
1

Halftoning Soft Cores for Low-Cost Digital Displays

Muhammet Erkoç
Computer Engineering Department

Boğaziçi University
Bebek 34342 ISTANBUL, TURKEY

muhammet.erkoc@boun.edu.tr

Arda Yurdakul

Computer Engineering Department
Boğaziçi University

Bebek 34342 ISTANBUL, TURKEY
yurdakul@boun.edu.tr

Abstract-This paper presents hardware design of a family of
soft cores that improve image quality on low cost digital
displaying devices with limited color palette. The two-
element half-toning method proposed for gray-scale images
[1] has been extended for color images. It also supports real-
time video streams. Experimental results on Xilinx Spartan
3E1800 FPGAs show that frame rate for 512x512 video
streams is more than 150fps.

I. INTRODUCTION
Digital halftoning is a method that has been initially
designed for producing gray scale images by using only
black and white dots [2]. Human eye blends halftone dots
into smooth tones. Hence, different scales of gray can be
obtained by merely changing the rate of black dots over a
white surface or vice versa.

There have been several methods in the literature of half-
toning. Methods incorporating error-diffusion are preferred
due to their low computational complexity and good visual
quality. Floyd Steinberg’s method [3] is the first algorithm
that combines a fairly good overall visual performance with
a few operations. In this method, the grey value of an input
pixel is compared against a palette which has different
levels of gray. The closest value from the palette is selected
as the output. The error between the input and the output
signals is distributed to the 4 neighbors which have not been
processed yet. The distribution coefficients are 7/16, 3/16,
5/16 and 1/16. However, the fixed coefficients cause
visually unpleasant artifacts like worm effects in extreme
gray levels, regular patches in some levels of gray,
discontinuities between structured and unstructured areas.

Several variations have been proposed over Floyd Steinberg
method. Among them, the ones that reduce computations are
the most attractive for low-cost portable devices with
reduced resources. The method proposed by Ostromoukhov
[4] uses only three unprocessed neighbours to distribute
error. By making some assumptions to reduce the artifacts,
it has generated different coefficients for different intensity
levels. The quality of the halftoned images is appreciably
good in the test images. However its major drawback is the
requirement of a memory space for saving different
coefficients for three directions for each gray level. If 8-bit
quantization is used for each tone, then the memory has to
hold becomes 256x3=768 different coefficients.

Ostromoukhov’s assumptions have been improved by
incorporating a human vision filter in [1]. As a result, the
error distribution direction has been reduced to two.
Moreover, only one distribution coefficient for each tone is
sufficient because the sum of two coefficients is unity. As a
result, 256 memory locations is sufficient for an 8-bit
system. Its performance PSNR is worse than
Ostromoukhov’s three-element method. However its visual
performance is quite good and the artifacts are significantly
reduced.

The soft cores presented in this paper process real time color
images in low-cost digital displays by using the method
proposed in [1]. Three different IPs1, intellectual properties,
are implemented for different type of systems. The first one
is for 12-bit color LCDs which are widely used on low-cost
cellular phones. Second core is for 8-bit color LCDs which
are used in GPS devices. The last one is for 4-bit color
LCDs which are used in game console TFT’s. Cores for 12-
bit and 8-bit color LCDs are almost same but the 4-bit color
one is slightly different from the others due to possible
different palette selections. The common feature of all cores
is their being independent from the size of the image. The
cores have been implemented on a low-cost FPGA (Xilinx
Spartan 3E1800) and the experimental results show that the
frame rates are quite good: It is more than 150fps for
512x512, more than 2500fps for 128x128 streams. As a
result, this core can be used for mobile TV applications on
low-cost cellular phones.

The organization of the paper can be described as follows:
The next section gives implementation details of the soft
cores. Section III presents the resource utilization and
performance characteristics of the cores when they are
synthesized on the FPGAs. Section IV presents
experimental results and the last section concludes the work.

