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One of the commonly used techniques to speedup early architectural exploration and performance
evaluation of new hardware architectures is to use synthetic benchmarks. This paper presents a novel
automated thread-level synthetic benchmark generation framework with characterization and genera-
tion components. The resulting thread-level synthetic benchmarks are fast, portable, human-readable,
and they accurately mimic the micro-architecture dependent and independent characteristics of each
thread in original application. We demonstrate that we can generate multi-threaded synthetic
benchmarks for real-life PARSEC and Rodinia benchmarks, while being faster (on average 147�) and
smaller (on average 11�) than originals. The obtained results show that synthetic benchmarks not only
accurately preserve thread-level micro-architecture dependent and independent characteristics but also
parallel programming patterns, which are high-quality solutions to frequently occurring problems in
parallel programming.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Benchmarks are tests of computer systems that help estimate
performance of a system on a workload, hence optimize designs.
Computer architects use simulation software (simulators) to model
the architecture of the newly developed systems and run bench-
marks on these simulators. However, running benchmarks on
these simulators are typically many orders of magnitude slower
than running them on real machines. Hence, executing many
benchmark applications on these simulators will not be possible
during allowed design time.

One of the commonly used techniques to boost the performance
of simulations is to use synthetic benchmarks. These benchmarks
can either be derived from existing benchmarks or be generated
from scratch by varying various program characteristics.
Synthetic benchmarks do not perform any useful computation,
yet they can approximate characteristics of real-life applications,
hence they need to be accurate. A synthetic benchmark also needs
to be smaller and faster than the original benchmark that it is
derived from so that it simulates faster.

The emergence of multi-core systems has made parallel bench-
mark suites ubiquitous. These new generation of benchmarks
allow to adequately evaluate the future parallel computer architec-
tures such as multi-cores, many-cores, accelerators, and
supercomputers. Some of the commonly used parallel benchmark
suites are PARSEC [1], Rodinia [2], SPLASH-2 [3], and NAS
Parallel Benchmarks [4], all of which suffer from slow speeds when
run on simulators. In this work, we generate synthetic
multi-threaded benchmarks based on existing multi-threaded
benchmark suites such as PARSEC and Rodinia. Our synthetic
benchmarks should be used for early architectural exploration
and performance evaluation. The need for more accurate perfor-
mance evaluation in later design cycles still necessitates the usage
of original existing multi-threaded benchmark suites.

We previously developed the MINIME tool [5] that can generate
synthetic benchmarks for multicore systems. We obtained small
and fast benchmarks upon using MINIME. However, the accuracy
of our earlier synthetic benchmarks were low since we did not pre-
serve the characteristics of individual threads in synthetic bench-
marks. In that work, we used hardware performance counters to
keep an aggregated version of characteristics that counts for all
threads of the process rather than obtaining counts per-thread.
Based on these counter values, certain code blocks were added to
the main function of the synthetic benchmark. We call those ear-
lier synthetics as application-level synthetics. In this work, we pre-
serve the characteristics of individual threads in the synthetic
benchmark and implement our solution in the MINIME tool. We
call these new synthetics as thread-level synthetics.

Thread-level synthetics preserve the characteristics of individ-
ual threads by using hardware performance counter results
for each thread. Then, this accurate information is used to add
code blocks per thread, which is more challenging than in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.07.010&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.07.010
mailto:alper.sen@boun.edu.tr
mailto:etem.deniz@boun.edu.tr
http://dx.doi.org/10.1016/j.micpro.2015.07.010
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


472 A. Sen, E. Deniz / Microprocessors and Microsystems 39 (2015) 471–479
application-level synthetics, where an aggregate code block is
added to the main function only.

We exploit the concept of parallel programming patterns in order
to accurately capture the characteristics of parallel applications in
synthetic benchmarks. Parallel patterns [6] are generalized,
high-quality solutions to frequently occurring problems in parallel
programming. These patterns capture thread communication and
data sharing characteristics of multi-threaded applications while
simplifying multi-threaded application development by raising
the abstraction level. Parallel patterns allow us to obtain high qual-
ity synthetics as will be shown in the experiments. We developed a
new decision tree based pattern recognition algorithm with lower
characterization overhead and faster speed than earlier k-nearest
neighbor based approaches.

