
SIxD: A Configurable Application-Specific
SISD/SIMD Microprocessor Soft-Core

Nehir Sönmez
Department of Computer Engineering

Boğaziçi University
Istanbul / Turkey

nehir.sonmez@boun.edu.tr

Arda Yurdakul
Department of Computer Engineering

Boğaziçi University
Istanbul / Turkey

yurdakul@boun.edu.tr

Abstract— In this study, an FPGA-based, configurable,
application-specific, SIMD-capable, non-pipelined RISC soft
processor core that operates on variable-width fixed-point data
is presented. The flexible SISD core with general-purpose
instructions fits on small FPGAs, but can be easily configured
to incorporate application-specific instructions and to operate
in SIMD mode when higher performance is required.

I. INTRODUCTION

In recent years, the advents of chip design technology
have reduced the unit price of FPGAs, hence soft CPU cores
[1,2] that can be used in FPGAs have started to appear. A
soft processor is one that is implemented using the FPGA
logic, rather than being a fixed part of the chip circuitry,
providing the flexibility to implement and potentially
customize as required. The architecture of these processors is
usually SISD (Single Instruction-Single Data). Xtensa [3] is
a SISD architecture whose instruction set can be enhanced
by including user-defined application-specific instructions,
as well as by adding a SIMD engine for DSP applications.
Many modern commercial microprocessors also have SIMD
capability, which has become an integral part of the
Instruction Set Architecture.

This study presents the early results of a soft CPU core,
the SIxD, a non-pipelined RISC system (load/store
architecture) with fixed 16-bit instruction word and variable
data space. Depending on the size of the FPGA, the user can
select the operation mode (SISD-only or SISD-SIMD) and
shrink, extend or modify the instruction set for including
application-specific instructions or excluding redundant
instructions at compile-time. In the literature, there are
processor architectures that incorporate both SISD and
SIMD in a single core [4,5] using partitioned data words,
however no cases of a completely parameterizable SIMD
core have been observed. The non-pipelined implementation
is useful for the ease of design, lower area occupation,
dismissing the need for hazard prediction and pipeline stalls.
Therefore, the SIxD is a quite novel soft core that can fit in
as low as a 40K system gate FPGA, or offer high
performance array processing on bigger FPGAs. The core is

designed with VHDL for Xilinx FPGAs, but modifications to
fit other vendors can be easily done. In the following section,
the SIxD architecture is briefly explained in two parts, the
scalar and the array/vector part. An illustrative
implementation concerning the MPEG-7 Motion Activity
Descriptors is explained in Section III, with conclusions and
future work in Section IV.

II. THE SIXD ARCHITECTURE

The SIxD is a configurable, application-specific system
with fixed 16-bit instruction word and variable data space,
fusing a non-pipelined RISC uni-processor with a SIMD
multiprocessor. The SIxD supports application-specific
modules, as well as general-purpose processor functionality.
A configuration file determines ALU instructions, branching
instructions, data space, and most importantly, activates the
SIMD mode of the core with a user-defined number of
Processing Nodes.

A. The bare SISD core
The SISD model is a non-pipelined RISC system with 8

general-purpose registers, as well as dedicated special
registers such as the Program Counter (PC), the Instruction
Register (IR), Memory Address Registers (MAR) and
Memory Data Registers (MDR). Attempting to make the
most out of available FPGA resources, dedicated Block
RAM resources are chosen to serve as Instruction Memory
(IM) and Data Memory (DM) of the SIxD (Fig. 1). The
Register File (RF) with a single-port input and a double-port
output has been implemented as Select RAM in the FPGA.
The primitive Hardware Multiplier, which is standard in
Xilinx Virtex and Spartan 3 FPGAs, is the obvious choice
for multiplier, requiring no LUT space on the chip. If no
Hardware Multiplier is present on the target FPGA, the user
must either remove the multiplication instruction or provide
with a custom generic multiplier.

The hardwired Control Unit (CU) is a Finite State
Machine implementing a sequential circuit based on different
states of the machine, issuing a set of control signals at each

This work has been fully supported by the Turkish Foundation of
Science and Technology, under Kariyer Research Project Program, pr.
no:104E038.

