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NEURAL NETWORKS
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Neural Networks

Neural Networks (NNs) also known as
Artificial Neural Networks (ANNs),
Connectionist Models, and 
Parallel Distributed Processing (PDP) Models
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Biology

The brain doesn’t seem to have a CPU.
Instead, it  has many simple, parallel, asynchronous units, called 
neurons.
Each neuron is a single cell has a number of relatively short fibers, 
called dendrites, and one long fiber, called an axon.
The end of the axon branches out into more short fibers.
Each fiber “connects” to the dendrites and cell bodies of other 
neurons.
The “connection” is actually a short gap, called a synapse.
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Biological Neuron
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How Neurons Work

The dendrites of surrounding neurons emit chemicals 
(neurotransmitters) that move across the synapse 
and change the electrical potential of the cell body.
Sometimes the action across the synapse increases 
the potential, and sometimes it  decreases it.
If the potential reaches a certain threshold, an 
electrical pulse, or action potential, will travel down 
the axon, eventually reaching all the branches, 
causing them to release their neurotransmitters. And 
so on.
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How Neurons Change

There are changes to neurons that are 
presumed to reflect or enable learning:

The synaptic connections exhibit plasticity.
– I.e., the degree to which a neuron will react to a stimulus 

across a particular synapse is subject to long-term change 
over time (long-term potentiation).

Neurons also will create new connections to other 
neurons.
Other changes in structure also seem to occur, some 
less well understood than others.
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Neurobiology Constraints on Human 
Information Processing

Number of neurons: 1012

Number of connections: 104 per neuron 
Neuron death rate: 105 per day 
Neuron birth rate: 0 
Connection birth rate: very slow 
Performance: about 102 msec, or about 100 
sequential neuron firings for "many" tasks
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How Do Neurons Do it?

Basically, all the billions of neurons in the brain are 
active at once.

So, this is truly massive parallelism.

But probably not parallelism of the sort we are used to 
in conventional Computer Science.

Sending messages (i.e., patterns that encode information) is 
probably too slow to work.
So information is probably encoded some other way. e.g., by 
the connections themselves.
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AI/Cognitive Science Implication

Explain cognition by richly connected networks 
transmitting simple signals.
Sometimes called

connectionist computing (by Jerry Feldman).
Parallel Distributed Processing, or PDP (by Rumelhart, 
McClelland and Hinton).
neural networks (NN)
artificial neural networks (ANN)

– emphasizing that the relation to biology is generally rather 
tenuous.
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General Comments

Parallelism in AI is not new.
spreading activation, etc.

Neural models for AI is not new.
Indeed, is as old as AI, and some subdisciplines, e.g., computer vision, 
have continuously thought this way.

Much neural network work makes biologically implausible 
assumptions about how neurons work.

“neurally inspired computing” rather “brain science”.

Relation between NN and “symbolic AI”?
Some claim NN models don’t have symbols or representations.
Others think of NNs as simply being an “implementation-level” theory.

NNs started out as a branch of statistical pattern classification, and is 
headed back that way.
In any case, NNs gives us important insights into how to think about 
cognition.
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Why Neural Networks?

The autonomous local processing of each individual unit combines
with similar simple behavior of many other units to produce 
"interesting," complex, global behavior
Intelligent behavior is an "emergent" phenomenon 
Solving problems using a processing model that is similar to the
brain may lead to solutions to complex information processing 
problems that would be difficult to achieve using traditional symbolic 
approaches in AI 
Associative memory access is directly represented. Hence pattern-
directed retrieval and matching operations are promoted. 
Robust computation because knowledge is distributed and 
continuous rather than discrete or digital. Knowledge captured in a 
large number of fine-grained units and can match noisy and 
incomplete data 
Fault tolerant architecture because computations can be organized 
so as not to depend on a fixed set of units and connections
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Artificial Neural Networks