We perform experiments using PARSEC and Rodinia benchmark
suites and generate new thread-level synthetics for applications in
these suites. Experiments show that our synthetics are more accu-
rate than application-level synthetics, where the average thread
similarity score is 84% for thread-level synthetics versus 44% for
application-level synthetics. Our synthetic benchmarks are also
faster (on average 147�) and smaller (on average 11�) than the
original benchmarks that they are generated from.

The paper is organized as follows. We present the related work
in the next section. We describe our synthetic benchmark develop-
ment framework in Section 3. We compare application-level and
thread-level synthetics in Section 4. Section 5 shows our detailed
experimental results. This is followed by the conclusions.
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Fig. 1. MINIME: multi-threaded benchmark development framework [5].
2. Related work

We use micro-architecture independent characteristics in this
work which are similar to the characteristics in Poovey et al. [7].
They detect parallel patterns of PARSEC and SPLASH-2 benchmarks
using kNN technique with 50% accuracy. Also, in [8], the authors
use parallel patterns for dynamic thread mapping based on thread
behaviors. We use decision tree technique and our pattern recogni-
tion accuracy is 90% for PARSEC and Rodinia in this work.

There has been several works to measure and optimize the per-
formance of benchmarks by using performance counters [9–11].
Micro-architecture dependent characteristics such as cycles per
instruction, cache miss rate, and branch misprediction rate
are used in these works. These studies are helpful in understand-
ing performance and finding bottlenecks. Hoste et al. [12] intro-
duced micro-architecture independent characteristics to generate
benchmarks.

In [13–16], statistical simulation is used to generate synthetic
benchmarks. Ertvelde et al. [16] use a micro-architecture depen-
dent way of modeling memory access behavior to generate
single-threaded synthetic benchmarks in C. In [17], synthetic
benchmarks are generated for a specific number of cores and they
need to be regenerated when the target system has different num-
ber of cores. However, we do not generate synthetic benchmarks
for a specific number of cores and multi-threaded synthetic bench-
marks can be used to quantify performance differences for studies
when the number of cores are changed. In [18], the authors pro-
posed an approach for benchmark generation from behavior of real
applications that is captured as statistical execution profile con-
structed from hardware performance counters. They target
ARM-based mobile devices whereas we target CPU devices. Wang
and Solihin [19] use performance cloning to emulate cache organi-
zations on real hardware. They specifically aim to mimic cache
behavior, however, we mimic IPC, cache and branch prediction
behaviors as well as parallel patterns. In [20], the authors present
an automatic workload extraction approach for embedded soft-
ware performance estimation. They use an LLVM-based
characterization to collect target performance characteristics from
the source code, whereas we use performance counters to capture
performance characteristics.

There exist many studies on synthetic benchmarks for
single-threaded applications [21,22]. However, there are few
recent studies for generating synthetics for multi-threaded appli-
cations [11,23,24,17]. Their synthetics use low level assembly lan-
guage, whereas we generate multi-threaded benchmarks as
readable and portable C code. Also, their benchmarks are for gen-
eral purpose multicore systems while we can use MCA libraries
and support embedded multicore systems as well as general pur-
pose multicore systems. Our technique runs on real multicore
hardware to gather thread-level characteristics and faster than
their approach since they use simulators. We also use fewer char-
acteristics (4) compared to their characteristics (around 40), which
improve the performance of our technique. Additionally, we use
the concept of parallel patterns that capture inherent characteris-
tics and thread behaviors of a multi-threaded application. In [25],
we generated synthetic benchmarks in C using MCA libraries for
embedded multicore systems. We extended this work in [5] and
added support for Pthread library and generated synthetic bench-
marks with better application-level similarity. Different from all
these earlier works, we use thread-level synthetic benchmarks as
opposed to application-level synthetics in this paper.

