
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A dynamically reconfigurable communication architecture for multicore
embedded systems q

Salih Bayar ⇑, Arda Yurdakul
Computer Engineering, Boğaziçi University, P.K. 2 TR-34342 Bebek, Istanbul, Turkey

a r t i c l e i n f o

Article history:
Received 13 March 2011
Received in revised form 10 February 2012
Accepted 13 February 2012
Available online 23 February 2012

Keywords:
FPGA
Runtime reconfiguration
Partial reconfiguration
Dynamic reconfiguration
Bitstream compression
Multiprocessor
NoC
Interconnect

a b s t r a c t

To deal with the communication bottleneck of multiprocessor systems, several communication architec-
tures have been proposed in the last decade. Yet, none of them has demonstrated the performance of the
direct connections between two communicating units. In this paper, we propose dynamically reconfigu-
rable point-to-point (DRP2P) interconnects for setting up direct connection between two communicating
units before the communication starts. DRP2P is neither point-to-point (P2P) nor Network-on-Chip
(NoC); it stands between these two on-chip communication architectures. It is as fast as P2P and as scal-
able as NoC. Instead of using routers like in NoC, we utilize partial reconfiguration ability of FPGAs for
routing data packets. Furthermore, DRP2P can work both on regular and irregular topologies. The only
drawback of our approach is the reconfiguration latency. This drawback is completely hidden when
the reconfiguration of the communication links is achieved during the computation times of the cores.
DRP2P solves the scalability issue of P2P by setting up on-demand communication-specific links between
cores. So, the occupied area and the total power consumption of communication architecture can be
reduced significantly. We designed an on-chip self-reconfiguration core, c2PCAP so as to achieve DRP2P
interconnects as fast as possible. The c2PCAP core is designed for Xilinx FPGAs and can partially reconfig-
ure the FPGA at the highest rate proposed by the manufacturer (e.g. up to 400 MB/s for Virtex-4).

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The fastest communication architecture between two cores is
known as the point-to-point (P2P) connections where two cores
are directly connected. As the number of cores increases, P2P turns
out to be a power- and area-hungry solution. In the last decade, the
Network-on-Chip (NoC) has been proposed as an alternative to re-
duce power consumption and has been widely adopted by the SoC
community.

Conventionally, two types of NoCs have been proposed in the
literature: packet-switched and circuit-switched. The data transfer
time is much shorter in circuit-switched NoCs than it is in packet-
switched NoCs, because a dedicated path between two nodes is
established before communication takes place. However, the
circuit set-up time introduces additional latency on the overall

communication. Besides, the dedicated communication path might
make other nodes wait for a communication channel. The packet-
switched NoC solves this problem by limiting the size of data trav-
eling in the NoC to the size of a packet. Yet, this type of NoCs suffer
from not only process time for packetization of data, header pro-
cessing or buffering but also communication time overhead due
to congestion control [1]. Hence, conventional NoCs suffer from
communication latency, area overhead and power consumption
introduced to the system by the routers [2].

Based on this observation, adaptive, programmable, reconfigu-
rable NoC architectures have been proposed in the literature. Re-
cently, methods that by-pass some of the routers are introduced
so as to reduce the communication latency due to routers. In [9]
these wires are static. In VIP [2], Skip-links [5] and RecoNoC [7],
it is shown that these links can also be introduced dynamically
to the system. In Reconfig-Net [6], the wires to and from the rou-
ters are dynamically added or removed. The number of routers is
reduced by static analysis. In [10], three different communication
architectures are utilized on the same SoC and one of these archi-
tectures is selected during run-time. This is accomplished by
switches and an adaptive look-up table at each router. Topology
switches are first introduced in ReNoC [4] where hybrid topologies
can be setup by taking application specifications into account.
Adaptive look-up tables are proposed in PNoC [1]. In RecoNoC

1383-7621/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2012.02.003

q This work is fully supported by The Scientific and Technological Research
Council of Turkey, TÜB_ITAK (Project No.: 104E038), Boğaziçi University Scientific
Research Projects (Project No.: 5582 and 6346) and State Planning Organization of
Turkey, (DPT) under the TAM Project, Grant No. 2007K120610.
⇑ Corresponding author. Tel.: +90 212 359 7780; fax: +90 212 287 2461.

E-mail addresses: salih.bayar@boun.edu.tr (S. Bayar), yurdakul@boun.edu.tr (A.
Yurdakul).

URLs: http://www.cmpe.boun.edu.tr/bayar (S. Bayar), http://www.cmpe.bou-
n.edu.tr/yurdakul (A. Yurdakul).

Journal of Systems Architecture 58 (2012) 140–159

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

Author's personal copy

[7], parameterized look-up tables are utilized to reduce reconfigu-
ration time. In PNoC, modules are placed and removed dynamically
as it is the case in DyNoC [3] where the unused routers are reused
for computing purposes. In [8], a 2-D Reconfigurable Mesh NoC is
developed. It is a new hybrid architecture, which uses not only rou-
ters but also configuration switches for packet routing. Some of
these studies remain at simulation level [5], but there exist imple-
mentations either as an ASIC [2,4,8] or on a Xilinx FPGA
[9,6,10,7,1,3]. The latest NoC approaches and our proposed archi-
tecture are summarized in Table 1.

Routers have a major effect on the occupied area and system
power consumption. To avoid the drawbacks of routers, we tried
to implement a router-less NoC-like system. In our case, routing
is done by utilization of partial reconfiguration ability of FPGAs.
From Table 1, it is obvious that almost all studies try to suppress
the drawbacks of routers used in both packet and circuit switched
networks. To achieve this, either the number of routers is reduced
or routing through routers is minimized. This is done by either
developing simpler router architectures or adding additional con-
figuration switches or using dedicated P2P links for neighbor/long
distant PEs and so on.

Xilinx FPGAs are well-known for the dynamic partial reconfigu-
ration availability for almost every unit in the FPGA [11]. However,
very few of the NoC implementations on the FPGAs utilize this
property [6,1,3]. In these studies, power consumption and latency
due to reconfiguration have not been reported. It is also ambiguous
how reconfiguration is triggered and carried out in these studies. In
the literature, there are agents and methods for dynamic partial
reconfiguration, but these studies do not explain which one is uti-
lized [12–21]. Other run-time adaptive approaches propose new
reconfiguration or adaptation methods based on run-time moni-
toring of the application [2,3,8]. However, they do not explicitly
mention how long their proposed reconfiguration/adaptation/
monitoring scheme will take or how much power it will consume.
The numerical time values for the proposed reconfiguration meth-
ods are not very promising. For example, TMAP [22] method
adopted in RecoNoC requires 215 ms to update 8-bit coefficients
of a 32-tap FIR. This is a quite long time for setting up communica-
tion architecture.

In this work, we propose a new communication architecture,
namely dynamically reconfigurable point-to-point (DRP2P) inter-
connects. In DRP2P, routers need not exist. As a result, the area
of the implementation is reduced. This directly reduces power con-
sumption. Direct communication paths are setup by dynamic par-
tial self-reconfiguration. This is done by exploiting the dynamic
partial reconfiguration property of the Xilinx FPGAs with c2PCAP,
a dedicated on-chip engine developed for this purpose. This core
adds a small overhead in the area and power consumption. How-
ever, the experimental results show that power consumption of
DRP2P is much lower than that of a conventional two-dimensional
NoC.

DRP2P is neither P2P nor NoC; it stands between these two on-
chip communication architectures. It is as fast as P2P and as scal-
able as NoC. In NoC, the communication flows over the selected
lines through the routers. In DRP2P, the communication flows over
the lines activated by c2PCAP. In other words, instead of using rou-
ters like in NoC, we utilize partial reconfiguration ability of FPGAs
for routing data packets. Furthermore, DRP2P can work both on
regular and irregular topologies. DRP2P solves the scalability issue
of P2P by setting up on-demand communication-specific links be-
tween cores. So, the occupied area and the total power consump-
tion of communication architecture can be reduced significantly.

In DRP2P, communication scenarios are downloaded to the
FPGA one-by-one during the computation time of the cores. It is
critical to understand that reconfiguration time plays a major role
on assigning tasks to the cores and determining the number of
communication scenarios: In Fig. 1b, the communication architec-
ture is established during the computation. Hence, reconfiguration
time is not noticed at all. However, in Fig. 1a, the computation time
is too short to set up the communication channel. In this case, the
reconfiguration time introduces an overhead to the communica-
tion latency, hence degrades the efficiency of DRP2P. This phenom-
enon dictates the design constraints on the self-reconfiguration
engine:

� The reconfiguration engine should be as fast as possible so that
the computing processors will not wait for the establishment of
the communication channels

Table 1
Comparison of latest NoC approaches with DRP2P.

Network Year Switching Device Topology Routing Alg. Goal Novelty Application

PNoC [1] 2005 Circuit FPGA Custom Deterministic Reduce No. of Routers
compared to regular NoCs

Consisting of a series of subnets.
Place modules that communicate
frequently in the same subnet

Image binarization

DyNoC
[3]

2005 Packet FPGA 2D-Mesh Adapted XY (S-
XY, SV-XY, SH-
XY)

Direct comm. paths btw.
neighbor PEs

Use routers as reusable elements,
i.e. also for logic

Color generator and traffic
Light Controller

ReNoC
[4]

2008 Packet
+ Circuit

ASIC Custom Topology
Switch + Router

Reduce No. of Routers Wrapping routers with topology
switches

VOPD

Skip-
links
[5]

2010 Packet – 2D-Mesh Adaptive Jumping or skipping over
the intermediate router

Connecting skip links together: skip
chains

–

Reconfig-
Net
[6]

2010 - FPGA Custom – Reduce No. of Routers Reconfigurable wires btw. routers VOPD

VIP [2] 2010 Packet ASIC 2D-Mesh Wormhole
switching

Bypass the router pipeline
stages with VCs

Connect the source and destination
of with dedicated P2P links

VOPD, MWD,H.263 enc.,
GSM, MP3 enc., MP3 dec.

RecoNoC
[7]

2011 Packet + P2P
Simplex
Links

FPGA 2D-Mesh Adaptive
Wormhole

Bypass routers using
shortcuts

Create shortcuts btw. distant nodes –

AppAw
[8]

2011 Packet
+ Circuit

ASIC 2D-Mesh Wormhole
switching

Bypass the routers all the
way, use configuration
switches to the utmost

Using simple switch boxes
(configuration switches) between
routers

VOPD, MWD, MP3 enc., MP3
dec., H.263 enc., H.263 dec.

DRP2P
[This
Work]

– Circuit FPGA Any No routing
Algorithm
required

No Routers. Instead of
routers, utilize physical
runtime reconfig. of FPGAs

No routers, totally reconfigurable
wires

MP3 enc., MP3 dec., H.263
enc., H.263 dec., Multi Target
Tracking (MTT), N-body

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 141

Author's personal copy

� It should have an on-chip cache to access the reconfiguration
bitstreams quickly. Since on-chip memory is limited, the config-
uration bitstreams of communication scenarios should be small
in size so as to increase the number of bitstreams on-chip.
� It must be dedicated and on-chip.
� It should be small to reduce area overhead.