Fine-grained, parallel, distributed computing model 
characterized by

A large number of very simple, neuron-like processing 
elements called units, PEs, or nodes
A large number of weighted, directed connections between 
pairs of units 
Weights may be positive or negative real values 
Local processing in that each unit computes a function 
based on the outputs of a limited number of other units in the 
network 
Each unit computes a simple function of its input values, 
which are the weighted outputs from other units. If there are 
n inputs to a unit, then the unit's output, or activation is 
defined by a = g((w1 * x1) + (w2 * x2) + ... + (wn * xn)). Thus 
each unit computes a (simple) function g of the linear 
combination of its inputs.
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Models of a Neuron

All connectionist/NN models have fairly similar 
models of a neuron.
There is a collection of units (i.e., would-be neurons), 
each of which has

a number of weighted inputs from other units
– inputs represent degree to which other unit is “firing”,
– weights represent how much unit wants to listen to other unit.

a threshold that the weighted inputs are compared against
– The threshold has to be crossed for the unit to do something 

(more or less).

a single output to another bunch of units
– what the unit “decided” to do, given all the inputs and its 

threshold.
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A Unit
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Properties of Units

Inputs and outputs are numbers, sometimes constrained to be 
within range, e.g., [0,1] or [-1,1].
The weights can be + or –, i.e., excitatory or inhibitory.
A unit works by

summing together weighted inputs and threshold, i.e., 

y = -q + Σx j w j (where x j are the inputs to the unit, and q, the threshold).

– y is input to an activation function, a; output of activation 
function, o, is unit’s output.
For simplicity, instead of a threshold, we give each node an 
additional input, usually called x 0, which is always set to 1.
– Then negation of weight from unit to each node acts like 
threshold (or “bias”).
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Some Common Definitions of What a Unit 
Computes
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Note

The units are continuously active.
(Actually, real neurons fire all the time; what changes is the 
rate of firing, from a few to a few hundred impulses a 
second.)

The weights of the units are not fixed for all time.
Indeed, learning in a NN system is basically a matter of 
changing weights.
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Perceptrons

Simplest "interesting" class 
of neural networks

"1 layer" network -- i.e., one 
input layer and one output 
layer. In most basic form, 
output layer consists of just 
one unit. 
Linear threshold unit (LTU) 
used at output layer node(s) 
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Thresholds
The threshold associated with LTUs can be considered as another 
weight. That is, by definition of an LTU, output of a unit is defined 
by 

where t is a threshold value. But this is algebraically equivalent to

So, in an implementation, consider each LTU as having an extra 
input which has a constant input value of -1 and the arc's weight is 
t. Now each unit has a fixed threshold value of 0, and t is an extra 
weight called the bias. 
So, from here on learning the weights in a neural network will 
mean learning the weights and the threshold values.
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Examples

OR function
Two inputs, both binary (0 or 1), and output binary 
(since output unit is an LTU): 

AND function
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Learning in Neural Networks

Programmer specifies numbers of units in each layer 
and connectivity between units, so the only unknown 
is the set of weights associated with the connections 
Supervised learning of weights from a set of training 
examples, given at I/O pairs. I.e., an example is a list 
of values defining the values of the input units in a 
given network. The output of the network is a list of 
values output by the output units 
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Algorithm:

Initialize the weights in the network (usually with 
random values) 
repeat until stopping criterion is met

foreach example e in training set do 
– O = neural-net-output(network, e) 
– T = desired (i.e, teacher) output 
– update-weights(e, O, T) 

Note: Each pass through all of the training examples 
is called one epoch
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Perceptron Learning Rule

In a perceptron, we define the update-weights 
function in the learning algorithm above by the 
formula:

wi = wi + ∆wi

where

∆wi = η (T - O) xi

xi is the input associated with the ith input unit. η is a 
constant between 0 and 1 called the learning rate. 

