
Configurable Design and Implementation of the Rijndael Algorithm-AES

 � � � � � � � � � � 	

 Electrical and Electronics Engineering � �
 �

afsin.ozpinar@superonline.com

Arda Yurdakul
Computer Engineering � �
 �

ey
yurdakul@boun.edu.tr

 The purpose of this work is to design configurable and
flexible cores of Rijndael-AES algorithm. Rijndael is a
cryptographic algorithm, which is accepted as Advanced
Encryption Standard by NIST to achieve security and
privacy while processing, transferring and storing the data
[1-2].

 The Rijndael algorithm mainly consists of a
symmetric block cipher that can process data blocks of
128, 192 or 256 bits by using key lengths of 128, 196 and
256 bits. The AES accepts only 128 bits data size and
128(AES-128), 192(AES-192) and 256(AES-256) bits
key lengths. The Rijndael algorithm is based on round
function, and different combinations of the algorithm are
structured by repeating this round function different
times. Each round function contains uniform and parallel
4 steps, Byte Substitution, Row Shifting, Column Mixing
and Key Addition, and each step has its own particular
functionality.

 In this work, design and implementation of three
configurable and flexible cores of Rijndael algorithm are
done: an encryptor, a decryptor and a combined encryptor
and decryptor. These cores support not only the AES, but
also the whole Rijndael algorithm. Another feature of the
cores is that they are all designed as using Electronic
Code Book (ECB) mode meaning that every single data
block is encrypted and decrypted independently from
each other. Since ECB is the basic element of all other
main modes such as Cipher Block Chaining (CBC),
Cipher Feedback (CFB) and Output Feedback (OFB)[3],
it is easy to extend the design and implement the other
modes.

All the modules in these flexible cores are created by
using VHDL language. Some modules are designed by
using behavioral style and some are designed ful ly RTL.

Firstly a common package is created to set the global
values those are used by al l of the modules and sub
modules (Figure 1).

By changing the parameters NBlock, Nkey and
Nround in this package, all the modules and sub modules
can be reconfigured. After reconfiguration of these
parameters, the core should be re-synthesized.

 � � ! " ! # $ % % % &
' () * + + + , - . / 0 1 2 3 * 4 0 5 5 6 7 , 8 9 9 :; < = > ? ? ? @ A B C ? D > E F G H I @ J K K LM N O P N Q R S T U V W X Y Z [\] ^ Y _ ` ab c d e f g d f d h i j k l m n o p q r q s m t u v w w x y z { y | } ~ � � z y � � � � � � � � � �� ¡ ¢ £ ¤ � � ¥ ¦ § ¨ © ª © « ¬ ­ ® ¯ ° © « ± ¬ ® ¯ ² ³ ´ µ ¶ · ·¸ ¹ º » ¼ ½ º ¼ º ¾ ¿ À Á Â Ã Ä Á Å Æ Ç Æ ¾ Ã È É Ê Ë Ì Ì Í ¿ Î Å Ä Ï Æ Ð Å ¿ ¾ Æ Ñ Æ Ò Å ¾ ¿ À Á Â Î À Á Ó Å Ä ¿ Á É Ê Ô É Õ Ô É Ö× Ø Ù Ú Û Ü Ù Û Ý Þ ß à á â ã ä á Ú ã å æ ç ã á è æ é æ ê ç ë Ù ì í ä î ï ð ñ Ù ê ä ò á ó ô õ ö ÷ ø ø ù ä ú î ä í ò û á â ú ä ê ï æ üæ Þ ß à á â ã ä á è à ì í æÛ ý þ Ý Ú Û Ü Û Ý ÿ Ú à ê ê à ü ñ � è ä ñ ñ � ð Ù ì í ä î ï ö ø õ ö ö ä ú � � � � � � � 	
 � � �
 � �
 � � � � � � � � � � �� � � � � � � � � � � � � � � � �

 � � � � � � � � ! " # � �
 $ � % & � � � ' � � � � � � � 	
 � � �
 � �
 � (� � � � � � � � �) * + , - . / 0 1 2 3 4 4 3 5 6 7 8 9 : ; 9 < = 8 > ? @ 9 A B C ? D E C 8 9 4 6 F > 9 G H 8 9 7 ; IJ K L M N M K O P Q R R Q S T U V W X N Y S Z [\ W] ^ _ ` a bJ K L M N M K c d e _ f N O P Q R R Q S T U V W X d g W h i Z [\ W] ^ _ ` a bj k l m m n l o p q m q r s m k t u v w w v x y z { | y m } ~ v � � � | � u � � � � � � � | � � � � q �j k l m j r u � � n t u v w w v x y z { | � � � � | � � { � r � | � � � r � � � { | w y � � | � � { | z � �j k l m j r � � � p t u v w w v x y � { | � � � | � � � � q �� � � � t � p q o m � r j k l m u �

Figure 1. Package Rijndael types
Secondly, sub-modules Byte Substitutor, Row Shifter,

Column Mixer, Round Key Adder and Key Expander for
the encryptor, inverse of al l these modules, except Round
Key Adder since it is identical for the both, for the
decryptor are designed to implement the round function.
All sub modules are designed by using behavioral VHDL.

Thirdly, a controller to control these sub modules and
round operations, and a top-level to instantiate all these
sub modules are designed for the encryptor and for the
decryptor by using RTL style. The top-level of the

designs can be seen in Figure 2 and Figure 3.
Figure 2. Toplevel of Rijndael encryptor

Simulations for all combinations are run by
usingModelsim simulator. After verification of the
functionality, all these combinations are synthesized into

Rst

Clk

Encryptor Controller

Rijndael
Encryptor

Enc_Data
_In

Enc_Data_Out

Enable
BSub

Enable
RShift

Enable
CM ix

Enable
KA dd

Enable
KExp

Enc_Key_In

ExpandedK ey

Enc_Start

Enc_Done

4*NBlock
by tes

4*NK ey by tes

4*NBlock
by tes

�� ��
��
¡¢£¢�¢¤¥

¦§¨
©ª«¬
­®¯

°±²³
´µ
¶·¸¹
º

»¼½
¾¿À
ÁÂ

ÃÄÄÅ
Æ

ÇÈÉ ÊËÌÈÍË

ÎÏÐ ÑÒ
Ó ÔÕ

ÖÏ×

a Xil inx FPGA by using the XILINX-ISE, an integrated
development tool. Synthesis for some block size and key
combinations for different target devices is done without
using any constraints. These sample results can be seen in
Table 1. Here, fmax stands for the maximum operation
frequency of the device generated from our core.

Figure 3. Toplevel of Rijndael decryptor

Table 1. Synthesis results for Rijndael
encryptor-decryptor

Design (Nb,Nk)
Number
of Slices

Number
of LUTs fmax

(4,4) 10921 19724 29.338
(4,6) 10912 19507 23.646

Encoder on
Xilinx-Virtex-
XCV300 (4,8) 13030 23523 23 646

(6,6) 19698 37039 47.077
(8,8) 32382 58479 42.278

Encoder on
Xilinx-Virtex-
XCV1000 (8,4) 35320 66587 44.395

(4,4) 13542 25869 39.979
(4,8) 13625 26058 43.096
(6,6) 20807 39354 37.096
(8,4) 33125 63667 41.387