3. Thread-level synthetic benchmark development framework

Fig. 1 shows the architecture of our MINIME tool [5], which we
adapted for this work. The tool has three modules, namely, bench-
mark characterizer, parallel pattern classifier, and benchmark genera-
tor, where the benchmark characterizer captures the important
characteristics of a given original application, the parallel pattern
recognizer detects the parallel pattern of the application using
the captured characteristics, and the benchmark synthesizer auto-
matically generates a thread-level synthetic benchmark using the
detected parallel pattern. We will now explain these components.

3.1. Benchmark characterizer

The benchmark characterizer module collects characteristics of
the original application using a combination of dynamic binary
instrumentation and performance monitoring counters for
micro-architecture independent and micro-architecture depen-
dent characteristics, respectively.
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We use DynamoRIO [26] dynamic binary instrumentation tool
for gathering characteristics during the execution of a benchmark.
Binary instrumentation allows us to work with legacy/proprietary
IPs and not compile/link applications. We collect general threading
characteristics (program counter, dynamic instruction count, cre-
ator, lifetime), thread communication characteristics (communi-
cating threads, communication volume), and data sharing
characteristics (private, read-only, producer/consumer, migratory).
Next we briefly explain these characteristics.

We collect creation and exit times of threads and calculate the
lifetime sub-characteristics of threads. We use the program coun-
ter sub-characteristic to indicate the starting program counter of a
thread. Note that program counter allows us to determine whether
the threads are executing the same task or not. We define the ratio
of communicating threads as (the number of communicating
threads/the total number of threads) and the ratio of communica-
tion volume as (the number of cachelines used in communication/
the total number of cachelines used).

We use hardware performance counters for collecting
micro-architecture dependent characteristics. In the previous
version of MINIME, we used Linux perf tools [27] to query hard-
ware performance counters at the application level. Application
level characterization cannot capture all characteristics of
multi-threaded applications because threads share hardware
resources such as processor, last level cache and characteristics
of each thread impact the performance of multicore applications.
Thread-level characterization is crucial for developers and
researchers to develop efficient multicore hardware and software.
Therefore, there is a need for a new type of thread-level character-
ization of multi-threaded applications.

In order to add support for thread-level characteristics collec-
tion, we added support for PapiEx tool [28] in this work. PapiEx
is a command line utility to measure per-thread and application
level hardware performance counters with Performance
Application Programming Interface (PAPI) [29]. We collect instruc-
tions per cycle (IPC), cache miss rate (CMR), and branch mispredic-
tion rate (BMR) characteristics with PapiEx per thread. These are
the most commonly used performance counters in the literature.
Fig. 2. Code block to increment/decrement IPC.
3.2. Parallel pattern classifier

Parallel patterns are generalized, high-quality solutions to fre-
quently occurring problems. These patterns describe the problem,
components, forces, and solution. Developers can understand par-
allel patterns quickly and use them while implementing new mul-
ticore applications. Parallel patterns are not only applicable for
applications that run on CPUs but also for applications that run
on GPUs or other platforms. From the view of algorithm structure
pattern, a multi-threaded application can be classified as Task
Parallel (TP), Divide and Conquer (DaC), Geometric Decomposition
(GD), Recursive Data (RD), Pipeline (Pl), and Event-based
Coordination (EbC) as formally described in [6].

Each pattern type defines a particular behavior for each thread.
For example, for task parallel applications, all threads can execute
different functions concurrently and can have different lifetimes. In
divide and conquer pattern, problems are divided into smaller
sub-problems where each thread solves a sub-problem and merges
these results. Mergesort is an example of divide and conquer par-
allel pattern. In task parallel and divide and conquer parallel pat-
terns, shared data is usually read-only and threads also work on
private data. We have defined similar behaviors for other parallel
pattern types.