24

Notes about this update formula: 

Based on a basic idea due to Hebb that the strength of a 
connection between two units should be adjusted in 
proportion to the product of their simultaneous 
activations. A product is used as a means of measuring 
the correlation between the values output by the two 
units. 
Also called the Delta Rule or the Widrow-Hoff Rule 
"Local" learning rule in that only local information in the 
network is needed to update a weight 
Performs gradient descent in "weight space" in that if 
there are n weights in the network, this rule will be used 
to iteratively adjust all of the weights so that at each 
iteration (training example) the error is decreasing (more 
correctly, the error is monotonically non-increasing) 
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Notes about this update formula:

Correct output (T = O) causes no change in a weight 
xi = 0 causes no change in weight 
Does not depend on wi

If T=1 and O=0, then increase the weight so that 
hopefully next time the result will exceed the 
threshold at the output unit and cause the output O to 
be 1
If T=0 and O=1, then decrease the weight so that 
hopefully next time the result will be below the 
threshold and cause the output to be 0. 
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Perceptron Convergence Theorem

If a set of examples are learnable (i.e., 100% correct classification), 
the Perceptron Learning Rule will find the necessary weights (Minksy
and Papert, 1988) 

In a finite number of steps 

Independent of the initial weights 

The Perceptron Learning Rule does gradient descent search in 
weight space, so this theorem says that if a solution exists, gradient 
descent is guaranteed to find an optimal (i.e., 100% correct 
classification) solution for any 1-layer neural network 
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Example: Learning OR in a Perceptron

Given initial network defined as:

Let the learning rate parameter be η = 0.2
Let the threshold be specified as a third weight, w3
with constant input value x3 = -1
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The result of executing the learning 
algorithm for 3 epochs

x1 x2 T O ∆w1 w1 ∆w2 w2 ∆w3 w3 (=t)
- - - - - .1 - .5 - .8
0 0 0 0 0 .1 0 .5 0 .8
0 1 1 0 0 .1 .2 .7 -.2 .6
1 0 1 0 .2 .3 0 .7 -.2 .4
1 1 1 1 0 .3 0 .7 0 .4
0 0 0 0 0 .3 0 .7 0 .4
0 1 1 1 0 .3 0 .7 0 .4
1 0 1 0 .2 .5 0 .7 -.2 .2
1 1 1 1 0 .5 0 .7 0 .2
0 0 0 0 0 .5 0 .7 0 .2
0 1 1 1 0 .5 0 .7 0 .2
1 0 1 1 0 .5 0 .7 0 .2
1 1 1 1 0 .5 0 .7 0 .2
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Learned Network

So, the final learned network is:
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Linear Separability
Perceptron output (assuming a single output unit) determined by 
the separating hyperplane defined by 

So, Perceptrons can only learn functions that are linearly separable 
Example

The weights in the initial network for the OR function given above 
defines a separating line (0.1 * x1) + (0.5 * x2) - 0.8 = 0. Rewriting, this 
is equivalent to the line defined by x2 = (-0.2 * x1) + 1.6, that is a line 
with slope -0.2 and x2-intercept 1.6. 
The weights in the final network for the OR function define a 
separating line 
(0.5 * x1) + (0.7 * x2) - 0.2 = 0, or x2 = (-0.7 * x1) + 0.3 
The initial and final separating lines can be shown graphically in terms 
of the two-dimensional space of possible inputs as follows. Notice that 
the initial separating line classifies all four examples as 0, but the final 
separating line correctly has all the examples with target value 0 on 
one side and all the examples with target value 1 on the other side. 
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Linear Separability

In general, the goal of learning in a perceptron is to 
adjust the separating line by modifying the weights until 
all of the examples with target value 1 are on one side 
of the line, and all of the examples with target value 0 
are on the other side of the separating line, where the 
"line" is in general a hyperplane in an n-dimensional 
space, and n is the number of input units.
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XOR - A Function that Can Not be 
Learned by a Perceptron

The Exclusive OR function can be shown graphically as follows, 
where + corresponds to an output of 1, and - corresponds to a 
desired output of 0.