II. IMPLEMENTATION
The method proposed in [1] uses serpentine (snake) tracing
as shown in Fig 1. In this method, first line is processed
from left to right after this line next line is processed right to
left in the reverse order. The basic design flow for all the
cores are the same as shown in Fig 2. This flow is explained
in detail for 12-bit color LCDs which are the common color-

1 IP = Intellectual Property

2

limited displaying devices on use. The other cores are
obtained by making small the variations on the core.

FIGURE 1: SERPENTINE (SNAKE) TRACING.

1) CORE FOR 12-BIT COLOR LCDS

The design consists of three different modules. Palette
Module searches the palette to find the best matching color
with the color of the current pixel. Line Memory Module is
used for data manipulations in the memory. Top Source
Module is used for replacing the current input pixel with the
color obtained from the Palette Module and calculating new
update values for upcoming pixels.

a) TOP SOURCE MODULE
This module processes the input pixel when clock is rising.
At the beginning of the each line, perturbation value due to
previous pixel in the same line is reset to 0. An end of line

(EOL) signal is utilized to recognize each line in the image
since we developed our core for different image sizes. EOL
is also used so as to determine the direction of tracing. A
register is used in order to solve this problem. After
processing a line is finished, the content of the register is
complemented to show the change of direction.

Perturbation values for next pixel in the same line, Pi,j+1 in
the Fig. 3, are calculated when the appropriate RGB values
and error values for current pixel are found. They are
calculated by multiplication of 8-bit difference (error) value
and 4-bit coefficient value and rounding this 12-bit result
value to a 8-bit perturbation value. Updated current pixel,
shown as Pi,j in the Fig 3, is also calculated by adding or
subtracting previously calculated perturbation values, due to
previous pixels, shown as Pi,j-1 and Pi-1,j-1 in the Fig3.

Perturbation values for next line Pi+1,j-1 pixel are calculated
by multiplying 8-bit error value and 4-bit two’s complement
of coefficient and rounding this 12-bit result to 8-bit
perturbation value for Pi+1,j-1. This complement and rounding
operations are done because coefficients are between 0 and
1 and their sum is also one. Complement operation provides
producing the other coefficient 1-c. Rounding provides a
coefficient between 0 and 1. After the calculation of
perturbation values, they are written to the Line Memory

There are three combinational components in the top
module. One of them is used for sending 24-bit updated
current pixel and receiving the output RGB values from 12-
bit color set, corresponding coefficients and 24-bit error
value. The other two modules are for two memories. The
first one is for reading current perturbation values from
previous line, the other one is for writing next-line

Backward Tracing
Memory

Read a
Pixel

Forward Tracing
Memory

Search for closest RGB value to current pixel
signal and send it and its corresponding
perturbation coefficients back to the Top

Source

Output
Pixel

Update pixel with perturbation values from pixel
buffer and line memory

Pixel Buffer

Read perturbation values from
current memory

Write perturbation values to next
state memory

Calculate perturbation value for next pixel and next
line update pixel then send them buffer and

memory respectively

Output found RGB

TOP SOURCE MODULE PALETTE MODULE

LINE MEMORY MODULE

FIGURE 2: DESIGN FLOW FOR ALL THREE CORES.

3

FIGURE 3: UPDATING NEIGHBORING PIXELS IN THREE SUBSEQUENT LINES.

perturbation values. Writing or reading a location is decided
according to the position register.

b) PALETTE MODULE
Palette Module finds closest color value from the palette for
the current input pixel. In the 12-bit color palette, four bits
are used for each color component independently. This
means that for each color component, our palette has 16
entries. As a result, the depth of the total color palette is
16x3=48. Consequently, we used a comparison based search
algorithm for R, G and B values independently. Thus the
closest R, G and B values selected from the palette produces
the color closest to the pixel. Though the IP is synchronized
on the rising edges of the system clock, the color search on
the palette is carried out on the falling-edges of the clock so
as to get rid of hazards. Concurrently, perturbation
coefficients are extracted. We need absolute error values
and signs of them because in the case of negative error
value, meaning subtraction from input pixel, we should
know whether subtraction or addition is required. Also
corrected RGB values, which will be sent to the palette, are
limited within the interval (0,255). This restriction also
prevents overflows.

