NEURAL NETWORKS

Neural Networks

m Neural Networks (NNs) also known as
> Atrtificial Neural Networks (ANNs),
> Connectionist Models, and
> Parallel Distributed Processing (PDP) Models

Biology

® The brain doesn’t seem to have a CPU.

m Instead, it has many simple, parallel, asynchronous units, called
neurons.

m Each neuron is a single cell has a number of relatively short fibers,
called dendrites, and one long fiber, called an axon.

m The end of the axon branches out into more short fibers.

m Each fiber “connects” to the dendrites and cell bodies of other
neurons.

m The “connection” is actually a short gap, called a synapse.

Biological Neuron

Soma (cell body)

Nucleus

Myelin sheath

How Neurons Work

m The dendrites of surrounding neurons emit chemicals
(neurotransmitters) that move across the synapse
and change the electrical potential of the cell body.

m Sometimes the action across the synapse increases
the potential, and sometimes it decreases it.

m If the potential reaches a certain threshold, an
electrical pulse, or action potential, will travel down
the axon, eventually reaching all the branches,
causing them to release their neurotransmitters. And
SO on.

How Neurons Change

m There are changes to neurons that are
presumed to reflect or enable learning:

> The synaptic connections exhibit plasticity.

— l.e., the degree to which a neuron will react to a stimulus
across a particular synapse is subject to long-term change
over time (long-term potentiation).

> Neurons also will create new connections to other
neurons.

> Other changes in structure also seem to occur, some
less well understood than others.

Neurobiology Constraints on Human
Information Processing

Number of neurons: 1012

Number of connections: 10* per neuron
Neuron death rate: 10° per day

Neuron birth rate: 0

Connection birth rate: very slow

Performance: about 102 msec, or about 100
sequential neuron firings for "many" tasks

How Do Neurons Do it?

m Basically, all the billions of neurons in the brain are
active at once.
> So, this is truly massive parallelism.
m But probably not parallelism of the sort we are used to
in conventional Computer Science.

> Sending messages (i.e., patterns that encode information) is
probably too slow to work.

> So information is probably encoded some other way. e.g., by
the connections themselves.

Al/Cognitive Science Implication

m Explain cognition by richly connected networks
transmitting simple signals.

m Sometimes called
> connectionist computing (by Jerry Feldman).

> Parallel Distributed Processing, or PDP (by Rumelhart,
McClelland and Hinton).

> neural networks (NN)
> artificial neural networks (ANN)

— emphasizing that the relation to biology is generally rather
tenuous.

General Comments

m Parallelism in Al is not new.
> spreading activation, etc.
m Neural models for Al is not new.

> Indeed, is as old as Al, and some subdisciplines, e.g., computer vision,
have continuously thought this way.

m Much neural network work makes biologically implausible
assumptions about how neurons work.
> “neurally inspired computing” rather “brain science”.
m Relation between NN and “symbolic Al”?
> Some claim NN models don’t have symbols or representations.
> Others think of NNs as simply being an “implementation-level” theory.

> NNs started out as a branch of statistical pattern classification, and is
headed back that way.

> In any case, NNs gives us important insights into how to think about
cognition.

Why Neural Networks?

m The autonomous local processing of each individual unit combines
with similar simple behavior of many other units to produce
"interesting," complex, global behavior

m Intelligent behavior is an "emergent" phenomenon

m Solving problems using a processing model that is similar to the
brain may lead to solutions to complex information processing
problems that would be difficult to achieve using traditional symbolic
approaches in Al

m Associative memory access is directly represented. Hence pattern-
directed retrieval and matching operations are promoted.

m Robust computation because knowledge is distributed and
continuous rather than discrete or digital. Knowledge captured in a
large number of fine-grained units and can match noisy and
incomplete data

m Fault tolerant architecture because computations can be organized
so as not to depend on a fixed set of units and connections

Artificial Neural Networks

m Fine-grained, parallel, distributed computing model
characterized by

> A large number of very simple, neuron-like processing
elements called units, PEs, or nodes

> A large number of weighted, directed connections between
pairs of units

> Weights may be positive or negative real values

> Local processing in that each unit computes a function
based on the outputs of a limited number of other units in the
network

> Each unit computes a simple function of its input values,
which are the weighted outputs from other units. If there are
n inputs to a unit, then the unit's output, or activation is
defined by a = g((w; * X4) + (W, * X5) + ... + (W, * X,)). Thus
each unit computes a (simple) function g of the linear

comboinatorn Or 1ts nputs.

