A Self-Reconfigurable Platform for General Purpose
Image Processing Systems on Low-Cost Spartan-6
FPGASs

Salih Bayar *, Arda Yurdakul
Computer Engineering
Bogazici University
P.K. 2 TR-34342 Bebek,
Istanbul, TURKEY
Phone: +90 212 359 7780
Fax: +90 212 287 2461
Email: salih.bayar@boun.edu.tr *
Email: yurdakul@boun.edu.tr f

Abstract—There is still no partial reconfiguration tool support
on low-cost Field Programmable Gate Arrays (FPGAs) such as
old-fashioned Spartan-3 and state-of-the-art Spartan-6 FPGA
families by Xilinx. This forces the designers and engineers, who
are using the partial reconfiguration capability of FPGAs, to use
expensive families such as Virtex-4, Virtex-5 and Virtex-6 which
are officially supported by partial reconfiguration (PR) software.
Moreover, Xilinx still does not offer a portable, dedicated self-
reconfiguration engine for all of the FPGAs. Self-reconfiguration
is achieved with general-purpose processors such as MicroBlaze
and PowerPC which are too overqualified for this purpose. In
this study, we propose a new self-reconfiguration mechanism for
Spartan-6 FPGAs. This mechanism can be used to implement
large and complex designs on small FPGAs as chip area can
be dramatically reduced by exploiting the dynamic partial
reconfiguration feature for on-demand functionality loading and
maximal utilization of the hardware. This approach is highly
attractive for designing low-cost compute-intensive applications
such as high performance image processing systems. For Spartan-
6 FPGAs, we have developed hard-macros and exploited the self-
reconfiguration engine, compressed Parallel Configuration Access
Port (cPCAP) [1], that we designed for Spartan-3. The modified
cPCAP core with block RAM controller, bitstream decompressor
unit and Internal Configuration Access Port (ICAP) Finite State
Machine (FSM) occupies only about 82 of 6,822 slices (1.2% of
whole device) on a Spartan-XC6SLX45 FPGA and it achieves the
maximum theoretical reconfiguration speed of 200MB/s (ICAP,
16-bit at 100MHz) proposed by Xilinx. We have also implemented
a Reconfigurable Processing Element (RPE) whose arithmetic
unit can be reconfigured on-the-fly. Multiple RPEs can be utilized
to design a General Purpose Image Processing System (GPIPS)
that can implement a number of different algorithms during
runtime. As an illustrative example, we programmed the GPIPS
on Spartan-6 for switching between two applications on-demand
such as two-dimensional filtering and block-matching.

I. INTRODUCTION

Due to recent enhancements in embedded applications,
designs are getting larger and more complex. The larger
the system, the larger the chip is required to fit the design
into the target device by designers. Hence, the large digital

Mehmet Tukel

Dept. of Electronics and Communications Engineering

Istanbul Technical University
Maslak,

Istanbul, TURKEY
Phone: +90 212 285 67 32
Fax: +90 212 285 35 65
Email: tukel @itu.edu.tr

hardware systems can be partitioned into smaller modules
so that each module runs on the target device at different
time intervals by utilizing the same hardware resources. Thus,
a very large digital hardware system can fit into a smaller
chip. Furthermore, the power dissipation of digital systems
plays an important role especially in large designs. Effective
energy saving methods have to be incorporated in modern
Integrated Circuit (IC) designs nowadays. Moreover, when
image processing is concerned, high performance and power
consumption are major issues especially in portable devices.

By exploiting the partial run-time reconfiguration of an
FPGA, a large design can fit into a smaller device. As
the hardware can be shared between various applications,
the resource utilization is increased. Even though the power
dissipation during reconfiguration cannot be neglected, the
total power consumption of the system can be decreased.
It has already been shown that the system power or en-
ergy can be decreased by exploiting run-time reconfiguration
capability of FPGAs with using power reduction methods
such as clock scaling, clock gating, reconfigurable hardware
deactivation and removal, etc. [2][3][4][5] Another advantage
of partial reconfiguration is that a reconfigurable system can
be updated locally or remotely at any time, so the hardware
servicing can be provided continuously. In order to realize
partial reconfiguration, reconfigurable architectures have to
be preferred to conventional design architectures. Especially,
partial reconfiguration of Field Programmable Gate Arrays
(FPGA) has an important role in such design techniques. There
have been different works to achieve partial reconfiguration
of Xilinx FPGAs. What seems to be disregarded thus far
is the ability of self-reconfiguration of low cost FPGAs and
the ability of self-reconfiguration on processor independent
environments. So far, most of the works related to self-
reconfiguration on Xilinx FPGAs are implemented with a
custom core such as MicroBlaze, PowerPC, etc. However, in

this study, we have implemented a processor-independent self-
reconfiguration platform.

To achieve a safe communication between the fixed area
and the reconfigurable area, there should be routing resources,
which are not affected during reconfiguration process. To do
this, completely fixed and static hard bus macros are preferred.