Clearly from the figure it is evident that there does not exist a line 
that can separate the two classes. Hence, XOR is not a linearly-
separable function, and cannot be learned by a Perceptron. 
Other examples of functions that are not linearly-separable: parity 
and "determining if all of the 1s in a 2D binary array are mutually 
connected to one another by paths of 1s" 
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Beyond Perceptrons

Perceptrons are too weak a computing model 
because they can only learn linearly-separable 
functions
We need to define more complex neural networks in 
order to enhance their functionality 
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Multi-layer, feedforward networks

Multi-layer, feedforward networks 
generalize 1-layer networks (i.e., 
Perceptrons) to n-layer networks as 
follows: 

Partition units into n+1 "layers," such that 
layer 0 contains the input units, layers 1, 
..., n-1 are the hidden layers, and layer n 
contains the output units 

Each unit in layer k, k=0, ..., n-1, is 
connected to all of the units in layer k+1 
Connectivity means bottom-up 
connections only, with no cycles, hence 
the name "feedforward" nets 
Programmer defines the number of 
hidden layers and the number of units in 
each layer (input, hidden, and output) 
Example of a 2-layer feedforward
network: 
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Multi-layer, feedforward networks

2-layer feedforward neural nets (i.e., nets with one hidden layer) 
with an LTU at each hidden and output layer unit, can compute 
functions associated with classification regions that are convex
regions in the space of possible input values. That is, each unit 
in the hidden layer acts like a Perceptron, learning a separating 
line. Together, all of the hidden units' separating lines are 
combined by the output unit(s) to classify an example by 
intersecting all of the half-planes defined by the separating lines. 
3-layer feedforward neural nets (i.e., nets with two hidden 
layers) with an LTU at each hidden and output layer unit, can 
compute arbitrary functions (hence they are universal computing 
devices) although the complexity of the function is limited by the 
number of units in the network.
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Recurrent networks 

are multi-layer networks in which cyclic (i.e., feedback) 
connections are allowed. In particular, if the output of a unit is 
connected to the other units in its own layer, then this special
case of cyclic connections define networks with mutual inhibition 
links. 
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Computing XOR using a 2-Layer 
Feedforward Network

The following network computes XOR. Notice that 
the left hidden unit effectively computes OR and the 
right hidden unit computes AND. Then the output unit 
outputs 1 if the OR output is 1 and the AND output is 
0. 
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Backpropagation Learning in Feedforward
Neural Nets

Method for learning weights in feedforward networks due to 
Rumelhart, Hinton, and Williams, 1986, which generalizes the Delta 
Rule 
Cannot use the Perceptron Learning Rule for learning in 
Feedforward Nets because for hidden units we don't have teacher 
(i.e., desired) values 
Must solve the Credit Assignment Problem -- i.e., when there is an 
error at an output unit (i.e., a non-zero difference between the actual 
output of the unit and the teacher output), which weights in the
network should be updated, and how to update them? In other 
words, how to assign credit/blame for the output error to the weights 
in the network? 
Backpropagation approach: gradient-descent algorithm to minimize 
the error on the training data by propagating errors backwards 
through the network starting at the output units and working 
backwards towards the input units
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Backpropagation Algorithm

Backpropagation algorithm performs gradient descent search in 
weight space for learning network weights. 
If there are m weights, then each configuration of weights that 
defines an instance of the network is a vector, W, of length m. W
can be considered to be a point in an m-dimensional weight space, 
where each axis is associated with one of the connections in the
network. 
Given a training set of n examples, each network defined by the 
vector W has an associated error, E, indicating the total error on all 
of the training data. Usually, E is measured using the mean 
squared error (MSE): 

where Ti is the teacher value for the ith example, and Oi is the 
network output value for the ith example, and there are n examples 
in the training set.
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Learning as search

Consider the m+1 dimensional space where m
dimensions are the weights, and the last dimension is 
the error, E. The error is non-negative and defines a 
surface in this weight space as shown below:

So, the goal is to search for the point in weight space 
with (global) minimum mean squared error E 
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Learning as search