In this work, we use decision trees technique to determine the
parallel pattern of a given application. We describe this technique
in the experiments section.
3.3. Benchmark generator

Finally, the benchmark generator module generates a
multi-threaded synthetic benchmark using the parallel pattern
type of the application and the performance counter values. The
synthetic benchmark consists of a main function and a function
for each thread. Benchmark generator works iteratively and
improves the similarity between the behaviors of the original
and synthetic threads at each iteration until a given threshold is
reached. During each iteration, code blocks are added for each
thread for the performance counter values that are not similar
starting from the most dissimilar ones. At the end of the iterations,
each thread in the synthetic benchmark preserves performance
characteristics of the corresponding thread in the original
multi-threaded benchmark leading to accurate synthetics.

We now define formally our similarity metrics for each of the
IPC, CMR, and BMR characteristics. We first define error rate ¼
ðvalue of synthetic � value of originalÞ=ðvalue of originalÞ and
similarity ¼ ð1� error rateÞ � 100. We calculate sim IPC; sim CMR,
and sim BMR by using similarity formula. We define Thread
Similarity Score (TSSi) for each thread i in a benchmark as follows.
TSSi ¼ ðsim IPCi þ sim CMRi þ sim BMRiÞ=3, where sim IPCi is the
IPC similarity of thread i. Similarly, given n threads, we define aver-
age TSS as aTSS ¼ ðTSS1 þ � � � þ TSSnÞ=n.

In our earlier work [5], we defined Overall Similarity Score
ðOSSÞ, which is an application-level similarity score, as
OSS ¼ ðsim IPC þ sim CMRþ sim BMRÞ=3, where sim IPC is the IPC
similarity of the application. As we will show in the next section,
having a high OSS value does not mean having high TSS values.
Whereas, having a high TSS value not only implies having a high
OSS value but also a more accurate synthetic.

Our synthetic benchmarks use C language. Since C is a high
level programming language, synthetics are portable and
human-readable as opposed to previous work that use
non-portable low level assembly code [22]. Synthetics can use a
multitude of parallel libraries. For example, benchmarks using
POSIX Pthreads API are created for general purpose multicore sys-
tems, whereas benchmarks using MCA APIs (MCAPI or MRAPI) [30]
are generated for heterogeneous embedded systems.

3.3.1. Code blocks
At each iteration, we check whether every thread’s similarity

score meets a user defined TSS. If not, then for each thread we find
the metric with the minimum score. For example, if the minimum
score is for IPC, then we insert a code block as shown in Fig. 2 either
to increment or decrement IPC of synthetic benchmark. Similarly,
we add code blocks for CMR and BMR metrics.
4. Application-level versus thread-level synthetic benchmarks

In this section, we show the advantage of using thread-level
synthetic benchmarks over application-level benchmarks using
the Blackscholes benchmark from PARSEC benchmark suite.
The application has 4 threads.



Fig. 3. Characteristics of Blackscholes benchmark and its application-level
synthetic.
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Fig. 3 shows the IPC, CMR, BMR performance characteristics
of the original Blackscholes benchmark (denoted by
org IPC; org CMR; org BMR) and the application-level synthetic
of Blackscholes (denoted by syn IPC; syn CMR; syn BMR),
respectively.

In application-level synthetic, aggregate values of performance
counters are collected during characterization and these values
are preserved in the synthetic benchmark by adding code block
to the main function. That is, although application-level perfor-
mance characteristics are preserved (as seen in the plot denoted
by Application), performances characteristics of each thread is
not preserved and show huge differences. For example, while
CMR of Thread 1 of the original benchmark org CMR is 3.7, CMR
of Thread 1 of the synthetic benchmark syn CMR is 13.6. This
demonstrates that application-level similarity generates inaccu-
rate synthetics and does not preserve thread-level behaviors.

Fig. 4 shows the performance characteristics of the original
Blackscholes benchmark and thread-level synthetic of
Blackscholes. During thread-level synthesis, values of perfor-
mance counters are collected for each thread individually and
these values are preserved in the synthetic benchmark by adding
code blocks to the function of each thread. We now see that
Fig. 4. Characteristics of Blackscholes benchmark and its thread-level synthetic.
thread-level similarity not only provides accurate synthetics by
preserving the behavior of each original thread in the synthetic
but it also preserves the overall behavior of the original application
(application-level behavior) as well.