This study is an extended version of our cPCAP [1] core
which controls the partial reconfiguration flow through Se-
lectMAP/ICAP port and supplies configuration clock for re-
configuration. The adapted cPCAP core with block RAM con-
troller, bitstream decompressor unit and ICAP FSM manages
the self-reconfiguration process through ICAP interface on a
Spartan-6 FPGA. cPCAP uses block RAMs (BRAMs) to store
partial configuration bitstreams. BRAMSs provide on-chip fast
memory in FPGAs. Our custom core maximizes the utilization
of BRAMs by storing compressed partial bitstreams (PBs)
at initial configuration time and decompressing them during
self reconfiguration. On-chip BRAM can be used as a cache
memory; storing only PB(s) for the next partial configuration
and removing past PB(s) from BRAM. By utilizing the cache
approach, the on-chip memory storage cost can be decreased
to one Nth, where N is the number of PBs used by the system.
Because of being written entirely in VHDL, the cPCAP core
is highly portable and can also be used for all other Xilinx
FPGA architectures. Thus it is not necessary to use an external
intelligent agent to control the partial reconfiguration flow. The
details of design flow, generation of PBs, the way we store the
PBs can be found in [1][6].

High performance image processing applications can be
implemented on different platforms such as DSPs, FPGAs,
analog and digital ASICs. An analog solution is the Cellular
Neural Network-Universal Machine (CNN-UM) [7]. But it
is an expensive system and cannot fully utilize the word
length offered by todays high resolution digital cameras. The
digital version of the CNN is known as Discrete Time CNN
(DTCNN). It is cheaper and more flexible than the analog
one due to its modular structure. The most common image
processing application on a DTCNN is the 2-D filtering
with a threshold [8]. An implementation of DTCNN on a
Virtex-II FPGA can process more than 200 Megapixels per
second [9]. By modifying the coefficients (templates), it is
possible to carry out hole-filling, dilation, erosion, etc. on
the same architecture [10] [11]. However, it is not proved
that all image processing applications can be implemented
by DTCNNSs. Therefore we cannot talk about a GPIPS that
consists of only DTCNNs. However, we can combine the
configurability of the FPGA with the modular structure of
the DTCNN to provide a high resolution GPIPS. Since the
minimum partial reconfiguration time for FPGAs is still in
the order of microseconds, it is obvious that switching from
one application to another application will take milliseconds.
Therefore, the DTCNN-based modular GPIPS architecture
proposed in this paper will provide high performance during
runtime of each application, but the switching time from one
application to another application will be slow due to todays
slow reconfiguration times.

The rest of the paper is organized as follows: In section
II, studies about self-reconfigurable platforms and image pro-
cessing systems on reconfigurable architectures are addressed.
Section III gives brief information about Spartan-6 and
it’s configuration architecture. In section IV, the proposed
processor-independent self-reconfiguration platform for low-
cost Spartan-6 FPGA is mentioned. Section V shows some
tiny self-reconfigurable examples. Section VI demonstrates an
implementation of an image processing application on our self-
reconfiguration platform. Finally, in section VII, we stress the
fact that the proposed GPIPS platform has not been completed
yet, but the results give an idea about how such a system can
be implemented with partial reconfiguration.

II. RELATED WORKS

1) Related works on partial- (self-) reconfigurable plat-
forms: In [12], Koch et al. have demonstrated partial reconfig-
urable systems on Spartan-6 FPGAs. As the reconfiguration in-
terface, they have used the ICAP with 16-bit Mode at I00MHz.
To control the reconfiguration flow, they have used a host PC
and the UART interface to access the ICAP. Since such a
system does not reconfigure itself without any external engine,
it is not in the class of self-reconfigurable systems. To put it
clearly, a self reconfigurable system should have an internal
agent/ processor/ FSM which controls the configuration flow
of the FPGA device. When the reconfiguration process control
engine is an external agent, then the whole system is not in the
class of self-reconfigurable system but in the reconfigurable
system. They have also mentioned maximum attainable re-
configuration speed (200MB/s) on Spartan-6 FPGAs, but not
about the reconfiguration speed in their own system.

In [13], a self-reconfigurable system on a Virtex-4 FPGA
is proposed. The preferred reconfiguration engine is the Mi-
croBlaze soft core and the configuration interface is ICAP. The
authors did not mention about the ICAP interface bit width that
they have preferred in their study. Partial reconfiguration times
that they obtained vary from 108ms to 460ms while partial
bitstream (PB) sizes are in the range of 58KB to 244KB.
Therefore the reconfiguration speed is about 0.54MB/s.

In [14] Hiibner et al. proposed a fast dynamic and partial
reconfiguration data path for Virtex-4 FPGAs. In their study,
they have compared three different ICAP approaches (FSL-
ICAP, XPS-ICAP, and pure ICAP) on the soft-core MicroBlaze
and the hard core PowerPC. The maximum speed they have
attained is 295.4MB/s with ICAP (32-bit, 100MHz) on Pow-
erPC. For the PB repository, they have chosen external DDR2-
SDRAM memory. This memory has different bus connections
such as XCL bus and PLB bus over MPMC controller to the
MicroBlaze and PowerPC respectively. The different speed
values between these ICAP designs come from the bus type
and the way they connect the bus to the DDR2-SDRAM
memory.