To simplify the search, we'll use gradient descent to locally move in 
weight space, at each iteration, so as to change the weights so that 
the error decreases the fastest, and halt when we're at a (local) 
minimum in E. 
The gradient is a vector that indicates the steepest rate of increase in 
a function, so we'll change the weights in the opposite direction, 
which decreases E the fastest. That is, compute 

and then change the ith weight by 

Computing derivatives required for calculating the gradient direction 
requires an activation function that is continuous, differentiable, non-
decreasing and easily computed. 
Consequently, we can't use the LTU function. Instead, we'll use the 
sigmoid function at each unit (except the input units, of course). 
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Sigmoid Threshold Unit

Interesting property:

Output ranges between 0 and 1
We can derive gradient descent rules to train
One sigmoid unit

Multilayer networks of sigmoid units →
Backpropagation
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Computing the Gradient of E

We'll consider the problem of a 2-layer network 
where we must update the weights connecting nodes 
in the hidden layer to the output layer, and the 
weights connecting the nodes in the input layer to the 
hidden layer 
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Updating Hidden-to-Output Unit Weights

Since we have the teacher-supplied values for the desired values 
output by the Output units, we can use a generalized version of the 
Perceptron Learning Rule to update these weights. Because a 
sigmoid unit is used here instead of an LTE unit, we obtain the 
update formula: 
∆wji = η * aj * (Ti - Oi) * g'(in_i) = η * aj * (Ti - Oi) * Oi * (1 - Oi) 

where weight wji connects hidden unit j to output unit i, η is the 
learning rate parameter, Ti is the teacher output associated with 
output unit i, Oi is the actual output of output unit i, aj is the output 
of hidden unit j, and g' is the derivative of the sigmoid activation 
function, which is known to be g' = g(1-g).



45

Updating Input-to-Hidden Unit Weights

Because we don't have teacher-supplied values for the correct 
outputs at the hidden units, we must infer the error at these units by 
"backpropagating the errors at the output units. 
Each hidden unit is connected to a given output unit, so an error at 
an output unit should be "distributed" to each of the hidden units; 
we do this in proportion to the weight of the connection from a 
hidden unit to the given output unit. 
In this way the total error is distributed to all of the hidden units that 
contributed to that error. In this way, each hidden unit will 
accumulate some error from each of the output units that it is 
connected to. 
The total error is the sum of the errors propagated back from the 
output units. Specifically, we get the following formula for updating 
the weight wkj on the connection from input unit k to hidden unit j: 
∆wkj = η* Ik * aj * (1 - aj) * Σ [ ai(1 - ai)(Ti - ai)wji] 
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The Backpropagation algorithm
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Another weight update is possible. 

- n-th iteration update depend on (n-1)th iteration

- α : constant between 0 and 1 -> momentum
- Role of momentum term :
ㆍkeep the ball rolling through small local minima in the error 

surface.

ㆍGradually increase the step size of the search in regions where 
the gradient is unchanging, thereby speeding convergence

Adding Momentum
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Other Issues

How to Set η, the Learning Rate Parameter?
Use a tuning set or cross-validation to train using several candidate 
values for η, and then select the value that gives the lowest error 
How to Estimate the Error?

Use cross-validation (or some other evaluation method) multiple times 
with different random initial weights. 
Report the average error rate. 

How many Hidden Layers and How many Hidden Units per 
Layer?
Usually just one hidden layer is used (i.e., a 2-layer network). How 
many units should it contain? 

Too few => can't learn. 
Too many => poor generalization. 
Determine experimentally using a tuning set or cross-validation to select 
number that minimizes error. 
Genetic algorithms can be used to determine the structure.
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How many examples in the Training Set?
Under what circumstances can we be assured that a net that is trained to 
classify 1 - e/2 of the training set correctly, will also classify 1 - e of the 
testing set correctly? 

Clearly, the larger the training set the better the generalization, but the longer the 
training time required. But to obtain 1 - e correct classification on the testing set, 
training set should be of size approximately n/e, where n is the number of 
weights in the network and e is a fraction between 0 and 1. 