The advantages of using our new thread-level synthetic bench-
mark generation technique over our earlier application-level syn-
thetic benchmark generation technique are as follows. Our new
technique generates more similar (accurate) synthetic benchmarks
in terms of thread-level and application-level. Also, our new tech-
nique generates faster synthetic benchmarks compared to our ear-
lier work as will be shown in the experiments. On the other hand,
using our new technique over our earlier technique has some
potential downsides. Since we add code blocks to each thread
instead of adding them only to the main thread as we did earlier,
our thread-level synthetic benchmarks can be larger than our
application-level synthetic benchmarks in terms of lines of code.
Similarly, generating thread-level synthetic benchmarks requires
more iterations because collecting and preserving per thread char-
acteristic is more costly.
5. Experiments

We performed experiments to validate our thread-level syn-
thetic generation technique implemented in MINIME tool. The tool
consists of nearly 10 K lines of C code and 500 lines of Python
script. The tool and the benchmark results can be downloaded.1

Table 1 shows the details of the multicore machine configura-
tion where we ran our experiments. Our multicore machine uses
an Intel i7 processor with 4 cores and 6 MB cache. Intel
Speedstep and Hyper-Threading technologies were enabled and
threads were not pinned to cores during our experiments. As the
compiler tool set, we use the GNU Compiler Collection 4.6.1 for
x86_64 Ubuntu Linux. We compile original benchmarks with
default options, and we use ‘-O0’ option for synthetic benchmarks.
This is because we generate code blocks for synthetic benchmarks
in C and enabling optimizations can result in removing these code
blocks.

We used PARSEC [1] and Rodinia (OpenMP) [2] benchmarks as
original benchmarks and generated synthetic benchmarks that use
POSIX Pthreads, MRAPI, or MCAPI parallel libraries. PARSEC is a
well-known, open-source multi-threaded benchmark with funda-
mental parallelism constructs. Rodinia is a benchmark suite for
heterogeneous computing and cover a wide range of parallel com-
munication patterns, synchronization techniques and power con-
sumption. We used the simmedium input for PARSEC and default
input for Rodinia. For each benchmark, we ran the original and
the synthetic benchmarks 10 times in order to obtain characteris-
tics. We also set TSSi to 80% for each thread and iteration threshold
to 100.

Table 2 shows benchmark characteristics and our pattern clas-
sification results. The column Known shows the pattern of the
benchmark known from the literature and column Classified shows
the pattern of the benchmark we classified. Note that parallel pat-
terns of Rodinia benchmarks are not known from the literature,
hence we manually decide them from the source code and display
these results. We show the number of the worker threads
(#wThreads) in original benchmarks which will be kept the same
in synthetic benchmarks. The lines of code is denoted by (LOC).

Table 3 shows our thread-level synthetic benchmarks that use
POSIX Pthreads API. We also generated synthetic benchmarks that
use MCAPI and MRAPI APIs and obtained similar results but due to
lack of space we only show Pthreads results here. We also show
results for application-level benchmarks from [5] for comparison
1 http://depend.cmpe.boun.edu.tr/tools/minime/.
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Table 1
Multicore machine configuration.

Parameter System

#Cores 4
DRAM 6 GB
L1 I/D 32 KB, 8 way
L2 256 KB, 8 way
LLC (L3) 6 MB, 12 way
Branch Predictor 2-level correl, 64-bit
Architecture x86, Core i7 64-bit

Table 2
Benchmark characteristics and pattern classification results (Task Parallel (TP), Divide
and Conquer (DaC), Geometric Decomposition (GD), Recursive Data (RD), Pipeline (Pl),
and Event-based Co-ordination (EbC)).

