Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs)

m Standard search problem:

7 state is a “black box"—any old data structure that supports
goal test, eval, successor

m CSP:

7 state is defined by variables X; with values from domain D,

7 goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

m Simple example of a formal representation language

m Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map-Coloring

Western
Australia

m Variables WA, NT, Q, NSW, V', SA, T
m Domains D, = {red, green, blue}

Northern
Territory

Queensland

South
Australia

]
New South Wales

Tasmania

m Constraints: adjacent regions must have different colors
7 e.g., WA# NT (if the language allows this), or

A (WA,NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

Example: Map-Coloring contd.

resraps
Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT =green, Q=red, NSW =green, V =red, SA=blue, T =green}

Constraint graph

m Binary CSP: each constraint
relates at most two variables @

m Constraint graph: nodes are

variables, arcs show @ '
constraints
m General-purpose CSP @‘@

algorithms use the graph o
structure to speed up
search. e.g., Tasmania is an

independent subproblem! @

Varieties of CSPs

m Discrete variables
7 finite domains; size d = O(d") complete assignments
— e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
7 infinite domains (integers, strings, etc.)
— e.g., job scheduling, variables are start/end days for each job
— need a constraint language, e.g., StartJob, + 5 <StartJob;
— linear constraints solvable, nonlinear undecidable
m Continuous variables
7 e.g., start/end times for Hubble Telescope observations
7 linear constraints solvable in poly time by LP methods

Varieties of constraints

m Unary constraints involve a single variable,
72 e.q., SA #green

m Binary constraints involve pairs of variables,
7 e.q., SA+#WA

m Higher-order constraints involve 3 or more variables,
7 e.g., cryptarithmetic column constraints

m Preferences (soft constraints),
7 e.g., red is better than green
7 often representable by a cost for each variable assignment
7 constrained optimization problems

Example: Cryptarithmetic

|+
ol|d -
clz =
A0 O

m Variables: FTUWROX, X, X;
m Domains: {0, 1,2, 3,4,5,6,7,8, 9
m Constraints

2 alldiff(F, T,U,W,R,0)

2 0O+0=R+10-X, etc.

Real-world CSPs

Assignment problems
7 e.g., who teaches what class

Timetabling problems
7 e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Notice that many real-world problems involve real-
valued variables

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
Initial state: the empty assignment, { }

Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.

2 fail if no legal assignments (not fixable!)
m Goal test: the current assignment is complete
1) This is the same for all CSPs!
2) Every solution appears at depth » with » variables
use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b=(n — l)d at depth [, hence n!d" leaves!!!!

10

Backtracking search

Variable assignments are commutative, i.e.,
72 [WA=red then NT =green] same as [NT =green then WA=red]

Only need to consider assignments to a single variable at each
node

7 b=d and there are d" leaves
Depth-first search for CSPs with single-variable assignments
is called backtracking search
Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for n =25

11

Backtracking search

function BACKTRACKING-SEARCH(esp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, esp) returns soln/failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = valuc} to assignment
result «— RECURSIVE-BACKTRACKING assignment, ¢sp)
if result # failure then return result
remove {var = value} from assignment
return foilur

12

Backtracking example

Improving Backtracking Efficiency

General-purpose methods can give considerable gains
in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

17

Minimum Remaining Values

m Minimum remaining values (MRV):
7 choose the variable with the fewest legal values

18

Degree Heuristic

m Tie-breaker among MRYV variables

m Degree heuristic:
7 choose the variable with the most constraints on remaining
variables

Least Constraining Value

m Given a variable, choose the least constraining value:

7 The one that rules out the fewest values in the remaining
variables

K '__Allows 1 value for SA

& | Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

19

20

Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

WA NT Q NSW v SA T
(HEEEPEEPE B E (B E RN E (B

21

Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

WA NT Q NSW v SA L

IllllllIIIlIIIIIIIIIIII!lIIIl

22

Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

WA NT Q NSW v SA T
M e E[E PN [E P E[E N[E[E]
PE[EeE[mrEleen

—
(] S[FESe E[EE] S[EOE]

