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Abstract—Simulation based verification is the most commonly
used verification technique in the industry. However, the effort of
generating new tests is non-trivial especially for the newly emerg-
ing multicore applications. Automated test generation greatly
reduces the cost of testing ultimately improving the quality of
multicore software. We develop an automated test generation
framework using static analysis techniques for embedded multi-
core applications. We use an emerging multicore standard for
multicore applications, named Multicore Communication API
(MCAPI). MCAPI is a lightweight API that targets heterogeneous
multicore embedded systems. Specifically, our techniques lever-
age mutation testing and model checking. We present preliminary
experimental results to validate the effectiveness of our approach.

I. INTRODUCTION

The emergence of multicore heterogeneous embedded sys-

tems requires the development of multicore software standards

[1]. Such standards have several benefits including code porta-

bility, reusability, and consistent behavior. Multicore Commu-

nication API (MCAPI) is a standard developed by Multicore

Association [2] for heterogeneous embedded systems. MCAPI

is a message passing programming library, similar to the

well-known MPI [3] library for distributed systems. How-

ever, MCAPI is a lightweight API that targets heterogeneous

multicore embedded systems and it has a smaller memory

footprint than MPI since performance and power consumption

are crucial for embedded systems such as consumer electron-

ics, medical instruments, or networking equipment. A sample

MCAPI library implementation is available from the Multicore

Association [2].

Multicore software is notoriously hard to design and analyze

due to the complexity brought by concurrency and nonde-

terminism. Verification becomes even a bigger challenge for

multicore software. Among several verification techniques,

testing (simulation) is the most commonly used in the industry.

In this paper, we develop techniques to improve testing of

multicore software.

Test generation is an important complement to the directed

or random tests that are used for testing in practice. Automated

test generation can reduce the cost of testing as it allows to

improve coverage in an automated manner. Automated test

generation (or model based testing) has been studied in the

literature mainly through the use of static (model checkers) or

dynamic analysis of software. See [4] for a detailed analysis

of using model checkers for test generation. Model checking

can be used to determine whether the original program and the

program obtained by inserting a fault are equivalent or not. If

they are not equivalent, then a counter example is generated,

and this counter example serves as a test case that detects

the inserted fault. Often times model checkers are limited

in the size and the complexity of programs they can handle

hence abstractions are used to make the program manageable.

We employ such an abstraction of the MCAPI library in this

paper. The ANSI-C Bounded Model Checker (CBMC) [5] has

been used for test generation for ANSI-C programs, concurrent

SystemC programs and recently for Simulink [6], [7]. Also,

automated test pattern generation has widely been studied for

hardware descriptions [8]. The generated patterns are used to

test semiconductor devices after manufacturing.

Our test generation framework makes use of mutation

testing [9], [10] for inserting faults into the programs. Mutation

testing is a software testing technique that allows to measure

the quality of a test suite by evaluating whether the test

suite can detect the mutations (syntactic changes, faults) in

the program. In this paper, we use a previously developed

mutation library for MCAPI standard that targets message

passing communication constructs. There is also several work

in the literature on using mutation testing for Java, C, and

SystemC [11], [12], [13].

In this paper, our main contribution is the development

of an automated test generation tool for embedded multicore

applications using the MCAPI standard. To the best of our

knowledge, there is no previous work on automated test

generation for embedded applications using message passing

communication. We used mutation testing and bounded model

checking together. Our preliminary experiments show that we

can obtain high coverage but we are limited by the capacity

of the model checker.

II. BACKGROUND ON MCAPI

MCAPI has three fundamental communication types: con-

nectionless datagrams for messages; connection-oriented, uni-

directional, FIFO packet streams for packet channels; and

connection-oriented single word uni-directional, FIFO packet

streams for scalar channels. Scalar channels are aimed at

systems that have hardware support for sending small amounts

of data (for example, a hardware FIFO). For lack of space,

we describe connectionless messages in the rest of the paper,
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however our test generation tool implements all communica-

tion types.