Decoder on
Xilinx-Virtex-
XCV1000

(8,8) 32743 62928 41.239
Usually encryptor and decryptor units must coexist in

the same system. The above designs are quite expensive if
we try to put them in one chip. If concurrency in
encryption and decryption is not so important, then one
can use the combined encryptor-decryptor core in order to
have a smaller design. Since encryptor and decryptor
modules use some common sub modules, such as most of
key expander and round key adder, a combined encryptor-
decryptor module is designed and some resources are
shared by these modules. Besides, the designs shown in
can be targeted to any ASIC or FPGA device. However,
FPGAs might also contain ROM and RAM [4]. So for
these devices, one can make use of these internal storage
units to have more compact designs. Therefore, these
built -in storage units of FPGAs are used for some
operations in the Rijndael algorithm such as Byte
Substitution, which is being done by using look-up tables
(Figure 4). Our system generates the required memory
space by using the initial key and block size determined

by the user, but target device should have at least 8
Kbytes block memory. The simulations for all block and
key size combinations validate the functionality of this
flexible core as well . Some of the synthesis results are
presented in Table 2.

Figure 4. Toplevel of Rijndael combined
encryptor-decryptor

These designs are done to give us the initial
information about the performance and area metrics of the
designs generated by using the flexible core developed in
this study. The study sti ll continues for improving the
quality of the core in such a way that reconfigurable
designs wil l be generated for the user-defined area, power
and performance constraints.

Table 2. Synthesis results for Rijndael
combined encryptor-decryptor

Design (Nb,Nk)
Number
of Slices

Number
of LUTs fmax

(4,4) 7046 12163 23.956
(6,6) 15789 27392 16.689

Encoder-Decoder
on Xil inx-Virtex-
XCV300 (8,8) 23638 45065 20.962

(6,6) 19698 37039 47.077
(8,8) 32382 58479 42.278

Encoder-Decoder
on Xil inx-Virtex-
XCV1000 (8,4) 35320 66587 44.395

Acknowledgements

This study is supported through Scientific Research Ø Ù Ú Û Ü Ý Þ ß Ø Ù Ú à Ù á â Ú ã ä Ú å á æ ç è ç é ê ç ë Ü Ù ß ç Þ ì á ê í î ç ï ç ê ð

University Program.
References

[1] http://csrc.nist.gov/CryptoToolkit/aes/rijndael, NIST’s

website

[2] http://www.esat.kuleuven.ac.be/∼rijmen/rijndael, Rijndael

developers’ website.

[3] Federal Information Processing Standards Publication 81,

DES Modes of Operation, NIST, 1980.

[4] http://www.xilinx.com/xlnx/xweb/xil_publications_index.j

sp, Xilinx website.

Rijndael Decryptor

Dec_Data_In
Dec_Data_Out

Enable
InvBSub

Enable
Inv

RShift

Enable
Inv

CMix

Enable
KAdd

EnableInv
KExp

Dec_Key_In

ExpandedKey

Dec_Start

Dec_Done

Rst

Clk

4*NBlock
bytes

4*NKey bytes

4*NBlock
bytes

Inv B
yte

Substituor

Inverse
R

ow
 Shifter

Inv C
olum

n
M

ixer

R
ound K

ey
A

dder

R
egisters

Inverse K
ey

Expander

Decryptor
Controller

ñ ò óô õ ö
÷ ø ù ú û ü ù ú ý ü þ ü ù ÿ

� � � � � � � � � � � � � � � 	 � �
 � � � � � �

�
 � � � � � �
� � � � � � � � � � � � � � � � � � �

� ! " # $ % & ' & () * '

+ , - . / 01 2 3 4 5 6 7 4 8 9: ; < = > ? @ A B C D EF G H I
J K L M N OP Q R S

T U V W X Y
Z [\] [

^ _ Y U

` Y \ a b Uc d e e

f g h i j k l m n o f h p q r s t r u o f h p

v w x y z { | }~ � � � �

v w x � � � ~ � � � �

v w x y z { | }~ � � � �
��������

�� ��
�����������

��������
 ¡¢

£¤¥¦§¨§¤§¡©

ª¡«¥¨¬­®
¯°±²³
´

µ²¶·¸¹¸²¸°º
»¼½¾¿ÀÁÂÃÁÄ

ÅÆÇ ÈÉÊËÌ ÍÎÊÊËÌ

