Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs)

m Standard search problem:

7 state is a “black box"—any old data structure that supports
goal test, eval, successor

m CSP:

7 state is defined by variables X; with values from domain D,

7 goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

m Simple example of a formal representation language

m Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map-Coloring

Western
Australia

m Variables WA, NT, Q, NSW, V', SA, T
m Domains D, = {red, green, blue}

Northern
Territory

Queensland

South
Australia

]
New South Wales

Tasmania

m Constraints: adjacent regions must have different colors
7 e.g., WA# NT (if the language allows this), or

A (WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

Example: Map-Coloring contd.

resraps
Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =green}




Constraint graph

m Binary CSP: each constraint
relates at most two variables @

m Constraint graph: nodes are

variables, arcs show @ '
constraints
m General-purpose CSP @‘@

algorithms use the graph o
structure to speed up
search. e.g., Tasmania is an

independent subproblem! @

Varieties of CSPs

m Discrete variables
7 finite domains; size d = O(d") complete assignments
— e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
7 infinite domains (integers, strings, etc.)
— e.g., job scheduling, variables are start/end days for each job
— need a constraint language, e.g., StartJob, + 5 <StartJob;
— linear constraints solvable, nonlinear undecidable
m Continuous variables
7 e.g., start/end times for Hubble Telescope observations
7 linear constraints solvable in poly time by LP methods

Varieties of constraints

m Unary constraints involve a single variable,
72 e.q., SA #green

m Binary constraints involve pairs of variables,
7 e.q., SA+#WA

m Higher-order constraints involve 3 or more variables,
7 e.g., cryptarithmetic column constraints

m Preferences (soft constraints),
7 e.g., red is better than green
7 often representable by a cost for each variable assignment
7 constrained optimization problems

Example: Cryptarithmetic
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m Variables: FTUWROX, X, X;
m Domains: {0, 1,2, 3,4,5,6,7,8, 9
m Constraints

2 alldiff(F, T,U,W,R,0)

2 0O+0=R+10-X, etc.




Real-world CSPs

Assignment problems
7 e.g., who teaches what class

Timetabling problems
7 e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Notice that many real-world problems involve real-
valued variables

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
Initial state: the empty assignment, { }

Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.

2 fail if no legal assignments (not fixable!)
m  Goal test: the current assignment is complete
1) This is the same for all CSPs!
2) Every solution appears at depth » with » variables
use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b=(n — l)d at depth [, hence n!d" leaves!!!!
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Backtracking search

Variable assignments are commutative, i.e.,
72 [WA=red then NT =green] same as [NT =green then WA=red]

Only need to consider assignments to a single variable at each
node

7 b=d and there are d" leaves
Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n =25
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Backtracking search

function BACKTRACKING-SEARCH(esp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, esp) returns soln/failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE( VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = valuc} to assignment
result «— RECURSIVE-BACKTRACKING assignment, ¢sp)
if result # failure then return result
remove {var = value} from assignment
return foilur
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Backtracking example




Improving Backtracking Efficiency

General-purpose methods can give considerable gains
in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?
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Minimum Remaining Values

m Minimum remaining values (MRV):
7 choose the variable with the fewest legal values
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Degree Heuristic

m Tie-breaker among MRYV variables

m Degree heuristic:
7 choose the variable with the most constraints on remaining
variables

Least Constraining Value

m Given a variable, choose the least constraining value:

7 The one that rules out the fewest values in the remaining
variables

K '\__Allows 1 value for SA

& | Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

19

20




Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

WA NT Q NSW v SA T
(HEEEPEEPE B E (B E RN E (B
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Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

WA NT Q NSW v SA L
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Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

WA NT Q NSW v SA T
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Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values
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Constraint propagation

m Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for all
failures:

WA NT Q NSW v SA T
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NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally
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Arc consistency

m Simplest form of propagation makes each arc
consistent
X — Yis consistent iff
for every value x of X there is some allowed y

wA NT Q NSW v SA T

\é/
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Arc consistency

m Simplest form of propagation makes each arc
consistent
X =Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW v SA T
( — | E[ws XEenE] B[R N

27

Arc consistency

m Simplest form of propagation makes each arc
consistent
X —Y is consistent iff
for every value x of X there is some allowed y

S =S o~

WA NT NSW v SA

( — | !];II ) (_@lL ] I|I;I|
\_</

If X loses a value, neighbors of X need to be rechecked
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Arc consistency

m Simplest form of propagation makes each arc
consistent
X —Y is consistent iff
for every value x of X there is some allowed y

[ — | (I o_ @l 1 ) (I
W

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency algorithm

function AC-3( esp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. Xa. ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X, X;)— REMOVE-FIRST(gueue)
if REMOVE-INCONSISTENT-VALUES(X,. X;) then
for each X, in NEicupors[X|| do
add {_\-_[-. \,} to quee

function Revove-InconsisTENT-VALvEs( X, X;) returns true iff succeeds
removed «— fulse
for each » in Doman[X;] do
if no value i in DomAIN[X] allows (1,4) to satisfy the constraint X, «— X
then delete r from DOMAIN[X]: removed — frue
return removed

O(’d?), can be reduced to O(n?d?) (but detecting all is NP-hard)
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Problem structure

O —)
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O,

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph

Problem structure (cont.)

m Suppose each subproblem has ¢ variables out of n
total
m Worst-case solution cost is n/c - d¢, linear in n
m E.g., n=80, d=2, c=20
7 280 = 4 billion years at 10 million nodes/sec
7 4 .220 = 0.4 seconds at 10 million nodes/sec
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Tree-structured CSPs

(E)
(8)—(D;
© ()

m Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d?) time

m Compare to general CSPs, where worst-case time is O(d")

m This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic
restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to
leaves such that every node’s parent precedes it in the
ordering

(A) (E)
G@ QG (ABHOPHENE

2. For j from n down to 2, apply
Removelnconsistent(Parent(X)), X))

3. Forj from [ to n, assign X; consistently with Parent(X))

34

Nearly tree-structured CSPs
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O O

® ®
m Conditioning: instantiate a variable, prune its neighbors’

domains

m Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

m Cutset size ¢
72 runtime O¢dc - (n — ¢)d?), very fast for small ¢

Iterative algorithms for CSPs

m Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned
m To apply to CSPs:
7 allow states with unsatisfied constraints
7 operators reassign variable values
m Variable selection:
7 randomly select any conflicted variable
m Value selection by min-conflicts heuristic:
7 choose value that violates the fewest constraints
7 i.e., hillclimb with h(n) = total number of violated constraints
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Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Con I i

h=5 h=2 h=0
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Performance of min-conflicts
.|

m Given random initial state, can solve n-queens in almost
constant time for arbitrary » with high probability (e.g., n =
10,000,000)

m The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

®m R = number of constraints/ number of variables

CPU
time

T
critical
ratio
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Summary

m CSPs are a special kind of problem:
2 states defined by values of a fixed set of variables
72 goal test defined by constraints on variable values

m Backtracking = depth-first search with one variable assigned per
node

m Variable ordering and value selection heuristics help significantly
m Forward checking prevents assignments that guarantee later failure

m Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

m The CSP representation allows analysis of problem structure
m Tree-structured CSPs can be solved in linear time
m [terative min-conflicts is usually effective in practice
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