Most of the applications on multi-core SoCs have non-uniform
communication traffic patterns and they can be predicted statically
[8]. In addition to this, most of the multi-core SoC applications do
not have many different communication flows (number of edges in
task graphs) and each of these cores mostly communicates with a
few of other cores. Usually, the traffic flow of these applications is
already known beforehand [2]. As a result of these, when we apply
DRP2P to such systems, we can overlap the computation and
reconfiguration latencies. Since communication traffic patterns
can be predicted statically, it is possible to establish the next com-
munication pattern while the current computation is being done.

DRP2P architecture can be used not only for the intra-switching
purposes within an application; it can also be utilized for the inter-
switching among different applications. Since the switching time
between most use-cases in a SoC is at the order of few milliseconds
[23], the time required to reconfigure the FPGA partially can be
covered up safely.

This is the first paper that introduces DRP2P communication
architecture. In Section 2, we will concentrate on the basic proper-
ties of this architecture, compare it with conventional NoC and
k� k crossbar, discuss limitations of the architecture. Then, in Sec-
tion 3, we will explain how DRP2Ps are obtained. This is the section
where the self reconfiguration engine, c2PCAP is also introduced
with its applications on not only on low-cost FPGAs like Spartan
3, 6, but also high-end FPGAs like Virtex 4. We will show that it will
be possible to setup DRP2Ps even on low-cost Xilinx FPGAs with
our engine. In Section 4, we present results of basic tests and the
real-life case studies. The final section concludes the work and sets
directions for future research.

2. Proposed DRP2P architecture

This architecture is inspired from the fact stated at the first
statement of this paper: P2P is the fastest communication way.
In [24], a study has been carried out to specify application-specific
point-to-point (ASP2P) interconnects between pairs of cores during
design time. These interconnects remain static during run-time.
Our method improves this approach by introducing a different
set of P2P between pairs of cores to the SoC in a time-multiplexed
manner. We call the set of P2P interconnects in one time-slot as the
‘‘communication scenario’’. Each communication scenario must fit
at the related communication channel. During design time, the
application is profiled and analyzed so as to determine the commu-
nication scenarios at ‘‘each time-slot’’. The duration of the time-
slot can be either dictated by the designer or computed by the sta-
tic analysis. The channels are decided by analyzing and synthesiz-
ing the scenarios. In other words, to replace the current
communication scenario with another one, dynamic reconfigura-

tion engine c2PCAP firstly erases the communication channel
(tear-down), and then reconfigures the wires of the new scenario
(set-up).

Note that infinitely many communication scenarios cannot be
realized with DRP2P. The memory reserved for compressed bit-
stream storage, compression ratio, size of reconfigurable area, de-
vice type and size determine the number of communication
scenarios. Fig. 2 gives an idea about number of partial bitstreams
P that can be stored in the BRAM on Virtex-4 FPGA family. These
values are application specific and may vary from application to
application.

In addition to the c2PCAP core, we also have a monitoring sys-
tem in our design. The main task of monitoring system is to trig-
ger the c2PCAP core whenever a valid communication request
comes from a module. A communication request can be valid,
when it is already predefined and approved by also other mod-
ules, otherwise the request is kept waiting until it is approved
by the others. That is, when a module is finished with its compu-
tation job, it should wait its next communicating partner to finish
its computational task. Moreover, a communication grant signal is
assigned to each module; these signals are altered only by the
monitoring system.

In DRP2P, we reconfigure wires. We do not go in detail which
ones are control signals to control the flow. These are determined
during design time, during this time the analysis of the applica-
tion is done. Different clock speeds are also supported by DRP2P.
If two cores need to communicate at different clock frequencies,
either one of the cores can be replaced with a dual port RAM
or buffers can be placed in the communication channel. Obvi-
ously, cores at different communication speeds would require
buffers to prevent data loss. However, we did not experiment this
scenario because it is easily do-able with our approach: it should
be noted that we are dynamically reconfiguring a region, i.e. the
communication channel, not solely wires. Therefore different
communication architectures can be configured, regardless of
topology. The only constraint is the area of the communication
channel. We carried out such an implementation in our first case
study MTT, where the communication scenarios are not solely
p2p but there might also exist architectures like crossbar or
broadcast. Hence, if desired, buffers can also be placed equally
likely.

DRP2P is designed for nonreactive systems. Start and end times
of communication scenarios are not simultaneous. The longest
communication time determines the duration of each scenario.
However, profiling and analysis of the application has to be carried
out before deciding on the communication scenarios.

2.1. Theoretical latency analysis of DRP2P

Assume that there exist M modules communicating each other
and there are N different communication scenarios. Half of these
modules (M=2) are located on the left side and the other half re-
sides on the right side. The modules in each half are placed one
above the other and vertically. Suppose that data flow occurs from
left to right and each module on the left half has a directional n-bit
connection with its opposite partner on the right half. Hence, the

Fig. 1. Computation, reconfiguration and communication periods in partially DRP2P interconnects.

142 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

channel width WC between modules (the total number of single
wires between modules on both sides) is M=2� n. The duration
of one communication scenario is given by the longest data trans-
fer time between two communicating modules in that scenario.
The data transfer time can be defined as follows: Assume that
the data is transferred in k packets and let the size of each packet
be s. For the maximum utilization of the wires between these mod-
ules, a different portion of data has to be sent at each cycle of the
system clock, Tclk. Consequently, there should be no idle time until
the data are completely transferred to the receiving module. Then,
the data transfer time between two communicating modules is gi-
ven as:

Tcomm ¼ ððk� sÞ � nÞ � Tclk ð1Þ

Note that some of these scenarios can be repeated during the exe-
cution of the multiprocessor system. Therefore, there can be L
(P N) scenarios in an application. Again, for illustrative purposes,
we can assume that L ¼ N and each scenario runs only once. Assum-
ing that the data transfer time in each communication scenario is
equal, the total communication time is given as:

Tcomm tot ¼ N � ðððk� sÞ � nÞ � TclkÞ ð2Þ

If we assume that the initial communication scenario is down-
loaded with the complete bitstream, we can say that the same sys-
tem requires N � 1 dynamic reconfigurations during the runtime of
the multiprocessor system. Let RRR (Reconfiguration Repetition
Rate) define the number of dynamic reconfigurations. There can
be multiple locations for DRP2P interconnects and the required area
has to be reserved during design time. Therefore the dynamic
reconfiguration time, Treconf for each reserved area can be easily
determined. If we assume that there is only one reserved area for
DRP2P, then we can calculate the total reconfiguration time given
as:

Treconf tot ¼ RRR� Treconf ð3Þ

Now, referring to Fig. 1 and Eq. (1), we can write the best case and
worst case conditions for DRP2P interconnects as follows:

Tbest ¼ Tcomm ¼ ððk� sÞ � nÞ � Tclk ð4Þ
Tworst ¼ Tcomm þ Treconf ¼ ððk� sÞ � nÞ � Tclk þ Treconf ð5Þ

Similarly, the best and worst case conditions for the total data
transfer time can be calculated by using Eqs. (2) and (3):

Tbest tot ¼ Tcomm tot ¼ N � ðððk� sÞ � nÞ � TclkÞ ð6Þ
Tworst tot ¼ Tcomm totþTreconf tot ¼ N�ðððk� sÞ � nÞ�TclkÞþRRR�Treconf

ð7Þ
The data transfer size SD in each scenario and the total size of trans-
ferred data SDtot in the entire system are given as:

SD ¼ ðM � 2Þ � k� s ð8Þ
SD tot ¼ N � SD ¼ N � ððM � 2Þ � k� sÞ ð9Þ
Based on the derived equations on a sample instance, we can
numerically demonstrate the latency due to DRP2P interconnects.
An implementation of a 32-bit width ðn ¼ 32Þ, 8 modules ðM ¼ 8Þ
communication structure ðWC ¼ 4 � 32Þ is illustrated in Fig. 3. As
we have four different communication scenarios ðN ¼ 4Þ in Fig. 3,
there exists three passes between scenarios. Hence, RRR is 3 for this
example. Assume that packet size s is 4-bytes (=32-bits).

The target FPGA is Virtex-4SX35 and the system clock is set to
100 MHz ðTclk ¼ 10nsÞ. For the reconfiguration, the configuration
interface ICAP in 8-bit mode (a byte is sent to ICAP in each config-
uration clock cycle) is selected and the configuration clock is set to
100 MHz ðTcclk ¼ 10nsÞ; the reconfiguration speed is therefore
100 MB/s. Each partial bitstream size is 6524 Bytes. Hence, the
reconfiguration time for each pass between different scenarios
Treconf ¼ 6524 � 10 ns ¼ 65:24 ls. For example, according to the
Eq. (7), for k = 5, the total data transfer time for SD tot ¼ 320 Bytes
in best and worst case (see Fig. 4) are calculated as follows:

Tbest tot ¼ 4� ððð5� 32Þ � 32Þ � 10 nsÞ ¼ 0:0002 ms
Tworst tot ¼ 4� ððð5� 32Þ � 32Þ � 10 nsÞ þ 3� 0:06524 ms

¼ 0:196 ms

2.2. Comparison of DRP2P with 2-D Mesh NoC

For the comparison of DPRP2P with NoC architecture, we have
preferred to use the Network on Chip emulator (NoCem) with
mesh topology because of its availability. NoCem is available for
free download by OpenCores [25]. The NoCem is an open source
(protected under GNU General Public License), on Chip Network
Emulation Tool and a body of VHDL code configurable by a top-le-
vel package file that can create a variety of Network on Chips on
parameters of data-width, virtual channel implementations, topol-
ogy, and in-network buffering lengths. Once parameterized, the
resulting NoC is generated automatically with the use of VHDL

Fig. 2. Different P (# of partial bitstreams) values that can be stored in the BRAM on Virtex-4 FPGAs.

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 143

Author's personal copy

generics and generate statements. It supports three different NoC
topologies: mesh, torus and double torus. For a 4 � 4 mesh topol-
ogy with 16-bit data width, it occupies 78% of Virtex-II FPGA
(xc2vp30) [26].

To utilize DRP2P communication architecture efficiently, the
designer should be aware of the fact that the computation time
must be longer than reconfiguration latency (Tcomp P Treconf). For
this example the reconfiguration latency is approximately about
0,196 ms (at 100 MHz, 8-bit configuration interface). Here it is
obvious that the reconfiguration latency may be decreased to half
(98 ls) or one fourth (49 ls) of the original one by increasing the
reconfiguration interface width to 16-bit or 32-bit.

By changing values of SD tot for this example, we can obtain a
comparison of DRP2P with NoCem architecture which is shown
in Fig. 4. We have configured to NoCem as 3 ⁄ 3 mesh topology
with simple packet type; with no virtual channels. We set some
of NoCem configuration parameters as given in Table 2. Here, in
the best case, the partial reconfiguration always and totally over-
laps with the computation. If the duration of a computation is
greater than the partial reconfiguration time of the next communi-
cation pattern, then DRP2P interconnects is the best, regardless of
the type and size of the NoC. So, each pattern will be configured
during computation, that is, prior to the related communication
and hence there will be no reconfiguration overhead in terms of

Fig. 3. Four different communication scenarios.

Fig. 4. Comparison of DRP2P and NoCem with 3 ⁄ 3 mesh topology for different SD values.

144 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

time. However, in the worst case, the computation takes very little
time; the time interval of computation never overlaps with the
partial reconfiguration.