Original benchmark

Suite Benchmark LOC #wThreads Known Classified

PARSEC Blackscholes 1262 8 TP TP
Bodytrack 7696 9 GD GD
Canneal 2794 4 TP GD
Dedup 7125 8 Pl Pl
Facesim 20,275 5 TP TP
Ferret 10,765 18 Pl Pl
Fluidanimate 2784 4 GD GD
Swaptions 1095 4 TP TP
X264 38,546 15 Pl Pl

Rodinia Kmeans 2146 3 TP TP
HotSpot 196 3 GD GD
Back Propagation 478 7 TP TP
SRAD 495 1 TP TP
Breadth-First Search 125 3 TP TP
CFD Solver 1539 7 TP GD
LU Decomposition 541 3 GD GD
Heart Wall Tracking 2244 3 TP TP
Particle Filter 398 7 GD GD
PathFinder 127 3 GD GD
LavaMD 353 3 GD GD
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purposes. In the table, we show the number of iterations (#iter) it
takes to generate the synthetic benchmark with the required target
similarity percentage. The column Speedup(x) shows the speedup
in terms of running time and the column aTSS shows the average
thread similarity score for the given benchmark.
Table 3
Thread-level synthetic benchmark generation results.

Original benchmark Application-level

Suite Benchmark #iter LOC Speedup(

PARSEC Blackscholes 2 124 10
Bodytrack 16 403 11
Canneal 2 136 22
Dedup 9 440 36
Facesim 5 127 15
Ferret 5 1426 67
Fluidanimate 2 330 15
Swaptions 2 144 13
X264 12 940 26

Rodinia Kmeans 15 180 36
HotSpot 10 195 16
Back Propagation 5 129 20
SRAD 17 222 12
Breadth-First Search 18 195 35
CFD Solver 11 243 10,174
LU Decomposition 32 199 10
Heart Wall Tracking 16 180 34
Particle Filter 9 242 10
PathFinder 14 343 13
LavaMD 19 274 30
On average, we generate the synthetic benchmark that satisfies
the target score in 63 iterations. It takes more iterations when per-
formance characteristics of a thread is too low or too high such as
the BMR of Swaptions is 10% which leads to high influence
between threads. We have maximum 2593� speedup in CFD

Solver since the running time of original benchmark is longer
(337.15 s) than the others. The average speedup is 147� without
CFD Solver and it is 269� with CFD Solver. This demonstrates
that we have large speedup values when the running time of orig-
inal application is high. Similarly, the code size is reduced in syn-
thetics. We have maximum 81� reduction in lines of code for
Facesim and on average we have 11� code size reduction. Since
there is no code for communication in task parallel synthetic
benchmarks, their code sizes are smaller than other synthetics.

Fig. 5 shows the micro-architecture dependent characteristics
of Blackscholes benchmark and thread-level synthetic of
Blackscholes with 8 threads. In the figure, for each thread we
show IPC, CMR, and BMR of original and synthetic benchmark.
TSSs of threads are 85, 95, 93, 93, 89, 88, 85, and 86, respectively.
The average TSS aTSS of Blackscholes benchmark is 89. Our
technique is applicable for arbitrary number of the threads for
example the results for Blackscholes with 4 threads was shown
in Fig. 4. Next, we show the detailed similarity scores for all
benchmarks.

In Fig. 6, we give average TSSs for all benchmarks and we show
the minimum and maximum TSSs as error bars. The maximum
aTSS is 91 in CFD Solver and the average of all aTSSs is 84. The
minimum aTSS is 80 in Ferret and X264. This is because the orig-
inal benchmarks have very high BMR (7.6%) values compared to
other benchmarks and converging benchmarks with very high or
low values of micro-architecture dependent characteristics is
harder than others. The figure shows that threads in the synthetic
and the original benchmarks are similar to each other over 80%,
which was set by the user. Currently, 80% is the threshold we set
for aTSS since a higher value is not possible with the code blocks
that we generate. This can be improved if we employ low level
code blocks such as assembly but since this will prevent our code
from being portable we decided not to pursue this route. In any
case, the obtained results show the high quality of thread-level
synthetics generated by our automated framework.

