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Abstract-This paper presents hardware design of a family of 
soft cores that improve image quality on low cost digital 
displaying devices with limited color palette. The two-
element half-toning method proposed for gray-scale images 
[1] has been extended for color images. It also supports real-
time video streams. Experimental results on Xilinx Spartan 
3E1800 FPGAs show that frame rate for 512x512 video 
streams is more than 150fps. 

I. INTRODUCTION 
Digital halftoning is a method that has been initially 
designed for producing gray scale images by using only 
black and white dots [2]. Human eye blends halftone dots 
into smooth tones. Hence, different scales of gray can be 
obtained by merely changing the rate of black dots over a 
white surface or vice versa.  
 
There have been several methods in the literature of half-
toning. Methods incorporating error-diffusion are preferred 
due to their low computational complexity and good visual 
quality. Floyd Steinberg’s method [3] is the first algorithm 
that combines a fairly good overall visual performance with 
a few operations. In this method, the grey value of an input 
pixel is compared against a palette which has different 
levels of gray. The closest value from the palette is selected 
as the output. The error between the input and the output 
signals is distributed to the 4 neighbors which have not been 
processed yet. The distribution coefficients are 7/16, 3/16, 
5/16 and 1/16. However, the fixed coefficients cause 
visually unpleasant artifacts like worm effects in extreme 
gray levels, regular patches in some levels of gray, 
discontinuities between structured and unstructured areas. 
 
Several variations have been proposed over Floyd Steinberg 
method. Among them, the ones that reduce computations are 
the most attractive for low-cost portable devices with 
reduced resources. The method proposed by Ostromoukhov 
[4] uses only three unprocessed neighbours to distribute 
error. By making some assumptions to reduce the artifacts, 
it has generated different coefficients for different intensity 
levels. The quality of the halftoned images is appreciably 
good in the test images. However its major drawback is the 
requirement of a memory space for saving different 
coefficients for three directions for each gray level. If 8-bit 
quantization is used for each tone, then the memory has to 
hold becomes 256x3=768 different coefficients. 

Ostromoukhov’s assumptions have been improved by 
incorporating a human vision filter in [1]. As a result, the 
error distribution direction has been reduced to two. 
Moreover, only one distribution coefficient for each tone is 
sufficient because the sum of two coefficients is unity. As a 
result, 256 memory locations is sufficient for an 8-bit 
system. Its performance PSNR is worse than 
Ostromoukhov’s three-element method. However its visual 
performance is quite good and the artifacts are significantly 
reduced. 
 
The soft cores presented in this paper process real time color 
images in low-cost digital displays by using the method 
proposed in [1]. Three different IPs1, intellectual properties, 
are implemented for different type of systems. The first one 
is for 12-bit color LCDs which are widely used on low-cost 
cellular phones. Second core is for 8-bit color LCDs which 
are used in GPS devices. The last one is for 4-bit color 
LCDs which are used in game console TFT’s. Cores for 12-
bit and 8-bit color LCDs are almost same but the 4-bit color 
one is slightly different from the others due to possible 
different palette selections. The common feature of all cores 
is their being independent from the size of the image. The 
cores have been implemented on a low-cost FPGA (Xilinx 
Spartan 3E1800) and the experimental results show that the 
frame rates are quite good: It is more than 150fps for 
512x512, more than 2500fps for 128x128 streams. As a 
result, this core can be used for mobile TV applications on 
low-cost cellular phones. 
 
The organization of the paper can be described as follows: 
The next section gives implementation details of the soft 
cores. Section III presents the resource utilization and 
performance characteristics of the cores when they are 
synthesized on the FPGAs. Section IV presents 
experimental results and the last section concludes the work. 

II. IMPLEMENTATION 
The method proposed in [1] uses serpentine (snake) tracing 
as shown in Fig 1. In this method, first line is processed 
from left to right after this line next line is processed right to 
left in the reverse order. The basic design flow for all the 
cores are the same as shown in Fig 2. This flow is explained 
in detail for 12-bit color LCDs which are the common color-

                                                            
1 IP = Intellectual Property 
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limited displaying devices on use. The other cores are 
obtained by making small the variations on the core. 
 

 

FIGURE 1: SERPENTINE (SNAKE) TRACING.  

 
1) CORE FOR 12-BIT COLOR LCDS 

 
The design consists of three different modules. Palette 
Module searches the palette to find the best matching color 
with the color of the current pixel. Line Memory Module is 
used for data manipulations in the memory. Top Source 
Module is used for replacing the current input pixel with the 
color obtained from the Palette Module and calculating new 
update values for upcoming pixels.  
 

a) TOP SOURCE MODULE 
This module processes the input pixel when clock is rising. 
At the beginning of the each line, perturbation value due to 
previous pixel in the same line is reset to 0. An end of line 

(EOL) signal is utilized to recognize each line in the image 
since we developed our core for different image sizes. EOL 
is also used so as to determine the direction of tracing. A 
register is used in order to solve this problem. After 
processing a line is finished, the content of the register is 
complemented to show the change of direction. 
 