Francois et al. have presented a fast ICAP controller on
a Virtex-5 FPGA in [15]. In their study, they have reached
the ICAP upper bound throughput of 800MB/s by overclock-
ing the ICAP to 200MHz (32-bit mode). Actually there is

no specific data-sheet value for the ICAP maximum clock
frequency, but it is clear that this value should never exceed
the maximum clock frequency for any external configuration
port (100MHz for serial/SelectMAP interface of Virtex-4 and
Virtex-5 devices). Since exceeding this values may result in
incorrect operation, we do not recommend overclocking the
ICAP module. In addition to this, they have compared to
two different ICAP approaches, xps_hwicap and xps_hwicap
with direct memory access (DMA) at 100MHz. The maximum
achieved ICAP bandwidth for two different approaches are
128MB/s and 174MB/s respectively.

In [16], Ming Liu et al. proposed to use DMA, Master
burst (MST) and a dedicated Block RAM cache in order to
reduce the reconfiguration time on a Virtex-4 FPGA. They
made a comparison among different ICAP (32-bit, 100MHz)
designs such as opb_hwicap, xps_hwicap with their proposed
architectures dma_hwicap, mst_hwicap and bram_hwicap.
As a maximum reconfiguration speed among these approaches,
they have attained 371.4MB/s for bram_hwzicap.

All above mentioned designs either suffer from speed or do
not offer a processor-independent self-reconfiguration platform
for the low-cost state-of-the art FPGAs. In addition to these,
overclocking of ICAP module of an FPGA is not recom-
mended by the device vendor. To run safely, the speed limit
of ICAP is 100MHz. Therefore, the maximum throughput that
can be achieved is 400MB/s (32-bit mode, not supported in
Spartan-6) theoretically. Since Spartan-6 supports reconfigu-
ration through ICAP only in 16-bit interface, the maximum
theoretical reconfiguration speed through ICAP at 100MHz
is 200MB/s for these devices. In our case, we propose a
processor-independent self-reconfiguration platform for low-
cost Spartan-6 FPGA with a safe throughput of 200MB/s
(Spartan-XC6SLX45 ICAP, 16-bit mode, 100MHz).

2) Previous Studies on general purpose image processing
systems.: Todays high performance image processing systems
utilize multiple cores. In [17] a parallel architecture which
has capability of reconfiguration in runtime is proposed. The
architecture RAMPSOC is built on a Network-on-Chip (NoC)
called ”Star Wheels”. To manage the hardware resources at
runtime, to schedule and allocate the tasks to the individual
PEs, a special purpose OS, is integrated on one of the
processors. This OS is called CAP-OS and is responsible for
running ICAP. It also has dedicated libraries for some image
processing algorithms and communication, etc. In the user
end, algorithm or code is written with C/C++, and with the
toolchain of the platform it is mapped to the PEs [18]. From
the top view, this architecture is more like a platform that
is designed to handle software and hardware partitioning and
reconfiguration.

In [19] Malki and Spaanenburg have presented a NoC
based parallel image processing architecture. They discuss the
effects of different types of communications to performance.
Image processing algorithms of the architecture are based on
Discrete Time Cellular Neural Network. They have introduced
new methods to handle the boundary conditions of the image
with the new architecture. The proposed architecture facilitates

multiple operations on a single image, and single operations
on multiple images, with access to the external image memory.
This architecture is not capable of partial reconfiguration.

In [20] a mixed signal image processing platform is pro-
posed. Image processor part is an analog Cellular Neural
Network (CNN UM). It has dedicated blocks for control
and dynamic reconfiguration. The architecture comprises a
RAM based, a multicontext dynamically reconfigurable lookup
table section and includes coarse grain logic cells targeted
for synthesis programs, it also includes programmable analog
blocks with configurable interconnectivity and an interface to
the on-chip 8051 microprocessor core. The microprocessor
can read and write both the configuration and the analog-
digital internal signals during runtime. The microprocessor
can switch applications (two configurations) based on dynamic
reconfiguration activated by a microprocessor command.

III. CONFIGURATION ON SPARTAN-6 FPGAS

The Spartan-6 family is built on a 45-nm, 9-metal layer,
dual-oxide process technology [21] [22]. The Spartan-6 was
marketed in 2009 as a low-cost solution for automotive, wire-
less communications, flat-panel display and video surveillance
applications [22].