Models of a Neuron

m All connectionist/NN models have fairly similar
models of a neuron.

m There is a collection of units (i.e., would-be neurons),
each of which has
> a number of weighted inputs from other units
— inputs represent degree to which other unit is “firing”,
— weights represent how much unit wants to listen to other unit.
> a threshold that the weighted inputs are compared against

— The threshold has to be crossed for the unit to do something
(more or less).

> a single output to another bunch of units

— what the unit “decided” to do, given all the inputs and its
threshold.

X are inputs

w, are weights

w, serves as the threshold, with x, fixed at 1.

y is weighted sum of inputs (including threshold)
o0 is output = some activation function of y

Properties of Units

T EEEEECEEEE=——B—
m Inputs and outputs are numbers, sometimes constrained to be
within range, e.g., [0,1] or [-1,1].
m The weights can be + or —, i.e., excitatory or inhibitory.
m A unit works by
> summing together weighted inputs and threshold, i.e.,
y=-q+Zx;w, (where x ;are the inputs to the unit, and q, the threshold).
-y is input to an activation function, a; output of activation
function, o, is unit’s output.
m For simplicity, instead of a threshold, we give each node an
additional input, usually called x ,, which is always set to 1.

— Then negation of weight from unit to each node acts like
threshold (or “bias”).

Some Common Definitions of What a Unit
Computes

05

-1 05 0 05 1

m Hard Limiter Sigmoid
[0 x<0 P
I 1 x>0 1+e™

Note

m The units are continuously active.

> (Actually, real neurons fire all the time; what changes is the
rate of firing, from a few to a few hundred impulses a
second.)

m The weights of the units are not fixed for all time.

Perceptrons
e
m Simplest "interesting" class

of neural networks
> "1 layer" network -- i.e., one
input layer and one output
layer. In most basic form,
output layer consists of just

> Indeed, learning in a NN system is basically a matter of one unit.
changing weights. > Linear threshold unit (LTU)
used at output layer node(s) x1 xn
17 18
Thresholds Examples

m The threshold associated with LTUs can be considered as another
weight. That is, by definition of an LTU, output of a unit is defined
by n

inwl. >t
i=1
m where tis a threshold value. But this is algebraically equivalent to
n
le.wi +t(-1) >0
i=1

m So, in an implementation, consider each LTU as having an extra
input which has a constant input value of -1 and the arc's weight is
t. Now each unit has a fixed threshold value of 0, and tis an extra
weight called the bias.

m So, from here on learning the weights in a neural network will
mean learning the weights and the threshold values.

m OR function
Two inputs, both binary (0 or 1), and output binary
(since output unit is an LTU):

25
K 5
x1 x2
m AND function
45
kS A5

x1 x2

20

Learning in Neural Networks

m Programmer specifies numbers of units in each layer
and connectivity between units, so the only unknown
is the set of weights associated with the connections

m Supervised learning of weights from a set of training
examples, given at I/O pairs. l.e., an example is a list
of values defining the values of the input units in a
given network. The output of the network is a list of
values output by the output units

21

Algorithm:

m |Initialize the weights in the network (usually with
random values)

m repeat until stopping criterion is met
> foreach example e in training set do
— O = neural-net-output(network, e)
— T =desired (i.e, teacher) output
— update-weights(e, O, T)
m Note: Each pass through all of the training examples
is called one epoch

22

Perceptron Learning Rule

m |n a perceptron, we define the update-weights
function in the learning algorithm above by the
formula:

W, = w; + Aw;

m where
Aw;=n (T -0) x;

m X is the input associated with the it" input unit. n is a
constant between 0 and 1 called the learning rate.