We now compare our new thread-level synthetic benchmarks
with previous application-level synthetic benchmarks. We use
Thread-level

x) aTSS #iter LOC Speedup(x) aTSS

24 50 431 21 89
28 74 728 127 82
76 25 409 78 82
61 60 613 11 85
30 98 250 475 83
18 81 1222 344 80
43 16 368 18 82
66 100 306 146 84
60 80 553 20 80

39 36 245 778 85
57 49 220 22 81
56 42 547 15 83
59 32 104 66 81
23 85 263 180 87
37 93 352 2593 91
38 94 138 21 81
33 45 286 114 89
30 80 476 125 84
61 88 551 27 85
37 23 230 206 83



Fig. 5. Characteristics of Blackscholes benchmark and thread-level synthetic of Blackscholes with 8 threads.

Fig. 6. Average, maximum, and minimum thread similarity scores of all thread-level synthetic benchmarks.

Fig. 7. Comparison of average TSS for application-level and thread-level synthetic of all benchmarks.
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the average thread similarity scores (aTSS) of both types of syn-
thetic benchmarks for comparison. We ran our new characterizer
on the application-level synthetics that were previously generated
in order to collect their thread-level characteristics. Fig. 7 shows
our results. It is clear from the figure that thread-level synthetics
have much better aTSS (84% on average) than application-level
synthetics (44% on average). Hence, the accuracy of our new
thread-level synthetic benchmarks is much better than earlier
application-level synthetic benchmarks.

5.1. Decision tree based parallel pattern recognition

In this section we describe an automated way of recognizing
parallel patterns described in Section 3.2. As seen from Fig. 1,
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automatic and accurate recognition of parallel patterns is crucial
for the success of benchmark synthesis.

There exist several machine learning techniques for data
classification in the literature. Each technique has advantages
and disadvantages. For example, classification with decision trees
is memory efficient and fast compared to the memory intensive
kNN. Furthermore, neural networks do not present an
easily-understandable classification model. Whereas, decision
trees are easy to understand and can be applied easily. We previ-
ously developed a parallel pattern recognition technique using
the k-nearest neighbor (kNN) technique where we used 12 charac-
teristics with an accuracy of 100% [5]. Given the advantages of
decision trees, we wanted to improve the performance of our
parallel pattern recognition technique. As we will experimentally
show, the decision tree technique requires a fewer number of char-
acteristics compared to the kNN technique. Hence, characterization
overhead of the decision tree technique is lower and it runs faster.
We now describe the details of using decision trees for pattern
recognition.

A decision tree is a hierarchical tree structure that is con-
structed from known data samples, where an internal node of
the tree denotes a test on a feature (sub-characteristic) and a leaf
node represents a class. Since there can be continuous valued fea-
tures in a data sample, these features are discretized during deci-
sion tree generation by splitting their range into two intervals.
Once the decision tree is constructed, it is possible to use the deci-
sion tree to predict the classes of previously unseen data samples.
Decision rules that provide unique paths for the sample data to the
class that it belongs to are used to classify unseen data samples. A
decision tree may overfit the training set and this can result in poor
accuracy for unseen data samples. In this case, the tree is pruned
by deleting nodes.
Fig. 9. ROC curve of our decision tree.
5.1.1. Construction of a decision tree
We trained our decision tree using the ID3 algorithm [31,32]

and obtained the decision tree shown in Fig. 8. While building
our decision tree, at each step, we decide the most important
sub-characteristic and a test on this sub-characteristic. The most
important sub-characteristic is the one which gives the largest
split over the training set. We quantify the largest split with infor-
mation gain as defined in [31,32]. Information gain is the reduction
in entropy, which characterizes the purity of a subset of the train-
ing set, caused by splitting the training set according to a selected
sub-characteristic. Note that the sub-characteristics we used are
continuous variables based on which we selected an optimal point
to yield the highest information gain. We then create an internal
node from the selected sub-characteristic and add one branch for
Fig. 8. Decision tree for parallel pattern classification (Characteristics: Lifetime (LT), Prog
Volume (RCV)).
each test leading out from this node. For example, in our decision
tree, the first selected sub-characteristic is Program Counter and
the test is Program Counter < 0:92. If all benchmarks on a test
branch have the same parallel pattern, then we add a leaf node
and assign the parallel pattern label. Otherwise, we continue creat-
ing new internal nodes and new tests until all benchmarks have
the same parallel pattern on a branch. After producing the decision
tree, we prune away internal nodes with low information gain to
prevent overfitting.