The partial self-reconfiguration on a Spartan-6 FPGA can be
achieved through ICAP module of the device up to 100MHz
with a 16-bit interface only. Spartan-6 FPGAs do not support
8-bit and 32-bit for ICAP. Therefore, the maximum self-
reconfiguration speed that can be achieved on a Spartan-6
FPGA is 200MB/s. In addition to this, the external SelectM AP
configuration interface can also be used for initial or partial
reconfiguration. Note that some of Spartan-6 FPGAs (e.g.
XC6SLX4 devices or devices using TQG144 or CPG196
packages.) do not offer the SelectMAP interface.

| @)
z =
S %
O‘ 'o
g o
<

-
O -
o [F 35 2R 2R e
=
< =
% 5
& o
2 b
RA:2 n
o =
z g
><‘]

|

Q
g %
o S

@]
I e o e e mamne || Do oo 12
g 5
BiE | [
9 RA-1 e
o =<

&)

RAZY

S e
=
< =
><\ ‘O
g %
<

-
O (=3

Fig. 1: Selected Reconfigurable Areas on a Spartan-6 FPGA

Opposite to the Spartan-3 FPGAs, Spartan-6 FPGAs offer
the partial reconfiguration in a two dimensional fashion [12].
The atomic unit that can be reconfigured is a single frame
within a clock region (in terms of CLB configuration). The
configuration is in frames that covers 16 CLBs in the height.
Therefore, for selecting reconfigurable area, the designer must
take into account that the selected area should be within
the same clock region, i.e. in the same 16-CLB-row. In
Figure 1, three identical selected reconfigurable areas RA-1,
RA-2, RA-3 are demonstrated on a Spartan-XC6SLX4 (the
smallest member of Spartan-6 family) FPGA. The Spartan-
XC6SLX4 is used only for demonstrative purposes, no actual
design is implemented on this device. All implementations
in this study are done on Spartan-XC6SLX45 FPGA. These
areas have the same size but they are located in different
portions of the FPGA. The RA-1 consists of 11CLB columns
with 16-CLB-height in the same clock region. The RA-2
has also 11CLB columns with 16-CLB-height and is located
in four different clock regions. The RA-3 has also 11CLB
columns with 16-CLB-height and is located in two differ-
ent clock regions. The generated PB for RA-1 will have
11CLB x (#Frames/CLB) frames information. However RA-
2 will have 4CLB x (#Frames/CLB) frames in clock regions
X0_Y?2 and X0_Y3 separately and 7CLB x(#Frames/CLB)
frames in clock regions X1_Y 2 and X'1_Y3 individually. So
RA-2 will have 22CLB x (#Frames/CLB) frames information.
In the same way, RA-3 will have 11CLB x(#Frames/CLB)
frames in clock regions X1 Y0 and X1_Y1 individually
which results in 22CLB x(#Frames/CLB) frames totally.
Therefore, generated bitstream for RA-2 and RA-3 will be
two times greater than RA-1, even if all portions does the
same job. As a result, the reconfigurable area should fit into
a clock region. Otherwise the number of frames included into
the bitstream information will increase and the size of PB will
be greater than expected. When the logic occupation in a clock
region is not enough, then the neighbor clock regions can also
be utilized.

IV. SELF-RECONFIGURATION PLATFORM

Our reconfiguration engine cPCAP [1] can use either Se-
lectMAP or ICAP interface in any bit-width combination
(i.e. 8, 16, 32-bit). We have adapted cPCAP core to run on
Spartan- XC6SLX45 FPGA with configuration interface ICAP
16-bit mode at 100MHz. Since cPCAP core is entirely written
in VHDL, it can be adapted to any other Xilinx FPGA to
control the reconfiguration flow. As there is no SelectMAP
interface on Spartan-XC6SLX4 FPGA devices (i.e. XC6SLX4,
XC6SLX45, XC6SLX45T), we have used ICAP 16-bit mode
with cPCAP core.

As shown in Figure 2, cPCAP core reads compressed PBs
from on-chip BlockRAM and decompress them on-the-fly at
the time of reconfiguration. Therefore there is no downtime
during decompression. As we use block RAMs to store
compressed PBs and do not use any custom bus type, we
have achieved the maximum throughput attainable by ICAP,
200MB/s (16-bit mode, 100MHz). The compression of PBs

'] :
! 1
' '
1

! 1
il | Spartan-6 Reconfigurable o [
' Area B
S| FPGA S i
; = i
: = |
i <
:) BUSY indicator O |1
i CLK —
: m 1 S, WR, CCLK . S 1
' cPCAP and Bitstream :
: 1011010) 00110001011) % 1
| [V Core — VY| O
: Compressed Decompressed | =— |
1 Bitstream Bitstream :
IL_ Flow Flow 1

Fig. 2: Hardware architecture of the system over internal
configuration port (ICAP) on a Spartan-6 FPGA

is done at design time. The method used for compression
is the run-length encoding and does not require a complex
decompression process. The architecture details of cPCAP and
the compression/ decompression mechanisms can be found in
[1] and [6].

Single-Slice HBM

i3—»| D1 DIt 03
i2—»|Cl1 Clf—»o02
il—»{Bl Blp—»ol
10— Al A1—»00
FF
clk — CLK
0 —w CLKE

Fig. 3: 4-Bit Single Slice Spartan-6 Hard Bus Macro (HBM)

For the glitchless data flow between fixed area and reconfig-
urable area, we have used 4-bit slice based hard bus macros.
Actually, there are no slice based hard bus macros offered
by Xilinx for Spartan-6 FPGAs. However, there are some bus
macros which are directly used for some target FPGA families
(e.g. Virtex-5, Virtex-6) from Xilinx. Instead of designing a
new bus macro we have manipulated and adapted Virtex-5 bus
macros to the Spartan-6 bus macros. The 4-bit-width single
slice hard bus macro component is illustrated in Figure 3. In
Figure 4, the internal structure and connections of our single
slice synchronous Spartan-6 bus macro can be seen.