Figure 1: The SISD datapath

state. Depending on the instruction word input, the Control
FSM completely describes the Instruction Set Architecture of
the SIxD, by setting up the necessary bits for corresponding
units to perform the correct operation. The instruction
formats supported by the SIxD are:

• Register-register (direct)
• Register-constant (immediate)
• Register-memory (indirect)
• Branching format

A custom unit can be a user-defined instruction or a
custom-designed hardware module. The bare SISD core has
an ALU, a multiplier and no custom unit. In order to create a
custom instruction on the SISD, the custom unit must be
placed with input(s) from the Register File, and output(s) to
the RF input multiplexer. A reserved opcode in the ISA
must be associated with the control on the new unit and
corresponding states must be revised for the proper enabling
of the unit, and the correct choice of the select signal of the
RF input multiplexer to assure the proper propagation of the
outputs. The reserved places are used for custom instruction
extension to the ISA. More custom units could be added to
the ISA by having selection bits distinguish different
instructions, like done in the shift instructions; two
instructions in a single opcode, distinguished by an unused
bit or field of the instruction word.

Up to four interrupts are implemented, as well as an
interrupt enable/disable instruction. The SIxD gives an
exception when an invalid opcode is read. The
interrupt/exception addresses are at the start of the

Instruction Memory. There is no stack or accumulator on the
SIxD, resulting in a single level of interrupt handling.

TABLE I. THE SIXD INSTRUCTION SET

Opcode Explanation ~ b

0000 NOOP-enable/disable interrupts-RET 2

0001 A/L
a
 register (direct) 4

0010 A/L
a
 register (immediate) 4

0011 A/L
a
 register (indirect) 5

0100-0110 Reserved -

0111 Shift/Rotate right/left 4

1000 Multiply 4/5

1001 SIMD: execute instruction - c

1010-1011 Load/store to/from memory 3

1100-1101 Branch if less than/branch if equal to 5

1110 SIMD: load/store/route/set_iter - c

1111
Immediate/indirect load/store from/to
memory/port

2/3/4

a. A/L: Arithmetic/Logic (ADD/SUB/AND/OR/XOR).

b. ~: clock cycles.

c. See Table III.

B. The Configuration File

Although Table I shows the full instruction set, it should
be noted that these instructions can be modified during the
synthesis of the core with the aid of a configuration file
written in VHDL. The following types of modifications are
supported by the configuration file:

1) Enable SIMD with a number of Processing Nodes:
Depending on the size of chip, the user can enable SIMD
instructions, choosing to have any number of Processing
Nodes (PN) that is a multiple of two.

2) Determine the data space (width and length):
Depending on the size of data memory needed and the Block
RAM available on the FPGA, the user can specify the data
width as a multiple of 8 bits, and data length (at least 2K
words).

3) Select the most appropriate branching and shifting
instructions: In the default instruction set, BL and BEQ are
used. However, if greater-than operations are used more
frequently than BL, then the user has the chance of
replacing BL with BG. There are six possible branch
instructions for two branch instruction slots: BEQ, BNEQ,
BL, BLEQ, BG, and BGEQ. As for the shift instructions,
arithmetical, logical shift or rotation operation can be
inserted into the ISA.

4) Remove unused instructions from the instruction set:
As an example, removing the 16-bit XOR instruction would
reduce the area of the ALU by 11 slices (Table II). This way,
the SISD core can fit in a very small FPGA.

TABLE II. SISD SLICE INFORMATION

Data Width
Unit

8-bit 16-bit 24-bit 32-bit

SISD (all) 279 426 573 689
ALU 68 148 231 310

Register File 20 40 60 80

Reg. MUX 22 44 66 88

Control Unit 186 186 186 186

C. The SIMD functionality
The SIMD functionality of the SIxD, depicted in Fig. 2,

is initiated within the configuration file by the SIMDenable
signal set high. This produces the generation of a number of
user-defined Processing Nodes. A SIMD Processing Node is
made up of a Local Memory (depicted as LM, a dual-ported
Block RAM) and a Processing Element (PE), thus providing
with the most elementary units for computation. The Local
Memory (SIMD registers) also needs to be able to take
inputs from the main Data Memory, resulting in a need for a
multiplexer, completing the PN.