c) LINE MEMORY MODULE
Memory module is created to write 27-bit, 24-bit for
correction values and 3-bit for signs of this correction
values, into RAM or read 27-bit from RAM. Read or write
option is determined by a cn, stands for current next, signal
that arrange which line you are currently processing and
which memory should be in write or read mode currently.
Fig.4 shows how line memory module works.
“RAMB16_S9_S18” type Ram was used in the design
which is capable of processing 512 pixels in one line but it
can be easily increased or decreased at design time. RAM
memory allocation is done as follows: G and B perturbation
values are written into the first 16-bit of current location via
B port of RAM, R perturbation value is written next to the

them via A port and their sign bits are written into their
corresponding parity bits.

FIGURE 4: BASIC PROCESS OF LINE MEMORY.

2) 8-BIT COLOR

This design is almost the same as the design which was
described above by 12-bit color design. The only difference
between them is a smaller comparison unit and a palette,
because in the 8-bit color palette 3, 3, 2-bit is used for
representing R, G, B respectively. As a result, the depth of
the total palette is 8+8+4=20.

3) 4-BIT COLOR

This design is slightly different from the other two because
design cannot be done by finding RGB values
independently. In the 4-bit color palette there can be
different choices for better cover of all colors. Our 4-bit
color representation can be seen on Table I. In this case,
minimum mean-squared-error has to be calculated for each
comparison. However, in the 4-bit palette 16 comparisons
are enough for finding closest RGB value from palette. The
same amount of comparison is done for just finding closest
RGB color in the palette in the 12-bit color design.

TABLE I. 4-BIT COLOR PALETTE

COLORS R G B RH GH BH
0 0 0 0 0 0
0 0 170 0 0 AA
0 170 0 0 AA 0
0 170 170 0 AA AA

170 0 0 AA 0 0
170 0 170 AA 0 AA
170 0 0 AA 0 0
170 170 170 AA AA AA
85 85 85 55 55 55
85 85 255 55 55 FF
85 255 85 55 FF 55
85 255 255 55 FF FF
255 85 85 FF 55 55
255 85 255 FF 55 FF
255 255 85 FF FF 55
255 255 255 FF FF FF

4

III. DESIGN ANALYSIS
4-bit, 8-bit and 12-bit color designs are implemented on
Xilinx Spartan-3A 1800 DSP FPGA board. Some macro and
speed design statistics are given in the Table II Memory
size of design is not mentioned here because memory size is
depending on number of pixels used in the LCD. We
simulated our placed and routed design on ModelSimSE.
We also processed some images of different types and
results are shown in the Table III. These images have
100x100 resolution.

Speed statistics shows that our design allows a high rate of
video streaming (> 150 fps for 512x512) at a low system

clock frequency (<50MHz). Thus, halftoning algorithm is
not a limit for video streaming.

IV. EXPERIMENTS

S-CIELab differences of 12-bit images from 24-bit original
images are calculated by device independent human vision
perception coefficients. Results show that rms differences of
halftoned images are generally less than that of non-
halftoned 12-bit images. Specifically, 9 of 13 halftoned
images have less error than non-halftoned ones. Even 4 of
13 have bigger error but their error is diffused between
pixels. However, in the 12-bit