V. TEST RESULTS

At first we have implemented our cPCAP core for dynami-
cally reconfiguring a few small sample circuits. The first one
we have tested is a 4-bit forward counter with different speeds.

=
==

&

Fig. 4: Inside of Spartan-6 Slice Based Hard Bus Macro

To switch between different speeds we have reconfigured the
clock input of the forward counter. According to this small
example, there are 4 different speeds: 1Hz, SHz, 10Hz and
20Hz (to be observable by human eye) respectively. We
have written a process to obtain such small clock periods.
For the reconfiguration view, we have actually changed the
trigger clock of this process. To be able to have different clock
values, we have generated different clock values from digital
clock manager (DCM) of Spartan-6 FPGA and changed these
values at runtime by reconfiguring the counter circuit through
ICAP under the control of cPCAP core. There are various
applications, where clock frequency of a system should be
changed at run-time. Clock scaling method in [2] is one of
them, which is mostly used to decrease FPGA power consump-
tion by changing clock frequency of different components of
system at run-time. Adjusting data transmission speed of a
system, and other typical applications include speed drives,
inverters, computers and computer controlled equipment, deep
well pumps, industrial machinery, ships, aircraft. Actually,
we are aware of the dynamic reconfiguration port (DRP)
to reconfigure DCM outputs. But we just wanted to verify
the correctness of our reconfiguration platform on a Spartan-
6 FPGA. In this example, each PB is composed of only
one frame. In Table I, the original, compressed PB sizes
and the reconfiguration times are available. In this example,
we have achieved to put four different compressed PBs in
a single block RAM. We have only used two Bytes (two
consecutive 00 bytes)separators between each compressed PBs
(total overhead is six Bytes). Note that, we have not excluded
header information from original PB files generated by bitgen
tool of Xilinx; before the compression process, we directly
applied run length encoding compression technique to the PB

files at design time.

TABLE I: PB Sizes and Reconfiguration Times for Forward
Counter Example

PB Original PB Compressed PB # of Space Reconfiguration
Size (Bytes) Size (Bytes) BRAMs Savings Time[us]

P1 (1Hz) 473 401 0.196 15.22% 2.365

P2 (5Hz) 473 401 0.196 15.22% 2.365

P3 (10Hz) 473 401 0.196 15.22% 2.365

P4 (20Hz) 473 401 0.196 15.22% 2.365

Total 1892 1604 0.783 15.22% 9.46

The second small example is used to test the functionality
of our hard bus macros. In this tiny example, we have tested
two different small logical circuits, which gives different four-
bit output values to the on-board LEDs. In this example,
each PB is a composition of 2 frames. In Table II, the
original, compressed PB sizes and the reconfiguration times
are available.

TABLE II: PB Sizes and Reconfiguration Times for Hard Bus
Macro Tester Example

PB Original PB Compressed PB # of Space Reconfiguration

Size (Bytes) Size (Bytes) BRAMs Savings Time[us]
P1 603 349 0.170 42.12% 3.015
P2 603 348 0.169 42.29% 3.015
Total 1206 697 0.340 42.2% 6.03

VI. THE Low-CosT GPIPS: AN INTRODUCTION

The proposed reconfiguration core can be used to change the
tasks (modes) of a Reconfigurable Image Processing Element
(RPE). The GPIPS consists of multiple RPEs connected with a
network similar to that of a DTCNN. An RPE (Fig. 5) consists
of a static and a reconfigurable part. The reconfigurable part
of the RPE is just its arithmetic unit and the rest is static.
Register file is a module that stores temporary values for
calculations in the RPE. Template coefficients memory stores
the template coefficients for DTCNN which is explained
below. The information of which template is to be used is
received from temp-no. Control input is the signal which is
sent by a global control unit. in-data and in-address buses
carry the data and source address of the data. out-data and
out-address carry the processed data and destination address
of the data. Both addresses and data are received from and
sent to the communication network. It may be wondered why
communication network is not in the reconfigurable part. In
many image processing applications, a group of pixels in a
specified block (neighborhood) are computed. Providing a 2-
D communication network between RPEs usually makes it
sufficient to reconfigure just arithmetic unit on the RPEs.
Obviously, local control block has to manage all the cases
that RPE requires. In this study, local control manages block-
match and DTCNN.

Once the static part of the RPE is determined and fixed, the
whole algorithmic design process reduces to the design of the

clk control tempno in-data in-address

vV v v 3

. . template X
arithmetic o register local
. coefficients
unit file control
memory

v v

out-data out-address

Fig. 5: Ports and sub-blocks of a RPE

arithmetic unit of the RPE and writing the necessary code for
each application. In this part, we will try to explain how the
arithmetic unit of an RPE can be designed to switch between
block matching and any application that can be done with
DTCNN on-the-fly. The code development is out-of-the-scope
of this work.

