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Informed Search Algorithms
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Outline

Best-first search
A*  search
Heuristics
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Review

A strategy is defined by picking the order of node expansion
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Best-first search

Idea: use an evaluation function for each node
estimate of “desirability”
Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A* search
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Algorithm Best-first
1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OPEN do:

(a) Pick the best node on OPEN.
(b) Generate its successors.
(c) For each successor do:

i. If it has not been generated before, evaluate it, add it to OPEN,
and record its parent.

ii. If it has been generated before, change the parent if this new
path is better than the previous one. In that case, update the
cost of getting to this node and to any successors that this
node may already have.
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Greedy search

Evaluation function h(n) (heuristic) = estimate of cost 
from n to goal

e.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be 
closest to goal
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Properties of greedy search

Completeness: No. Can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt !
Complete in finite space with repeated-state checking
Time Complexity: O(bm) , but a good heuristic can 
give dramatic improvement
Space Complexity: O(bm) keeps all nodes in memory
Optimality: No
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A*  search

Idea: avoid expanding paths that are already 
expensive
Evaluation function f ‘(n) = g(n) + h’(n)

g(n)= cost so far to reach n
h’(n) = estimated cost to goal from n
f‘(n) = estimated total cost of path through n to goal
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Admissible Heuristics

A*  search uses an admissible heuristic i.e., 
h(n) ≤ h*(n) where h*(n) is the true cost from n.
e.g., hSLD(n) never overestimates the actual road 
distance.
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A*  Search Example
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A*  Search Example
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A*  Search Example



17

A*  Search Example
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A*  Search Example
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A*  Search Example
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Optimality of A*  (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the 
queue.

Let n be an unexpanded node on a shortest path to an optimal goal G1.

f (G2) = g (G2) since h (G2) = 0

> g (G1) since G2 is suboptimal

≥ f (n) since h is admissible

Since f (G2) > f (n), A* will never select G2 for expansion
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Optimality of A*  (more useful)
Lemma: A*  expands nodes in order of increasing f value
Gradually adds “f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = f i , where f i < f I+1
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Properties of A*

Complete?? Yes, unless there are infinitely many 
nodes with f ≤ f (G)

Time ?? Exponential in [relative error in h × length of 
solution.]

Space ?? Keeps all nodes in memory
Optimal ?? Yes. cannot expand f i +1 until f i is finished.
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Admissible heuristics
e.g., for the 8-puzzle:

h1 (n) = number of misplaced tiles
h2 (n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S) =?? 8

h2(S) = ?? 2+3+3+2+4+2+0+2 = 18
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Dominance

If h2(n) ≥ h1 (n) for all n (both admissible) then h2 dominates h1 and 
is better for search

Typical search costs:
d = 14 IDS = 3,473,941 nodes

A*(h1) = 539 nodes
A*(h2) = 113 nodes

d = 24 IDS = 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,
h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb,
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Relaxed problems
Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem
If the rules of the 8-puzzle are relaxed so that a tile 
can move anywhere, then 

h1(n) gives the shortest solution
If the rules are relaxed so that a tile can move to any 
adjacent square, then 

h2(n) gives the shortest solution
Key point: the optimal solution cost of a relaxed 
problem is no greater than the optimal solution cost 
of the real problem
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Relaxed problems (Cont.)

Well-known example: travelling salesperson problem 
(TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour.
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Iterative Deepening A*
A*- fixed- cost( max)
1. Set N to be the set of initial nodes and set lub to infinity. 
2. If N is empty, then signal failure and exit.
3. Set n to be the first node in N and remove n from N.
4. If n is a goal node, then signal success and exit.
5. If the value of n is equal to max, then go to step 2.
6. For each child:

Check whether the value is larger than max.
If yes then if the value is smaller than lub, set lub to this value. 
If no then add child to N.