23

Notes about this update formula:

m Based on a basic idea due to Hebb that the strength of a
connection between two units should be adjusted in
proportion to the product of their simultaneous
activations. A product is used as a means of measuring
the correlation between the values output by the two
units.

m Also called the Delta Rule or the Widrow-Hoff Rule

m "Local" learning rule in that only local information in the
network is needed to update a weight

m Performs gradient descent in "weight space" in that if
there are n weights in the network, this rule will be used
to iteratively adjust all of the weights so that at each
iteration (training example) the error is decreasing (more
correctly, the error is monotonically non-increasing)

24

Notes about this update formula:

Correct output (T = O) causes no change in a weight
X; = 0 causes no change in weight

Does not depend on w;

If T=1 and O=0, then increase the weight so that
hopefully next time the result will exceed the

threshold at the output unit and cause the output Oto
be 1

m |f T=0and O=1, then decrease the weight so that
hopefully next time the result will be below the
threshold and cause the output to be 0.

25

Perceptron Convergence Theorem

m If a set of examples are learnable (i.e., 100% correct classification),
the Perceptron Learning Rule will find the necessary weights (Minksy
and Papert, 1988)

> In a finite number of steps
> Independent of the initial weights
m The Perceptron Learning Rule does gradient descent search in
weight space, so this theorem says that if a solution exists, gradient

descent is guaranteed to find an optimal (i.e., 100% correct
classification) solution for any 1-layer neural network

26

Example: Learning OR in a Perceptron

m Given initial network defined as:

a

.1 5

x1 x2

m Let the learning rate parameter be = 0.2

m Let the threshold be specified as a third weight, w;
with constant input value x; = -1

27

The result of executing the learning
algorithm for 3 epochs

xx | X, T O Aw, w, Aw, W, Aw, w; (=t)
- - - - 1 - 5 - 8
0 0 0O 0 1 0 5 0 8
0 110 0 A 2 7 -2 6
1 010 2 3 0 7 -2 4
1 1 11 0 3 0 7 0 4
0 0 0O 0 3 0 7 0 4
01 11 0 3 0 7 0 4
1 010 2 5 0 7 -2 2
1 1 11 0 5 0 7 0 2
0 0 0O 0 5 0 7 0 2
0 1 11 0 5 0 7 0 2
1 011 0 5 0 7 0 2
1 1 11 0 5 0 7 0 2

28

Learned Network

m So, the final learned network is:

29

Linear Separability

m Perceptron output (assuming a single output unit) determined by
the separating hyperplane defined by

n
D oxw =t
i=1

m So, Perceptrons can only learn functions that are linearly separable
m Example

> The weights in the initial network for the OR function given above
defines a separating line (0.1 * x,) + (0.5 *x,) - 0.8 = 0. Rewriting[:, this
is equivalent to the line defined by x,=(-0.2 * x,) + 1.6, that is a line
with slope -0.2 and x,-intercept 1.6.

> The weights in the final network for the OR function define a
separating line
(0.5 *x,)+ (0.7 *x,) -0.2=0,0r x,=(-0.7 *x,) + 0.3

> The initial and final separating lines can be shown graphically in terms
of the two-dimensional space of possible inputs as follows. Notice that
the initial separating line classifies all four examples as 0, but the final
separating line correctly has all the examples with target value 0 on
one side and all the examples with target value 1 on the other side.

30

Linear Separability

m In general, the goal of learning in a perceptron is to
adjust the separating line by modifying the weights until
all of the examples with target value 1 are on one side
of the line, and all of the examples with target value 0
are on the other side of the separating line, where the
"line" is in general a hyperplane in an n-dimensional
space, and nis the number of input units.

31

XOR - A Function that Can Not be
Learned by a Perceptron

m The Exclusive OR function can be shown graphically as follows,
where + corresponds to an output of 1, and - corresponds to a
desired output of 0.

m Clearly from the figure it is evident that there does not exist a line
that can separate the two classes. Hence, XOR is not a linearly-
separable function, and cannot be learned by a Perceptron.

m Other examples of functions that are not linearly-separable: parity
and "determining if all of the 1s in a 2D binary array are mutually
connected to one another by paths of 1s"

32

Beyond Perceptrons

m Perceptrons are too weak a computing model
because they can only learn linearly-separable
functions

m We need to define more complex neural networks in
order to enhance their functionality

33

Multi-layer, feedforward networks

m Multi-layer, feedforward networks
generalize 1-layer networks (i.e.,
Perceptrons) to n-layer networks as
follows:

> Partition units into n+1 "layers," such that
layer 0 contains the input units, layers 1,
..., N-1 are the hidden layers, and layer n
contains the output units

> Each unitin layer k, k=0, ..., n-1, is 4
connected to all of the units in layer k+1