To compute overall gain in the area occupation, the cost of
one RPE area occupation has to be multiplied by the number
of RPEs in the whole network. Similarly, the reconfiguration
time of the RPEs in the network has to be calculated by
multiplying reconfiguration time of one RPE by the number
of PEs. Due to ongoing works of our project, in this paper
total reconfiguration time is given in that manner.

Image processing algorithms can be implemented in several
ways. Due to changes in standards and needs of systems,
several algorithms and platforms have to be used in image pro-
cessing applications. Cellular Neural Network was invented in
1988 by Chua-Yang [23]. After that this paradigm was realized
on an analog chip with on-board peripherals and given a name
CNN-UM [7]. It was shown that due to its parallel analog
structure it could process image in a short time regardless of
the image dimensions. It is hard to implement an analog chip
in large resolutions, so researchers have tried to emulate analog
CNN by Discrete Time Cellular Neural Network (DTCNN)
digitally. Digital implementations of DTCNN are slower than
the analog one but are still faster than so many platforms
because of its parallel structure. A DTCNN module has to
realize the following equation:

:c(k—|—1):Zadyd(k)+26dud(k)+i;d€NT

where, z (k + 1) is next state, y¢ (k) are output (processed)
values of the image pixels in the neighborhood, a4, by are
the elements of templates A and B, u?(k) is input image
pixel, ¢ is the threshold value [19]. In literature there are
1-D [24],[25] and 2-D [19], [26] implementations of this
mathematical formula. In Fig. 6 how template dot product,
e.g O aqy?), is computed is shown.

Regardless of the placement of the modules, arithmetic
modules are similar in the processing elements of different
implementations. Basically, arithmetic units of the processing
elements have to perform multiplication and cumulative ad-
dition. Fig. 7, shows arithmetic unit that is used in RPEs of

(D

Gy (& |4y Yo | 1 | 2
Zaa'}' =|la; |as |a; @ vy | Vs | ¥s
95 | d7 | g Ys | Y7 | ¥u

=ap¥, ta VT a, v, ay; tagy, tasys +ag ¥y, ta, v, +agly

Fig. 6: Dot product computation

DTCNN in this work.

0O OO
L

Control signals:
1. A/S

Data signals:
2. template
3. pixel1

4. pixel2

5. result

register

y

O

Fig. 7: Arithmetic unit of a RPE for DTCNN

Template and pixell is multiplied and the product is summed
with the partial sum (PS) or pixel2. PS/B signal selects whether
partial sum or pixel2 is added. “partial sum” is the output of
“register” in Fig. 7 and it’s the “result” after the computation
of Eq. 1 is completed. Instructions that drive the arithmetic
unit for DTCNN are written below with a pseudo code, and
concurrent instructions are listed in a parenthesis with the word
concurrent. regl, reg2 are the registers in register file of a
RPE, in-data is a port of RPE which receives input data, and
tempElem(i) is a template value (coefficient) stored in template
coefficient memory. register is used as an accumulator. i is a
counter that counts the number of pixels in the neighbourhood
that are computed in one iteration of a pixel.

/11 =0, register = 0

move regl, in-data; //store in register file

move reg2, in-data;

concurrent {move pixel2, regl;

move pixell, reg2;

move template, tempElem(i);

move PSB, I; add i, I; }

Ntimes: //statement below is operated N times

concurrent {move pixell, in-data;

move template, tempElem(i);

move PSB, 0; add i, I; }

//IN +1: number of pixels calculated in one DTCNN itera-
tion.

Inherently, DTCNN performs 2-D filtering with a threshold.
Besides, one can do hole-filling, dilation, erosion, etc. [7]. Im-
age processing algorithms are not limited with the algorithms
that DTCNN can do. For instance, block-matching is a widely
used image processing algorithm that cannot be done just by
DTCNN. Block-matching is generally implemented on hard-
ware due to its computational intensity. If DTCNN and block-
matching algorithms are desired to be performed on an image
processing platform, they have to be implemented separately
or they can share the same area by being reconfigured as we
show in this study. Mathematical model of block-matching is
as follows:

N

[a

N—
s(m,n) =Y Z |z (i,5) —y (i +m,j+n)]; (2

=0

—

<

where x(i,j) and y(i,j) correspond to pixel values in the
reference block in the current frame and the candidate block
in the search window in the previous frame, respectively.
Addition and subtraction of pixels in candidate and reference
blocks are calculated and the minimum one among the results
of all blocks shows the motion vector. Fig. 8 shows how
block-matching is done and motion vector is calculated for
two sequential frames.

Best match

Current block

Motion vector Search window

N

Fig. 8: Block-matching and computation of motion vector

Block-matching can be done in several ways, such as sys-
tolic arrays in 1-D and 2-D. The main arithmetic computations
in a block-match RPE are addition, subtraction and absolute
value. In Fig. 9 a block-match arithmetic unit is shown. A/S
signal selects whether addition or subtraction of two pixels are
computed.

