
1

Informed Search Algorithms

2

Outline

Best-first search
A* search
Heuristics

3

Review

A strategy is defined by picking the order of node expansion

4

Best-first search

Idea: use an evaluation function for each node
estimate of “desirability”
Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search

5

Algorithm Best-first
1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OPEN do:

(a) Pick the best node on OPEN.
(b) Generate its successors.
(c) For each successor do:

i. If it has not been generated before, evaluate it, add it to OPEN,
and record its parent.

ii. If it has been generated before, change the parent if this new
path is better than the previous one. In that case, update the
cost of getting to this node and to any successors that this
node may already have.

6

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost
from n to goal

e.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be
closest to goal

7 8

9 10

11

Properties of greedy search

Completeness: No. Can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt !
Complete in finite space with repeated-state checking
Time Complexity: O(bm) , but a good heuristic can
give dramatic improvement
Space Complexity: O(bm) keeps all nodes in memory
Optimality: No

12

A* search

Idea: avoid expanding paths that are already
expensive
Evaluation function f ‘(n) = g(n) + h’(n)

g(n)= cost so far to reach n
h’(n) = estimated cost to goal from n
f‘(n) = estimated total cost of path through n to goal

13

Admissible Heuristics

A* search uses an admissible heuristic i.e.,
h(n) ≤ h*(n) where h*(n) is the true cost from n.
e.g., hSLD(n) never overestimates the actual road
distance.

14

A* Search Example

15

A* Search Example

16

A* Search Example

17

A* Search Example

18

A* Search Example

19

A* Search Example

20

Optimality of A* (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the
queue.

Let n be an unexpanded node on a shortest path to an optimal goal G1.

f (G2) = g (G2) since h (G2) = 0

> g (G1) since G2 is suboptimal

≥ f (n) since h is admissible

Since f (G2) > f (n), A* will never select G2 for expansion

1

Optimality of A* (more useful)
Lemma: A* expands nodes in order of increasing f value
Gradually adds “f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = f i , where f i < f I+1

2

Properties of A*

Complete?? Yes, unless there are infinitely many
nodes with f ≤ f (G)

Time ?? Exponential in [relative error in h × length of
solution.]

Space ?? Keeps all nodes in memory
Optimal ?? Yes. cannot expand f i +1 until f i is finished.

3

Admissible heuristics
e.g., for the 8-puzzle:

h1 (n) = number of misplaced tiles
h2 (n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) =?? 8

h2(S) = ?? 2+3+3+2+4+2+0+2 = 18

4

Dominance

If h2(n) ≥ h1 (n) for all n (both admissible) then h2 dominates h1 and
is better for search

Typical search costs:
d = 14 IDS = 3,473,941 nodes

A*(h1) = 539 nodes
A*(h2) = 113 nodes

d = 24 IDS = 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,
h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb,

5

Relaxed problems
Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem
If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then

h1(n) gives the shortest solution
If the rules are relaxed so that a tile can move to any
adjacent square, then

h2(n) gives the shortest solution
Key point: the optimal solution cost of a relaxed
problem is no greater than the optimal solution cost
of the real problem

6

Relaxed problems (Cont.)

Well-known example: travelling salesperson problem
(TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour.

7

Iterative Deepening A*
A*- fixed- cost(max)
1. Set N to be the set of initial nodes and set lub to infinity.
2. If N is empty, then signal failure and exit.
3. Set n to be the first node in N and remove n from N.
4. If n is a goal node, then signal success and exit.
5. If the value of n is equal to max, then go to step 2.
6. For each child:

Check whether the value is larger than max.
If yes then if the value is smaller than lub, set lub to this value.
If no then add child to N.

7. Sort N and go to step 2.
Call A*- fixed- cost with increasing max (using lub).
lub = lower upper bound

8

IDA* (Iterative Deepening A*)

Memory- bounded Search
- iterative deepening
- bounded f- cost
- most cases: required space = bd
- if too long time -> epsilon- admissible variant

9

SMA* (Simplified Memory- Bounded A*)

Memory- bounded Search
- uses whatever memory is possible
- avoids repeated states as far as memory allows
- complete if memory is sufficient to store shallowest solution path
- optimal if memory is sufficient to store shallowest solution path
(otherwise best solution with available memory is returned)
- makes use of ‘forgotten nodes’

10

Iterative improvement algorithms
In many optimization problems, path is irrelevant; the goal state
itself is the solution
Then state space = set of “complete" configurations (complete-
state formulation vs. incremental formulation)
In such cases, can use iterative improvement algorithms;

keep a single “current" state, try to improve it
Constant space, suitable for online as well as offline search
Often want to find optimal conguration, e.g., TSP,
but also works for constraint satisfaction problems, e.g. n-
queens, timetabling

11

Local Search

Local search algorithms work by keeping in memory
just one current state (or perhaps a few), moving
around the state space based on purely local
information.
The paths followed by the search are not retained.
Local search algorithms are not systematic,
They have two advantages:

(1) they use very little memory—usually a constant amount;
and
(2) they can often find reasonable solutions in large or
infinite (continuous) state spaces for which systematic
algorithms are unsuitable.

