
1

Constraint Satisfaction Problems

2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure that supports
goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language
Allows useful general-purpose algorithms with more
power than standard search algorithms

3

Example: Map-Coloring

Variables WA, NT, Q, NSW, V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA≠ NT (if the language allows this), or
(WA,NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

4

Example: Map-Coloring contd.

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =green}

5

Constraint graph
Binary CSP: each constraint
relates at most two variables
Constraint graph: nodes are
variables, arcs show
constraints
General-purpose CSP
algorithms use the graph
structure to speed up
search. e.g., Tasmania is an
independent subproblem!

6

Varieties of CSPs

Discrete variables
finite domains; size d ⇒ O(dn) complete assignments

– e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)

– e.g., job scheduling, variables are start/end days for each job
– need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

– linear constraints solvable, nonlinear undecidable

Continuous variables
e.g., start/end times for Hubble Telescope observations
linear constraints solvable in poly time by LP methods

7

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA ≠green

Binary constraints involve pairs of variables,
e.g., SA ≠WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints),
e.g., red is better than green
often representable by a cost for each variable assignment
constrained optimization problems

8

Example: Cryptarithmetic

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T,U,W,R,O)
O + O = R + 10 · X1, etc.

9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning
Notice that many real-world problems involve real-
valued variables

10

Standard search formulation (incremental)
Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
Initial state: the empty assignment, { }
Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.

fail if no legal assignments (not fixable!)
Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b=(n − l)d at depth l, hence n!dn leaves!!!!

11

Backtracking search
Variable assignments are commutative, i.e.,

[WA=red then NT =green] same as [NT =green then WA=red]
Only need to consider assignments to a single variable at each
node

b=d and there are dn leaves
Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n ≈ 25

12

Backtracking search

13

Backtracking example

14

15 16

17

Improving Backtracking Efficiency

General-purpose methods can give considerable gains
in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?
4. Can we take advantage of problem structure?

18

Minimum Remaining Values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

19

Degree Heuristic

Tie-breaker among MRV variables
Degree heuristic:

choose the variable with the most constraints on remaining
variables

20

Least Constraining Value

Given a variable, choose the least constraining value:
The one that rules out the fewest values in the remaining
variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

21

Forward Checking

Idea: Keep track of remaining legal values for
unassigned variables
Terminate search when any variable has no legal
values

22

Forward Checking

Idea: Keep track of remaining legal values for
unassigned variables
Terminate search when any variable has no legal
values

23

Forward Checking

Idea: Keep track of remaining legal values for
unassigned variables
Terminate search when any variable has no legal
values

24

Forward Checking

Idea: Keep track of remaining legal values for
unassigned variables
Terminate search when any variable has no legal
values

25

Constraint propagation
Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for all
failures:

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

26

Arc consistency

Simplest form of propagation makes each arc
consistent
X → Y is consistent iff

for every value x of X there is some allowed y

27

Arc consistency

Simplest form of propagation makes each arc
consistent
X → Y is consistent iff

for every value x of X there is some allowed y

28

Arc consistency

Simplest form of propagation makes each arc
consistent
X → Y is consistent iff

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

29

Arc consistency

Simplest form of propagation makes each arc
consistent
X → Y is consistent iff

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

30

Arc consistency algorithm

O(n2d3), can be reduced to O(n2d2) (but detecting all is NP-hard)

31

Problem structure

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph

32

Problem structure (cont.)

Suppose each subproblem has c variables out of n
total
Worst-case solution cost is n/c · dc, linear in n
E.g., n=80, d=2, c=20

280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

33

Tree-structured CSPs

Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d2) time
Compare to general CSPs, where worst-case time is O(dn)
This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic
restrictions and the complexity of reasoning.

34

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to
leaves such that every node’s parent precedes it in the
ordering

2. For j from n down to 2, apply
RemoveInconsistent(Parent(Xj),Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

35

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’
domains
Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree
Cutset size c

runtime O(dc · (n − c)d2), very fast for small c

36

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned
To apply to CSPs:

allow states with unsatisfied constraints
operators reassign variable values

Variable selection:
randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

37

Example: 4-Queens
States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column
Goal test: no attacks
Evaluation: h(n) = number of attacks

38

Performance of min-conflicts
Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)
The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio
R = number of constraints/ number of variables

39

Summary
CSPs are a special kind of problem:

states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per
node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure
Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies
The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time
Iterative min-conflicts is usually effective in practice

