v to Table.

¬On(y,Table) ∨Above(y,Table)                        (1)
¬Above(B,y) ∨ ¬Above(y,Table)                      (6)
¬On(y,Table) ∨ ¬Above(B,y)                            (7)
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Resolve (1) and (7) with u specialized to B and v 
replaced by y.

¬On(B, y) ∨Above(B,y)                                    (1)
¬On(y,Table) ∨ ¬Above(B,y)                           (7)
¬On(B, y) ∨ ¬On(y,Table)                                (8)
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Resolve (3) and (8), specializing y to A
On(B,A)                                                          (3)

¬On(B, A) ∨ ¬On(A,Table)                             (8)
¬On(A,Table)                                                  (9)
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Now (4) and (9) resolve to Nil
On(A, Table)                                                (4)
¬On(A,Table)                                                   (9)
Nil                                                             (10)
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How to select the right clauses to 
resolve?

Confine to resolving against only the negated 
theorem or new clauses derived, directly or indirectly, 
using the negated theorem.
Use intuition (?)
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Search Strategies

Unit preference strategy: gives preference to 
resolutions involving the clauses with the smallest 
number of literals.
Set of support strategy: allows only resolutions 
involving the negated theorem or theorem or new 
clauses derived, directly or indirectly, using the 
negated theorem.
Breadth-first strategy: first resolves all possible 
pairs of the initial clauses, then resolves all possible 
pairs of the resulting set together with the initial set, 
level by level. 
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Properties of these strategies

All these strategies are complete because they are 
guaranteed to find a proof if the theorem logically 
follows from the axioms.
All strategies are subject to the combinatorial 
explosion problem.
All search strategies are subject to a version of the 
halting problem, for search is not guaranteed to 
terminate unless there actually is a proof.
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All complete proof procedures of the first-order 
predicate calculus are subject to the halting problem.
Gödel's Completeness Theorem.
If a sentence is true given a set of axioms, there is a 
procedure that will determine this.
If the sentence is false, then there is no guarantee 
that a procedure will ever determine this–i.e., it may 
never halt.
Complete proof procedures are semidecidable.
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Knowledge Representation in Knowledge-
Based Systems

Consists of
A knowledgebase for representing the expert knowledge
An inference engine
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Rules – A Simple Example
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Rules – A Simple Example (Contd)
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Knowledge Representation in Semantic 
Nets
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Semantic Networks

Semantic networks are basically graphic depictions 
of knowledge that show hierarchical relationships 
between objects.
A semantic network, or semantic net, is composed of 
nodes and links.
One of the most interesting and useful fact's about a 
semantic network is that it can show inheritance.  
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Semantic Nets

Properties
Allows to structure the knowledge to reflect the structure of 
that part of the universe which is being represented.
Default values (e.g. Height of a baseball player to be 
195cm). Very strong representation facilities by procedural 
attachment.
Must be much refined
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Components of a Semantic Net

Nodes represent objects and descriptive information 
about those objects. 

Objects can be any physical item such as a book, car, desk, 
or even a person. 

Nodes can also be concepts, events, or actions. 
A concept might be Ohm's Law, an event such as a picnic or 
an election, or an action such as building a house or writing 
a book. 

Attributes of an object can also be used as nodes.
These might represent size, color, class, age, origin, or 

other characteristics.
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Components of a Semantic Net

The links or arcs show the relationships between the 
various objects and descriptive factors. 
Some of the most common arcs are of the is-a or 
has-a type. 

Is-a, usually just designated as isa, is used to show class 
relationship, that is, that an object belongs to a larger class 
or category of objects. 
Has-a links are used to identify characteristics or attributes 
of the object nodes. 

Other arcs are used for definitional purposes.
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Frames

A frame consists of a collection of slots which can be 
filled by values or pointers to other frames.
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Frames

A frame provides a means of organizing knowledge 
in slots that contain characteristics and attributes. In 
physical form, a frame is somewhat like an outline 
with categories and subcategories.
Each frame describes one object.  
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Contents of a Frame

A frame includes two basic elements: slots and 
facets.
A slot is a set of attributes that describe the object 
represented by the frame. Each slot contains one or 
more facets. 
The facets (sometimes called subslots) describe 
some knowledge or procedures about the attribute in 
the slot. Facets may take many forms .
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Facet Forms

Default: This facet is used if the slot is empty, that is without 
any description. 
Range: Range indicates what kind of information can appear in 
a slot (e.g., integer numbers only, two decimal points, 0 to 100).
if added: This facet contains procedural information or 
attachments. It specifies an action to be taken when a value in 
the slot is added (or modified). Such procedural attachments are
called demons.
If needed: This facet is used in a case when no slot value is 
given. It triggers, much like the if-added situation, a procedure 
that goes out and gets or computes a value.
Other: Slots may contain frames, rules, semantic networks, or 
any type of information. 