7. Sort N and go to step 2.
Call A*- fixed- cost with increasing max (using lub).
lub = lower upper bound
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IDA* (Iterative Deepening A*)

Memory- bounded Search
- iterative deepening
- bounded f- cost
- most cases: required space = bd
- if too long time -> epsilon- admissible variant
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SMA* (Simplified Memory- Bounded A*)

Memory- bounded Search
- uses whatever memory is possible
- avoids repeated states as far as memory allows
- complete if memory is sufficient to store shallowest solution path
- optimal if memory is sufficient to store shallowest solution path
(otherwise best solution with available memory is returned)
- makes use of ‘forgotten nodes’
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Iterative improvement algorithms
In many optimization problems, path is irrelevant; the goal state 
itself is the solution
Then state space = set of “complete" configurations (complete-
state formulation vs. incremental formulation)
In such cases, can use iterative improvement algorithms;

keep a single “current" state, try to improve it
Constant space, suitable for online as well as offline search
Often want to find optimal conguration, e.g., TSP,
but also works for constraint satisfaction problems, e.g. n-
queens, timetabling
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Local Search

Local search algorithms work by keeping in memory 
just one current state (or perhaps a few), moving 
around the state space based on purely local 
information. 
The paths followed by the search are not retained. 
Local search algorithms are not systematic,
They have two advantages: 

(1) they use very little memory—usually a constant amount; 
and 
(2) they can often find reasonable solutions in large or 
infinite (continuous) state spaces for which systematic 
algorithms are unsuitable.
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Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise
exchanges

Variants of this approach get within 1% of optimal 
very quickly with thousands of cities



13

Example: n-queens
Put n queens on an n X n board with no two queens on 
the same row, column, or diagonal
Local search: start with all n, move a queen to reduce 
conflicts

Almost always solves n-queens problems almost 
instantaneously for very large n, e.g., n=1 million
(Why? Perhaps because choices for queen k are made 
wrt all others)

14

Generate and Test

1. Generate a possible solution.
2. Test to see if this is actually a solution by comparing the 

chosen point or the endpoint of the path to the set of 
acceptable goal states

3. If a solution has been found, quit. Otherwise, return to step 
1.

British Museum Algorithm
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Simple Hill Climbing
1. Evaluate the initial state. If it is also a goal state then return 

it and quit. Otherwise, continue with the initial state as the 
current state.

2. Loop until a solution is found or until there are no operators 
left to be applied in the current state.

a) Select an operator that has not yet been applied to the 
current state and apply it to produce a new state.

b) Evaluate the new state
i. If it is a goal state, then return it and quit.
ii. If it is not a goal state but it is better than the current state, 

then make it the current state.
iii. If it is not better than the current state, then continue in the

loop.
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Steepest- Ascent Hill Climbing

1. Evaluate the initial state. If it is also a goal state then return it 
and quit. Otherwise, continue with the initial state as the current 
state.

2. Loop until a solution is found or until a complete iteration 
produces no change to the current state:

a) Let SUCC be a state such that any possible successor of the 
current state will be better that SUCC.

b) For each operator that applies to the current state do:
i. Apply the operator and generate a new state.
ii. Evaluate the new state. If it is a goal state, then return it 

and quit. If not, compare it to SUCC. If it is better then set 
SUCC to this state. If it is not better, leave SUCC alone.

iii. If SUCC is better than current state, then set current 
state to SUCC.
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Local Search Space
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Hill Climbing Problems
Local maxima: a local maximum 
is a peak that is higher than each 
of its neighboring states, but 
lower than the global maximum. 
Ridges: Ridges result in a 
sequence of local maxima that is 
very difficult for greedy 
algorithms to navigate.
Plateaux: a plateau is an area of 
the state space landscape where 
the evaluation function is flat. It 
can be a flat local maximum, 
from which no uphill exit exists, 
or a shoulder, from which it is 
possible to make progress
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Local Optima (Foothill Problem)

Problem Definition
Point reached by hill-climbing may be maximal but not 
maximum
Maximal