For example, if e=.1 and n=80, then a training set of size 800 that is trained until 
95% correct classification is achieved on the training set, should produce 90% 
correct classification on the testing set. 

When to Stop?
Too much training "overfits" the data, and hence the error rate will go up on 
the testing set. Hence it is not usually advantageous to continue training 
until the MSE is minimized. Instead, train the network until the error rate on 
a tuning set starts to increase. 
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MLP Decision Boundaries

A B

B A

A
B

XOR Interwined General

1-layer: Half planes

A B

B A

A
B

2-layer: Convex

A B

B A

A
B

3-layer: Arbitrary
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Advantages 

Parallel processing 
Distributed representations 
Online (i.e., incremental) algorithm 
Simple computations 
Robust with respect to noisy data 
Robust with respect to node failure 
Empirically shown to work well for many problem 
domains 
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Disadvantages 

Slow training 
Poor interpretability 
Network topology layouts ad hoc 
Hard to debug because distributed representations 
preclude content checking
May converge to a local, not global, minimum of error 
Not known how to model higher-level cognitive 
mechanisms 
May be hard to describe a problem in terms of 
features with numerical values 
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Alternative Error Functions

Penalize large weight

Train on target slopes 

Minimizing cross entropy
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Derivative-Based Optimization

Based on first derivatives:
Steepest descent (back-propagation)
Conjugate gradient method
And many others

Based on second derivatives:
Gauss-Newton method
Levenberg-Marquardt method 
And many others
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Derivative-Free Optimization

Evolutionary algorithms (EAs)
Simulated annealing (SA)
Random search
Downhill simplex search
Tabu search
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NN Topology Optimization using GA

output nodes

hidden nodes

input nodes1 2

1 2

1 2



57

NN of Radial Basis Functions

Motivations: better performance than sigmoid functions
Some classification problems
Function interpolation

Definition
A function is radial symmetric (or is RBF) if its output depends on 
the distance between the input vector and a stored vector related to 
that function

–

– Output  

NN with RBF node function are called RBF-nets

RBF  with theassociated     
 vector  theis or,input vect  theis  where Distance µ−µ= iiu

2121  whenever )()( uuuu <ρ≥ρ
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NN of Radial Basis Functions

Gaussian function is the most widely used RBF
a bell-shaped function centered at u = 0.

Continuous and differentiable

Other RBF
– Inverse quadratic function, hypershpheric function, etc
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NN of Radial Basis Functions

Pattern classification
4 or 5 sigmoid hidden nodes 
are required for a good 
classification 
Only 1 RBF node is 
required if the function can 
approximate the circle
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Neuro Fuzzy Architecture: FDMS II
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ART

The simplest ART network
is a vector classifier
classifies the input vector into a category depending on the 
stored pattern it most closely resembles
the pattern is modified to resemble the input vector
if no match, a new pattern is created based on input vector

(Solution to the Stability-Plasticity dilemma)
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ART

ART has both:
Plasticity, new categories can be formed if there is no match 
on the current patterns
Stability, environment cannot change stored patterns unless 
sufficiently similar

Variations of ART:
ART1, unsupervised learning on binary patterns
ART2, both analog and digital input patterns
ART3, parallel search of distributed recognition in a 
multilevel network hierarchy
ARTMAP, supervised learning
Fuzzy ARTMAP, synthesis of neural networks, expert 
systems, and fuzzy logic
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ART1
Create Initial 
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For each Example 
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d Dimension of vectors (length)
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Proximity Test
Vigilance Test

(create new cluster if necessary)
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Self Organizing Maps

Based on competitive learning(Unsupervised)
Only one output neuron activated at any one time
Winner-takes-all neuron or winning neuron

In a Self-Organizing Map
Neurons placed at the nodes of a lattice

– one or two dimensional

Neurons selectively tuned to input patterns
– by a competitive learning process

Locations of neurons so tuned to be ordered
– formation of topographic map of input patterns

Spatial locations of the neurons in the lattice -> intrinsic 
statistical features contained in the input patterns
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Self Organizing Maps

Topology-preserving transformation