Instructions that drive the arithmetic unit for block-matching
are written with a pseudo code, and concurrent instructions are
listed in a parenthesis with the word concurrent. The symbol
|| used in the Fig. 9 is used to show an absolute value unit.

move regl, in-data; //store in register file

move reg2, in-data;

Control
signals:
1. A/S
Data signals:
* 3. pixel1
4. pixel2
L2 5. result
I
v
register

}
O

Fig. 9: Arithmetic unit of a RPE for block-matching

concurrent {move pixel2, regl;

move pixell, reg2;

move AS, I; } //subtraction case

move reg2, result,

move regl, indata,

concurrent {move pixel2, regl;

move pixell, reg2; move AS, 0; }

//addition case

In this study, arithmetic unit of a RPE has been partially
reconfigured as DTCNN and block-matching and all other
blocks remain unchanged. Note that, local control has been de-
signed to be able to manage both DTCNN and block-matching
algorithms. Although both block-matching and DTCNN can be
implemented on 1-D or 2-D processor arrays, it is better to use
same allocation for both ones to decrease design complexity
and reconfiguration file size.

A. Implementation Results

We have implemented only the arithmetic unit of the RPE.
This is sufficient to estimate the latency for switching from one
application to another application. In Table III, reconfiguration
cost summary of a single RPE is shown. To reconfigure a
single RPE, the required reconfiguration time is about 246
microseconds when ICAP-16 bit interface at 100MHz is used.
Here, it is worth to mention that this reconfiguration time
is valid when the reconfigurable module is located within a
single clock region (the first two rows in Table III). More
precisely, this is the case where the arithmetic unit of the
RPE resides on the FPGA as RA-1 does in Fig. 1. As it can
be seen obviously from Table III, a huge difference occurs
in the size of partial bitstreams (thereby reconfiguration time)
when the same arithmetic unit of the RPE is placed on the
boundaries of two clock regions like RA-3. Since DTCNN
contains a multiplier block and there is no DSP block column
on Spartan-XC6SLX45 in the middle of FPGA, we did not test
the case, where the reconfigurable unit resides on 4 different

clock regions as RA-2 does in Fig. 1. But, we are aware that it
also would give the similar result like RA-3. The inputs 3 and
4 for both configurations of RPE are set to 18-bits and 36-bits
respectively. In addition to these inputs, the input 2, which is
used only in DTCNN configuration, is also set to 36-bits. The
width of output (5) is the same for both configuration and
set to 36-bits. The total reconfiguration time with multiple
RPEs is calculated by multiplying reconfiguration time of a
single RPE by the number of RPEs in the whole system.
Assume that there exists 100 RPEs in the system; so switching
from one configuration (Block-Matching/DTCNN) to other
configuration (DTCNN/Block-Matching) will take about 24.6
milliseconds. Indeed, we are aware of the reconfiguration
overhead of switching from one configuration mode to another
one. However, the switching operation does not occur in the
middle of an running algorithm, it takes place on-demand.

TABLE III: PB Sizes and Reconfiguration Times for a single
RPE

Nr. of CLK Partial Nr. Of Original PB Compressed PB # of ~ Space Reconfiguration
Regions Bitstream Frames Size (Bytes) Size (Bytes) BRAMs Savings Time|us]

1 P1 (Blockmatch) 299 49299 15604 7.62 68.35% 246

1 P2 (DTCNN) 299 49294 17490 8.54 64.52% 246

2 P1 (Blockmatch) 406 66432 19111 9.33 71.23% 331

2 P2 (DTCNN) 406 66427 21501 10.5 67.63% 331

VII. CONCLUSIONS AND FUTURE WORK

In this study, we have demonstrated a reconfiguration engine
which allows a designer to do self-reconfiguration on Xilinx
Spartan-6 FPGAs at run time through ICAP interface (16-bit)
at 100MHz. The proposed engine was already used in Spartan-
3 and Virtex-4 previously. In this study, we have adapted our
cPCAP core to be able to run on Spartan-6 FPGAs.

As in previous cPCAP design, we have used block RAM for
the compressed PB storage. The PBs, which are compressed
at design time, are stored on block RAM and decompressed
on-the-fly during reconfiguration. While they are being decom-
pressed, there is no down-time in the reconfiguration process.

As a future work, we are planning to reconfigure not only
a RPE but the multiple set of RPEs (hundreds of) in the
whole design. We are also planning to enlarge the number of
algorithms of the RPE and to give the designer a software to be
able to develop his/her project easily. Thus, we will be able
to achieve switching two different configurations (DTCNN,
Block-matching, etc) of a general purpose image processing
system on-demand in approximately 25 milliseconds.

ACKNOWLEDGMENT

This work is fully supported by Bogazi¢i University Scien-
tific Research Projects (Project Nr.:5578) and State Planning
Organization of Turkey, DPT under grant no 2007K120610.

REFERENCES
[1]1 S. Bayar and A. Yurdakul, “Self-Reconfiguration on Spartan-III FPGAs

with Compressed Partial Bitstreams via a Parallel Configuration Access
Port (¢cPCAP) Core,” PRIME2008, June 2008.

[2]

[3

[ty

[4]

[5]

[6]

[7

—

[8]
[9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

K. Paulsson, M. Hiibner, S. Bayar, and J. Becker, “Exploitation of Run-
Time Partial Reconfiguration for Dynamic Power Management in Xilinx
Spartan IllI-based Systems,” ReCoSoc2007, Montpellier, France, June
2007.

