
1

Game Playing

2

Outline

Game playing
The minimax algorithm
Resource limitations
alpha-beta pruning
Elements of chance

3

Games vs. search problems

“Unpredictable" opponent → solution is a strategy
specifying a move for every possible opponent reply

Time limits → unlikely to find goal, must approximate
Plan of attack:

Computer considers possible lines of play (Babbage, 1846)
Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
Finite horizon, approximate evaluation (Zuse, 1945; Wiener,
1948; Shannon, 1950)
First chess program (Turing, 1951)
Machine learning to improve evaluation accuracy (Samuel,
1952-57)
Pruning to allow deeper search (McCarthy, 1956)

4

Types of games

5

What kind of games?

Abstraction: To describe a game we must capture
every relevant aspect of the game. Such as :

Chess
Tic-tac-toe
…

Accessible environments: Such games are
characterized by perfect information
Search: game-playing then consists of a search
through possible game positions
Unpredictable opponent: introduces uncertainty thus
game-playing must deal with contingency problems

6

Searching for the next move

Complexity: many games have a huge search
space

Chess: b = 35, m=100 ⇒ nodes = 100 35

if each node takes about 1 ns to explore
then each move will take about 10 50 millenniums
to calculate.

Resource (e.g., time, memory) limit: optimal
solution not feasible/possible, thus must approximate
Pruning: makes the search more efficient by
discarding portions of the search tree that obviously
cannot improve quality of result.
Evaluation functions: heuristics to evaluate utility of
a state without exhaustive search.

7

Two-player games

A game formulated as a search problem:

Initial state: ?
Operators: ?
Terminal state: ?
Utility function: ?

8

Two-player games

A game formulated as a search problem:
Initial state: board position and turn
Operators: definition of legal moves
Terminal state: conditions for when game is over
Utility function: a numeric value that describes the

outcome of the game.
e.g., -1, 0, 1 for loss, draw, win.

9

Example: Tic-Tac-Toe

-1 1

10

The minimax algorithm

Perfect play for deterministic, perfect-information games
Idea: choose move to position with highest minimax value =
best achievable utility against best play
e.g., 2-ply game:

11

Minimax Algorithm

12

Properties of Minimax

Completeness: if tree is finite (chess has specfiic
rules for this)
Optimality: Yes, against an optimal opponent.
Time complexity: O(bm)
Space complexity: O(bm) (depth-first exploration)

For chess, b ≈35, m ≈ 100 for “reasonable" games
∴exact solution completely infeasible
But do we need to explore every path?

13 14

15 16

17 18

19

Move evaluation without complete search

Complete search is too complex and impractical

Evaluation function: evaluates value of state using
heuristics and cuts off search

New MINIMAX:
CUTOFF-TEST: cutoff test to replace the termination
condition (e.g., deadline, depth-limit, etc.)
EVAL: evaluation function to replace utility function (e.g.,
number of chess pieces taken)

20

Evaluation functions

Weighted linear evaluation function: to combine n
heuristics

f = w1f1 + w2f2 + … + wnfn

e.g, w’s could be the values of pieces (1 for pawn, 3 for
bishop etc.) f’s could be the number of type of pieces on
the board

21

α-β pruning: search cutoff

Pruning: eliminating a branch of the search tree from
consideration without exhaustive examination of each
node

α-β pruning: the basic idea is to prune portions of the
search tree that cannot improve the utility value of the
max or min node, by just considering the values of
nodes seen so far.

Does it work? Yes, it roughly cuts the branching factor
from b to √b resulting in as double as far look-ahead
than pure minimax

22

alpha-beta search

23

α-β pruning: example

≥ 6

6

MAX

6 12 8

MIN

24

α-β pruning: example

≥ 6

6

MAX

6 12 8 2

≤ 2MIN

25

α-β pruning: example

≥ 6

6

MAX

6 12 8 2

≤ 2

5

≤ 5MIN

26

α-β pruning: example

≥ 6

6

MAX

6 12 8 2

≤ 2

5

≤ 5MIN

Selected move

27

α-β pruning: general principle

Player

Player

Opponent

Opponent

m

n

α

v

If α > v then MAX will chose m so
prune tree under n

Similar for β for MIN

28

State-of-the-art for deterministic games
Chess: Deep Blue defeated human world champion Gary Kasparov
in a six- game match in 1997. Deep Blue examined 200 million
positions per second, used very sophisticated evaluation and
undisclosed methods for extending some lines of search up to 40
ply.

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining
perfect play for all positions involving 8 or fewer pieces on the
board, a total of 443,748,401,247 positions. Exact solution
imminent.

Othello: Human champions refuse to compete against computers,
who are too good.

Go: Human champions refuse to compete against computers, who
are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

29

Nondeterministic Games

30

Nondeterministic games: the element of
chance

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping

31

Nondeterministic games: the element of
chance

3 5
0.50.5

817

8

5

CHANCE 4 = 0.5*3 + 0.5*5Expectimax

Expectimin

32

Evaluation functions
Order-preserving transformation do not necessarily behave the same

33

State-of-the-art for nondeterministic
games

Dice rolls increase b: 21 possible rolls with 2 dice

Backgammon ≈ 20 legal moves (can be 6,000 with 1-
1 roll)

depth 4 = 20 x(21x20)3 ≈1.2x109

As depth increases, probability of reaching a given
node shrinks

value of look-ahead is diminished

α−β pruning is much less effective
TDGammon uses depth-2 search + very good Eval

world-champion level

34

Games of imperfect information

E.g., card games, where opponent's initial cards are unknown
Typically we can calculate a probability for each possible deal
Seems just like having one big dice roll at the beginning of the
game
Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all
deals
Special case: if an action is optimal for all deals, it's optimal.
GIB, current best bridge program, approximates this idea by

1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