In Fig. 4, we have shown the timing results of DRP2P and No-
Cem for different SDtot values. To find average data transfer per
edge, we should consider each edge in different communication
scenarios. Since each node communicates with a different node
in each scenario, the average communication volume per edge
CVedge;avg can be formulated as:

CVedge;avg ¼ SDtot � N � ðM � 2Þ � t ð10Þ

For example, in Fig. 3, node A communicates with node E only in the
first scenario. So, the average communication volume per edge
CVAE;avg for SDtot values of 3200 KB, 32 M and corresponding com-
munication times t = 1.2 ms and t = 12 ms is calculated as:

CVAE;avg ¼ 3200 KB� 4� ð8� 2Þ � 12 ms � 266667 KB=s
CVAE;avg ¼ 32 MB� 4� ð8� 2Þ � 120 ms � 266667 KB=s

The applications (MP3-Encoder, H263-Decoder, etc.) in MMS
suite (see Fig. 7) have communication flows such as 116873,
75025, 38016, etc. These communication volumes have a unit of
10 KB, which represent the average communication volume be-
tween different tasks in 1 s. So, the communication flows
116873, 75025, 38016 represent the communication volumes of
1168730 KB/s, 750250 KB/s, and 380160 KB/s, respectively. As it
is obvious from these results, the SDtot values above 320 K seem
to be in the range of Multi-Media System application average com-
munication flows. Since, we already target such computation and
communication intensive applications, the sample data sizes that
we show seem to be very realistic.

We did not carry out a specific study on throughput because we
transfer data at each clock period in DRP2P. Since there is no buffer
or logic between two communicating nodes in DRP2P, the through-
put in both cases of is identical to the throughput of a wire.

As it is obvious from the chart, in the worst case analysis for the
small SD tot values (up to 320 K), the NoC outperforms DRP2P. How-
ever, as the SD tot value increases (from 320 K), DRP2P gives better
results than NoC architecture. Hence, it can be easily claimed that
DRP2P architecture is more suitable than NoC approach for large
data transfer where the possible number of different communica-
tion architecture patterns (N) between nodes are limited in terms
of data storage. However, in the best case, DRP2P always outper-
forms NoC.

Table 3 presents the power consumption results of ML402
board and occupied area of the design in Fig. 3 on Virtex-4SX35
and Spartan-6 XC6SLX45, respectively. We have implemented this
design with DRP2P and 3 ⁄ 3 mesh topology with simple packet
type of NoCem. Here, the modules M1-M4 are 8 ⁄ 8, while M5-
M8 are 16 ⁄ 16 unsigned multipliers for both DRP2P and NoCem
designs. The occupied area also includes these LUT-based multi-
plier blocks. The difference between design types ‘‘DRP2P without
reconfiguration’’ and ‘‘DRP2P with reconfiguration’’ is the case,
where we have cut the clock input of the ICAP module for the de-
sign without reconfiguration. The rest of the designs are identical.

The aim is to observe the pure power consumption due to partial
reconfiguration.

As it is obvious from the timing, power and area results of
DRP2P and NoCem designs, DRP2P approach gives better results
than NoC architecture when the packets being sent are getting lar-
ger. In addition to timing performance of DRP2P, it is also more
power and area efficient than the design with 2D-Mesh implemen-
tation of NoCem on both Virtex-4 and Spartan-6 FPGAs. When the
difference of DRP2P and NoCem with empty design board power is
considered, NoCem consumes 531mw, for the same design DRP2P
consumes only 356mW; power gain in DRP2P is about 33% com-
pared to NoCem. Therefore, it makes more sense to use DRP2P
for such communication infrastructures like in Fig. 3.

2.3. Comparison of DRP2P with a 2-D Reconfigurable Mesh NoC [8]

We have implemented the communication infrastructure of the
audio video benchmark [27] by utilizing runtime partial reconfigu-
ration property of Spartan-6 FPGA. The audio video benchmark in-
cludes H.263 decoder, H.263 encoder, MP3 encoder, and MP3
decoder applications. In [27], the audio video benchmark is imple-
mented on 16 different cores. Although the communication flow
among the cores is different for each application, each application
uses the similar set of IP-cores. Taking advantage of this property,
the number of used cores for audio video benchmark are reduced
to 12 cores in [8]. As in [8], we have also used the same task map-
ping procedure for audio video benchmark, i.e. Multi-Media Sys-
tem (MMS). The task-graphs of different MMS applications are
combined in Fig. 5 [8]. In this graph, nodes represent the cores
and edges are the communication flows. Edge weights are the
average communication volumes among different cores that have
unit of 10 KB/s [27]. In Fig. 6, the task graph of each application
in MMS suite is given separately.

In [8], communication infrastructure of MMS is implemented on
the reconfigurable NoC, which uses not only routers but also

Table 2
NoCem configuration parameters related to VC and FIFO.

NoCem Parameters Comment

constant NOCEM_TYPE: integer :¼ NOCEM_SIMPLE_PKT_TYPE; - - No VCs
constant NOCEM_CHFIFO_NOVC_TYPE: integer :¼ 2; - - generate FIFOs for No VC type
constant NOCEM_CHFIFO_TYPE: integer :¼ NOCEM_CHFIFO_NOVC_TYPE; - - Set to 2
constant NOCEM_FIFO_LUT_TYPE: integer :¼ 0; - - use LUTs for FIFOs, i.e. not BRAMs
constant NOCEM_TOPOLOGY_TYPE: integer :¼ NOCEM_TOPOLOGY_MESH; - - topology: mesh
constant NOCEM_FIFO_IMPLEMENTATION: integer :¼ NOCEM_FIFO_LUT_TYPE; - - use LUTs for FIFOs
constant NOCEM_CHFIFO_DEPTH: integer :¼ 4; - - set FIFO depth to 4

Table 3
Power consumption of ML402 board and occupied area on Virtex-4SX35 and Spartan-
6 XC6SLX45, 8-Modules (WC :128).

ML402 Board
power [Watt]

Virtex-4SX35
occupied area

Spartan-6
XC6SLX45
occupied area

Slices BRAM Slices BRAM

Available on
FPGA

10086 192 6822 116

Empty design 3195 – – – –
DRP2P without 3390 2011

(13%)
8
(4.1%)

603
(8%)

8
(6.8%)

Reconfiguration
DRP2P with 3551 2011

(13%)
8
(4.1%)

603
(8%)

8
(6.8%)

Reconfiguration
3⁄3 Mesh 3726 10086

(65%)
– 3868

(56%)
–

of NoCem

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 145

Author's personal copy

Fig. 5. Multi-Media System (MMS) complete task graph on 12 cores.

Fig. 6. Task graphs of applications in MMS suite.

146 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

configuration switches for packet routing. Since each application in
MMS is not to work at the same time, they can run at different time
slots by sharing the same hardware resources, i.e. task cores.
Therefore by removing the previous application, the next applica-
tion can be loaded to the hardware on demand. According to that
work, the switching operation between applications in MMS can
be done either by a configuration manager in reconfiguration pro-
cess or by storing configuration data in configuration switches and
routers. In [8], with the term reconfiguration, the authors refer to
the updating of the parameters of configuration switches. How-
ever, in our implementation, the switching operation between
these applications is done through runtime partial reconfiguration
of Spartan-6 FPGA, which is an actual FPGA fabric reconfiguration.
Due to the fact that the switching time between most use-cases in
a SoC is at the order of few milli-seconds [23], the time required to
partially reconfigure the FPGA can be covered up safely.

Our objective is to minimize the switching time between appli-
cations. This is achieved by minimizing the reconfigurable area on
a partially reconfigurable FPGA. To minimize the reconfigurable
area, as an initial step, we applied WelshPowell heuristic graph col-
oring algorithm [28] to the MMS complete graph (see Fig. 5) for the
physical location of cores. This algorithm gives the same colors to
the non-adjacent nodes in a given graph. The chromatic number
of the MMS complete graph is 4 meaning that there should be 4
different sets of cores communicating each other (Set-1 (blue):
Nodes 1, 2, 7; Set-2 (red): Nodes 0, 3, 4, 8, 10; Set-3 (yellow): 6,
9, 11; Set-4 (green): Node 5). Since the atomic unit of reconfigura-
ble area consists of frames that covers 16 CLBs in the height for
Spartan-6 FPGAs [29], the cores should be placed in a way to use
as few frames as possible. In addition to this, it is not essential to
locate the communicating cores in different sets, because the com-
municating nodes within the same set can also be connected
through the bus macros that are located in the same column. This
can be achieved in average by keeping the number of nodes same
in each set. In this way, area reserved for reconfigurable will be
minimized. The nodes that communicate most with the already in-
cluded nodes in target set are selected: the node 8 communicates
only with the node 7, therefore we shifted this node from Set-2
to Set-1. Thus, we achieved 2 sets with the same size, i.e. each
has 4 nodes. The node 5 communicates most with node 6. Hence
we moved this node to Set-3. As a result, the new sets are given
in the following:

� Set 1 has the nodes 1, 2, 7 and 8.
� Set 2 has the nodes 0, 3, 4 and 10.
� Set 3 has the nodes 5, 6, 9 and 11.

Since Set 2 has the heaviest communication flow in average, we
have located this in the middle of Set-1 and Set-3. Apart from this,
we have tried to locate most communicating node pairs in a mu-
tual manner in each set. Additionally, for the communicating node
pairs which are located Set-1 and Set-3, we have created additional
channels in the area of Set-2. Our architecture is shown in detail in
Fig. 7. Here note that, all steps for locating nodes on the FPGA is
done manually by hand design. An efficient algorithm for the node
to core mapping can be developed for this problem. In our

approach, there are dedicated P2P 32-bit links for each communi-
cation flow in MMS task graph.

At a time, there is only one of these configurations is available
on the Spartan-6 FPGA. The application switching is done by recon-
figuring the two reconfigurable areas at the same time. Since con-
figuration switching occurred infrequently (on-demand
application loading), runtime reconfiguration latency and power
dissipation for configuration switching can be ignored [8].

To meet the timing requirements of the application, we have set
computation clock to 300 MHz (according to heaviest data flow in
the task graph) and configuration clock to 100 MHz for the 16-bit
ICAP. Here, it is worth talking into consideration that long links
in the system can decrease the clock frequency. To avoid this, long
links can be partitioned by putting additional FFs on them, i.e.
pipelining fashion. The long links in our system mostly have bus
macros at their heads and tails. Furthermore, bus macros are com-
posed of FFs naturally. Hence, we do not need any additional FFs to
pipeline the system.

