Informed Search Algorithms

Outline

m Best-first search
m A* search
m Heuristics

Review

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GoaL-TEsT|problem] applied to STATE(n0de) succeeds return node
fringe «— INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Best-first search

m |dea: use an evaluation function for each node

7 estimate of “desirability”

72 Expand most desirable unexpanded node
= Implementation:

7 fringe is a queue sorted in decreasing order of desirability
m Special cases:

7 greedy search

72 A* search




Algorithm Best-first

1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OPEN do:

(a) Pick the best node on OPEN.

(b) Generate its successors.
(c) For each successor do:

i. If it has not been generated before, evaluate it, add it to OPEN,

and record its parent.

ii. If it has been generated before, change the parent if this new
path is better than the previous one. In that case, update the
cost of getting to this node and to any successors that this

node may already have.

Greedy search

m Evaluation function h(n) (heuristic) = estimate of cost
from n to goal

7 e.g., hg p(n) = straight-line distance from n to Bucharest

m Greedy search expands the node that appears to be
closest to goal

(a) The initial state

D,

366

(b) After expanding Arad Arad

253 39 a4




(¢) After expanding Sibiu ~ hrad

329 374

(d) After expanding Fagaras Arad

329 374

366 380 183

366 176 380 193
i Db ucharesD
253 4]
Properties of greedy search A* search

m Completeness: No. Can get stuck in loops, e.g.,
lasi - Neamt — lasi - Neamt !
Complete in finite space with repeated-state checking

m Time Complexity: O(b™) , but a good heuristic can
give dramatic improvement

m Space Complexity: O(b™) keeps all nodes in memory
m Optimality: No

11

m |dea: avoid expanding paths that are already
expensive
m Evaluation function f ‘(n) = g(n) + h’(n)
7 g(n)= cost so far to reach n
7 h’(n) = estimated cost to goal from n
2 f{(n) = estimated total cost of path through n to goal

12




Admissible Heuristics

A* search uses an admissible heuristic i.e.,
h(n) <h*(n) where h*(n) is the true cost from n.

e.g., hg p(n) never overestimates the actual road
distance.

13

A* Search Example

(a) The initial state

366=0+366

14

A* Search Example

(b) After expanding Arad (}\rad/)
D
393=140+253 447=118+329 449=75+374

15

A* Search Example

(c) After expanding Sibiu

646=280+366 415=239+176 671=291+380 413=220+193

R

447=118+329 449=T5+374

16




A* Search Example

(d) After expanding Rimnicu Vilcea

~. 447=118+329 449=75+374

.m.//). .Fagaras ..O;adea @

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

17

A* Search Example

(e} After expanding Fagaras

449=T5+374

.m/./ ..Fagi;r;;\s ..Orédea

046=280+366 | - . 671=291+380

: \ y o e

591=338+253  450=450+0 526=366+160 417=317+100 553=300+253

18

A* Search Example

(f) After expanding Pitesti

e ) . 447=118+329 449=75+374
646=280+366 -~ . 671=291+380 S
~ S / \\ ""——1,,‘117‘\

591-338+253 450-450+0  526=366+160 . . 553=300+253

418=418+) 615=455+160 607=414+193

19

Optimality of A* (standard proof)

Suppose some suboptimal goal G, has been generated and is in the
gueue.

Let n be an unexpanded node on a shortest path to an optimal goal G,.

Start

AN
e

@ G,
f(G,) =09(Gy since h (G,) =0

> g (G,) since G, is suboptimal
>f(n) since his admissible

Since f (G,) > f (n), A* will never select G, for expansion

20




Optimality of A* (more useful) Properties of A*

Lemma: A* expands nodes in order of increasing f value
Gradually adds “f-contours" of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f =f;, where f; <f,;

Complete?? Yes, unless there are infinitely many
nodes with f <f (G)

Time ?? Exponential in [relative error in h x length of
solution.]

Space ?? Keeps all nodes in memory
Optimal ?? Yes. cannot expand f,_, until f; is finished.