MCAPI messages can be sent or received in either

blocking or non-blocking fashion. Blocking send function

(mcapi msg send) in our MCAPI library will block if

there is insufficient memory space available at the system

buffer. When sufficient memory space becomes available,

the function will complete. The non-blocking send function

(mcapi msg send i), returns immediately even if there is

no memory space available. MCAPI stores messages in a

queue at the receiver endpoint and the size of the queue

can be configured according to the users demands. Blocking

receive function (mcapi msg recv) returns once a message

is available in endpoint’s message queue, whereas a non-

blocking receive function (mcapi msg recv i) returns imme-

diately even if there is no message available. Message receive

functions do not specify the sender endpoint and can match

any of the senders depending on the execution schedule. Packet

channels use connection-oriented communication. They use

FIFO order and they can have blocking or non-blocking send

and receive functions. Scalar channels are aimed at systems

that have hardware support for sending small amounts of data

(for example, a hardware FIFO) and scalar channels have only

blocking functions due to high performance.

For non-blocking function requests (send or receive), the

user program receives a handle for each request and can

then use the non-blocking management functions to test if

the request has completed with mcapi test function, or wait

for it either singularly with mcapi wait or wait for any one

of requests in an array of requests with mcapi wait any
function. The user program can also cancel non-blocking

function calls using mcapi cancel function.

We show an example multicore program that uses

MCAPI library in Fig. 1. The program has two con-

current threads (Thread1 and Thread2) communicating

through connectionless non-blocking message exchange. Each

thread initializes the MCAPI environment and then cre-

ates an endpoint to communicate with the other thread

using mcapi endpoint create. Thread1 gets Thread2’s

endpoint by using mcapi endpoint get function. Thread1
then sends a message to Thread2 and finalizes the

MCAPI environment before exiting. Thread2 receives the

message from Thread1 using non-blocking message re-

ceive function. In concurrent programs, the order in which

threads are scheduled is nondeterministic. If Thread1
executes mcapi msg send i before Thread2 executes

mcapi msg recv i then Thread2 receives the message from

Thread1. However, if Thread2 executes mcapi msg recv i
before Thread1 executes mcapi msg send i, Thread2 re-

turns from mcapi msg recv i without receiving a message

since there is no message available in its receive queue.

Thread2 then waits until the message is received by using

mcapi wait function.

# d e f i n e DOMAIN 1 # d e f i n e NODE1 1 # d e f i n e NODE2 2
# d e f i n e PORT NUM 100 # d e f i n e NUM THREADS 2

void∗ r u n t h r e a d 1 ( void ∗ t ) {
. . .
m c a p i i n i t i a l i z e (DOMAIN, NODE1,& parms ,& v e r s i o n ,& s t a t u s ) ;
ep1= m c a p i e n d p o i n t c r e a t e (PORT NUM,& s t a t u s ) ;
ep2= m c a p i e n d p o i n t g e t (DOMAIN, NODE2,PORT NUM,
MCA INFINITE,& s t a t u s ) ;
mcapi msg send i ( ep1 , ep2 , ‘ ‘MCAPI ’ ’ , s i z e , p r i o r i t y ,
&r e q u e s t ,& s t a t u s ) ;
m c a p i f i n a l i z e (& s t a t u s ) ;
. . .

}
void∗ r u n t h r e a d 2 ( void ∗ t ) {

. . .
m c a p i i n i t i a l i z e (DOMAIN, NODE2,& parms ,& v e r s i o n ,& s t a t u s ) ;
ep2 = m c a p i e n d p o i n t c r e a t e (PORT NUM,& s t a t u s ) ;
mcap i msg recv i ( ep2 , b u f f e r , BUFF SIZE,& r e q u e s t ,& s t a t u s ) ;
. . .
mcap i wa i t (& r e q u e s t ,& r e c v s i z e , MCA INFINITE,& s t a t u s ) ;
m c a p i f i n a l i z e (& s t a t u s ) ;
. . .