The height of each reconfigurable area is determined by the
number of used hard bus macros (BM). Each BM is 32-bits and
occupies 4-CLB height. Since there are 15 CLBs on a side at most
(the most left BM column in Fig. 7), each reconfigurable area occu-
pies 60-CLB height, i.e. about four (60=16d e) Clock Regions (CR) are
included to the each of reconfigurable areas (RA). In addition to
this, the width of reconfigurable area is about 3-CLB by counting
left and right BMs. So the total reconfigurable area (RAtot) can be
found in the following formula:

RAtot ¼ #RAs�#CRs� ð16CLBsÞ � ð3CLBsÞ ð11Þ

In our case, we have two reconfigurable areas and there are four CRs
included to the partial bitstream for each of RAs. According to the
Eq. (11), the total RAs occupy 384 CLBs, i.e. about 9% of the Spar-
tan-6 FPGA (SLX45). Total partial bitstream size of two RAs is about
100 KB, which results in about 0.5 ms of the reconfiguration time. In
Table 4, the occupied area of the MMS suite with DRP2P on Spartan-
6SLX45 FPGA is given. The communication architecture of MMS
suite with DRP2P occupies about 14% of the Spartan-6SLX45 FPGA.
In addition to this, for the storage of PBs, almost 45% of the on-chip
available BRAMs are used. If the cache method is preferred, the
usage of BRAMs can be reduced to one quarter (i.e. 12%) of the
non-cache method (i.e. 45%). In the cache method, only the current
PB is stored on BRAMs, the rest are stored on the external memory.

Here, it is worth mentioning that each application uses a subset
of cores in the MMS suite. Therefore, unused cores (nodes that have
no connections to any other nodes in each task graph) for each
application can be switched off to reduce the power consumption.
This can be done by pruning the clock input of unused core at each
scenario change, i.e. application switching. The pruning process of
clock input, which is named clock gating method, for unused core
can be done by utilizing partial runtime reconfiguration. We have
already used the similar technique clock scaling for the purpose of
power reduction and reconfiguration testing in different target de-
vices [29–31].

The work in [8] is implemented on ASIC with 65-nm technol-
ogy. However, our work is implemented on Spartan-XC6SLX45
FPGA with 45-nm technology. Hence, we did not compare area

Table 4
Area overhead of DRP2P for MMS communication architecture.

Spartan-6SLX45 device utilization summary [used/available]

Resource c2PCAP PB RAs with Muxes and Total Percentage
Type Repository BMs Demuxes

Slices 82/6822 – 768/6822 104/6822 954/6822 13.98
BRAM – 52/116 – – 52/116 44.83

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 147

Author's personal copy

and power results for DRP2P and [8]. In Table 5, message latencies
of three different implementations of MMS communication archi-
tecture are given. From these results, it is obvious that DRP2P gives
the best performance in terms of speed.

2.4. Comparison of DRP2P with other communication architectures

In Fig. 8, an n-bit width 256 ⁄ 256 cross point communication
architecture and its possible implementations are illustrated. The
first and the most common implementation of this architecture
is multiplexer based approach, shown in Fig. 8a. It cannot be de-
nied that this approach is the most speed efficient. Switching be-
tween different communication patterns occur in a few clock
cycles. However, the occupied area by this approach is infeasible.
Even for 1-bit width of 256 ⁄ 256 cross point architecture, the re-
quired number of slices is 19476/20480 of a Spartan-XC3S2000
(95% of the whole chip). Hence, the power consumption of such a
huge circuit will be very high. Therefore this approach will not
be practicable for small FPGAs (<2 M gates).

The second possible way to implement this architecture may be
using a ring Network-on-Chip (Fig. 8b). However, it is obvious that
communication from one node to other mostly requires multi-
hops (e.g. M1 to M512 requires 256 hops) which actually results
in increased latency due to packetization, routing and switching
through multiple routers. Apart from having increased latency, this
approach seems to be infeasible in terms of area and power.

Alternatively, a mesh NoC, Fig. 8c, can be a competitor to other
approaches. Like the multiplexer based approach, the mesh topol-
ogy is also more time efficient then ring topology NoC. The worst
case time cost of communication from any node to any other node
(e.g. from M1 to M512) is traveling about 46 routers (vertically 15
hops, horizontally 31 hops). The number of hops can be drastically
reduced by adding some new links to the mesh topology. However,
because of very complex routing between routers the occupied
area by this method is unpractical to be implemented on a small
FPGA. Even a 4 ⁄ 4 16-bit width 2D-mesh grid topology occupies
about 78% of Virtex-II FPGA (xc2vp30) [26].

All above mentioned approaches suffer from either speed or
area (likewise power). A balanced solution in terms of speed and
area may be DRP2P communication architecture, represented in
Fig. 8d. Such a configuration architecture can fit into 192/5120
CLBs of a Spartan-XC3S2000 (3.75% of the whole chip). To pass
256 signals safely, we have used 32 bus macros, which are located
one below the other. In addition to the occupied area of slice based
bus macros, 2-CLB-width area is reserved for signal flow from F2R
bus macros to R2F bus macros. So, totally 6-CLB-width area is occu-
pied for glitch-free signal flow between modules. As a result, to
pass 256 signals 32 � 6 = 192 CLBs are occupied. The information
of each communication scenario must be stored as a partial bit-
stream for this approach.

2.5. Limitations of DRP2P architecture

Since the reconfiguration time plays major role in DRP2P archi-
tecture, we would like to give limitations of reconfiguration on

Xilinx FPGAs at first. In the following paragraphs, possible shortest
reconfiguration times for Spartan-6 and Virtex-6 FPGAs from
XILINX are given.

Spartan-6 and Virtex-6 FPGAs offer the partial reconfiguration
in two-dimensional manner. The atomic unit that can be reconfig-
ured is a single frame within a clock region (in terms of CLB config-
uration) [29]. The frame size in Virtex-6/ Spartan-6 family is 162
Bytes [11]. Spartan-6 supports 16-bit ICAP for reconfiguration at
most 100 MHz, which results in 200 MB/s reconfiguration speed.
However, it is possible to use 32-bit ICAP mode for Virtex-6 at most
100 MHz, thus the reconfiguration speed of 400 MB/s can be
achieved. So, the reconfiguration times of possible smallest recon-
figurable area for Spartan-6 and Virtex-6 FPGAs are as in the
following:

Fig. 7. A simplified view of MMS suite physical placement on Spartan-6 FPGA.

Table 5
Comparison of message (8-flit packet) latencies in clock cycles for conventional,
Reconfigurable Mesh NoC [8] and DRP2P.

Benchmark Application 8-flit packet latency

Conventional Reconfigurable DRP2P
3 ⁄ 4 NoC 3 ⁄ 4 NoC [8]

MMS H.263 Decoder 23.308 19.332 17.780
H.263 Encoder 20.555 18.341 14.400
MP3 Decoder 25.009 20.701 8.000
MP3 Encoder 28.879 20.807 14.670

148 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

� Spartan-6: Tmin reconf ¼ 162B� ð200MB=sÞ ¼ 0:81 ls.
� Virtex-6: Tmin reconf ¼ 162B� ð400MB=sÞ ¼ 0:405 ls.

As a result, there is no any design that can be reconfigured
dynamically shorter than 0.81 ls on Spartan-6 and 0.405 ls on
Virtex-6 FPGAs. In the following, limitations of DRP2P architecture
are given:

� If the switching operation between different communication
scenarios occurs very frequently (e.g. order of a few microsec-
onds or faster), the time required to reconfigure the FPGA par-
tially cannot be covered. Therefore, reconfiguration time
overhead must be included in the execution time of the applica-
tion, i.e. the worst case occurs.
� The number of different scenarios is also limited for DRP2P

architecture. For each possible scenario, there must be a partial
bit-stream. The total size of these partial bit-streams should not
exceed the available internal or external memory. The size and
number of partial bit-streams are dependent on the reconfigu-
rable area and possible different scenarios.
� If the application execution time cannot be predictable (e.g. in

dynamic systems) according to the current input, the start
point of runtime reconfiguration cannot be forecasted. This
comes up with the worst case execution time of reconfiguration
process.

3. Design flow for DRP2P

The design flow for DRP2P is given in Fig. 9. In this Figure, num-
bers over the boxes represent the appropriate section for each
process.

3.1. The application is being profiled. . .

Initially, a design on FPGA is being profiled and its communica-
tion infrastructure between computing elements is being extracted
manually at design time. According to timing and area require-
ments of the design, the dynamic communication structure of
nodes is disclosed with simulation tools. This process gives us
the task mappings, communication scenarios and communication
channels.

3.2. Partial bitstream generation for all communication scenarios

After determining communication scenarios, a partial bitstream
is generated for each of them. Partial bitstream generation steps
are given in the following paragraphs:

3.2.1. Dynamic partial self-reconfiguration flow
The c2PCAP core behaves as if it is a mirror of SelectMAP port, as

same in ICAP. The configuration control flow in this work is very
similar to ‘‘SelectMAP configuration Flow Diagram’’ in [11] except
that PROG, INIT, DONE pins are not taken into account in our study.
This control flow has been already illustrated in detail in Fig. 5 of
our cPCAP core study [30].

Before this, communication infrastructure of the design is lo-
cated an place, where it communicates through only hard bus
macros. The details of generation of hard bus macros are given:

3.2.2. Slice based bus macros
For a lossless data communication between reconfigurable and

fixed area in a reconfigurable design, the designer must use a type
of bus macro, which guarantees a safe data flow in both directions
at the time of reconfiguration process. Such a lossless communica-

Fig. 8. n-bit width k⁄k (k = 256) point communication architecture and possible implementations.

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 149

Author's personal copy

tion can be implemented by tri-state buffers offered by Xilinx Inc.
However, some FPGA series from Xilinx such as Virtex-4 and pure
Spartan-3 families have no tri-state buffers. Hence, for these device
families a new type slice-based bus-macro, which acts as a tri-state
buffer, should be developed. There has been some papers pub-
lished related to this subject such as [32] and [33] using LUT based
multiplexer and and-gate approaches, respectively. The similar
slice based bus macros are used in this work as in Fig. 10. Contrary
to and-gate implementation, transparent latches keep the last data
before reconfiguration starts, thus there is no data loss during

reconfiguration. To guarantee a glitch-free signal flow from one
side to other side two kinds of bus macros (from fixed to reconfig-
urable area: F2R and from reconfigurable to fixed area: R2F) are
used. Since, each bus macro (narrow mode) has a width of 2-CLB,
totaly 4-CLB-width area is occupied for F2R and R2F slice based
bus macros to pass 8-bit signal from one side to other side safely.

Actually, there are no available slice based hard bus macros of-
fered by Xilinx for Spartan-6 FPGAs. However, there are some bus
macros which are directly used for some target FPGA families (e.g.
Virtex-5, Virtex-6) from Xilinx. Instead of designing a new bus
macro we manipulated and adapted Virtex-5 bus macros to the
Spartan-6 bus macros in our recently published study [29]. The
4-bitwidth synchronous single slice hard bus macro component
was illustrated in Fig. 3 and 4 in [29].

3.3. Partial bitstream manipulation

‘‘Compression of Partial Bitstreams’’ and ‘‘Selection of Optimum
Partial Bitstream Set’’ is explained in this subsection. Our proposed
c2PCAP is designed for decompressing the compressed bitstreams
stored in the on-chip BlockRAM of the Xilinx FPGAs.

3.3.1. Previous studies on configuration compression techniques
In the literature, there are studies which are directed for reduc-

ing the configuration size by proposing new mapping, placement,
routing algorithms [34–39]. This step is done at the time of bit-
stream generation or before it. However our method is bit-stream
compression which is independent from mapping, placement,Fig. 10. General structure of slice based bus macros.

Fig. 9. Design flow for DRP2P.

150 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

routing. Our technique is applied only to partial bitstreams gener-
ated by vendor tools such as bitgen from XILINX ISE.