– Definition: not dominated by any neighboring point (with respect to 
criterion measure) 

Maximum
– Definition: dominates all neighboring points (wrt criterion measure)

Ramifications
Steepest ascent hill-climbing will become trapped (why?)
Need some way to break out of trap state

– Accept transition (i.e., search move) to dominated neighbor
– Start over: random restarts

20

Lack of Gradient (Plateau Problem)

Problem Definition
Function space may contain points whose neighbors are 
indistinguishable (with respect to criterion measure)
Effect: “flat” search landscape

Ramifications
Steepest ascent hill-climbing will become trapped 
Need some way to break out of zero gradient

– Accept transition (i.e., search move) to random neighbor
– Random restarts
– Take bigger steps
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Single-Step Traps (Ridge Problem)

� Problem Definition
Ê Function space may contain points such that single move in 

any “direction” leads to suboptimal neighbor
Ê Effect

– There exists steepest gradient to goal
– None of allowed steps moves along that gradient
– Thin “knife edge” in search landscape, hard to navigate

� Ramifications
Ê Steepest ascent hill-climbing will become trapped (why?)
Ê Need some way to break out of ridge-walking

– Formulate composite transition (multi-dimension step) – how?
– Accept multi-step transition (at least one to worse state) – how?
– Random restarts
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Ridge Problem Solution:
Multi-Step Trajectories

� Intuitive Idea: Take More than One Step in Moving along Ridge

� Analogy: Tacking in Sailing
Ê Need to move against wind direction

Ê Have to compose move from multiple small steps
– Combined move: in (or more toward) direction of steepest gradient

– Another view: decompose problem into self-contained subproblems

� Multi-Step Trajectories: Macro Operators
Ê Macros: (inductively) generalize from 2 to > 2 steps

Ê Example: Rubik’s Cube
– Can solve 3 x 3 x 3 cube by solving, interchanging 2 x 2 x 2 cubies

– Knowledge used to formulate subcube (cubie) as macro operator

Ê Treat operator as single step (multiple primitive steps)
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Plateau, Local Optimum, Ridge Solution:
Global Optimization

� Intuitive Idea
Ê Allow search algorithm to take some “bad” steps to escape from trap 

states

Ê Decrease probability of taking such steps gradually to prevent return to 
traps

� Analogy: Marble(s) on Rubber Sheet
Ê Goal: move marble(s) into global minimum from any starting position

Ê Shake system: hard at first, gradually decreasing vibration

Ê Marbles tend to break out of local minima but have less chance of re-
entering

� Analogy: Annealing
Ê Ideas from metallurgy, statistical thermodynamics

Ê Cooling molten substance: slow as opposed to rapid (quenching)

Ê Goal: maximize material strength of solidified substance 4

Beam search

� Assume a pre-fixed 
WIDTH (example : 
2 )

� Perform breadth-
first,  BUT:

� Only keep the 
WIDTH best new 
nodes
 depending on         

heuristic 

 at each new level.

S

B D A E

A D

S

6.7 8.9 10.4 6.9

Depth 2)

S

A D
10.4 8.9

Depth 1)

X
ignore

X
ignore
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Beam search (2):

C E B F
B D A E

S

A D

X X4.0 6.9 6.7 3.0

Depth 3)

C E B F
B D A E

S

A D

A C G

X X
X

_

_
10.4 0.0

Depth 4)

� Optimi-
zation: 
ignore 
leafs 
that are 
not goal 
nodes 
(see C)

X
ignore

_
end
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Taxonomy of Search Methods
   
     Search methods 
 
    
  
 Calculus-based    Guided random     Enumerative 
 techniques     search techniques     techniques  
 
 
Direct   Indirect Simulated Evolutionary   Dynamic 
methods methods annealing algorithms   Programming
     
 
    
   
  Evolutionary  Genetic Genetic  Evolutionary 
  Strategies  algorithms Programming programming 
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Simulated Annealing