}
i n t main ( ) {

. . .
/∗ run a l l t h r e a d s ∗ /
p t h r e a d c r e a t e (& t h r e a d s [ 0 ] ,NULL, r u n t h r e a d 1 ,NULL ) ;
p t h r e a d c r e a t e (& t h r e a d s [ 1 ] ,NULL, r u n t h r e a d 2 ,NULL ) ;
/∗ w a i t f o r a l l t h r e a d s ∗ /
f o r ( t = 0 ; t < NUM THREADS; t ++) {

p t h r e a d j o i n ( t h r e a d s [ t ] ,NULL ) ; }
. . .

}

Fig. 1. Multicore program using MCAPI

III. AUTOMATED TEST GENERATION FOR MCAPI

We use mutation testing in order to enable test generation.

Mutation testing is a software testing method that involves

inserting faults (mutations) into user programs and then re-

running a test set against the mutated program, called a

mutant. A mutant is killed (detected) by a test case that

causes it to produce different output from the original program.

The ratio of the number of mutants killed to the number

of all mutants is called mutation coverage. Our goal is to

generate tests that will improve mutation coverage in an

automated manner. It is also important to know what types

of faults can be inserted into the program. For this purpose,

we leverage a mutation library and tool for MCAPI. These

mutations allow us to insert concurrency related bugs into

an MCAPI application such as nondeterminism, deadlock,

race condition, starvation, resource exhaustion, incorrect pa-

rameter, incorrect function, or forgetting to use a function.

For instance, when we modify mcapi wait(10, request) with

mcapi wait(MCAPI INFINITE, request) in Fig. 2 mu-

tation1, it results in a deadlock since ep2 waits for the message

from ep1, whereas ep1 waits for the message from ep2. If

we exchange mcapi msg recv i with mcapi msg recv in

Fig. 2 mutation2, we cause a deadlock since ep1 waits for ep2

and ep2 waits for ep1.

Model checkers can exhaustively analyze the state space of a

given program with respect to a given property. By performing

symbolic execution along a particular path that leads to a state

that violates the property and conjoining the predicates that

47



void∗ r u n t h r e a d 1 ( void ∗ t ) { /∗ Thread1 has ep1 ∗ /
. . .
mcapi msg recv ( ep1 , b u f f e r , BUFF SIZE,& r e c v s i z e ,& s t a t u s ) ;
mcapi msg send ( ep1 , ep2 , ‘ ‘ msg1 ’ ’ , msgSize , p r i o r i t y ,& s t a t u s ) ;

. . .
}
void∗ r u n t h r e a d 2 ( void ∗ t ) { /∗ Thread2 has ep2 ∗ /

. . .
/ / m u t a t i o n 2
mcapi msg recv i ( ep2 , b u f f e r , BUFF SIZE,& r e q u e s t ,& s t a t u s ) ;
mcap i wa i t (& r e q u e s t ,& r e c v s i z e ,10 ,& s t a t u s ) ; / / m u t a t i o n 1
mcapi msg send ( ep2 , ep1 , ‘ ‘ msg2 ’ ’ , msgSize , p r i o r i t y ,& s t a t u s ) ;
. . .

}

Fig. 2. Inserting a mutation results in deadlock

guard its branch points, they can calculate the condition that

the desired test input must satisfy. Then a satisfiability solver

can be used to find a solution. In mutation testing based test

generation, both the original program and the mutant are given

to the model checker. The property to be checked is that the

outputs of both programs are the same, which makes it an

equivalence checking problem. The counterexample produced

by the model checker is then the test case desired.

Some model checkers that can be used with MCAPI pro-

grams are SATABS [14] and CBMC [5]. SATABS transforms

a C/C++ program into a Boolean program, which is an

abstraction of the original program in order to handle large

amounts of code. The Boolean program is then passed to a

model checker such as SMV. SATABS can handle concurrent

C programs, which makes it possible to be used for MCAPI

applications. However, since SATABS ultimately abstracts a

program into a Boolean program, it is challenging to convert

the counterexamples generated for the Boolean program back

to the original program’s inputs. Another model checker,

CBMC is a bounded model checker. Bounded model checking

(BMC) is a variation of model checking which restricts the

exploration to execution traces up to a certain length k. BMC

either provides a guarantee that the first k execution steps

of the program are correct with respect to the property P or

a counterexample of length at most k. The ability to report

counterexamples is the essential feature we use to generate test

cases. However, CBMC cannot handle concurrent C programs.