There are various studies in the field of configuration compres-
sion and decompression techniques [40–45]. Common approaches
are Run-length encoding, Huffman coding, Arithmetic coding, LZ
based coding and their versions that are improved, extended or
manipulated. Our study and some of example studies are summa-
rized in Table 6.

With our proposed algorithm, we achieved up to 99% space sav-
ings as we have concentrated on compression of interconnects so-
lely. The following subsections explain how the partial bitstreams
are compressed by software and how they are decompressed by
hardware, i.e. c2PCAP core.

3.3.2. Compression

� Similarity extraction
Let pi and pj denote two partial bitstreams that successively rec-

onfigures a region on the FPGA for DRP2P interconnects. Since this
region has to be determined during design time, the length of both
partial bitstreams are the same. Then we can extract similarities
between two partial bitstreams by a simple XOR operation.

pij ¼ pji ¼ pi � pj ð12Þ

Let pij be named as the joint bitstream of pi and pj. Obviously, as the
similarities between pi and pj increases, the number of zero entries
in pij increases. If there are N different communication scenarios in
an application, then there are C N;2ð Þ joint bitstreams. Note that
XOR operation also helps in generating partial bitstream from an-
other one by using the joint bitstream:

pj ¼ pi � pij ð13Þ

� Compression

We introduce a zero run length coding technique to compress both
types of bitstreams. In this technique, each byte in the bitstream is
checked whether it is 0 or not. If it is not zero, it is directly written
to the BRAM file. Otherwise, firstly the number of zero bytes is
determined. Then the byte count is written to the BRAM file and
the parity bit of the related memory location is set. Let li and lij rep-
resent the lengths of compressed partial and joint bitstreams,
namely pc

i and pc
ij, respectively. Note that the length of compressed

bitstreams is usually smaller than the related partial and joint
bitstreams.

� Selection of optimal compressed bitstream set

There are C N;2ð Þ þ N compressed bitstreams for N communica-
tion scenarios. We define Is as the optimal set with N compressed
bitstreams and this set can be used in the generation of all partial
bitstreams by using Eq. (13) after decompression. Therefore it is
obvious that Is must contain at least one compressed partial bit-
stream. The other members of Is can be either compressed partial
or compressed joint bitstreams. Hence, our aim is to obtain Is such
that the sum of the lengths of the selected compressed bitstreams
is minimum so as to use as small BRAM area as possible. In this
case, our problem turns out to be a subset sum problem which is
known to be NP-complete. The fastest known exact algorithms uti-
lizing dynamic programming whose worst case execution time
would be around O K22K

� �
, where K ¼C N;2ð Þ þ N if we had used

it for the solution of our problem. However we propose a faster ex-
act algorithm that has the time complexity of O N22N

� �
, because

the Algorithm 1 is designed to omit infeasible solutions in the de-
sign exploration space. It operates on the indices of compressed
bitstreams and initially assumes that the set of compressed partial

bitstreams is the best solution (lines 1 and 2). Then it exhaustively
searches all possible solutions. In each iteration, there are m P 1
compressed partial bitstreams (lines 3–6). The remaining members
are compressed joint bitstreams which are generated from Gx (line
6) and R (line 7). Gx is the subset of Is and it contains partial bit-
streams pi that have to be stored in BRAM. R contains the indices
that are in Is but not in Gx. Compressed joint bitstreams pij will
be generated from the compressed bitstreams whose first index
is from Gx and second index is from R. Initially the cost of pi0s
(i 2 Gx) is calculated (line 8). Then the costs of joint bitstreams
which use i 2 Gx as the first index are evaluated one by one.The in-
dex pair (i, j) for compressed joint bitstreams is selected in a way to
minimize the storage cost in BRAM (lines 8–14).

Algorithm 1. Picking the smallest partial bitstream set

A sample run of our algorithm is available in Fig. 11. The sizes of
compressed partial and joint bitstreams are shown in tables. The
rule for filling the tables is defined with the following equations:

Tableðpi;piÞ ¼ li

Tableðpi;pjÞ ¼ Tableðpj;piÞ ¼ lij
ð14Þ

There are four different communication scenarios in this example.
Therefore, there are four partial, 10 joint bitstreams. Each row in-
cludes sizes of one compressed partial bitstream and N � 1 com-
pressed joint bitstreams that can be used in the generation of all
other partial bitstreams with the original bitstream in that row.
For example, Table ðp2;p2Þ shows the bit-length of pc

2 and
Tableðp2;p1Þ; Tableðp2;p3Þ and Tableðp2;p4Þ show the bit-lengths
of pc

21ð¼ pc
12Þ; pc

23 and pc
24, respectively. Hence, pc

1; pc
3 and pc

4 can
be generated as follows:

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 151

Author's personal copy

p1 ¼ dðpc
2Þ � dðpc

12Þ, p3 ¼ dðpc
2Þ � dðpc

23Þand p4 ¼ dðpc
2Þ � dðpc

24Þ:
Here, dð:Þ is the decompression function explained in Section 3.6.1.
The best intermediate solutions are identified with shaded cells
and bold entries in each table. At first, the initial cost (line 2 in
Algorithm 1) is calculated as in the first table in Fig. 11. The second
table in Fig. 11 calculates the costs of partial bitstreams set for
m ¼ 1 (the first iteration of ‘‘while’’ loop), where Gx contains only
a single partial bitstream. In Tables 3 to 8 in Fig. 11, where Gx con-
tains two different original bitstreams, the costs of partial bit-
streams set for m ¼ 2 (the second iteration of ‘‘while’’ loop) are
calculated. In Tables 9 to 12 in Fig. 11, where Gx contains three dif-
ferent original bitstreams, the costs of partial bitstreams set for
m ¼ 3 (the third and last iteration of ‘‘while’’ loop) are calculated.
In this example, the solution (Is ¼ 1;3; f23g; f34g) is found in the
fourth table (m ¼ 2; Iteration ¼ 2). Note that, the inner ‘‘foreach’’
loop (lines 9–17) of Algorithm 1 finds the minimum value in each
column. The iterations for each m value are relevant to outer ‘‘fore-
ach’’ loop (lines 6–22) of Algorithm 1.

3.4. Storage of partial bitstreams on memory

After compression and selection of optimum set processes, par-
tial bitstream of each communication scenario is stored as initial
values for BlockRAM or off-chip RAM.

3.5. c2PCAP architecture

All processes including ‘‘Decompression’’, which are being exe-
cuted at run-time, are done under the control of c2PCAP core.

An FPGA from XILINX configures itself through its SelectMAP
port under the control of c2PCAP. Through the parallel SelectMAP
interface, the partial reconfiguration information is accepted and
the reconfiguration process is executed again by the same target
FPGA, where this unique FPGA acts as not only a slave but also a

Table 6
A summary of some previous studies on configuration compression techniques.

Study Technique Approach Decompression Space savings (up to) Target device

[40] Huffman, arithmetic Wildcard Complex 80% Virtex
and LZ coding

[41] Adaptive LZW Intra-frame, Complex 45% for partial, Virtex
Inter-frame and 38% for complete
Inter-bitstream
regularities

[42] RL encoding Golomb code Simple 78% N/A
[45] LZ Dictionary Complex 41% N/A
Our study RLL XOR method Simple 99% for partial All Xilinx

FPGAs

Fig. 11. Steps of the Algorithm 1 for an eight-core implementation on a Virtex-4 FPGA. (X = XOR, if i – j; X = AND, if i = j).

Fig. 12. Hardware architecture of the system over external configuration port.

152 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

master at the time of reconfiguration as shown in Fig. 12. Note that
the SelectMAP interface is not only dedicated for partial reconfigu-
ration (PR), it might also be used in other designs for external con-
figuration memory (CR:Complete (Re) Configuration, S is used for
switching between PR and CR).

The similar structure is also used for devices, which have ICAP
modules like Spartan-6, Virtex-4 FPGA. So, through its ICAP inter-
face, the Xilinx FPGA configures itself under the control of c2PCAP
core. As shown in Fig. 13, it is noted that the supported bit-width of
ICAP for configuration varies considerably from architecture to
architecture: 8-bit for Virtex-II (Pro), 16-bit for Spartan-6, 8/32-
bit for Virtex-4, 8/16/32-bit for both Virtex-5 and Virtex-6 [11].

As shown in Fig. 14, the configuration clock (CCLK) is internally
generated by DCM. Since FPGA acts as slave during reconfiguration,
the source of CCLK is not important for the FPGA. The c2PCAP core
reads a byte from the BRAM at each clock cycle. Under the control
of CS/CE, WRITE, CCLK signals, this byte is sent to SelectMAP for
Spartan-3 and to ICAP interface for Virtex-4.

The bitstream information, which is accepted from BRAM, is
compressed. Since the decompression of bitstream information is
achieved at the time of reconfiguration, there is no need any addi-
tional time for decompression. Therefore when the CCLK speed is
set to 75 MHz, the reconfiguration speed is 75 MB/s. Note that
the reconfiguration speed is independent from the size of partial
bitstream. The BUSY signal is only used if the configuration clock
frequency exceeds 50 MHz. In this study, the CCLK for c2PCAP core
can be configured to operate up to 75 MHz for Spartan-3 and
100 MHz for Spartan-6, Virtex-4. As a result we reached 75 MB/s

(75 MHz, 8-bit SelectMAP) on Spartan-3, 200 MB/s (100 MHz, 16-
bit ICAP) on Spartan-6, 300 MB/s (75 MHz, 32-bit ICAP) for com-
pressed and 400 MB/s (100 MHz, 32-bit ICAP) for uncompressed
partial bitstreams on Virtex-4.

3.6. Previous works on self-reconfigurable systems

A lot of studies related to dynamic partial reconfiguration prop-
erty of reconfigurable architectures have been done in the litera-
ture. Especially, partial reconfiguration of FPGAs has an
important role in such design techniques. There have been differ-
ent works to utilize the partial reconfiguration ability of XILINX
FPGAs [46,47] and [12–21]. We have summarized the most of these
studies in Table 7.

Although we have also used 11 external wires and the Select-
MAP port as a reconfiguration interface, we have used BRAM to
store partial bitstream, c2PCAP core to control the reconfiguration
flow. However, our c2PCAP core is very small, which is 261 slices
and only 13% of a Spartan-3S200. Thus, we have accomplished a
processor-independent run-time reconfigurable system and pre-
sented a new approach for storing compressed partial bitstreams
on BRAM within the FPGA.

Most of these studies process uncompressed partial bitstreams
that are stored in external memory. However, c2PCAP can process
compressed partial bitstreams that are stored in BRAMs. This has
two main advantages: (1) One BRAM can hold more compressed
partial bitstreams than regular uncompressed partial bitstreams
(2) Access time to a partial bitstream in a BRAM is much shorter
than the access time to a partial bitstream in an external memory.
Decompression is realized in c2PCAP during reconfiguration time
without sacrificing from reconfiguration speed. In addition to the
configuration bitstream’s storage type, none of above-mentioned
studies offers a processor-independent platform. All studies use
MicroBlaze or PowerPC as their reconfiguration manager which re-
sults in large design sizes. However, our c2PCAP core is very small,
which is 261 slices. Another disadvantage of using MicroBlaze/
PowerPC as a reconfiguration flow controller is that they have to
postpone their computational jobs while they are busy with recon-
figuration. This will slow down the operations which are executed
by them. Therefore it has more sense to use a stand-alone core
which is dedicated only for control of reconfiguration flow. Apart
from these, c2PCAP core use either parallel SelectMAP [11] or par-
allel ICAP [11] method in 8/16/32-bit modes, hence we send 8/16/
32 bits at each configuration clock cycle.