S. Liu, R. N. Pittman, and A. Forin, “ Energy Reduction with Run-
Time Partial Reconfiguration.” Technical Report of Microsoft Research:
MSR-TR-2009- 2017, September 2009.

W. Osborne, W. Luk, J. Coutinho, and O. Mencer, “Energy reduction by
systematic run-time reconfigurable hardware deactivation,” Transactions
on HIiPEAC, vol. 4, no. 4, 2009.

M. Lorenz, L. Mengibar, M. Garca-Valderas, and L. Entrena, “emph-
Power Consumption Reduction Through Dynamic Reconfiguration,” In
Proceedings of FPL, 2004, pp. 751-760.

S. Bayar and A.Yurdakul, “An efficient self-reconfiguration core for
run-time reconfigurable fpga interconnects,” 2011, journal of Systems
Architecture, JSA” 2011 (revision).

T. Roska and L. O. Chua, “The CNN Universal Machine: an analogic
array computer,” IEEE Trans. on Circuits and Systems-II, vol. 40, pp.
163-173, 1993.

L. O. Chua and T. Roska, Cellular Neural Networs and Visual Comput-
ing. Cambridge, UK: Cambridge University Press, 2002.

S. Malki and L. Spaanenburg, “CNN Image Processing on a Xilinx
Virtex-1I 6000,” vol. 3, Proceedings ECCTD’03, 2003, pp. 261-264.
K. Murugesan and P. Elango, “emphCNN based Hole filler template
design using numerical integration techniques,” ICANN’07 Proceedings
of the 17th international conference on Artificial neural networks, 2007.
A. Zarandy, A. Stoffels, T. Roska, and L. Chua, “Implementation of
binary and gray-scale mathematical morphology on the cnn universal
machine,” Circuits and Systems I: Fundamental Theory and Applica-
tions, IEEE Transactions on, vol. 45, no. 2, pp. 163—168, February 1998.
D. Koch, C. Beckhoff, and J. Torrison, “Advanced Partial Run-time
Reconfiguration on Spartan-6 FPGAs,” FPT’10, December 2010.

S. U. Bhandari, S. S. S. Pujari, and R. Mahajan, “Internal dynamic
partial reconfiguration for real time signal processing on FPGA,” Indian
Journal of Science and Technology, vol. 3, no. 4, pp. 365-368, 2010.
M. Hiibner, Diana, Gohringer, J. Noguera, and J. Becker, “Fast dynamic
and partial reconfiguration data path with low hardware overhead on
Xilinx FPGAs,” IPDPS’10, 2010.

F. Duhem, F. Muller, and P. Lorenzini, “FaRM: Fast Reconfiguration
Manager for Reducing Reconfiguration Time Overhead on FPGA,”
ARC’2011, 2011.

M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-Time Partial Reconfigu-
ration Speed Investigation And Architectural Design Space Exploration,”
In Proc. of the International Conference on Field Programmable Logic
and Applications, August 2009.

D. Gohringer and J. Becker, “High performance reconfigurable multi-
processor-based computing on FPGAs,” IPDPSW ’10, 2010, pp. 1-4.
D. Gohringer, M. Birk, M. Hiibner, and J. Becker, “High-Level Design
for FPGA-based Multiprocessor Accelerators,” Workshop on Design
Methods and Tools for FPGA-Based Acceleration of Scientific Com-
puting (DATE’2011), 2011.

S. Malki and L.Spaanenburg, “A CNN-Specific Integrated Processor,’
EURASIP Journal on Advances in Signal Processing, vol. 2009, p. 1,
2009.

R. Montufar-Chaveznava, D. Guinea, M. C. Garcia-alegre, and V. M.
Preciad, “CNN computer for high-speed visual inspection,” Proceedings
SPIE, 2001, pp. 236 243.

P. Clarke, “Xilinx launches Spartan-6, Virtex-6 FPGAs,” EETimes, 2
February 2009.

Xilinx, “The low-cost Spartan-6 FPGA family delivers an optimal
balance of low risk, low cost, low power, and high performance,’
Company Release, 2009.

L. O. Chua and L. Yang, “Cellular neural networks: Theory and
applications,” IEEE Trans. on Circuits and Systems, vol. 35, pp. 1257-
1290, 1988.

M. Tiikel and M. E. Yalcin, “A new architecture for Cellular Neural Net-
work on reconfigurable hardware with an advance memory allocation
method,” 12th International Workshop on Cellular Nanoscale Networks
and Their Applications (CNNA’2010), 2010.

K. Kayaer and V. Tavsanaoglu, “A new approach to emulate CNN on
FPGAs for real time video processing,” 10th. IEEE International Work-
shop on Cellular Neural Networks and Their Applications Proceedings
(CNNA2008), 2008, pp. 23-28.

[26] Z. Voroshazi, Z. Nagy, A. Kiss, and P. Szolgay, “Implementation of
embedded emulated-digital CNN-UM global analogic programming unit
on FPGA and its application,” International Journal of Circuit Theory
and Applications, vol. 36, pp. 589-603, 2008.