Admissible heuristics Dominance

e.g., for the 8-puzzle: . .
h, (n) = number of misplaced tiles If hlzs(nb)ezttQ% f(gr) ;cé;?(l:lhn (both admissible) then h, dominates h, and

(i.e., no. of squares from desired location of each tile) d=14 IDS = 3,473,941 nodes

A*(h;) = 539 nodes

m A*(h,) = 113 nodes

d=24 IDS = 54,000,000,000 nodes

]ZI A*(h;) = 39,135 nodes

A*(h,) = 1,641 nodes

E Given any admissible heuristics h,, h,,

Start State Goal State h(n) = max(h,(n), h,(n))
hy(S) =77 8 is also admissible and dominates h,, h,,

h,(S) = ?? 2+3+3+2+4+2+0+2 = 18




Relaxed problems

m Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem
m If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then
7 h,(n) gives the shortest solution
m |f the rules are relaxed so that a tile can move to any
adjacent square, then
7 h,(n) gives the shortest solution
m Key point: the optimal solution cost of a relaxed
problem is no greater than the optimal solution cost
of the real problem

Relaxed problems (Cont.)

m Well-known example: travelling salesperson problem
(TSP)

m Find the shortest tour visiting all cities exactly once

= Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour.

Iterative Deepening A*

A*- fixed- cost( max)

Set N to be the set of initial nodes and set lub to infinity.
If N is empty, then signal failure and exit.

Set n to be the first node in N and remove n from N.

If nis a goal node, then signal success and exit.

If the value of n is equal to max, then go to step 2.

For each child:

Check whether the value is larger than max.

If yes then if the value is smaller than lub, set lub to this value.
If no then add child to N.

7. Sort N and go to step 2.

Call A*- fixed- cost with increasing max (using lub).

lub = lower upper bound

ok w N e

IDA* (Iterative Deepening A*)

m Memory- bounded Search
- iterative deepening
- bounded f- cost
- most cases: required space = bd
- if too long time -> epsilon- admissible variant




SMA* (Simplified Memory- Bounded A*)

= Memory- bounded Search
- uses whatever memory is possible
- avoids repeated states as far as memory allows
- complete if memory is sufficient to store shallowest solution path
- optimal if memory is sufficient to store shallowest solution path
(otherwise best solution with available memory is returned)
- makes use of ‘forgotten nodes’

Iterative improvement algorithms

1
= In many optimization problems, path is irrelevant; the goal state
itself is the solution

m Then state space = set of “complete” configurations (complete-
state formulation vs. incremental formulation)

® In such cases, can use iterative improvement algorithms;

7 keep a single “current"” state, try to improve it
m Constant space, suitable for online as well as offline search
m Often want to find optimal conguration, e.g., TSP,

m but also works for constraint satisfaction problems, e.g. n-
queens, timetabling

10

Local Search

m Local search algorithms work by keeping in memory
just one current state (or perhaps a few), moving
around the state space based on purely local
information.

m The paths followed by the search are not retained.
m Local search algorithms are not systematic,

m They have two advantages:
7 (1) they use very little memory—usually a constant amount;
and
7 (2) they can often find reasonable solutions in large or

infinite (continuous) state spaces for which systematic
algorithms are unsuitable.

11

Example: Travelling Salesperson Problem

m Start with any complete tour, perform pairwise
exchanges

m Variants of this approach get within 1% of optimal
very quickly with thousands of cities

12




Example: n-queens

m Put n queens on an n X n board with no two queens on
the same row, column, or diagonal

m Local search: start with all n, move a queen to reduce
conflicts

m Almost always solves n-queens problems almost
instantaneously for very large n, e.g., n=1 million

m (Why? Perhaps because choices for queen k are made
wrt all others)

13

Generate and Test

1.  Generate a possible solution.

2. Testto see if this is actually a solution by comparing the
chosen point or the endpoint of the path to the set of
acceptable goal states

3. If a solution has been found, quit. Otherwise, return to step
1.

British Museum Algorithm

14

Simple Hill Climbing
T —.
1. Evaluate the initial state. If it is also a goal state then return
it and quit. Otherwise, continue with the initial state as the
current state.
2. Loop until a solution is found or until there are no operators
left to be applied in the current state.
a) Select an operator that has not yet been applied to the
current state and apply it to produce a new state.
b) Evaluate the new state
i. Ifitis a goal state, then return it and quit.
i. Ifitis not a goal state but it is better than the current state,
then make it the current state.
ii. Ifitis not better than the current state, then continue in the
loop.

15

Steepest- Ascent Hill Climbing

1. Evaluate the initial state. If it is also a goal state then return it
and quit. Otherwise, continue with the initial state as the current
state.

2. Loop until a solution is found or until a complete iteration
produces no change to the current state:

a) Let SUCC be a state such that any possible successor of the
current state will be better that SUCC.
b)  For each operator that applies to the current state do:
i. Apply the operator and generate a new state.
ii. Evaluate the new state. If it is a goal state, then return it
and quit. If not, compare it to SUCC. If it is better then set
SUCC to this state. If it is not better, leave SUCC alone.
ii. If SUCC is better than current state, then set current
state to SUCC.