> Connectivity means bottom-up
connections only, with no cycles, hence
the name "feedforward" nets

> Programmer defines the number of
hidden layers and the number of units in
each layer (input, hidden, and output)

>~ Example of a 2-layer feedforward
network:

Input Layer

Output Layer

Hidden Layer

34

Multi-layer, feedforward networks

m 2-layer feedforward neural nets (i.e., nets with one hidden layer)
with an LTU at each hidden and output layer unit, can compute
functions associated with classification regions that are convex
regions in the space of possible input values. That is, each unit
in the hidden layer acts like a Perceptron, learning a separating
line. Together, all of the hidden units' separating lines are
combined by the output unit(s) to classify an example by
intersecting all of the half-planes defined by the separating lines.

m 3-layer feedforward neural nets (i.e., nets with two hidden
layers) with an LTU at each hidden and output layer unit, can
compute arbitrary functions (hence they are universal computing
devices) although the complexity of the function is limited by the
number of units in the network.

35

Recurrent networks

m are multi-layer networks in which cyclic (i.e., feedback)
connections are allowed. In particular, if the output of a unit is
connected to the other units in its own layer, then this special
case of cyclic connections define networks with mutual inhibition
links.

Context /_\
Q—_~
O—F

ingnts

outpnts

36

Computing XOR using a 2-Layer
Feedforward Network

m The following network computes XOR. Notice that
the left hidden unit effectively computes OR and the
right hidden unit computes AND. Then the output unit
outputs 1 if the OR output is 1 and the AND output is
0.

37

Backpropagation Learning in Feedforward
Neural Nets

m Method for learning weights in feedforward networks due to
Rumelhart, Hinton, and Williams, 1986, which generalizes the Delta
Rule

m Cannot use the Perceptron Learning Rule for learning in
Feedforward Nets because for hidden units we don't have teacher
(i.e., desired) values

m Must solve the Credit Assignment Problem -- i.e., when there is an
error at an output unit (i.e., a non-zero difference between the actual
output of the unit and the teacher output), which weights in the
network should be updated, and how to update them? In other
words, how to assign credit/blame for the output error to the weights
in the network?

m Backpropagation approach: gradient-descent algorithm to minimize
the error on the training data by propagating errors backwards
through the network starting at the output units and working

backwards towards the input units

38

Backpropagation Algorithm

m Backpropagation algorithm performs gradient descent search in
weight space for learning network weights.

m If there are m weights, then each configuration of weights that
defines an instance of the network is a vector, W, of length m. W
can be considered to be a point in an m-dimensional weight space,
where each axis is associated with one of the connections in the
network.

m Given a training set of n examples, each network defined by the
vector W has an associated error, E, indicating the total error on all
of the training data. Usually, E is measured using the mean

squared error (MSE): n
‘ WSE: g5 o)
niia

where T;is the teacher value for the ith example, and O; is the
network output value for the ith example, and there are n examples
in the training set.

39

Learning as search

m Consider the m+1 dimensional space where m
dimensions are the weights, and the last dimension is
the error, E. The error is non-negative and defines a
surface in this weight space as shown below:

E

wi

m So, the goal is to search for the point in weight space
with (global) minimum mean squared error E

40

Learning as search

m To simplify the search, we'll use gradient descent to locally move in
weight space, at each iteration, so as to change the weights so that
the error decreases the fastest, and halt when we're at a (local)
minimum in E.

m The gradient is a vector that indicates the steepest rate of increase in
a function, so we'll change the weights in the opposite direction,
which decreases E the fastest. That is, compute

ve=(E E O,
ow, ow, Ow,
m and then change the ith weight by
OE
Aw; = —1—
ow,
m Computing derivatives required for calculating the gradient direction

requires an activation function that is continuous, differentiable, non-
decreasing and easily computed.

m Consequently, we can't use the LTU function. Instead, we'll use the

__ sigmoid function at each unit (except the input units, of course).

4

Sigmoid Threshold Unit

Interesting property: %} = o(z)(1 — o(2))

[]
m Output ranges between 0 and 1

m We can derive gradient descent rules to train
m One sigmoid unit

m Multilayer networks of sigmoid units —

Backpropagation

42

Computing the Gradient of E

m We'll consider the problem of a 2-layer network
where we must update the weights connecting nodes
in the hidden layer to the output layer, and the
weights connecting the nodes in the input layer to the
hidden layer