Moreover, above mentioned designs either suffer from speed or
do not offer a processor-independent self-reconfiguration platform
for low-cost state-of-the art FPGAs. In addition to these, overclock-
ing of ICAP module of an FPGA is not recommended by the device
vendor. To run safely, the speed limit of ICAP is 100 MHz. There-
fore, the maximum throughput that can be achieved is 400 MB/s
(32-bit mode, not supported in Spartan-6) theoretically. Since
Spartan-6 supports reconfiguration through ICAP only in 16-bit
interface, the maximum theoretical reconfiguration speed through
ICAP at 100 MHz is 200 MB/s. In our case, we propose a processor-
independent self-reconfiguration platform for low-cost Spartan-6
FPGA with a safe throughput of 200 MB/s (Spartan-XC6SLX45 ICAP,
16-bit mode, 100 MHz).

3.6.1. Decompression
It is done by hardware and consists of three components as ex-

plained in the following subsections.

� Look up table

It is a BRAM unit and contains the indices of partial bitstreams
which are used in the generation of N communication scenarios.

Fig. 13. Hardware architecture of the system over internal configuration port.

Fig. 14. c2PCAP core and SelectMAP/ICAP interfaces (X: 7/15/31, ⁄: only for
SelectMAP, X: only for ICAP).

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 153

Author's personal copy

Each communication instance is represented by two address fields
in the table. Fields I and II represent the address entries for the
compressed partial and the compressed joint bitstreams, respec-
tively. If a communication instance can be implemented solely
by a partial bitstream, then its corresponding joint bitstream entry
is null. An example is shown in Table 8 for N = 4. As an example, we
may use the optimum set, pc

1, pc
3, pc

23, pc
34, which is found in Fig. 11.

For this example, in the look up table, we have address entry values
of pc

1, pc
3, pc

3, pc
3 in Field I and 0, pc

23, 0, pc
34 in Field II, respectively.

3.6.2. Decompressor
If the parity of the byte in the compressed bitstream in BRAM is

1, then as many zeroes are generated as the byte value. For exam-
ple, pc

34 becomes p34.

3.6.3. Extractor
In a communication instance, in the look up table, if entry II is

null, then the partial bitstream is automatically downloaded to
the FPGA after the decompression process. Otherwise an XOR oper-
ation is realized after the decompression between fields I and II as
indicated in Eq. (13). For example, for the 4th communication pat-
tern we have to obtain the p4, 4th row in Table 8. p4 is extracted by
applying an XOR operation to p2 and p24: p4 ¼ p2 � p24.

4. Test and results

The soft c2PCAP core is developed in VHDL. It has been synthe-
sized on Spartan-3S1000 Starter Kit Board, Atlys Spartan-6 FPGA
Development Board and also on ML402 (Virtex-4) Evaluation Plat-
form for experimental purposes.

The terms ‘‘Compression Ratio (CR)’’ and ‘‘Space Savings (SS)’’
used in tables can be formulated in Eqs. (15) and (16), respectively
(Compressed Size:CS, Original Size:OS).

CR ¼ ðOS� CSÞ : 1 ð15Þ
SS ¼ ðð1� ðCS� OSÞÞ � 100Þ% ð16Þ

Here it is noted that the ‘‘CS’’ and ‘‘SS’’ are actually based on the
structure and size of the partial bitstream.

Different communication patterns have been designated be-
tween a number of computing cores on Spartan-3S1000 and Vir-
tex-4SX35. There are four different communication scenarios in
all examples and a partial bitstream is generated for each one;
i.e. RRR = 4. Note that, the communication scenarios change in
round robin manner; i.e. p1 ! p2 ! p3 ! p4 ! p1 ! p2

The implementation cost of the communication structure is
summarized in Tables 9 and 10. In these tables, various designs
with different number of modules (8–48) and WC values (16–
384) are shown. The reconfigurable area is fixed to 2 CLB columns
for every design. In Table 9, the size of each original partial bit-
stream and of all other possible joint bitstreams for three different
designs are available. The reconfigurable area for each design is the
same and has the same number of logic components. Hence, as the
number of modules and also wiring between modules increases,
the compression ratio decreases. The reason for this phenomenon
is that the number of consecutive zeroes in the partial bitstreams
decreases. The communication pattern between modules for each
design is completely random and different from each other. The re-
sults for the designs with regular connection patterns would be
better than our results.

As it is obvious from the tables, by increasing the number of
modules, bigger compressed bitstreams are obtained. In Table 9,
while pc

4 is 744 Bytes for the design with 8-modules (WC:16) and
it is 9742 Bytes for the design with 48-modules (WC:192). The
choice of smallest partial bitstream sets is summarized in Table 10.
After generating all possible partial and joint bitstreams for three
different designs, the optimal compressed bitstream sets are se-
lected according to Algorithm 1. For example, for the design with
8-modules (WC:16), the bitstream set pc

2, pc
12, pc

23, pc
24 is found as

an optimum solution and the average SS is 98:57% for the com-
plete bitstream set. Space savings results for this optimum solution
are indicated in bold in Tables 9 and 10 respectively.

The average number of bitstreams per on-chip BRAM differs
from PCAP to cPCAP and c2PCAP cores. This is illustrated in

Table 7
A summary of some previous works on self-reconfigurable systems.

Study Control engine Partial bitstream (PB) repository Interface Speed Target device

[12] MicroBlaze Off-chip JTAG 2Mbits/s Spartan-3
[13] MicroBlaze Off-chip SelectMAP 66 MB/s Spartan-3
[14] MicroBlaze Off-chip JTAG 0.24 MB/s Spartan-3
[15] PowerPC Off-chip ICAP 417 KB/s Virtex-II Pro
[16] PLB ICAP Off-chip ICAP 295.4 MB/s Virtex-II Pro and

Virtex-4
[17] host PC Off-chip ICAP 200 MB/s Spartan-6

UART interface
[18] MicroBlaze Off-chip ICAP 0.54 MB/s Virtex-4
[19] MicroBlaze Off-chip ICAP 295.4 MB/s Virtex-4

PowerPC FSL-ICAP
XPS-ICAP

[20] MicroBlaze Off-chip overclocked ICAP 800 MB/s Virtex-5
xps hwicap 128 MB/s
xps hwicapwith DMA 174 MB/s

[21] MicroBlaze Off- Chip dma hwicap 82.6 MB/s Virtex-4
mst hwicap 253.2 MB/s
bram hwicap 371.4 MB/s

Our study c2PCAP On-chip SelectMAP or 300 MB/s All Xilinx
ICAP 400 MB/s FPGAs

Table 8
A sample look up table (Is = {1,3,f23g,f34g}, ADRp1

: address of pc
1, ADRp23

: address of
pc

23).

Communication patterns Field I Field II

1 ADRp1
0

2 ADRp3
ADRp23

3 ADRp3
0

4 ADRp3
ADRp34

154 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

Fig. 15. In this chart, it is clear that while the value of WC is getting
larger, the average number of bitstreams per BRAM decreases for
cPCAP and c2PCAP cores. In addition to this, regardless of the de-
sign, it is evident that the c2PCAP core is the most cost effective
in terms of storage.

4.1. Case studies

4.1.1. Target tracking application in a customized multiprocessor
architecture

In [49], an FPGA-based multiprocessor-system-on-chip (MPSoC)
architecture, which is optimized for Multiple Target Tracking
(MTT) in automotive applications, is represented. There are 23
Nios-II processors in this architecture and the communication
architecture between them changes with time in a round-robin
manner. As illustrated in Fig. 16, there are mainly five different sce-
narios that runs sequentially and repeatedly with time. In this
architecture, the Pulse Repetition Time (PRT), which is the time

interval between two successive radar scans, is 25 ms. Therefore,
the total reconfiguration time for five scenarios must be smaller
than PRT. In addition to this, the longest reconfiguration time
(e.g. 2.88 ms for P2–P3 at 100 MHz with ICAP 8-bit mode) must
be smaller than the shortest computation time (8 ms for Track
Maintenance Block). Since Tcomp P Treconf , it is safe to say that
the computational time overlaps with the reconfiguration time.
Hence, the reconfigurable communication architecture is utilized
in an optimum manner. It should be noted that, the communica-
tion architecture of this case study is not implemented as DRP2P
interconnects. Each communication scenario (Fig. 16a–f) is thought
as a communication circuitry and replaced with others through
DRP2P.

We implemented the communication architecture of this study
on a Virtex-4LX100. The reconfiguration latencies for each scenar-
ios are summarized in Table 11a. Although each reconfiguration
time in ICAP 8-bit mode at 50 MHz is shorter than the shortest
computation time (8 ms for Track Maintenance Block), due to the

Table 9
Partial bitstream size and their compression ratios for communication reconfiguration on Spartan-3 1000.

Partial
bitstream

of
Modules

Bit
width

Original size
(bytes)

Compressed size
(bytes)

Compression
ratio

Space savings
(%)

of BRAMs
(original)

of BRAMs
(compressed)

p1 8 16 24060 750 32.08:1 96.88 11.74 0.366
16 32 1050 22.91:1 95.64 0.512
48 384 7523 3.32:1 69.85 3.673

p2 8 16 24060 719 33.46:1 97.01 11.74 0.351
16 32 1070 22.49:1 95.55 0.522
48 384 7575 3.18:1 68.52 3.699

p3 8 16 24060 743 32.38:1 96.91 11.74 0.362
16 32 1117 21.54:1 95.36 0.545
48 384 8417 2.86:1 65.02 4.110

p4 8 16 24060 744 32.34:1 96.91 11.74 0.362
16 32 1098 21.91:1 95.44 0.536
48 384 9742 2.47:1 59.51 4.757

p12 8 16 24060 199 120.09:1 99.17 11.74 0.097
16 32 428 56.21:1 98.22 0.208
48 384 4045 5.95:1 83.19 1.975

p13 8 16 24060 259 92.9:1 98.92 11.74 0.126
16 32 487 49.4:1 97.98 0.237
48 384 3937 6.11:1 83.64 1.922

p14 8 16 24060 206 116.8:1 99.14 11.74 0.100
16 32 468 51.41:1 98.05 0.228
48 384 6824 3.53:1 71.64 3.332

p23 8 16 24060 236 101.95:1 99.02 11.74 0.115
16 32 488 49.3:1 97.97 0.238
48 384 5424 4.44:1 77.46 2.648

p24 8 16 24060 222 108.38:1 99.08 11.74 0.108
16 32 420 57.29:1 98.25 0.205
48 384 6805 3.54:1 71.72 3.323

p34 8 16 24060 238 101.09:1 99.01 11.74 0.116
16 32 375 64.16:1 98.44 0.183
48 384 6739 3.57:1 71.99 3.290

Table 10
Partial bitstream storage cost of communication reconfiguration for PCAP [48], cPCAP [30] and c2PCAP cores.