Forward Checking

m |dea: Keep track of remaining legal values for
unassigned variables

m Terminate search when any variable has no legal
values

Ho—4— 40—

WA NT Q NSW Vv SA T
CEICE I I I ireriren
PE[EPE[EEE[EEE
[— | E[e E[ErE] H[E D H]

(m] s[5 -] CEEL]|

23

24

Constraint propagation

m Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for all
failures:

WA NT Q NSW v SA T
CEL LI IL Y LR LTI]

(| TEErEErEESE]| YE(EOE
[— E[aee mE[men] 1]

NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally

25

Arc consistency

m Simplest form of propagation makes each arc
consistent
X — Yis consistent iff
for every value x of X there is some allowed y

wA NT Q NSW v SA T

\é/

26

Arc consistency

m Simplest form of propagation makes each arc
consistent
X =Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW v SA T
(— | E[ws XEenE] B[R N

27

Arc consistency

m Simplest form of propagation makes each arc
consistent
X —Y is consistent iff
for every value x of X there is some allowed y

S =S o~

WA NT NSW v SA

(— | !];II) (_@lL] I|I;I|
_</

If X loses a value, neighbors of X need to be rechecked

28

Arc consistency

m Simplest form of propagation makes each arc
consistent
X —Y is consistent iff
for every value x of X there is some allowed y

[— | (I o_ @l 1) (I
W

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency algorithm

function AC-3(esp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. Xa. ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(X, X;)— REMOVE-FIRST(gueue)
if REMOVE-INCONSISTENT-VALUES(X,. X;) then
for each X, in NEicupors[X|| do
add {_\-_[-. \,} to quee

function Revove-InconsisTENT-VALvEs(X, X;) returns true iff succeeds
removed «— fulse
for each » in Doman[X;] do
if no value i in DomAIN[X] allows (1,4) to satisfy the constraint X, «— X
then delete r from DOMAIN[X]: removed — frue
return removed

O(’d?), can be reduced to O(n?d?) (but detecting all is NP-hard)

30

Problem structure

O —)
@‘@"‘a@

O,

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph

Problem structure (cont.)

m Suppose each subproblem has ¢ variables out of n
total
m Worst-case solution cost is n/c - d¢, linear in n
m E.g., n=80, d=2, c=20
7 280 = 4 billion years at 10 million nodes/sec
7 4 .220 = 0.4 seconds at 10 million nodes/sec

32

Tree-structured CSPs

(E)
(8)—(D;
© ()

m Theorem: if the constraint graph has no loops, the CSP can be
solved in O(n d?) time

m Compare to general CSPs, where worst-case time is O(d")

m This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic
restrictions and the complexity of reasoning.

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to
leaves such that every node’s parent precedes it in the
ordering

(A) (E)
G@ QG (ABHOPHENE

2. For j from n down to 2, apply
Removelnconsistent(Parent(X)), X))

3. Forj from [to n, assign X; consistently with Parent(X))

34

Nearly tree-structured CSPs

8— = (=

O O

® ®
m Conditioning: instantiate a variable, prune its neighbors’

domains

m Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

m Cutset size ¢
72 runtime O¢dc - (n — ¢)d?), very fast for small ¢

Iterative algorithms for CSPs

m Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned
m To apply to CSPs:
7 allow states with unsatisfied constraints
7 operators reassign variable values
m Variable selection:
7 randomly select any conflicted variable
m Value selection by min-conflicts heuristic:
7 choose value that violates the fewest constraints
7 i.e., hillclimb with h(n) = total number of violated constraints

36

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Con I i

h=5 h=2 h=0

37

Performance of min-conflicts
.|

m Given random initial state, can solve n-queens in almost
constant time for arbitrary » with high probability (e.g., n =
10,000,000)

m The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

®m R = number of constraints/ number of variables

CPU
time

T
critical
ratio

38

Summary

m CSPs are a special kind of problem:
2 states defined by values of a fixed set of variables
72 goal test defined by constraints on variable values

m Backtracking = depth-first search with one variable assigned per
node

m Variable ordering and value selection heuristics help significantly
m Forward checking prevents assignments that guarantee later failure

m Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

m The CSP representation allows analysis of problem structure
m Tree-structured CSPs can be solved in linear time
m [terative min-conflicts is usually effective in practice

39