12

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise
exchanges

Variants of this approach get within 1% of optimal
very quickly with thousands of cities

13

Example: n-queens
Put n queens on an n X n board with no two queens on
the same row, column, or diagonal
Local search: start with all n, move a queen to reduce
conflicts

Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n=1 million
(Why? Perhaps because choices for queen k are made
wrt all others)

14

Generate and Test

1. Generate a possible solution.
2. Test to see if this is actually a solution by comparing the

chosen point or the endpoint of the path to the set of
acceptable goal states

3. If a solution has been found, quit. Otherwise, return to step
1.

British Museum Algorithm

15

Simple Hill Climbing
1. Evaluate the initial state. If it is also a goal state then return

it and quit. Otherwise, continue with the initial state as the
current state.

2. Loop until a solution is found or until there are no operators
left to be applied in the current state.

a) Select an operator that has not yet been applied to the
current state and apply it to produce a new state.

b) Evaluate the new state
i. If it is a goal state, then return it and quit.
ii. If it is not a goal state but it is better than the current state,

then make it the current state.
iii. If it is not better than the current state, then continue in the

loop.

16

Steepest- Ascent Hill Climbing

1. Evaluate the initial state. If it is also a goal state then return it
and quit. Otherwise, continue with the initial state as the current
state.

2. Loop until a solution is found or until a complete iteration
produces no change to the current state:

a) Let SUCC be a state such that any possible successor of the
current state will be better that SUCC.

b) For each operator that applies to the current state do:
i. Apply the operator and generate a new state.
ii. Evaluate the new state. If it is a goal state, then return it

and quit. If not, compare it to SUCC. If it is better then set
SUCC to this state. If it is not better, leave SUCC alone.

iii. If SUCC is better than current state, then set current
state to SUCC.

17

Local Search Space

18

Hill Climbing Problems
Local maxima: a local maximum
is a peak that is higher than each
of its neighboring states, but
lower than the global maximum.
Ridges: Ridges result in a
sequence of local maxima that is
very difficult for greedy
algorithms to navigate.
Plateaux: a plateau is an area of
the state space landscape where
the evaluation function is flat. It
can be a flat local maximum,
from which no uphill exit exists,
or a shoulder, from which it is
possible to make progress

19

Local Optima (Foothill Problem)

Problem Definition
Point reached by hill-climbing may be maximal but not
maximum
Maximal

– Definition: not dominated by any neighboring point (with respect to
criterion measure)

Maximum
– Definition: dominates all neighboring points (wrt criterion measure)

Ramifications
Steepest ascent hill-climbing will become trapped (why?)
Need some way to break out of trap state

– Accept transition (i.e., search move) to dominated neighbor
– Start over: random restarts

20

Lack of Gradient (Plateau Problem)

Problem Definition
Function space may contain points whose neighbors are
indistinguishable (with respect to criterion measure)
Effect: “flat” search landscape

Ramifications
Steepest ascent hill-climbing will become trapped
Need some way to break out of zero gradient

– Accept transition (i.e., search move) to random neighbor
– Random restarts
– Take bigger steps

1

Single-Step Traps (Ridge Problem)

� Problem Definition
Ê Function space may contain points such that single move in

any “direction” leads to suboptimal neighbor
Ê Effect

– There exists steepest gradient to goal
– None of allowed steps moves along that gradient
– Thin “knife edge” in search landscape, hard to navigate

� Ramifications
Ê Steepest ascent hill-climbing will become trapped (why?)
Ê Need some way to break out of ridge-walking

– Formulate composite transition (multi-dimension step) – how?
– Accept multi-step transition (at least one to worse state) – how?
– Random restarts

2

Ridge Problem Solution:
Multi-Step Trajectories

� Intuitive Idea: Take More than One Step in Moving along Ridge

� Analogy: Tacking in Sailing
Ê Need to move against wind direction

Ê Have to compose move from multiple small steps
– Combined move: in (or more toward) direction of steepest gradient

– Another view: decompose problem into self-contained subproblems

� Multi-Step Trajectories: Macro Operators
Ê Macros: (inductively) generalize from 2 to > 2 steps

Ê Example: Rubik’s Cube
– Can solve 3 x 3 x 3 cube by solving, interchanging 2 x 2 x 2 cubies

– Knowledge used to formulate subcube (cubie) as macro operator

Ê Treat operator as single step (multiple primitive steps)