16




Local Search Space

crbjt?clivt;k function global maximum

P

shoulder

local maximum

"flat" local maximum

= state space
current
state

17

Hill Climbing Problems

m Local maxima: a local maximum
is a peak that is higher than each
of its neighboring states, but
lower than the global maximum.

m Ridges: Ridges resultin a
sequence of local maxima that is
very difficult for greedy
algorithms to navigate.

m Plateaux: a plateau is an area of
the state space landscape where
the evaluation function is flat. It
can be a flat local maximum,
from which no uphill exit exists,
or a shoulder, from which it is
possible to make progress

18

Local Optima (Foothill Problem)

m Problem Definition
7 Point reached by hill-climbing may be maximal but not
maximum
72 Maximal

— Definition: not dominated by any neighboring point (with respect to
criterion measure)

72 Maximum
— Definition: dominates all neighboring points (wrt criterion measure)
m Ramifications
7 Steepest ascent hill-climbing will become trapped (why?)
72 Need some way to break out of trap state
— Accept transition (i.e., search move) to dominated neighbor
— Start over: random restarts

19

Lack of Gradient (Plateau Problem)

m Problem Definition

7 Function space may contain points whose neighbors are
indistinguishable (with respect to criterion measure)

7 Effect: “flat” search landscape

m Ramifications
7 Steepest ascent hill-climbing will become trapped
72 Need some way to break out of zero gradient
— Accept transition (i.e., search move) to random neighbor
— Random restarts
— Take bigger steps

20




Single-Step Traps (Ridge Problem)

m Problem Definition
7 Function space may contain points such that single move in
any “direction” leads to suboptimal neighbor
7 Effect
— There exists steepest gradient to goal
— None of allowed steps moves along that gradient
— Thin “knife edge” in search landscape, hard to navigate

m Ramifications
7 Steepest ascent hill-climbing will become trapped (why?)
72 Need some way to break out of ridge-walking
— Formulate composite transition (multi-dimension step) — how?
— Accept multi-step transition (at least one to worse state) — how?
— Random restarts

Ridge Problem Solution:
Multi-Step Trajectories

m Intuitive Idea: Take More than One Step in Moving along Ridge
m  Analogy: Tacking in Sailing
7 Need to move against wind direction
72 Have to compose move from multiple small steps
— Combined move: in (or more toward) direction of steepest gradient
— Another view: decompose problem into self-contained subproblems
m  Multi-Step Trajectories: Macro Operators
7 Macros: (inductively) generalize from 2 to > 2 steps
72 Example: Rubik’s Cube
— Can solve 3 x 3 x 3 cube by solving, interchanging 2 x 2 x 2 cubies

— Knowledge used to formulate subcube (cubie) as macro operator

72 Treat operator as single step (multiple primitive steps)

Plateau, Local Optimum, Ridge Solution:
Global Optimization

m Intuitive Idea

2 Allow search algorithm to take some “bad” steps to escape from trap
states

7 Decrease probability of taking such steps gradually to prevent return to
traps
m  Analogy: Marble(s) on Rubber Sheet
2 Goal: move marble(s) into global minimum from any starting position
72 Shake system: hard at first, gradually decreasing vibration
2 Marbles tend to break out of local minima but have less chance of re-
entering
m Analogy: Annealing
7 Ideas from metallurgy, statistical thermodynamics
7 Cooling molten substance: slow as opposed to rapid (quenching)

Beam search

m Assume a pre-fixed
WIDTH (example :
2)

m Perform breadth-
first, BUT:

m Only keep the
WIDTH best new
nodes

depending on
heuristic
at each new level.

X

ignore ignore

7 Goat maximize materiat Stre g[ of Sotidiffed substance




m Optimi-
zation:
ignore
leafs
that are
not goal
nodes
(see C)

Taxonomy of Search Methods

Search methods

Calculus-based Guided random Enumerative
techniques search techniques techniques
Direct Indirect Simu? Evolutionary Dynamic
methods methods annealing algorithms Programming
Evolutionary Genetic Genetic Evolutionary
Strategies algorithms ~ Programming programming

Simulated Annealing

m Introduced by Metropolis et al. in 1953 and adapted
by Kirkpatrick (1983) in order to find an optimum
solution to large-scale combinatorial optimization
problems

m It is a derivative—free optimization method

m SA was derived from physical characteristics of spin
glasses

Simulated Annealing

m The principle behind SA is similar to what happens
when metals are cooled at a controlled rate

m The slowly decrease of temperature allows the atoms
in the molten metal to line themselves up an form a
regular crystalline structure that possesses a low
density and a low energy