Method # of
Modules

Bit
width

Reference
bitstream

Bitstreams Total size
(Bytes)

of
BlockRAMs

Average # of BlockRAMs per 1
bitsream

Space savings
(%)

PCAP
[48]

All All – p1, p2, p3, p4 96240 46.99 11.75 0

cPCAP
[30]

8 16 – pc
1, pc

2, pc
3, pc

4 2956 1.44 0.36 96.92

16 32 4335 2.12 0.53 95.49
48 384 33257 16.24 4.06 65.44

c2PCAP 8 16 p2 pc
2, pc

12, pc
23,

pc
24

1376 0.67 0.17 98.57

16 32 p4 pc
4, pc

14, pc
24,

pc
34

2361 1.15 0.29 97.54

48 384 p1 pc
1, pc

12, pc
13,

pc
14

22329 10.90 2.73 76.80

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 155

Author's personal copy

fact that the total reconfiguration time (27.17 ms) is greater than
PRT, it seems to be unapplicable. However, the total reconfigura-
tion latency (13.57 ms) using ICAP 8-bit mode at 100 MHz is short-
er than PRT and each reconfiguration time is shorter than the
shortest computation time. Therefore it is feasible to use c2PCAP
with ICAP 8-bit at 100 MHz for the best DRP2P interconnects.

Each uncompressed partial bitstream is approximately 260 KB
for this study. By cPCAP, each partial bitstream is compressed to
the 79 KB approximately with 	70% space savings (storage re-
quires	40 BRAM blocks). By c2PCAP, each bitstream is compressed
to the 58 KB approximately with 	78% space savings (storage re-
quires 	28 BRAM blocks). As a result, the storage cost of design
will be 311 KB and requires 	152/240 BRAM blocks on a Virtex-
4LX100 (e:g: p1; p3; p23; p14; p35). By using on-chip memory as a
cache, which means storing only bitstream (s) for the next commu-
nication scenario and removing past bitstream (s) from BRAM, only

	60/240 BRAM blocks (25% of total) will be occupied. There are
two different approaches to use on-chip memory as a cache, first
approach keeps a single bitstream on BRAM while the second
one keeps multiple bitstreams. Assume that there is only one par-
tial bitstream and three joint bitstreams (e.g. p2; p12; p23; p24) in
the optimal set for four different communication scenarios. In
the first approach, only one partial bitstream (e:g: p2) is stored
on BRAM, the joint bitstreams are loaded when the corresponding
bitstream is needed. With this approach, the storage cost for bit-
streams can be reduced by factor 1� N. If we apply this approach
to this example (e.g. p1; p3; p23; p14; p35), we should store at most
two partial bitstreams on BRAM, the BRAM usage can be decreased
from 	152/240 to 	60/240. While it is storage efficient, the main
drawback of the first approach is that it may require multiple bit-
stream load at a time. For example, assume that only p1 is available
on the cache and p5 must be downloaded. To achieve this, at first p1

must be removed then p3 and p35 must be loaded to cache. As a sec-
ond approach, for the given example (e.g. p1; p3; p23; p14; p35), p1

and p3 are stored on BRAM initially. They can be directly read from
cache, when they will be used. To obtain p2, only p23 is taken to
cache. For p4; p14 is also loaded to cache, in the same way to get
p5, after removing unused joint bitstreams p35 is loaded. So, instead
of storing five partial bitstreams on BRAM, it is enough to store at
most three of them for this example. So, we may reduce the BRAM
usage from 	152/240 to 	91/240 for such a design by using cache
method.

4.1.2. N-body problem
One of the computation intensive problems is the N-body prob-

lem [50], which can be applied to extensive applications from var-
ious domains in engineering and science. The N-body problem
deals with N particles. Each particle interacts with the remaining
ones in each time step. To reduce the solution time of this problem

Fig. 15. # of Bitstreams per BRAMs vs. WC for communication reconfiguration of
PCAP [48], cPCAP [30] and c2PCAP cores.

Fig. 16. Different scenarios of MPSoC architecture for MTT in a PRT.

156 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

(O (N2)), the Barnes–Hut algorithm is applied to the N-body prob-
lem and Cell Broadband Engine Architecture is used [51].

In [52], the design of the Cell processors (The Cell Broadband
Engine processor) on-chip network and its communication and
synchronization protocols are proposed. Fig. 17a shows the Ele-
ment Interconnect Bus (EIB), the main component of the Cell pro-
cessor’s communication architecture, which provides the
communication between 8 Synergistic Processor Elements (SPEs),
Power Processor Element (PPE), I/O Interface and Memory Inter-
face Controller (MIC).

In this case study, we implemented DRP2P to connect the nodes
(SPEs) with 128-bit width reconfigurable bus channel to the MIC.
These connections change in round robin manner. Hence, there is
only one 128-bit-width connection with MIC at a time. So, each
SPE communicates (sends or receives, in both directions) with
MIC sequentially. Fig. 17b shows this communication architecture.
Here, only SPE2 is connected to MIC, all other SPEs are uncon-
nected and process their computations at this time. While one
SPE is communicating with the MIC, the others continue their com-
putations without being interrupted. This architecture is imple-
mented on the Virtex-4LX100 FPGA and the reconfiguration
latency for each connection is summarized in Table 11b. Here p1

is the partial bitstream, which has the communication information
of SPE0 and MIC. In the same manner, the rest partial bitstreams
have the communication information of SPE1-SPE7 and MIC,
respectively.

Fig. 18 illustrates the communication latencies of EIB on Cell
processor and DRP2P interconnects on Virtex-4LX100 FPGA. With
a clock speed of 3.2 GHz, the Cell processor is a heterogeneous
multi-core chip, which is capable of massive floating-point pro-
cessing. Our target platform, Virtex-4LX100 FPGA from XILINX, is
a reconfigurable, fully parallel platform with a clock speed of
100 MHz. As obvious from the illustration, DRP2P through ICAP
in 32-bit mode at 100 MHz (DRP2P_ICAP_32b_100MHZ) has the
best performance regardless of the problem’s size. The configura-
tion clock speed and the width of configuration interface is propor-
tional to the power consumed during reconfiguration process.
Hence, DRP2P_ICAP_8b_50MHZ can be regarded as the least power
consuming method among DRP2P options. On the other hand, it
performs worse than EIB on Cell processor when the number of
particles fewer than 8192. DRP2P_ICAP_32b_75MHZ and DRP2P_I-
CAP_8b_100MHZ, are better than Cell processor in terms of com-
munication latencies when the number of particles is greater
than 2048 and 4096, respectively.

Table 11
Reconfiguration latencies [ms] for case studies.

Freq. MHz ICAP (8-Bit) ICAP (32-Bit)

PB 50 100 75 100

(a) MTT
p1 5.36 2.68 0.894 0.670
p2 5.36 2.68 0.894 0.670
p3 5.77 2.88 0.962 0.721
p4 5.47 2.73 0.911 0.683
p5 5.21 2.60 0.868 0.651

Total 27.17 13.57 4.529 3.395

(b) N-body
p1 0.217 0.109 0.036 0.027
p2 0.217 0.109 0.036 0.027
p3 0.226 0.113 0.038 0.028
p4 0.240 0.120 0.040 0.030
p5 0.226 0.113 0.038 0.028
p6 0.226 0.113 0.038 0.028
p7 0.226 0.113 0.038 0.028
p8 0.324 0.162 0.054 0.040

Total 1.902 0.951 0.317 0.238

(a) Element interconnect bus (EIB). (BIF:
Broadband interface, IOIF: I/O interface)[52]

(b) 128-bit-width
DRP2P communication
between SPEs and
MIC (Only SPE2 is
connected to MIC at
this configuration)

Fig. 17. Element interconnect bus (EIB) and DRP2P communication between SPEs
and MIC.

Fig. 18. Total time consumed for communication between SPEs in N-body problem with different number of particles.

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 157

Author's personal copy

5. Conclusion

In this paper we have discussed dynamic reconfigurable point-
to-point interconnects in parallel multi-core architectures. We
have showed that there will be no reconfiguration latency and
the system will be working at its highest attainable speed as in di-
rect connections if communication paths can be reconfigured while
the processors are operating on the data in their local memories.
This can be achieved when the partial reconfiguration totally over-
laps with the computation time (Tcomp P Treconf).

We have mentioned that DRP2P architecture can be used not
only for the intra-switching purposes within an application; it
can also be utilized for the inter-switching among different appli-
cations. Since the switching time between most use-cases in a
SoC is at the order of few milliseconds [23], the time required
to reconfigure the FPGA partially can be covered up safely. Our
first case study can be given as an example for switching among
different applications or that is to say communication architec-
tures by utilizing DRP2P approach. In this case study, e.g. we
change the communication infrastructure of the system from
shared bus to crossbar: this is done by removing the communica-
tion circuitry of first scenario (see Fig. 16b) from the FPGA and
loading the communication circuitry of the second scenario (see
Fig. 16c) to the FPGA. Instead of implementing a packet or circuit
switched NoC, we preferred to use DRP2P for this case study. Be-
cause this system has 23 cores, it requires constructing a 2D 5 ⁄ 5
mesh NoC (32-bit). Even for a 4 ⁄ 4 mesh topology with 32-bit
data width, the open core NoCem occupies 125% of Virtex-II FPGA
(xc2vp30) [26]. As a result of this, it seems impossible to imple-
ment a 5 ⁄ 5 mesh NoC (32-bit) even on a high-end FPGA from
XILINX.

The self-reconfiguration of a Virtex-4, Spartan-6 and Spartan-
3 FPGAs through ICAP and SelectMAP ports are examined in de-
tail. In addition to this, storing different partial bitstreams on
BRAM within the target FPGA is also discussed in this paper.
The most important advantage of this study is to achieve a very
fast partial reconfiguration compared to other studies in the
literature.

Since there is no need to use an external intelligent agent,
there is also no need to use an external interface between con-
troller and the target reconfigurable device. As a result, neither
an external controller nor an external wiring between these de-
vices is necessary for c2PCAP core. Therefore, the hardware cost
can be reduced. As the supply voltages for driving external de-
vices are higher than the supply voltage for the internal opera-
tions of the FPGA, the total power dissipation is reduced. Hence,
storing compressed partial bitstreams on on-chip memory and
under the control of an internal agent, c2PCAP core, reduces hard-
ware cost and power consumption simultaneously. Furthermore,
with the capability of storing compressed partial bitstreams, dif-
ferent partial bitstreams can be stored on-chip memory at a
glance.

The developed c2PCAP core can be applied not only on a Virtex-
4, Spartan-6 or on a pure Spartan-3 and also on other Xilinx FPGA
series such as Virtex-II, Virtex-5, Virtex-6, Spartan-3A (N) and so
on.

In addition, by occupying a small area on the FPGA, the portable
c2PCAP core can be located anywhere in any Xilinx FPGA.

Processes, such as communication scenario extraction and
selection of most appropriate communication infrastructure are
being done manually for DRP2P at the moment. For these pro-
cesses, we are developing automation tool, which extracts the
communication scenario and decides the most suitable intercon-
nection network at a time for a given compute intensive
application.

Acknowledgments

We would like to thank Ömer Çoğal for supplying numeric test
values for NoC, Smail Niar and Betül Demiröz for their supports,
suggestions and corrections in our case studies.

References

[1] C. Hilton, B. Nelson, Pnoc: a flexible circuit-switched NoC for fpga-based
systems, IEE Proceedings on Computers and Digital Techniques 153 (3) (2006)
181–188.