3

Plateau, Local Optimum, Ridge Solution:
Global Optimization

� Intuitive Idea
Ê Allow search algorithm to take some “bad” steps to escape from trap

states

Ê Decrease probability of taking such steps gradually to prevent return to
traps

� Analogy: Marble(s) on Rubber Sheet
Ê Goal: move marble(s) into global minimum from any starting position

Ê Shake system: hard at first, gradually decreasing vibration

Ê Marbles tend to break out of local minima but have less chance of re-
entering

� Analogy: Annealing
Ê Ideas from metallurgy, statistical thermodynamics

Ê Cooling molten substance: slow as opposed to rapid (quenching)

Ê Goal: maximize material strength of solidified substance 4

Beam search

� Assume a pre-fixed
WIDTH (example :
2)

� Perform breadth-
first, BUT:

� Only keep the
WIDTH best new
nodes
 depending on

heuristic

 at each new level.

S

B D A E

A D

S

6.7 8.9 10.4 6.9

Depth 2)

S

A D
10.4 8.9

Depth 1)

X
ignore

X
ignore

5

Beam search (2):

C E B F
B D A E

S

A D

X X4.0 6.9 6.7 3.0

Depth 3)

C E B F
B D A E

S

A D

A C G

X X
X

_

_
10.4 0.0

Depth 4)

� Optimi-
zation:
ignore
leafs
that are
not goal
nodes
(see C)

X
ignore

_
end

6

Taxonomy of Search Methods

 Search methods

 Calculus-based Guided random Enumerative
 techniques search techniques techniques

Direct Indirect Simulated Evolutionary Dynamic
methods methods annealing algorithms Programming

 Evolutionary Genetic Genetic Evolutionary
 Strategies algorithms Programming programming

7

Simulated Annealing

� Introduced by Metropolis et al. in 1953 and adapted
by Kirkpatrick (1983) in order to find an optimum
solution to large-scale combinatorial optimization
problems

� It is a derivative–free optimization method

� SA was derived from physical characteristics of spin
glasses

8

Simulated Annealing

� The principle behind SA is similar to what happens
when metals are cooled at a controlled rate

� The slowly decrease of temperature allows the atoms
in the molten metal to line themselves up an form a
regular crystalline structure that possesses a low
density and a low energy

9

Simulated Annealing

� The value of an objective function that we intend to
minimize corresponds to the energy in a
thermodynamic system

� High temperatures corresponds to the case where
high-mobility atoms can orient themselves with other
non-local atoms and the energy can increase:
function evaluation accepts new points with higher
energy

10

Simulated Annealing

� Low temperatures corresponds to the case where the
low-mobility atoms can only orient themselves with
local atoms & the energy state is not likely to
increase: Function evaluation is performed only
locally and points with higher energy are more and
more refused

� The most important element of SA is the so-called
annealing schedule (or cooling schedule) which
express how fast the temperature is being lowered
from high to low

11

Simulated Annealing Terminology:

� Objective function E(x): function to be
optimized

� Move set: set of next points to explore

∆E = xnew – x is a random variable with pdf = g(.,.)

� Generating function: pdf for selecting next
point

g(∆x, T) = (2π T)-n/2 exp[-|| ∆x||2 / 2T]
(n is the explored space dimension)

12

Simulated Annealing Terminology

� Acceptance function h(∆E, T): to
determine if the selected point should
be accepted or not. Usually

h(∆E, T) = 1/(1+exp(∆E/(cT)).

� Annealing (cooling) schedule: schedule
for reducing the temperature T

13

Basic steps involved in a general SA
method

� Step 1 [Initialization]: Choose an initial point x and a high
temperature T and set the iteration count k to 1

� Step 2 [Evaluation]: Evaluate the objective function E =
f(x)

� Step 3 [Exploration]: Select ∆x with probability g(∆x, T),
and set xnew = x + ∆x

� Step 4 [Reevaluation]: Compute the new value of the
objective function Enew = f(xnew)

14

Basic step involved in a general SA
method (cont.)