Simulated Annealing

m The value of an objective function that we intend to
minimize corresponds to the energy in a
thermodynamic system

m High temperatures corresponds to the case where
high-mobility atoms can orient themselves with other
non-local atoms and the energy can increase:
function evaluation accepts new points with higher
energy

Simulated Annealing

m Low temperatures corresponds to the case where the
low-mobility atoms can only orient themselves with
local atoms & the energy state is not likely to
increase: Function evaluation is performed only
locally and points with higher energy are more and
more refused

m The most important element of SA is the so-called
annealing schedule (or cooling schedule) which
express how fast the temperature is being lowered
from high to low

10

Simulated Annealing Terminology:

m Objective function E(x): function to be
optimized

m Move set: set of next points to explore

AE = X, — X Is @ random variable with pdf = g(.,.)

m Generating function: pdf for selecting next
point

g(Ax, T) = (2r T)™2 exp[-|| Ax||2/ 2T]
(n is the explored space dimension)

11

Simulated Annealing Terminology

m Acceptance function h(AE, T): to
determine if the selected point should
be accepted or not. Usually

h(AE, T) = 1/(1+exp(AE/(cT)).

m Annealing (cooling) schedule: schedule
for reducing the temperature 7

12




Basic steps involved in a general SA
method

m Step 1 [Initialization]: Choose an initial point x and a high
temperature T and set the iteration count k to 1

m Step 2 [Evaluation]: Evaluate the objective function E =

fx)

m Step 3 [Exploration]: Select Ax with probability g(Ax, T),

and set X, = X + AX

m Step 4 [Reevaluation]: Compute the new value of the
objective function E, ., = f(X,ew)

13

Basic step involved in a general SA
method (cont.)

m Step 5 [Acceptance]: Test if X,,.,, IS accepted or not by
computing h(AE, T) where AE = E,,-E

new”

m Step 6: Lower the temperature according to the
annealing schedule (T=nT;0<n<1)

m Step 7 k=k + 1, if k reaches the maximum iteration
count, then stop otherwise go to step 3

14

Tabu Search

m Tabu: prevent returning quickly to same state.

m Implementation: Keep fixed length queue (“tabu list”):
add most recent step to queue; drop “oldest” step.

m Never make step that's currently on the tabu list.
m Quite powerful; competitive with simulated annealing

15

Basic Evolutionary Algorithm

t:=0; {initialize time}
InitPopulation(P,t); <{initialize random population of individuals}
EvaluateFitness(P,t); {evaluate fitness of all initial individuals
{in the population}
while not terminate(P,t) do {test for termination criterion, e.g.
{ # of generations,satisfactory fitness, etc.}

begin

ti=t+1; {increase time}

SelectParents(P,Ps); {select subpopulation for reproduction}

Recombine(Ps); {recombine the genes of selected
{parents}

Mutate(Ps); {mutate (perturb randomly) the}
{mated population}

EvaluateFitness(Ps,t); {evaluate new fitness}

Survive(P,Ps); {select the survivors using actual}
{fitnesses}

end;

16




Genetic Algorithms

m A genetic algorithm has the following components:

m a mechanism to encode solutions to problems as
strings,

a population of solutions represented as strings,
a problem dependent fitness function,

a selection mechanism,

crossover and mutation operators.

17

Encoding Mechanism

m Fixed length binary string are used to represent
individuals
m Simple Binary Coding
72 Example:
— {000, 001, 010, 011, 100, 101, 110, 111}
m Gray Coding
72 Example:
- {000, 001, 011, 010, 110, 111, 101, 100}

Selection

m Selection is based on the survival of the fittest
mechanism of nature.

m Common Selection Schemes:

m Proportionate selection scheme

72 Number of offsprings=fs/fa

72 where fs is the fitness value

7 fais the average fitness value of the population
m Tournament selection scheme
m Rank based selection

m Elitist strategies

19

Crossover

Crossover paint Crossover paint

FParents lﬂlﬂiﬂﬂlllﬂ DDlllDIDDID

e e

N Y

affspring 1010010010 0oo110011 10




Example of Crossover

1 T T T

0.8 Parents @

Offspring O
(U]
07
0E

1]

Fitness

0.4

0.3

0.2

0.1

Fitness function ——

21

Mutation

Mutation point

|

Offspring 1010 0 10010

Mutated Offspring io0i1 o0 1 10010

22

Typical GA Convergence Behavior

Fitness

Average

Generations

23

Control Parameters of GA

m Population size
72 Typically 30-200
m Crossover rate
72 Typically 0.5-1.0
= Mutation rate
7 Typically 0.001-0.05
m Stopping Criteria
7 Reaching a fixed number of iterations,
7 Evolving a string with a high fitness value,

7 Creation of a certain degree of homogeneity within the
population.

24




A GA Example

m Problem: Assume that we want to find the maximum
of the following function f(x,y) :

2 2 2 2

[ =1-0% ™ U (-5 —y)e™

m where independent variables x and y vary between -3
and 3.