� Introduced by Metropolis et al. in 1953 and adapted 
by Kirkpatrick (1983) in order to find an optimum 
solution to large-scale combinatorial optimization 
problems

� It is a derivative–free optimization method

� SA was derived from physical characteristics of spin 
glasses
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Simulated Annealing

� The principle behind SA is similar to what happens 
when metals are cooled at a controlled rate

� The slowly decrease of temperature allows the atoms 
in the molten metal to line themselves up an form a 
regular crystalline structure that possesses a low 
density and a low energy
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Simulated Annealing

� The value of an objective function that we intend to 
minimize corresponds to the energy in a 
thermodynamic system

� High temperatures corresponds to the case where 
high-mobility atoms can orient themselves with other 
non-local atoms and the energy can increase: 
function evaluation accepts new points with higher 
energy
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Simulated Annealing

� Low temperatures corresponds to the case where the 
low-mobility atoms can only orient themselves with 
local atoms & the energy state is not likely to 
increase: Function evaluation is performed only
locally and points with higher energy are more and
more refused

� The most important element of SA is the so-called 
annealing schedule (or cooling schedule) which 
express how fast the temperature is being lowered 
from high to low
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Simulated Annealing Terminology:

� Objective function E(x): function to be 
optimized

� Move set: set of next points to explore

∆E = xnew – x is a random variable with pdf = g(.,.)

� Generating function: pdf for selecting next 
point

g(∆x, T) = (2π T)-n/2 exp[-|| ∆x||2 / 2T]
(n is the explored space dimension)
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Simulated Annealing Terminology

� Acceptance function h(∆E, T): to 
determine if the selected point should 
be accepted or not. Usually 

h(∆E, T) = 1/(1+exp(∆E/(cT)).

� Annealing (cooling) schedule: schedule 
for reducing the temperature T
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Basic steps involved in a general SA 
method

� Step 1 [Initialization]: Choose an initial point x and a high 
temperature T and set the iteration count k to 1

� Step 2 [Evaluation]: Evaluate the objective function E = 
f(x)

� Step 3 [Exploration]: Select ∆x with probability g(∆x, T), 
and set xnew = x + ∆x

� Step 4 [Reevaluation]: Compute the new value of the 
objective function Enew = f(xnew)
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Basic step involved in a general SA 
method (cont.)

� Step 5 [Acceptance]: Test if xnew is accepted or not by 
computing h(∆E, T) where ∆E = Enew-E

� Step 6: Lower the temperature according to the 
annealing schedule (T = ηT; 0 < η < 1)

� Step 7: k = k + 1, if k reaches the maximum iteration 
count, then stop otherwise go to step 3
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Tabu Search

� Tabu: prevent returning quickly to same state.
� Implementation: Keep fixed length queue (“tabu list”): 

add most recent step to queue; drop “oldest” step.
� Never make step that's currently on the tabu list.
� Quite powerful; competitive with simulated annealing

16

Basic Evolutionary Algorithm
t:=0; {initialize time}
InitPopulation(P,t); {initialize random population of individuals}
EvaluateFitness(P,t); {evaluate fitness of all initial individuals

{in the population}
while not terminate(P,t) do {test for termination criterion, e.g. { # of generations,satisfactory fitness, etc.}
begin
t:=t+1; {increase time}
SelectParents(P,Ps); {select subpopulation for reproduction}
Recombine(Ps); {recombine the genes of selected

{parents}
Mutate(Ps); {mutate (perturb randomly) the} 

{mated population}
EvaluateFitness(Ps,t); {evaluate new fitness}
Survive(P,Ps); {select the survivors using actual} {fitnesses}
end;
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Genetic Algorithms

� A genetic algorithm has the following components:
� a mechanism to encode solutions to problems as 

strings,
� a population of solutions represented as strings,
� a problem dependent fitness function,
� a selection mechanism,
� crossover and mutation operators.
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Encoding Mechanism

� Fixed length binary string are used to represent 
individuals

� Simple Binary Coding
Ê Example:

– {000, 001, 010,  011, 100, 101, 110, 111} 

� Gray Coding
Ê Example:

– {000,  001,  011,  010, 110, 111, 101, 100}  
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Selection
� Selection is based on the survival of the fittest 

mechanism of nature. 

