Game Playing

Outline

m Game playing
> The minimax algorithm
> Resource limitations
> alpha-beta pruning
> Elements of chance

Games vs. search problems

m “Unpredictable" opponent — solution is a strategy
specifying a move for every possible opponent reply

m Time limits — unlikely to find goal, must approximate
m Plan of attack:

>

Y

Y

Y

Y

Y

Computer considers possible lines of play (Babbage, 1846)
Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

Finite horizon, approximate evaluation (Zuse, 1945; Wiener,
1948; Shannon, 1950)

First chess program (Turing, 1951)

Machine learning to improve evaluation accuracy (Samuel,
1952-57)

Pruning to allow deeper search (McCarthy, 1956)

Types of games

deterministic chance

perfect information chess, checkers, backgammon
go, othello, . monopoly
rock—paper—scissors

imperfect information battleships, bridge, poker, scrabble
kriegspiel, nuclear war
stratego

What kind of games?

m Abstraction: To describe a game we must capture
every relevant aspect of the game. Such as:
> Chess
> Tic-tac-toe

m Accessible environments: Such games are
characterized by perfect information

m Search: game-playing then consists of a search
through possible game positions

m Unpredictable opponent: introduces uncertainty thus
game-playing must deal with contingency problems

Searching for the next move

m Complexity: many games have a huge search
space
>~ Chess: b =35 m=100 = nodes = 100 %
if each node takes about 1 ns to explore
then each move will take about 70 *° millenniums
to calculate.
m Resource (e.g., time, memory) limit: optimal
solution not feasible/possible, thus must approximate
m Pruning: makes the search more efficient by

discarding portions of the search tree that obviously
cannot improve quality of result.

m Evaluation functions: heuristics to evaluate utility of
a state without exhaustive search.

Two-player games

m A game formulated as a search problem:

> Initial state: ?
> Operators: ?
> Terminal state: ?
> Utility function: ?

Two-player games
T —
m A game formulated as a search problem:

> Initial state: board position and turn
> Operators: definition of legal moves
> Terminal state: conditions for when game is over

> Utility function: a numeric value that describes the
outcome of the game.

e.g., -1, 0, 1 for loss, draw, win.

Example: Tic-Tac-Toe

MAX (%)
MIN (O}
MAX (%)
MIN (O}

oo R
TERMINAL | |O|xX| [0]0]X]
Lol | [x[x[o]

[x[o[x]
L Ix] |
[x]ofo]
Utility -1] +
/
@

The minimax algorithm

m Perfect play for deterministic, perfect-information games

m Idea: choose move to position with highest minimax value =
best achievable utility against best play

® e.g., 2-ply game:

MAX

MIN

Minimax Algorithm

function MiNIMAX-DECISION(state) returns an action
inputs: sfate, current state in game

return the o in AcTIONS(state) maximizing MiN-VaLUE(REsULT(a, state))

function MAX-VAaLUE(state) returns o ufility value
if TERMINAL-TEST(state) then return UTiLiTy(state)
= —00
for o, s in SuccEssors(stale) do ve MAaX(v, MIN-VALUE(s))
return »

function MiN-VALUE(stafe) returns a utility value
if TERMINAL-TEST(state) then return UTiLITY (state)
U4+ 00
for a. s in SuccEssors(state) do v Min(y, MAX-VALUE(s))
return v

Properties of Minimax

m Completeness: if tree is finite (chess has specfiic
rules for this)

Optimality: Yes, against an optimal opponent.
Time complexity: O(b™)

Space complexity: O(bm) (depth-first exploration)
For chess, b ~35, m = 100 for “reasonable" games
.exact solution completely infeasible

m But do we need to explore every path?

Move evaluation without complete search

m Complete search is too complex and impractical

m Evaluation function: evaluates value of state using
heuristics and cuts off search

m New MINIMAX:

> CUTOFF-TEST: cutoff test to replace the termination
condition (e.g., deadline, depth-limit, etc.)

> EVAL: evaluation function to replace utility function (e.g.,
number of chess pieces taken)

Evaluation functions

Black to move White to move

White slightly better Black winning

m Weighted linear evaluation function: to combine n
heuristics

f=wify o wofp o o wif,
m e.g, w’s could be the values of pieces (1 for pawn, 3 for
bishop etc.) f's could be the number of type of pieces on

tha bhoard
tHe-PDoara

20

a-g pruning: search cutoff alpha-beta search

m Pruning: eliminating a branch of the search tree from function ALPHA-BETA-DECISION(stafc) returns an action
consideration without exhaustive examination Of each return the a in AcCTIONS(sfate) maximizing MIN-VALUE[RESULT(a, state))
node function MaX-VALUE(state, o, 3) returns a utility valuc

inputs: stafe, current state in game
, the value of the best alternative for naX along the path to state
i, the value of the best alternative for MIN along the path to stafe

B a-fpruning: the basic idea is to prune portions of the
search tree that cannot improve the Utility value of the if TERMINAL-TEST(state) then return UTILITY(state)
V4= — 0
max or min node, by just considering the values of for a. s in SUCCESSORS(statc) do
v+ Max (v, MIN-VALUE(s, a, 3))
nOdeS seen so far' if v+ > /4 then return v

o — Max(n, v)
return

m Does it work? Yes, it roughly cuts the branching factor
from b to b resulting in as double as far look-ahead
than pure minimax

function :\[I.\'*\’.\I,I'I-](.\.fu.fr_n, J') returns o utility value
same as Max-VALUE but with roles of o, 7 reversed

a-f pruning: example a-f pruning: example
T ——
>6 26
MAX MAX
MIN 6 MIN 6 <2
X X
6 12 8 6 12 8 2

a-f pruning: example

MAX

MIN

25

a-f pruning: example

MAX
Selected move

MIN 6
x X
6 12 8 2

26

a-f pruning: general principle

Player

Opponent
If a > v then MAX will chose m so
prune tree under n
Similar for g for MIN

Player

Opponent 174

27

State-of-the-art for deterministic games

m Chess: Deep Blue defeated human world champion Gary Kasparov
in a six- game match in 1997. Deep Blue examined 200 million
positions per second, used very sophisticated evaluation and
undisclosed methods for extending some lines of search up to 40

ply.

m Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining
perfect play for all positions involving 8 or fewer pieces on the
board, a total of 443,748,401,247 positions. Exact solution
imminent.

m Othello: Human champions refuse to compete against computers,
who are too good.

m Go: Human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

28

Nondeterministic Games

0 1234 5 6 7 8 9 1011 12

Irw.r w_.vw‘!r 5]

pa |

25 24 23 22 21 20 19 18 17 16 15 14 13

29

Nondeterministic games: the element of
chance

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping

MAX

CHANCE

MIN

30

Nondeterministic games: the element of
chance

Expectimax 4 =0.5*3 + 0.5*5
0.5

MAX

Expectimin

MIN

31

Evaluation functions

Order-preserving transformation do not necessarily behave the same

MAX

DICE

MIN

200 20 30 30 i 1400 4

32

State-of-the-art for nondeterministic
games

I
m Dice rolls increase b: 21 possible rolls with 2 dice

m Backgammon =~ 20 legal moves (can be 6,000 with 1-
1 roll)

m depth 4 = 20 x(21x20)3 ~1.2x10°
m As depth increases, probability of reaching a given
node shrinks
> value of look-ahead is diminished
m o—f pruning is much less effective
m TDGammon uses depth-2 search + very good Eval
> world-champion level

33

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown
Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the
game

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all
deals

Special case: if an action is optimal for all deals, it's optimal.
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

34