25

Encoding:

m The problem variables are represented as a chromosome -
variables x and y as a concatenated binary string.

Lilofofoft]ofifofolofu]ififof1]1]
— —~— el N —~ g
x y
m Both of them are allocated 8 bits, consequently the chromosome
is 16 bits long.

m Here for simplicity we use binary to decimal conversion.

(10001010, =1x27 +0x28 +0x25 +0x2% +1x2% +0x22 +1x21 +0x2% = (138},
and
(00111011}, =0x27 +0x2% +1x2% +1x2* +1x2% + 0x22 +1x2! +1x2% = (59}

26

Normalization and Mapping

m The range of integers that can be handled by 8-bits,
that is the range from 0 to (28 - 1), is mapped to the
actual range of parameters x and y, that is the range

from -3 to 3:

_6 =0.0235294

2561

m To obtain the actual values of x and y, we multiply
their decimal values by 0.0235294 and subtract 3
from the results:

x=(138);9 x0.0235294 -3 = 0.2470588

and
¥=1(59)10%0.0235294 -3 =-1.6117647

27

GA Parameters

m The followin parameters are used:
Population size =6

Crossover probability =0.7

Mutation probability = 0.001.

Maximum number of generations = 100

N N N N

28




Initial Population

29

First generation

»n

Wwo

30

Local maximum

31

Fitness vs Generations: Local Maximum
Case

Pe=07, pyy=0.001
0.7 T T ;

061 | | | M -Vlyv—

0.5

Fitness
i

0.2

0.1F

0.1 i " L | L L L L L
o 10 20 30 40 50 60 70 80 90 100

Generations

32




Global Maximum

33

Fitness vs Generations: Global Maximum
Case (6 chromosomes)

Pe=0.7, pm=0.01
1 1 L

1.8 1

1.6

1.4

Fitness
o L o
-] (-] (5]

=
S

=

I 1 I I I 1
LLu U U o 20 U T B0 o0 oo

Generations

=
(5

34

Fitness vs Generations: Global Maximum
Case (60 chromosomes)

Pe=07, pp=0.001

1.6

1.4

-
(Y]
T

Fitness
>
T

o
=
T

0.6 -

0.4

D'; 1 A 'l 'l 'l L A 'l Il
o 2 4 (] 8 10 12 14 16 18 20
Generations

35

Evolutionary Programming

m Real valued representation
= No recombination

36




Evolutionary Strategies

m Real valued representation
7 Object Variables
7 Strategy Variables
= Main operator
7 Mutation
m Secondary operator
72 Recombination

Genetic Programming

= Individuals
7 Hierarchically structured computer programs, i.e., the set of
all possible combinations of functions that can be composed
recursively from the available set of n functions F={f,, f,, ...,
f.} and the available set of m terminals T={a,, a,, ..., a,}.
m Main operators
7 Fitness proportionate selection
72 Recombination

m Secondary operators
7 Mutation
72 Permutation
7 Editing
7 Define Building Block

38

Recombination Example for GP

Cor SN
&S w000 o @D

C» @@@

PARENTS

o
i

g
;

by
60

39

Main Characteristics of Evolutionary
Algorithms

ES EP GA GP
Representation |Real-valued |Real-valued |Binary-Valued|Lisp S-
expressions
Self-Adaptation |Standard Variance None None
deviations
and
covariances
Fitness Objective Scaled Scaled Scaled
function objective objective objective
values function function value [function
value value
Mutation Main Only Background [Background
operator operator operator operator
Recombination |Different None Main Main
variants, Operator Operator
important for
self-
adaptation
Selection Deterministic [Probabilistic,|Probabilistic, |Probabilistic,
extinctive extinctive preservative |preservative
0




Applications of Evolutionary Algorithms

Some interesting examples of EA applications:
Time-tabling

Job-shop scheduling:

Game playing:

Computer Aided Design (CAD)

Face Recognition

Financial Time-Series Prediction

41