� Common Selection Schemes:
� Proportionate selection scheme

Ê Number of offsprings=fs/fa
Ê where fs is the fitness value 
Ê fa is the average fitness value of the population

� Tournament selection scheme
� Rank based selection
� Elitist strategies
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Crossover
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Example of Crossover
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Mutation
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Typical GA Convergence Behavior
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Control Parameters of GA

� Population size
Ê Typically 30-200

� Crossover rate
Ê Typically 0.5-1.0

� Mutation rate
Ê Typically 0.001-0.05

� Stopping Criteria
Ê Reaching a fixed number of iterations,
Ê Evolving a string with a high fitness value,
Ê Creation of a certain degree of homogeneity within the 

population.
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A GA Example

� Problem: Assume that we want to find the maximum 
of the following function f(x,y) :

� where independent variables x and y vary between -3 
and 3.
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Encoding:
� The problem variables are represented as a chromosome -

variables x and y as a concatenated binary string. 

� Both of them are allocated 8 bits, consequently the chromosome 
is 16 bits long.

� Here for simplicity we use binary to decimal conversion.
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Normalization and Mapping

� The range of integers that can be handled by 8-bits, 
that is the range from 0 to (28 - 1), is mapped to the 
actual range of parameters x and y, that is the range 
from -3 to 3:

� To obtain the actual values of x and y, we multiply 
their decimal values by 0.0235294 and subtract 3 
from the results:
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GA Parameters

� The followin parameters are used:
Ê Population size =6
Ê Crossover probability =0.7 
Ê Mutation probability = 0.001.
Ê Maximum number of generations = 100
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Initial Population
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First generation
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Local maximum
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Fitness vs Generations: Local Maximum
Case
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Global Maximum
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Fitness vs Generations: Global Maximum
Case (6 chromosomes)
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Fitness vs Generations: Global Maximum
Case (60 chromosomes)
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Evolutionary Programming

� Real valued representation
� No recombination
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Evolutionary Strategies

� Real valued representation
Ê Object Variables
Ê Strategy Variables

� Main operator
Ê Mutation

� Secondary operator
Ê Recombination
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Genetic Programming

� Individuals
Ê Hierarchically structured computer programs, i.e., the set of 

all possible combinations of functions that can be composed 
recursively from the available set of n functions F={f1, f2, ..., 
fn} and the available set of m terminals T={a1, a2, ..., an}. 

� Main operators
Ê Fitness proportionate selection
Ê Recombination

� Secondary operators
Ê Mutation
Ê Permutation
Ê Editing
Ê Define Building Block
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Recombination Example for GP
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Main Characteristics of Evolutionary 
Algorithms

 ES EP GA GP 
Representation Real-valued Real-valued Binary-Valued Lisp S-

expressions 
Self-Adaptation Standard 

deviations 
and 
covariances 

Variance None None 

Fitness Objective 
function 
values 

Scaled 
objective 
function 
value 

Scaled 
objective 
function value 

Scaled 
objective 
function 
value 

Mutation Main 
operator 

Only 
operator 

Background 
operator 

Background 
operator 

Recombination Different 
variants, 
important for 
self-
adaptation 

None Main 
Operator 

Main 
Operator 

Selection Deterministic
, extinctive 

Probabilistic, 
extinctive 

Probabilistic, 
preservative 

Probabilistic, 
preservative 
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Applications of Evolutionary Algorithms

� Some interesting examples of EA applications:
� Time-tabling
� Job-shop scheduling:
� Game playing:
� Computer Aided Design (CAD)
� Face Recognition
� Financial Time-Series Prediction