Also, model checkers are limited in terms of the size and

complexity of the programs they can handle. Hence, often

abstraction is used to make the programs amenable to model

checking. In our case, the MCAPI library includes various

complex C functions including shared memory manipulations,

semaphores, and locks, resulting in unbounded loops, all of

which make it difficult for CBMC to analyze the library.

Hence, we abstracted the MCAPI library such that the essential

message passing communication is kept and other implementa-

tion details in terms of shared memory operations are removed.

CBMC has been successfully used for automated test gener-

ation before and we also chose to use it in this paper. In order

to use CBMC on a concurrent program, the thread structure is

mapped into a state flow, that is into an equivalent sequential

C program. Similar translation techniques are explored in

TABLE I
EXPERIMENTAL RESULTS

Multicore program #line #ep #mutants #killed mutants #tests
ex1 136 2 6 6 1
ex2 244 3 18 18 6
ex3 145 2 11 10 4

[15], [16] for SystemC, which is also a concurrent language.

Although the level of abstraction is high, the state flow

simulates the blocking messages accurately.

IV. AUTOMATED TEST GENERATION TOOL FOR MCAPI

We have developed an automated test generation tool that

inserts all possible mutations to the multicore programs and

then runs the model checker to generate counterexamples, if

the mutant program can be killed by a test. Note that we

can only mutate the constructs for which a mutation operator

is defined. Given an MCAPI application we perform the

following steps.

• Step 1: We create an abstract version of the program without

implementation details and where the thread structure is

mapped to a state flow.

• Step 2: We create a set of mutant programs.

• Step 3: We combine the mutant programs with that of the

original program and add assertions to check the equiva-

lence of the outputs of the original and the mutant program.

• Step 4: We execute the model checker and use the coun-

terexamples as test cases.

We create an abstract version of the MCAPI application

such that the thread structure is mapped into a state flow. We

now show this step with an example in Fig. 3. This example

is a transformation of the example in Fig. 1, where we used

blocking messages and we removed wait, initialization, final-

ization and endpoint creation functions, which are not used

for test generation purposes. Sending is triggered when both

send and receive channels are at the READY state, changing

the send status to RUNNING. When sending is completed

the state is immediately set to COMPLETED, whereas the

receiver can change from READY to RUNNING state. At this

point, sender status is set READY in order to be triggered as

soon as the receive process is completed and its state is set

READY again. Next, the original function calls are replaced

with wrapper function calls from mutation library, resulting

in mutants. All mutations can be inserted into the program

at the same time since a SAT solver can take advantage of

incremental solution. However, we have not implemented that

strategy in this paper. Then, we add assertions that check the

equivalence of the outputs of two designs. Finally, the model

checker is executed on the instrumented program.

We tested our framework on programs developed by us.

Table I shows our experimental results for three examples. The

column denoted by #ep shows the number of the endpoints

created during the multicore program execution, the column

denoted by #mutants gives the number of mutants. We also

display the number of killed mutants, as well as the number

of unique tests that were generated to kill these mutants in
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/ / ORIGINAL
i n t t r a n s b u f f e r = 0 ; i n t msgr = 0 ;
i n t org ( i n t∗ msgo ) {

unsigned char s e n d s t a t u s = STATUS READY;
unsigned char r e c v s t a t u s = STATUS READY;
unsigned char r u n n a b l e c o u n t = 2 ;
whi le ( ( r u n n a b l e c o u n t > 0 ) )

{
/ / t h r e a d h a n d l i n g
i f ( ( s e n d s t a t u s == STATUS READY) &&

( r e c v s t a t u s == STATUS READY ) ) {
s e n d s t a t u s = STATUS RUNNING;}

e l s e i f ( ( s e n d s t a t u s == STATUS COMPLETED) &&
( r e c v s t a t u s == STATUS READY ) ) {

r e c v s t a t u s = STATUS RUNNING ;
s e n d s t a t u s = STATUS READY;}

e l s e i f ( ( s e n d s t a t u s == STATUS READY) &&
( r e c v s t a t u s == STATUS COMPLETED) ){

r e c v s t a t u s = STATUS READY;
s e n d s t a t u s = STATUS READY;}

/ / send
i f ( s e n d s t a t u s == STATUS RUNNING){

mcapi send ( msgo , &t r a n s b u f f e r ) ;
s e n d s t a t u s = STATUS COMPLETED;
r u n n a b l e c o u n t−−;}