The instructions that emerge with the activation of the
SIMD are as shown in Table III. For these SIMD
instructions, only register indirect addressing can be used,
otherwise there would be no way of issuing a SIMD
instruction inside a 16-bit instruction word. In these
instructions, the register contents act as address locations for
the DM and the LMs. The set_iter instruction sets an
iterations register, iter, with a constant, determining the
number of times to repeat the given SIMD instruction. Let’s
say that a load vector instruction is being issued on the
SIMD with 4 processing elements, and iter is set to 8. In this
case, 32 values inside the DM are distributed dually (via
dual-port Block RAMs) to 8 consecutive locations in the 4
PEs. This way, the iterations register achieves the speeding
up of data transfers between the DM and the LMs. A large
data multiplexer is placed at the output to select which Local

Memory to read from when writing back to the main Data
Memory.

For the SIMD part, the customization process differs in
the sense that the new functional unit is added inside the
Processing Element with a certain bit of the op_sel signal
enabling it. For a single-cycle custom operation, no other
modification of the core is necessary. If the custom unit
outputs two results, setting the double_output bit high on the
configuration file lets results to be written on two
consecutive memory address locations.

TABLE III. SIMD INSTRUCTIONS OF THE SIXD

SIMD
instruction

Explanation ~ b

Load vector Loads a vector from DM to the LMs. 5+3i a

Store vector Stores a vector from LMs to the DM. 5+3i
a

Exec. vector
Execute two vectors based on the op_sel
signal, save to a vector in LMs. 6+2i

a

Route Route a scalar from one LM to another. 9

Set_iter Set the number of iterations to perform. 2

a. i: iterations.

b. ~: clock cycles

D. Intra-PE Communications

It is easy to implement a SIMD with communication
autonomy [6]; by having the LM input multiplexers (Fig. 2)
take their inputs from all outputs of all PEs. Of course, this
results in very large multiplexers and increased area usage.
If an on-chip network is formed with routers in-between the
LMs, these multiplexers can be removed. The slow but
small method implemented in the SIxD employs none of
these, but uses a pre-defined look-up table that contains
encoded direction information for the movement of data
between the LMs. The table consists of encoded bits of
source and destination PEs, requiring no extra hardware,
and only a few slices. For example, if the user defines “101”
as a transfer from LM1 to LM4 in compile-time, using this
bit sequence inside the “route” instruction, along with the
source LM address and the destination LM address results
in a data movement between these two Processing Units.

The size of the SIMD is completely dependent on the
application, since the number and the contents of the
Processing Elements determine the size of the SIMD mode
of the SIxD core. Section III gives better insight on the
utilization and performance of the core with an
implementation of MPEG-7 Motion Activity Descriptors on
the SIxD.

III. IMPLEMENTATION EXAMPLE: THE MPEG-7 MOTION

ACTIVITY DESCRIPTORS

Although a detailed explanation can be found in [7], The
MPEG-7 Motion Activity Descriptors (MAD) considered
here are for motion intensity and spatial distribution of
motion activity. The algorithm can be summarized as

Figure 2: The SIMD unit

follows: In a set of motion vectors, first the hypotenuses of
8-bit input pairs are calculated, and the average of the results
are found. The spatial activity matrix is calculated by setting
the values lower than the average to zero. Another averaging
of this matrix gives the intensity of motion for the frame. The
descriptor implementation which works with pre-calculated
motion vectors has been employed on 16x16 motion vectors,
requiring two sets of 256 elements each. Although the inputs
are 8-bits wide, a 16-bit CPU was used because of the usage
of multiplication and averaging. For the sake of processing
comparison, data is previously loaded from the input ports,
and is available in Data Memory.