43

Updating Hidden-to-Output Unit Weights

m Since we have the teacher-supplied values for the desired values
output by the Output units, we can use a generalized version of the
Perceptron Learning Rule to update these weights. Because a
sigmoid unit is used here instead of an LTE unit, we obtain the
update formula:

Aw; =17 *a*(T;-0) *g(in_)=n*a*(T;-0) *O,*(1-0)

m where weight w;; connects hidden unit jto output unit /, 7 is the
learning rate parameter, T;is the teacher output associated with
output unit /;, O;is the actual output of output unit j, a;is the output
of hidden unit j, and g'is the derivative of the sigmoid activation
function, which is known to be g'= g(71-g).

44

Updating Input-to-Hidden Unit Weights

m Because we don't have teacher-supplied values for the correct
outputs at the hidden units, we must infer the error at these units by
"backpropagating the errors at the output units.

m Each hidden unit is connected to a given output unit, so an error at
an output unit should be "distributed" to each of the hidden units;
we do this in proportion to the weight of the connection from a
hidden unit to the given output unit.

m In this way the total error is distributed to all of the hidden units that
contributed to that error. In this way, each hidden unit will
accumulate some error from each of the output units that it is
connected to.

m The total error is the sum of the errors propagated back from the
output units. Specifically, we get the following formula for updating
the weight wy; on the connection from input unit k to hidden unit j:
Aw=n*lk*a;* (1-a)*Z[a(1-a) T -a)w]

45

The Backpropagation algorithm

Tnitialize all weights to small random munhbers.
Until satistied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs

2. For each output unit %

W
ff“c
i?\
.’ A

0+ o1 — op)(tr — op)

""& 1
]
*“
)

3. For each hidden unit h

N\
‘

Guonll—ap) T wiidy

ot pit

\

. N Hidden layer Qutputs
4. Update each network weight w; ; Inputs '

wij ¢ wi; + Awy
where

Aw; ;=183

46

Adding Momentum

¢ Another weight update is possible.

Awgj(n) = nd;a;; + adw;;(n — 1)

- n-th iteration update depend on (n-1)th iteration
- o, : constant between 0 and 1 -> momentum
- Role of momentum term :

+ keep the ball rolling through small local minima in the error
surface.

+ Gradually increase the step size of the search in regions where
the gradient is unchanging, thereby speeding convergence

47

Other Issues

m How to Set n, the Learning Rate Parameter?
Use a tuning set or cross-validation to train using several candidate
values for n, and then select the value that gives the lowest error

m How to Estimate the Error?

> Use cross-validation (or some other evaluation method) multiple times
with different random initial weights.

> Report the average error rate.
m How many Hidden Layers and How many Hidden Units per
Layer?
Usually just one hidden layer is used (i.e., a 2-layer network). How
many units should it contain?
> Too few => can't learn.
> Too many => poor generalization.

> Determine experimentally using a tuning set or cross-validation to select
number that minimizes error.

> Genetic algorithms can be used to determine the structure.

48

m How many examples in the Training Set? XOR Interwined General
Under what circumstances can we be assured that a net that is trained to
classify 1 - e/2 of the training set correctly, will also classify 1 - e of the
testing set correctly?

> Clearly, the larger the training set the better the generalization, but the longer the
training time required. But to obtain 1 - e correct classification on the testing set,
training set should be of size approximately n/e, where n is the number of
weights in the network and e is a fraction between 0 and 1.

> For example, if e=.1 and n=80, then a training set of size 800 that is trained until
95% correct classification is achieved on the training set, should produce 90%
correct classification on the testing set.

m When to Stop?

Too much training "overfits" the data, and hence the error rate will go up on
the testing set. Hence it is not usually advantageous to continue training
until the MSE is minimized. Instead, train the network until the error rate on
a tuning set starts to increase.