TABLE II. MACRO AND SPEED STATSTICS OF 3 DIFFERENT DESIGNS

Design Macro Statistics Speed Statistics

Slice
Percentag

e

Number
of

Multiplier
s

Number
of Adders

and
Subtractor

s

Number
of

Counters

Number
of

Registers

Number
of

Comparat
ors

Minimum
Period

Maximum
Frequency

Minimum
Input Arrival
Time Before

Clock

Maximum
Output

Required
Time After

Clock

Maximum
FPS for
128x128

Resolution
Video

Streaming

Maximum
FPS for
512x512

Resolution
Video

Streaming
4-bit
color

%3 9 92 1 25 4 22.725 ns 43.985
MHz

12.057 ns 5.248 ns 2685 167

8-bit
color

%4 6 85 1 24 31 20.679 ns 48.359
MHz

13.512 ns 5.390 ns 2951 184

12-bit
color

%6 6 113 1 24 87 24.016 ns 41.638
MHz

13.134 ns 5.271 ns 2541 158,83

TABLE III. HALFTONING EXAMPLES

Original Image Halftoned 12-
bit Image

Non-halftoned
12-bit Image

Halftoned 8-bit
Image

Non-halftoned
8-bit Image

Halftoned 4-bit
Image

Non-halftoned
4-bit Image

5

non-halftoned images some pixels have very high error.
Hence halftoned images seem smoother even if they have
grater S-CIELab error.

In our psychological experiments, we randomly selected 20
volunteers from the university population and asked their
opinions on five different images (see Table V) of totally
different scenes, with the resolution of 512x512, 473x662,
506x388, 512x512 and 100x100. We showed three versions
of these images, respectively original, halftoned and regular
12-bit color image, to our volunteers, then allowed them to

see previous images again and look anyway they want
within the daylight environment via 15 inch regular
computer LCD. During experiment people are asked to
answer two questions. “Which 12-bit color is better?” and
“How would you grade halftoned image as a choice of
‘perfect (=5)’, ‘good (=4)’, ‘better than the regular 12-bit
(=3)’, ‘no difference (=2)’ and ‘worse than the regular one
(=1)’ ”. We used regular 24-bit color LCD instead of aimed
12-bit color LCD in order to avoid from 12-bit color
devices’ own processing algorithm.

TABLE IV. RESULTS OF PSYCHOPHYSICAL EXPERIMENT

Image Halftoning

Preference
Number of Grades Over 5 Average Grade Over 5 Preference of

Halftoning 1 2 3 4 5
Lena 17 3 2 7 6 2 3,1 85%

Iceberg 20 0 1 3 6 10 4,25 100%
Airplane 19 1 4 6 7 2 3,25 95%

Bird 18 2 5 6 4 3 3,05 90%
Manga 20 0 2 4 8 6 3,9 100%

Average 18,8 1,2 2,8 5,2 6,2 4,6 3,51 94%

FIGURE 5: S-CIELAB ERROR OF 12-BIT HALFTONED AND NON-HALFTONED IMAGES

The statistics are shown in the Table IV. These results show
us people generally prefer halftoned image to non-halftoned
one in 12-bit color case. The average grade our halftoned
images as 3,51 over 5. These statistics shows that halftoned
images are regarded better than non-halftoned 12-bit
images.

V. CONCLUSION
In this paper, we designed soft cores for low-cost digital
displaying devices by using an algorithm with low
computational complexity. We have carried out both

psychological experiments and scientific calculations to
show that the algorithm gives good results in color images.
We have also demonstrated that our core can be used in
processing real time video applications.

6

TABLE V. IMAGES OF THE PSYCHOPHYSICAL EXPERIMENT

Original
Resolutio

n
Original Image Marked Section 12-bit Color

Halftoned Image Marked Section 12-bit Color
Image Marked Section

Lenna
512x512

Iceberg
473x662

Airplane
512x512

Bird
506x388

Manga
100x100

 REFERENCES

[1] J.M. Guo and J.H Chen, “High Efficiency Error Diffusion with Two-
Element Error Kernel,” Proc. of IEEE Int. Conf. on Image Proc., pp.
1501-1504, 8-11 Oct. 2006.

[2] A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall,
1989.

[3] R.W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey
scale. Proc. Soc. Inf. Display, 17:75–77, 1976.

[4] V. Ostromoukhov, “A simple and efficient error-diffusion algorithm.
Computer Graphics,” Proc. of SIGGRAPH 2001, 567-572, 2001.

[5] H. Le Borgne, N. Guyader, A. Gudrin-Dugui and J. Hirault,
“Clasification of Images : Ica Filters vs Human Perception,” Proc. of
IEEE Int. Symp. on Signal Proc. and Its App., vol. 2, pp. 251-254, 1-4
July 2003.