There are many ways to implement this “take-the-
hypotenuse/square root-and- accumulate- intensive”
application. On the SISD, an 8-bit square root calculation
takes about 280 clock cycles. A custom unit designed for this
calculation and placed in opcode “0100” takes 5 cycles and
55 slices to compute the square root. The whole algorithm
runs for a total of 21,286 clock cycles. Another method is to
use a specially-designed hypotenuse unit, taking 76 slices,
and 5 clock cycles to execute. Using this unit that has two
MUL, one ADD, and one SQRT operation combined into
one HYP instruction, the total MAD runtime takes 19,413
clock cycles. Finally, enabling the SIMD and using vector
instructions on specially designed PEs that execute in two
clock cycles and occupying 111 slices, the results are shown
in Table IV.

TABLE IV. THE MPEG-7 MOTION ACTIVITY DESCRIPTOR ON THE
SIXD

No.
PN

Iter Total
slices

SIMD
slices

Max.
freq.

(MHz)

Runtime
(clock
cycles)

Power
cons.
(mW)

2 128 963 475 109 1833 521

4 64 1205 717 94 1196 548

8 32 1647 1163 94 882 542

16 16 2523 2049 89 734 566

32 8 4266 3800 94 678 606

64 4 7754 7288 83 686 647

Fig. 3 shows the PE designed for the SIMD execution of
the algorithm, and how the PE operation bits were used to
manage the units. First the hypotenuses are calculated in
parallel on all PNs, while the outputs are collected and added
by the accumulator. Then, the final accumulator results are
gathered by the SISD, added and shifted to compute the
average, and sent back to the PNs of the SIMD. Afterwards,
the compare instruction comes into play, comparing the data
elements with the average, outputting zero if less than the
average, or the input data itself if greater than or equal to the
average, forming the spatial activity matrix. Meanwhile, it
also accumulates its results, which are finally saved, added
and scaled together for the final result, the intensity of
motion for the frame.

Figure 3: The Processing Node for the MPEG-7 Motion Activity
Descriptor and the PE operation table.

When the chosen number of Processing Nodes of the
SIxD is redundant for the algorithm, the design not only
takes up too much space, but is slower and inefficient:
Experiments done with 128 and 256 PEs resulted in 14,780
and 28,720 total slices and 762 and 944 clock cycles to
execute, respectively. This is due to the fact that the data
transfer starts taking more time than the processing. The
ideal number of PNs is 16 or 32 for the Motion Activity
Descriptor on a 16x16 motion vector frame, depending on
area or time being a constraint. Furthermore, the 256-PE
SIMD doesn't fit even fit the biggest Xilinx Virtex-II chip
(8M gates), occupying 259 Block RAM and 513 MUL units.

IV. CONCLUSIONS

In this study, we have implemented a flexible
application-specific soft processor that can be configured to
run in scalar mode and fit in small FPGAs or run with vector
processing (SIMD) capability for higher performance on
larger chips. We have demonstrated an implementation of
the core with the MPEG-7 Motion Activity Descriptors,
showing how the core might be configured for up to 28-fold
speedup in algorithm run time. In the future, the core’s
flexibility is to be further tested with more complex
algorithms.

REFERENCES
[1] MicroBlaze Processor Reference Guide, Xilinx Inc.

http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf.

[2] Nios Embedded Processor, Altera Inc.
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf.

[3] R.E. Gonzalez, "Xtensa: A Configurable and Extensible Processor, "
IEEE Micro, vol. 20, no. 2, pp. 60-70, Mar. 2000.

[4] Freedom CPU, http://f-cpu.seul.org/.

[5] D. Etiemble and L. Lacassagne, "Introducing image processing and
SIMD computations with FPGA soft-cores and customized
instructions", in 1st International Workshop on Reconfigurable
Computing Education, Karlsruhe, Germany, March 2006.

[6] P. J. Narayanan, "Processor Autonomy on SIMD Architectures," In
Proc. the ACM International Conference on Supercomputing, pp.
127--136, July 1993.

[7] Savakis A, Sniatala P, Rudnicki R. “Real-time video annotation using
MPEG-7 motion activity descriptors,” Conference MIXDES 2003.
Lodz: June 26-28: 2003.