49

Advantages Disadvantages

m Parallel processing m Slow training

m Distributed representations m Poor interpretability

m Online (i.e., incremental) algorithm m Network topology layouts ad hoc

m Simple computations m Hard to debug because distributed representations

m Robust with respect to noisy data preclude content checking

m Robust with respect to node failure m May converge to a local, not global, minimum of error
m Empirically shown to work well for many problem m Not known how to model higher-level cognitive

domains mechanisms

m May be hard to describe a problem in terms of
features with numerical values

51 52

Alternative Error Functions

m Penalize large weight
Ew)=1 Y (1 =0l +yY w;
deD i i

m Train on target slopes
t(d)

o (d)
E(\,V) 22[(?[(1) O(l”) +Juz(a (“’) aO(n’]

deD i

m Minimizing cross entropy

Ew)y==) > 1" logo!" +(1-1t/")log(1-0"")

del) i

53

Derivative-Based Optimization

m Based on first derivatives:
> Steepest descent (back-propagation)
> Conjugate gradient method
> And many others
m Based on second derivatives:
> Gauss-Newton method
> Levenberg-Marquardt method
> And many others

54

Derivative-Free Optimization

m Evolutionary algorithms (EAs)
m Simulated annealing (SA)

m Random search

m Downhill simplex search

m Tabu search

55

NN Topology Optimization using GA

\H
T/T

cutput 1 output 2 hidden node 1 hidden node 2
101100 | 000110 | lO0000 | 110001

|— cntpat 2
ontpoat 1
hidden node 2

hidden node 1
inpmt 2
input 1

output nodes

hidden nodes

input nodes

56

NN of Radial Basis Functions

m Motivations: better performance than sigmoid functions
> Some classification problems
> Function interpolation

m Definition

> A function is radial symmetric (or is RBF) if its output depends on
the distance between the input vector and a stored vector related to
that function
- Distance u = || — i where i is the input vector, s the vector

associated with the RBF

- Output p(u,) = p(u,) whenever u, <u,
> NN with RBF node function are called RBF-nets

57

NN of Radial Basis Functions

m Gaussian functipn is the most widely used RBF
—p W)

> Continuous and differentiable

a bell-shaped function centered at u = 0.

if py (1) = e~/ then p, (u) = e~/ (—~(ul c)?)'= —21pg ()

~ Other RBF
— Inverse quadratic function, hypershpheric function, etc

Cc

\ 1 \
\ 4
- , -

H .
Inverse quadratic
function
0, () =(c®+u®)? for B<O

Gaussian function

H
hyperspheric function

1 ifu<ec
pf(u):{ﬂ if u>c

58

NN of Radial Basis Functions

m Pattern classification

> 4 or 5 sigmoid hidden nodes
are required for a good
classification

> Only 1 RBF node is
required if the function can
approximate the circle

59

Neuro Fuzzy Architecture: FDMS Il

5 oulpul ling va.

4 oufputling terms

3 rule nodes

1 inputling vars.

60

ART

m The simplest ART network
> is a vector classifier

classifies the input vector into a category depending on the
stored pattern it most closely resembles

the pattern is modified to resemble the input vector
if no match, a new pattern is created based on input vector

Y

Y

Y

Y

(Solution to the Stability-Plasticity dilemma)

61

ART

m ART has both:

> Plasticity, new categories can be formed if there is no match
on the current patterns

> Stability, environment cannot change stored patterns unless
sufficiently similar
m Variations of ART:
> ART1, unsupervised learning on binary patterns
> ART2, both analog and digital input patterns

ARTS3, parallel search of distributed recognition in a
multilevel network hierarchy

ARTMAP, supervised learning

Fuzzy ARTMAP, synthesis of neural networks, expert
systems, and fuzzy logic

Y

Y

Y

62

Magnitude of v (number of 1s)
Vigilance parameter (0<p<=1)
Prototype vector

Example Vector

Dimension of vectors (length)
Beta parameter “tie-breaker”

Proximity Test

I2~El || Vigilance Test
BelEl” Brd P
B+|B| p+d i

]

63

Self Organizing Maps

m Based on competitive learning(Unsupervised)
> Only one output neuron activated at any one time
> Winner-takes-all neuron or winning neuron

m In a Self-Organizing Map
> Neurons placed at the nodes of a lattice
— one or two dimensional
> Neurons selectively tuned to input patterns
— by a competitive learning process
> Locations of neurons so tuned to be ordered
— formation of topographic map of input patterns

> Spatial locations of the neurons in the lattice -> intrinsic
statistical features contained in the input patterns

64

Self Organizing Maps

m Topology-preserving transformation

QO O O O O
O O O O O O

D O O O O O

%

QUTPUT
NODES

65

