
Connect your real (sub)system to your model!

Patch SystemC kernel for
real-time execution1

+ dsc_hybrid_channel
+ ~dsc_hybrid_channel
+ update_real
+ update_real_all

hybrid_channel_list
dsc_hybrid_channel

sc_module

dsc_analog_
hybrid_channel

dsc_digital_
hybrid_channel

dsc_serial_
hybrid_channel

dsc_parallel_
hybrid_channel

Hardware-in-the-loop for Hardware/Software Co-design of Real-time Embedded Systems
Doğan Fennibay, Arda Yurdakul, Alper Şen1, 2 2 2

Corporate Technology, Siemens AŞ, Kocaeli
Department of Computer Engineering, Boğaziçi University, İstanbul

1

2

<<sc_module>>
provider <<sc_channel>>

dsc_hybrid_channel

<<sc_module>>
consumer <<sc_channel>>

dsc_hybrid_channel

<<sc_module>>
clock_divider<n>

Domain: Industrial Applications
- Strict hard real-time constraints
- Data exchange rate 10 KHz achievable with
current modeling platforms
- System-level modeling is the new design trend

How does it perform?

Why would I want to do that?
- To avoid modeling complex systems when physical implementations of
such systems are available.
- To obtain a higher modeling accuracy with less modeling effort.
- To test virtual subsystems with a real testbed.

Build a hybrid
channel2 Improve

determinism3

Why?
Virtual subsystems need to behave according to
the real time clock as the real subsystems do.

Why?
Non-determinism in OS reduces
predictability of virtual subsystems and
therefore decreases accuracy of the
whole model.

Build model

Pick a process and execute

Update channel values

Advance simulation clock

INITIALIZE

EVALUATE

UPDATE

TIME ADVANCEel
ig

ib
le

 p
ro

ce
ss

no eligible
process

no eligible
process

de
lta

 c
yc

le

SystemC uses a discrete event simulator
- Simulation clock is advanced in discrete intervals.
- Delta cycles are assumed to consume zero time.

Why?
We have to establish communication between real and virtual subsystems.

<<sc_channel>>
sc_hybrid_eth_out

<<sc_interface>>
sc_fifo_in_if
<eth_frame>

dsc_serial_
hybrid_channel

<<sc_interface>>
sc_fifo_out_if
<eth_frame>

Packet socket driver

<<sc_channel>>
sc_hybrid_eth_in

Ethernet driver

Ethernet HW

- Get the hardware interface for your
communication type (here Ethernet) and
its IO driver.

- Pick a communication class (analog/
digital, parallel/serial) fitting your type of
communication.

Create the hybrid channel

Manage output timing
Decide in which phase to transmit the
output values to real subsystems:

The patch also includes
update_real functionality.

Why?
Different types of communication need different timing of output operations.

Why?
Discrete event simulators advance the
simulation clock according to the next element
in the event queue. If an external event occurs
between the current time and the next internal
event, it will not be processed until the next
internal event.

- Use an asynchronous OS thread to get the external event
which sets a fast-to-check flag for SystemC. (optional)
- Specify a polling rate.
- Poll the external event at the specified rate from a
dedicated SystemC thread and set a SystemC event on
detection.
- Rest of the model can use that event.

- GPOS: More facilities, I/O interfaces
- RTOS: Deterministic behavior.
Proposed solution: GPOS with real-
time improvements
(Linux with RT PREEMPT)

RTOS vs. GPOS

Improvements in OS
- Patch the Linux kernel with RT
PREEMPT.

- Turn off power management
- Disable swap memory

Application settings
- Set application threads to real-time
scheduling and set priorities.
- Extend thread stacks at initialization to
avoid page faults during execution.

Latency hunting
- Eliminate further sources of latency
(corrupt driver, hardware causing
unnecessary interrupts etc.)
- Use ftrace facility of Linux for
diagnosis.

!"#"$

!%#"$

!&"#"$

!&%#"$

!'"#"$

!'%#"$

"#"&$ "#&$ &$ &"$

!"#$%"&'(%")*"+,-'./012'

()*$+,-$.*/0$

(123$+,-$.*/0$

!"!!#$

%"!!#$

&!"!!#$

&%"!!#$

'!"!!#$

'%"!!#$

(!"!!#$

(%"!!#$

)!"!!#$

)%"!!#$

!"!&$!"&$ &$ &!$

!"#$%"&'(%")*"+,-'./012'

*+,$-./0$123$40+56$

*+,$-.789$123$40+56$

+:;$-./0$123$40+56$

+:;$-.789$123$40+56$

!"#$"

%!!"#$"

&!!"#$"

'!!"#$"

(!!"#$"

)!!!"#$"

)%!!"#$"

)&!!"#$"

)'!!"#$"

)(!!"#$"

'&"*+,-$.")!!"

#$"

'&"*+,-$.")!!!"

#$"

/(!"*+,-$.")!!"

#$"

/(!"*+,-$.")!!!"

#$"

)0)&"*+,-$.")!!"

#$"

)0)&"*+,-$."

)!!!"#$"

!"#$%&'()%*&+,--(./&+%"(,0&

123"

145"

467"

I/O
Performance

Simulation
Performance

Determinism

Round-trip time measurement over Ethernet
- Polling time is the main factor.
- Frame size has a linear, mild effect.
- 1 ms communication cycle feasible with low polling period.

Square wave generation: delta cycle proc. time / simulation step
- Average load <15% at 50 microseconds signal change time with a
simple model.
- There is room for higher performance or more complex model, but
jitter is the problem.

Square wave generation: maximum jitter / desired period
- Frequency sustained up to 10 KHz, unstable at 100 KHz
- CPU load has minimal effect, OS scheduler working fine
- Measurements coincide with internal measurements above, main
factor is the simulation performance rather than the I/O performance.

Phase Advantages Disadvantages Example

Evaluate

e.g. write

Signal does not wait Signal value has to remain the same in later

delta cycles. (e.g. sc_fifo)
High number of output operations.

An Ethernet channel

Update

update

Final value from concurrent processes

will be used (e.g. sc_signal)

Processing time of update phase increases.

Concurrent outputs w.r.t. the simulation clock
distributed in real-time.

A digital I/O channel

Time advance

update_real

Fewer total output operations.

Concurrent outputs from delta cycles
gathered together.

Glitches occurring at the end of delta cycles

not transmitted to the real subsystems.

A PWM motor driver

dogan.fennibay@siemens.com, yurdakul@boun.edu.tr, alper.sen@boun.edu.tr

- Interrupt handlers moved to
thread context
- Spinlocks made preemptible
- Priority inheritance implemented
for semaphores and spinlocks
- Linux timers replaced with high
resolution counterparts

- Inherit your SystemC channel from the
appropriate hybrid channel class and
encapsulate the integration to the I/O
driver inside.

State
Event

Handler

Event Queue

delta cycle
processing time

execution
delay

delta cycles time advance

simulation
step n

simulation
step n - 1

simulation
step n + 1

simulation step duration
our contribution:

synchronize simulation
clock to the wall clock

Incorporate external events (inputs)