Perturbation values for next pixel in the same line, Pi,j+1 in 
the Fig. 3, are calculated when the appropriate RGB values 
and error values for current pixel are found. They are 
calculated by multiplication of 8-bit difference (error) value 
and 4-bit coefficient value and rounding this 12-bit result 
value to a 8-bit perturbation value. Updated current pixel, 
shown as Pi,j in the Fig 3, is also calculated by adding or 
subtracting previously calculated perturbation values, due to 
previous pixels, shown as Pi,j-1 and Pi-1,j-1  in the Fig3. 
 
Perturbation values for next line Pi+1,j-1 pixel  are calculated 
by multiplying 8-bit error value and 4-bit two’s complement 
of coefficient and rounding this 12-bit result to 8-bit 
perturbation value for Pi+1,j-1. This complement and rounding 
operations are done because coefficients are between 0 and 
1 and their sum is also one. Complement operation provides 
producing the other coefficient 1-c. Rounding provides a 
coefficient between 0 and 1. After the calculation of 
perturbation values, they are written to the Line Memory 
 
There are three combinational components in the top 
module. One of them is used for sending 24-bit updated 
current pixel and receiving the output RGB values from 12-
bit color set, corresponding coefficients and 24-bit error 
value. The other two modules are for two memories. The 
first one is for reading current perturbation values from 
previous line, the other one is for writing next-line 
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FIGURE 2: DESIGN FLOW FOR ALL THREE CORES.  
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FIGURE 3: UPDATING NEIGHBORING PIXELS IN THREE SUBSEQUENT LINES. 

perturbation values. Writing or reading a location is decided 
according to the position register. 

b) PALETTE MODULE 
Palette Module finds closest color value from the palette for 
the current input pixel. In the 12-bit color palette, four bits 
are used for each color component independently. This 
means that for each color component, our palette has 16 
entries. As a result, the depth of the total color palette is 
16x3=48. Consequently, we used a comparison based search 
algorithm for R, G and B values independently. Thus the 
closest R, G and B values selected from the palette produces 
the color closest to the pixel. Though the IP is synchronized 
on the rising edges of the system clock, the color search on 
the palette is carried out on the falling-edges of the clock so 
as to get rid of hazards. Concurrently, perturbation 
coefficients are extracted. We need absolute error values 
and signs of them because in the case of negative error 
value, meaning subtraction from input pixel, we should 
know whether subtraction or addition is required. Also 
corrected RGB values, which will be sent to the palette, are 
limited within the interval (0,255). This restriction also 
prevents overflows. 
 

c) LINE MEMORY MODULE 
Memory module is created to write 27-bit, 24-bit for 
correction values and 3-bit for signs of this correction 
values, into RAM or read 27-bit from RAM. Read or write 
option is determined by a cn, stands for current next, signal 
that arrange which line you are currently processing and 
which memory should be in write or read mode currently. 
Fig.4 shows how line memory module works. 
“RAMB16_S9_S18” type Ram was used in the design 
which is capable of processing 512 pixels in one line but it 
can be easily increased or decreased at design time. RAM 
memory allocation is done as follows: G and B perturbation 
values are written into the first 16-bit of current location via 
B port of RAM, R perturbation value is written next to the 

them via A port and their sign bits are written into their 
corresponding parity bits. 

 

FIGURE 4: BASIC PROCESS OF LINE MEMORY. 

 
2) 8-BIT COLOR  

 
This design is almost the same as the design which was 
described above by 12-bit color design. The only difference 
between them is a smaller comparison unit and a palette, 
because in the 8-bit color palette 3, 3, 2-bit is used for 
representing R, G, B respectively. As a result, the depth of 
the total palette is 8+8+4=20. 
 

3) 4-BIT COLOR  
 
This design is slightly different from the other two because 
design cannot be done by finding RGB values 
independently. In the 4-bit color palette there can be 
different choices for better cover of all colors. Our 4-bit 
color representation can be seen on Table I. In this case, 
minimum mean-squared-error has to be calculated for each 
comparison. However, in the 4-bit palette 16 comparisons 
are enough for finding closest RGB value from palette. The 
same amount of comparison is done for just finding closest 
RGB color in the palette in the 12-bit color design. 

TABLE I.  4-BIT COLOR PALETTE  

COLORS R G B RH GH BH 
0 0 0 0 0 0 
0 0 170 0 0 AA 
0 170 0 0 AA 0 
0 170 170 0 AA AA 

170 0 0 AA 0 0 
170 0 170 AA 0 AA 
170 0 0 AA 0 0 
170 170 170 AA AA AA 
85 85 85 55 55 55
85 85 255 55 55 FF 
85 255 85 55 FF 55
85 255 255 55 FF FF 
255 85 85 FF 55 55 
255 85 255 FF 55 FF 
255 255 85 FF FF 55 
255 255 255 FF FF FF 
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III. DESIGN ANALYSIS 
4-bit, 8-bit and 12-bit color designs are implemented on 
Xilinx Spartan-3A 1800 DSP FPGA board. Some macro and 
speed design statistics are given in the Table II  Memory 
size of design is not mentioned here because memory size is 
depending on number of pixels used in the LCD. We 
simulated our placed and routed design on ModelSimSE. 
We also processed some images of different types and 
results are shown in the Table III. These images have 
100x100 resolution. 
 