118

Frame Example
Automobile Frame 

Class of: Transportation 
Name of Manufacturer: Audi 

Origin of manufacturer: Germany 
Model: 5000 Turbo

Type of car: Sedan 
Weight: 3300 lb. 
Wheelbase: 105.8 inches 

Number of doors: 4 (default) 
Transmission: 3-speed automatic 

Number of wheels: 4 (default) 
Engine: (Reference Engine Frame)

– Type: In-line, overhead cam 
– Number of cylinders: 5 
– Acceleration (procedural attachment)
– 0-60: 10.4 seconds
– Quarter mile: 17.1 seconds, 85 mph
– Gas mileage: 22 mpg average (procedural attachment) 
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Capabilities of Frames

Ability to clearly document information about a domain model, for 
example, a plant’s machines and their associated attributes
Related ability to constrain the allowable values that an attribute can 
take on 
Modularity of information, permitting ease of system expansion and 
maintenance 
More readable and consistent syntax for referencing domain objects 
in the rules 
Platform for building a graphic interface with object graphics
Mechanism that will allow us to restrict the scope of facts considered 
during forward or backward chaining
Access to a mechanism that supports the inheritance of information 
down a class hierarchy 
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Scripts

A script is a knowledge representation scheme 
similar to a frame, but instead of describing an object, 
the script describes a sequence of events.
Like the frame, the script portrays a stereotyped 
situation. 
Unlike the frame, it is usually presented in a 
particular context. 
To describe a sequence of events, the script uses a 
series of slots containing information about the 
people, objects, and actions that are involved in the 
events.
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Elements of a Script

The entry conditions describe situations that must he 
satisfied before events in this script can occur or be 
valid. 
Props refer to objects that are used in the sequence 
of events that occur. 
Roles refer to the people involved in the script. 
The result is conditions that exist after the events in 
the script have occurred. 
Track refers to variations that might occur in a 
particular script. 
Scenes describe the actual sequence of events that 
occur. 
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Restaurant Script

Track: Fast-food restaurant 
Roles: 

Customer (C) 
Server (S)

Props: 
Counter, Tray, Food, Money, Napkins, Salt, Pepper, Catsup, 
Straws

Entry Conditions: 
Customer is hungry. 
Customer has money
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Restaurant Script

Scene 1: Entry
Customer parks car.
Customer enters restaurant.
Customer waits in line at the counter.
Customer reads the menu on the wall and makes a decision 
about what to order.

Scene 2: Order
Customer gives order to server.
Server fills order by putting food on tray. 
Customer pays server.
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Restaurant Script

Scene 3: Eating
Customer gets napkins, straws, salt, etc.
Customer takes tray to an unoccupied table. 
Customer eats food quickly.

Scene 3A (option): Take-out
Customer takes food and exits. 

Scene 4: Exit
Customer cleans up table. 
Customer discards trash.
Customer leaves restaurant. 
Customer drives away. 
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Restaurant Script

Results:
Customer is no longer hungry. 
Customer has less money.
Customer is happy.*
Customer is unhappy.* 
Customer is too full.*
Customer has upset stomach.*
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Comparison of Knowledge 
Representation Methods

Knowledge 
Representation

Advantages Disadvantages

Production rules Simple syntax, easy to 
understand, simple interpreter, 
highly modular, flexible (easy 
to add to or modify)

Hard to follow hierarchies, 
inefficient for large systems, 
not all knowledge can be 
expressed as rules

Semantic networks Easy to follow hierarchy, easy 
to trace associations, flexible

Meaning attached to nodes 
might be ambiguous, 
exception handling is difficult, 
difficult to program

Frames Expressive power, easy to set 
up slots for new properties, 
easy to create specialized 
procedures, easy to include 
default information

Difficult to program, difficult for 
inference

Formal logic Facts asserted independently 
of use, precision, 
completeness

separation of representation 
and processing, inefficient with 
large data sets