The decision tree shows that we can classify the parallel pattern
of a multi-threaded application by only using Program Counter, life-
time, ratio of communicating threads and ratio of communication vol-
ume sub-characteristics. We need only these 4 characteristics
because there exist implicit relations between sub-characteristics
and we do not need to use all sub-characteristics to classify a
multi-threaded application. For example, when threads have the
same program counter, they generally have similar creation and
exit times. Similarly, when we have high ratio of communicating
threads or ratio of communication volume values, we have high
producer/consumer or migratory data sharing. Since we use only
four sub-characteristics for classification, benchmark characteriza-
tion can be sped up and 4 instead of 12 sub-characteristics can be
collected.

In Fig. 9, we show the performance of our decision tree for each
parallel pattern as a Receiver Operating Characteristic (ROC) curve.
ram Counter (PC), Ratio of Communicating Threads (RCT), Ratio of Communication



Table 4
Cut-offs of our ROC curve.

Parallel pattern Maximum TPR cut-off Maximum FPR cut-off

Task Parallel 0.77 0.11
Geometric Decomposition 0.78 0.10
Pipeline 0.83 0.03
Divide and Conquer 1 0
Recursive Data 0.75 0
Event-based Coordination 0.75 0.03
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Table 4 shows the maximum True Positive Rate (TPR) and maxi-
mum False Positive Rate (FPR) cut-offs of our ROC curve. The
ROC curve shows that divide and conquer and recursive data par-
allel patterns have the lowest false positive rate (0.0) and divide
and conquer parallel pattern has the highest true positive rate
(1.0).
5.1.2. Using the decision tree
We show the parallel pattern classification results of our deci-

sion tree in column Known of Table 2. Our decision tree correctly
classifies 18 of the 20 benchmarks in the test set with a 90% accu-
racy. Hence, the accuracy of our decision tree is high. We define the
characterization overhead as the ratio of the running time of a
multi-threaded application to the un-instrumented running time
of the same application. Similarly, we define the speed as the
amount of time needed for an algorithm to perform learning and
classification. The characterization overhead is 3.5�, since we use
only four sub-characteristics for classification instead of twelve
and the speed is 0.01 s. Whereas, for our earlier pattern recognition
results with kNN technique the characterization overhead is 20.2�,
since we use all 12 characteristics and the speed is 0.04 s.
5.2. Discussion

Our synthetic benchmarks should be used for early architec-
tural exploration and performance evaluation. The need for more
accurate performance evaluation in later design cycles still neces-
sitates the usage of original benchmarks.

Our benchmarks contain code blocks to mimic the behavior of
applications. However, one should note that, for example, cache
miss rate is very dependent on the size of the cache.

We can use parallel pattern information while sub-setting
benchmarks since we know that benchmarks with same parallel
pattern have similar high level characteristics. For example, if we
know that the parallel pattern of an actual application that will
run on the target system is task parallel, then we can use bench-
marks which are task parallel to test the target system.
6. Conclusions and future work

We describe a new thread-level synthetic benchmark genera-
tion framework that generates synthetic benchmarks from the
benchmarks given in an existing benchmark suite. Our synthetics
not only preserve the performance behaviors of individual threads
in existing benchmarks unlike earlier works but they are much fas-
ter (average 147� speedup) and smaller (average 11� reduction)
than originals. Our thread-level synthetics have also better accu-
racy than the earlier application-level synthetics. We also devel-
oped a new decision tree based parallel pattern recognition
technique that is faster than earlier parallel pattern recognition
techniques.

In the future, we plan to expand our work to synthetic bench-
mark generation for accelerators and investigate other characteris-
tics such as power.
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