[2] M. Modarressi, A. Tavakkol, H. Sarbazi-Azad, Virtual point-to-point
connections for NoCs, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 29 (6) (2010) 855–868.

[3] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, J. van der Veen. Dynoc: a
dynamic infrastructure for communication in dynamically reconfigurable
devices, in: International Conference on Field Programmable Logic and
Applications, 2005, pp. 153–158.

[4] M.B. Stensgaard, J. Sparso. Renoc: a Network-on-Chip architecture with
reconfigurable topology, in: Second ACM/IEEE International Symposium on
Networks-on-Chip, 2008, NoCS 2008, pp. 55 –64.

[5] S.J. Hollis, C. Jackson, Skip the analysis: self-optimising networks-on-chip
(invited paper), in: International Symposium on Electronic System Design
(ISED), 2010, pp. 14–19.

[6] J.L. Ma, C. Wang, Y. Wen, T.Z. Chen, W. Hu, J. Chen. Dynamic reconfigurable
networks in NoC for I/O supported parallel applications, in: International
Conference on Computer and Information Technology, 2010, pp. 0:2768–
0:2775.

[7] R. Vancayseele, B.A. Farisi, W. Heirman, K. Bruneel, D. Stroobandt. Reconoc: a
reconfigurable Network-on-Chip, in: Sixth International Workshop on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2011,
pp. 1–2.

[8] Mehdi Modarressi, Arash Tavakkol, Hamid Sarbazi-Azad, Application-aware
topology reconfiguration for on-chip networks, IEEE Transactions on VLSI
Systems 19 (11) (2011) 2010–2022.

[9] U.Y. Ogras, R. Marculescu, Application-specific Network-on-Chip architecture
customization via long-range link insertion, in: IEEE/ACM International
Conference on Computer-Aided Design, 2005, ICCAD-2005, pp. 246–253.

[10] H. Giefers, M. Platzner, A triple hybrid interconnect for many-cores:
Reconfigurable Mesh, NoC and barrier, in: International Conference on Field
Programmable Logic and Applications (FPL), 2010, pp. 223 –228.

[11] Available from: <http://www.xilinx.com/support/documentation>.
[12] K. Paulsson et al., Implementation of a Virtual Internal Configuration Access

Port (JCAP) for enabling Partial Self-Reconfiguration on Xilinx Spartan-III
FPGAs, FPL’07, August 2007.

[13] I. Gonzalez et al. Self-reconfigurable embedded systems on low-cost fpgas.
IEEE Micro, July–Aug. 2007, pp. 49–57.

[14] K. Paulsson et al., Exploitation of the External JTAG Interface for Internally
Controlled Configuration Readback and Self-Reconfiguration of Spartan 3
FPGAs, ISVLSI’08, April 2008.

[15] M.L. Silva, J.C. Ferreira, Support for partial run-time reconfiguration of platform
FPGAs, Journal of Systems Architecture 52 (12) (2006) 709–726.

[16] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner, J. Becker, A multi-platform
controller allowing for maximum dynamic partial reconfiguration throughput.
in: Proc. of the International Conference on Field Programmable Logic and
Applications FPL 2008, 2008, pp. 535–538.

[17] Dirk Koch, Christian Beckhoff, Jim Torrison, Advanced Partial Run-time
Reconfiguration on Spartan-6 FPGAs, FPT’10, December 2010.

[18] Sheetal U. Bhandari, Shaila Subbaraman Shashank Pujari, Rashmi Mahajan,
Internal dynamic Partial reconfiguration for real time signal processing on
FPGA, Indian Journal of Science and Technology 3 (4) (2010) 365–368.

[19] Michael Hübner, Diana Göhringer, Juanjo Noguera, Jürgen Becker, Fast
dynamic and Partial Reconfiguration data path with low hardware overhead
on Xilinx FPGAs, IPDPS’10, 2010.

[20] François Duhem, Fabrice Muller, Philippe Lorenzini, FaRM: Fast
Reconfiguration Manager for Reducing Reconfiguration Time Overhead on
FPGA, ARC’2011, 2011.

[21] Ming Liu, Wolfgang Kuehn, Zhonghai Lu, Axel Jantsch. Run-Time Partial
Reconfiguration Speed Investigation and Architectural Design Space
Exploration, in: Proc. of the International Conference on Field Programmable
Logic and Applications, August 2009.

[22] Karel Bruneel, Fatma Abouelella, Dirk Stroobandt, Automatically mapping
applications to a self-reconfiguring platform, in: Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’09, 2009, European Design
and Automation Association, 3001 Leuven, Belgium, Belgium, pp. 964–969.

[23] Srinivasan Murali, Martijn Coenen, Andrei Radulescu, Kees Goossens, Giovanni
De Micheli, A methodology for mapping multiple use-cases onto networks on
chips, in: DATE, IEEE, 2006, pp. 118–123.

[24] J.Y. Hur et al., Partially reconfigurable point-to-point FPGA interconnects,
International Journal of Electronics 95 (7) (2008) 725–742.

[25] Nocem, network on chip emulator @ONLINE, April 2007. Available from:
<http://www.opencores.org/project.nocem>.

158 S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159

Author's personal copy

[26] Graham Schelle, Dirk Grunwald, Onchip interconnect exploration for
multicore processors utilizing fpgas, Memory, 2006, pp. 1–4.

[27] Jingcao Hu, Umit Y. Ogras, Radu Marculescu, System-level buffer allocation for
application-specific networks-on-chip router design, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 25 (12) (2006)
2919–2933.

[28] D.J.A. Welsh, M.B. Powell, An upper bound for the chromatic number of a graph
and its application to timetabling problems, The Computer Journal 10 (1)
(1967) 85–86.

[29] Salih Bayar, Mehmet Tükel, Arda Yurdakul, A self-reconfigurable platform for
general purpose image processing systems on low-cost spartan-6 fpgas, in:
Proceedings of the Sixth International Workshop on Reconfigurable
Communication-centric Systems-on-Chip, ReCoSoC 2011, IEEE, 2011,
Montpellier, France, 20–22 June, pp. 1–9.

[30] Salih Bayar, Arda Yurdakul, Self-reconfiguration on spartan-iii fpgas with
compressed partial bitstreams via a parallel configuration access port (cpcap).
PRIME2008, June 2008.

[31] Katarina Paulsson, Michael Hübner, Salih Bayar, Jürgen Becker, Exploitation of
Run-Time Partial Reconfiguration for Dynamic Power Management in Xilinx
Spartan III-based Systems, ReCoSoc2007, Montpellier, France, June 2007.

[32] M. Hübner et al., Real-Time LUT-Based Network Topologies for Dynamic and
Partial FPGA Self-Reconfiguration, SBCCI’04, September 2004.

[33] L. Möller et al., Infrastructure for Dynamic Reconfigurable Systems, Choices
and Trade-offs, SBCCI06, August 6.

[34] K.P. Raghuraman, H. Wang, S. Tragoudas, A Novel Approach to Minimizing
Reconfiguration Cost for LUT-Based FPGAs. VLSID05, Kolkata, India, January 3–
7, 2005.

[35] M. Rullmann, R. Merker, A Reconfiguration Aware Circuit Mapper for FPGAs,
IPDPS 2007.

[36] W. Chen et al., A New Placement Approach to Minimizing FPGA
Reconfiguration Data, ICESS2008.

[37] F. Mehdipour et al., Reducing Reconfiguration Time of Reconfigurable
Computing Systems in Integrated Temporal Partitioning and Physical Design
Framework, pp. 1–8, Proceedings of 20th IPDPS, April 2006.

[38] P. Stepien, M. Vasilko, On Feasibility of FPGA Bitstream Compression During
Placement and Routing, FPL’06, Madrid, Spain, August 28–30, 2006.

[39] B. Sellers et al., Bitstream Compression Through Frame Removal and Partial
Reconfiguration, FPL’09, Czech Republic, August 31–September 2, 2009.

[40] Z. Li, S. Hauck, Configuration Compression for Virtex FPGAs, FCCM01, 29 April–
2 May 2001.

[41] H. Gu, S. Chen, Partial Reconfiguration Bitstream Compression for Virtex
FPGAs, CISP’08, May 27–30.

[42] D. Koch, J. Teich, Platform Independent Methodology for Partial
Reconfiguration, CF’04, April 2004.

[43] R. S�tefan, S.D. Cot�ofană, Bitstream Compression Techniques For Virtex 4
FPGAS, FPL’08, September 2008.

[44] D. Koch, et al., Bitstream Decompression for High Speed FPGA Configuration
from Slow Memories, ICFPT’07, December 2007.

[45] A. Dandalis, V.K. Prasanna, Configuration compression for FPGA-based
embedded systems, IEEE TVLSI 13 (12) (2005) 1394–1398.

[46] M. Edwards, P. Green, Run-time support for dynamically reconfigurable
computing systems, Journal of Systems Architecture 49 (4-6) (2003) 267–281.

[47] A. Ahmad et al., Efficient architectures for 3D HWT using dynamic partial
reconfiguration, Journal of Systems Architecture 56 (2010) 305–316.

[48] Salih Bayar, Arda Yurdakul, Dynamic partial self-reconfiguration on spartan-iii
fpgas via a parallel configuration access port (pcap), HIPEAC2008, January
2008.

[49] J. Khan et al., Trade-off Exploration for Target Tracking Application in a
Customized Multiprocessor Architecture, EURASIP Journal on Embedded
Systems (2009).

[50] K. Asanovic et al., The Landscape of Parallel Computing Research: A View from
Berkeley, Technical Report UCB/EECS-2006-183, December 18, 2006.

[51] B. Demiroz, et al., Parallelizing Barnes–Hut Method on the Cell BE Architecture.
MULTIPROG, January 24, 2010.

[52] M. Kistler et al., Cell multiprocessor communication network: built for speed,
IEEE Micro 26 (2006) 10–23.

Salih Bayar received his B.Sc. degree in electronics and
communication engineering from Yıldız Technical Uni-
versity, Istanbul, Turkey in 2003. He has received his
M.Sc. degree in Electrical Engineering and Information
Technology in the field of specialization Systems Engi-
neering from University of Karlsruhe (TH), Karlsruhe,
Germany, in 2007. Since 2007, he has been research
assistant and Ph.D. student in Computer Engineering
Department in Boğaziçi University, Istanbul, Turkey. His
research interests are reconfigurable computing,
dynamic and partial reconfiguration of Xilinx FPGAs,
multi-processor and embedded multi-core architec-

tures, System-on-Chip, Network-on-Chip and design automation.

Arda Yurdakul received the B.SC. degree in electrical
and electronics engineering with honors from Boğaziçi
University, Istanbul, Turkey in 1992. Her M.SC. and
Ph.D. degrees are also from the same university in 1994
and 1999, respectively. She was with Kadir Has Uni-
versity from 1999 to 2001 as an Assistant Professor.
Since 2001, she has been with Computer Engineering
Department in Boğaziçi University where she is cur-
rently an Associate Professor. She was the IEEE Turkey
section chair from January, 2010 to July, 2011. Her main
research interests are embedded systems, reconfigura-
ble computing, electronic design automation.

S. Bayar, A. Yurdakul / Journal of Systems Architecture 58 (2012) 140–159 159