� Step 5 [Acceptance]: Test if xnew is accepted or not by
computing h(∆E, T) where ∆E = Enew-E

� Step 6: Lower the temperature according to the
annealing schedule (T = ηT; 0 < η < 1)

� Step 7: k = k + 1, if k reaches the maximum iteration
count, then stop otherwise go to step 3

15

Tabu Search

� Tabu: prevent returning quickly to same state.
� Implementation: Keep fixed length queue (“tabu list”):

add most recent step to queue; drop “oldest” step.
� Never make step that's currently on the tabu list.
� Quite powerful; competitive with simulated annealing

16

Basic Evolutionary Algorithm
t:=0; {initialize time}
InitPopulation(P,t); {initialize random population of individuals}
EvaluateFitness(P,t); {evaluate fitness of all initial individuals

{in the population}
while not terminate(P,t) do {test for termination criterion, e.g. { # of generations,satisfactory fitness, etc.}
begin
t:=t+1; {increase time}
SelectParents(P,Ps); {select subpopulation for reproduction}
Recombine(Ps); {recombine the genes of selected

{parents}
Mutate(Ps); {mutate (perturb randomly) the}

{mated population}
EvaluateFitness(Ps,t); {evaluate new fitness}
Survive(P,Ps); {select the survivors using actual} {fitnesses}
end;

17

Genetic Algorithms

� A genetic algorithm has the following components:
� a mechanism to encode solutions to problems as

strings,
� a population of solutions represented as strings,
� a problem dependent fitness function,
� a selection mechanism,
� crossover and mutation operators.

18

Encoding Mechanism

� Fixed length binary string are used to represent
individuals

� Simple Binary Coding
Ê Example:

– {000, 001, 010, 011, 100, 101, 110, 111}

� Gray Coding
Ê Example:

– {000, 001, 011, 010, 110, 111, 101, 100}

19

Selection
� Selection is based on the survival of the fittest

mechanism of nature.

� Common Selection Schemes:
� Proportionate selection scheme

Ê Number of offsprings=fs/fa
Ê where fs is the fitness value
Ê fa is the average fitness value of the population

� Tournament selection scheme
� Rank based selection
� Elitist strategies

20

Crossover

21

Example of Crossover

22

Mutation

23

Typical GA Convergence Behavior

24

Control Parameters of GA

� Population size
Ê Typically 30-200

� Crossover rate
Ê Typically 0.5-1.0

� Mutation rate
Ê Typically 0.001-0.05

� Stopping Criteria
Ê Reaching a fixed number of iterations,
Ê Evolving a string with a high fitness value,
Ê Creation of a certain degree of homogeneity within the

population.

25

A GA Example

� Problem: Assume that we want to find the maximum
of the following function f(x,y) :

� where independent variables x and y vary between -3
and 3.

26

Encoding:
� The problem variables are represented as a chromosome -

variables x and y as a concatenated binary string.

� Both of them are allocated 8 bits, consequently the chromosome
is 16 bits long.

� Here for simplicity we use binary to decimal conversion.

27

Normalization and Mapping

� The range of integers that can be handled by 8-bits,
that is the range from 0 to (28 - 1), is mapped to the
actual range of parameters x and y, that is the range
from -3 to 3:

� To obtain the actual values of x and y, we multiply
their decimal values by 0.0235294 and subtract 3
from the results:

28

GA Parameters

� The followin parameters are used:
Ê Population size =6
Ê Crossover probability =0.7
Ê Mutation probability = 0.001.
Ê Maximum number of generations = 100

29

Initial Population

30

First generation

31

Local maximum

32

Fitness vs Generations: Local Maximum
Case

33

Global Maximum

34

Fitness vs Generations: Global Maximum
Case (6 chromosomes)

35

Fitness vs Generations: Global Maximum
Case (60 chromosomes)

36

Evolutionary Programming

� Real valued representation
� No recombination

37

Evolutionary Strategies

� Real valued representation
Ê Object Variables
Ê Strategy Variables

� Main operator
Ê Mutation

� Secondary operator
Ê Recombination

38

Genetic Programming

� Individuals
Ê Hierarchically structured computer programs, i.e., the set of

all possible combinations of functions that can be composed
recursively from the available set of n functions F={f1, f2, ...,
fn} and the available set of m terminals T={a1, a2, ..., an}.

� Main operators
Ê Fitness proportionate selection
Ê Recombination

� Secondary operators
Ê Mutation
Ê Permutation
Ê Editing
Ê Define Building Block

39

Recombination Example for GP

40

Main Characteristics of Evolutionary
Algorithms

 ES EP GA GP
Representation Real-valued Real-valued Binary-Valued Lisp S-

expressions
Self-Adaptation Standard

deviations
and
covariances

Variance None None

Fitness Objective
function
values

Scaled
objective
function
value

Scaled
objective
function value

Scaled
objective
function
value

Mutation Main
operator

Only
operator

Background
operator

Background
operator

Recombination Different
variants,
important for
self-
adaptation

None Main
Operator

Main
Operator

Selection Deterministic
, extinctive

Probabilistic,
extinctive

Probabilistic,
preservative

Probabilistic,
preservative

41

Applications of Evolutionary Algorithms

� Some interesting examples of EA applications:
� Time-tabling
� Job-shop scheduling:
� Game playing:
� Computer Aided Design (CAD)
� Face Recognition
� Financial Time-Series Prediction