Speed statistics shows that our design allows a high rate of 
video streaming (> 150 fps for 512x512) at a low system 

clock frequency (<50MHz). Thus, halftoning algorithm is 
not a limit for video streaming. 

IV. EXPERIMENTS  
 
S-CIELab differences of 12-bit images from 24-bit original 
images are calculated by device independent human vision 
perception coefficients. Results show that rms differences of 
halftoned images are generally less than that of non-
halftoned 12-bit images. Specifically, 9 of 13 halftoned 
images have less error than non-halftoned ones. Even 4 of 
13 have bigger error but their error is diffused between 
pixels. However, in the 12-bit  
 

 

TABLE II.  MACRO AND SPEED STATSTICS OF 3 DIFFERENT DESIGNS 

Design Macro Statistics Speed Statistics 

Slice 
Percentag

e 

Number 
of 

Multiplier
s 

Number 
of Adders 

and 
Subtractor

s 

Number 
of 

Counters 

Number 
of 

Registers 

Number 
of 

Comparat
ors 

Minimum 
Period 

Maximum 
Frequency 

Minimum 
Input Arrival 
Time Before 

Clock 

Maximum 
Output 

Required 
Time After 

Clock 

Maximum 
FPS for 
128x128 

Resolution 
Video 

Streaming 

Maximum 
FPS for 
512x512 

Resolution 
Video 

Streaming 
4-bit 
color 

%3 9 92 1 25 4 22.725 ns 43.985 
MHz 

12.057 ns 5.248 ns 2685 167 

8-bit 
color 

%4 6 85 1 24 31 20.679 ns 48.359 
MHz 

13.512 ns 5.390 ns 2951 184 

12-bit 
color 

%6 6 113 1 24 87 24.016 ns 41.638 
MHz 

13.134 ns 5.271 ns 2541 158,83 

 
TABLE III.  HALFTONING EXAMPLES 

Original Image Halftoned 12-
bit Image 

Non-halftoned 
12-bit Image 

Halftoned 8-bit 
Image 

Non-halftoned 
8-bit Image 

Halftoned 4-bit 
Image 

Non-halftoned 
4-bit Image 
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non-halftoned images some pixels have very high error. 
Hence halftoned images seem smoother even if they have 
grater S-CIELab error. 
 
In our psychological experiments, we randomly selected 20 
volunteers from the university population and asked their 
opinions on five different images (see Table V) of totally 
different scenes, with the resolution of 512x512, 473x662, 
506x388, 512x512 and 100x100. We showed three versions 
of these images, respectively original, halftoned and regular 
12-bit color image, to our volunteers, then allowed them to 

see previous images again and look anyway they want 
within the daylight environment via 15 inch regular 
computer LCD. During experiment people are asked to 
answer two questions. “Which 12-bit color is better?” and 
“How would you grade halftoned image as a choice of 
‘perfect (=5)’, ‘good (=4)’, ‘better than the regular 12-bit 
(=3)’, ‘no difference (=2)’ and ‘worse than the regular one 
(=1)’ ”. We used regular 24-bit color LCD instead of aimed 
12-bit color LCD in order to avoid from 12-bit color 
devices’ own processing algorithm.  

TABLE IV.  RESULTS OF PSYCHOPHYSICAL EXPERIMENT 

 
Image Halftoning 

Preference 
Number of Grades Over 5 Average Grade Over 5 Preference of 

Halftoning 1 2 3 4 5 
Lena 17 3 2 7 6 2 3,1 85%

Iceberg 20 0 1 3 6 10 4,25 100%
Airplane 19 1 4 6 7 2 3,25 95% 

Bird 18 2 5 6 4 3 3,05 90% 
Manga 20 0 2 4 8 6 3,9 100% 

Average 18,8 1,2 2,8 5,2 6,2 4,6 3,51 94% 

 

  

FIGURE 5: S-CIELAB ERROR OF 12-BIT HALFTONED AND NON-HALFTONED IMAGES  

The statistics are shown in the Table IV. These results show 
us people generally prefer halftoned image to non-halftoned 
one in 12-bit color case. The average grade our halftoned 
images as 3,51 over 5. These statistics shows that halftoned 
images are regarded better than non-halftoned 12-bit 
images. 

V. CONCLUSION  
In this paper, we designed soft cores for low-cost digital 
displaying devices by using an algorithm with low 
computational complexity. We have carried out both 

psychological experiments and scientific calculations to 
show that the algorithm gives good results in color images. 
We have also demonstrated that our core can be used in 
processing real time video applications. 
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TABLE V.  IMAGES OF THE PSYCHOPHYSICAL EXPERIMENT 

Original 
Resolutio

n 
Original Image Marked Section 12-bit Color 

Halftoned Image Marked Section 12-bit Color 
Image Marked Section 

Lenna 
512x512 

   

Iceberg 
473x662 

 
 

 

Airplane 
512x512 

   

Bird 
506x388 

 
 

 

Manga 
100x100 
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