/ / r e c e i v e
i f ( r e c v s t a t u s == STATUS RUNNING){

mcap i recv (& t r a n s b u f f e r , &msgr ) ;
r e c v s t a t u s = STATUS COMPLETED;
r u n n a b l e c o u n t−−;}

}
}
/ / MUTANT
i n t t r a n s b u f f e r m =0 ; i n t msgr m =0;
i n t mut ( i n t∗ msgm)
{

unsigned char s e n d s t a t u s m = STATUS READY;
unsigned char r e c v s t a t u s m = STATUS READY;
unsigned char runnab l e coun t m = 2 ;
whi le ( ( runnab l e coun t m > 0 ) )

{
/ / t h r e a d h a n d l i n g
i f ( ( s e n d s t a t u s m == STATUS READY) &&

( r e c v s t a t u s m == STATUS READY ) ) {
s e n d s t a t u s m = STATUS RUNNING;}

e l s e i f ( ( s e n d s t a t u s m == STATUS COMPLETED) &&
( r e c v s t a t u s m == STATUS READY ) ) {

r e c v s t a t u s m = STATUS RUNNING ;
s e n d s t a t u s m = STATUS READY;}

e l s e i f ( ( s e n d s t a t u s m == STATUS READY) &&
( r e c v s t a t u s m == STATUS COMPLETED) ){

r e c v s t a t u s m = STATUS READY;
s e n d s t a t u s m = STATUS READY;}

i f ( s e n d s t a t u s m == STATUS RUNNING){
mcapi send ( msgm , &t r a n s b u f f e r m ) ;
s e n d s t a t u s m = STATUS COMPLETED;
runnab le coun t m−−;}

i f ( r e c v s t a t u s m == STATUS RUNNING){
/ / m u t a t i o n removed r e c e i v e

/ / mcap i recv (& t r a n s b u f f e r m , &msgr m ) ;
r e c v s t a t u s m = STATUS COMPLETED;
runnab le coun t m−−;}

}
}

i n t main ( ) {
i n t msg= n o n d e t i n t ( ) ;
o rg (&msg ) ; mut(&msg ) ;

/ / Compare t h e o u t p u t s
CPROVER assert ( msgr == msgr m , ” e q u a l ” ) ;

re turn 0 ; }

Fig. 3. MCAPI example

the table. Our framework was able to generate test inputs

that kill every mutant but one mutant for program ex3. Upon

further investigation, we realize that the resulting mutant is

functionally the same as the original program, that is, the

mutation is not activated in the observed execution. For the

example in Fig. 3, CBMC generates a test input with msg

value 1.

We did not hit a timeout for CBMC runs. This is partly

because the examples were relatively small. It took 3 seconds

on a Linux machine with 2 GB memory, to complete for the

second example, which had the highest number of mutants.

Since there is no publicly available benchmark using MCAPI,

the scalability of our approach is not explored yet. Also,

note that the same test can kill multiple mutants, however we

display the unique test cases in this study.

V. CONCLUSIONS AND FUTURE WORKS

We presented the first time an automated test generation for

multicore applications that use the newly emerging message

passing MCAPI standard. Ultimately, our solution can improve

the reliability of heterogeneous embedded multicore systems

by aiding in the costly test generation process. Our framework

made use of mutation testing for fault insertion, and model

checking for test generation purposes. We experimentally

demonstrated the applicability of our technique on simple

examples, where we obtain high mutation coverage in an

automated way. In the future, we plan to automate the process

of code abstraction and transformation. We are working on

additional techniques that can further enhance the usability and

scalability of our tools. More importantly, MCAPI lacks larger

benchmarks, hence we plan to work on developing bench-

marks that will allow us to better measure the effectiveness of

our technique.
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