
A Formal Equivalence Checking Methodology for
Simulink and Register Transfer Level Designs

Muharrem Orkun Saglamdemir∗†, Alper Sen‡, Gunhan Dündar∗
∗Department of Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey

‡Department of Computer Engineering, Bogazici University, Istanbul, Turkey
†Ericsson Microelectronics Design Center, Istanbul, Turkey

Emails: orkun.saglamdemir@boun.edu.tr, alper.sen@boun.edu.tr, dundar@boun.edu.tr

Abstract—Driven by the increase in complexity of design, time-
to-market pressure and the need for a high level of collaboration
between multiple discipline teams in a project, model based
design has become the inevitable choice for IC Design projects.
High-level models are being substantially used as the reference for
implementation of the Register Transfer Level (RTL) counterpart
of the designs. In that respect, Matlab/Simulink is one of
the adopted high level modeling platforms in the IC design
industry. However, checking the formal equivalence of the models
with their RTL counterparts is still an area of interest to be
investigated. In this study, a methodology addressing that matter
is proposed. Simulink models of interest in this paper comprise
built-in Simulink blocks, Stateflow blocks modeling the state
machines, and user-defined blocks. Proposed methodology utilizes
Simulink’s Hardware Design Language (HDL) Coder and Real
Time Workshop (RTW) tools, Mentor Graphics’ Catapult, and
Synopsys’ Formality in the flow. Building of the methodology
is explained with a simple example. Then the methodology
is applied to multiple designs, including Advanced Encryption
Standard (AES) to verify its applicability.

I. INTRODUCTION

Model Based Design is a natural response to today’s IC
Design industry trends, since complexity of designs increase
exponentially, the intention to offer new products in a fast pace
increases time-to-market pressure and implemented designs
require collaboration of teams from multiple disciplines like
Analog/Mixed-Signal/Digital or Hardware/Software [1]. By
the help of model based design, verification, which consumes
most of the time in an IC project, becomes faster and archi-
tectural optimizations become feasible in early design phase.

In model based design, an executable model description is
the starting point to define the system at the highest level of
abstraction. Languages like C/C++, SystemC are widely used
in model based design [2]. Matlab/Simulink is also commonly
used as a platform for modeling the algorithm specification
and simulation, so that it is adopted for merging design,
optimization, and ASIC hardware verification steps as in [3],
and defined to be the starting point of model based System-
on-Chip (SOC) design at the system level [4].

Automatic generation of low-level codes is another motivat-
ing factor of model based design, since manual implementation
of the system level model is error prone and time consuming.
Automatically generated codes can be in the form of RTL
(Verilog, VHDL) or C/C++. There are various High Level
Synthesis (HLS) tools generating RTL codes from C/C++

and SystemC. Simulink has tools, namely Hardware Design
Language (HDL) Coder and Real Time Workshop (RTW), for
generating RTL and C codes, respectively. In [5], Simulink
and HDL Coder is used for High Level Modeling and code
generation of Low Density Parity Check Decoders. In [4],
RTW is utilized for generating C code from the Simulink
model as a part of their SOC design flow in system level.

As it is the case for other HLS processes, correctness of the
automatic code generation needs to be checked. In [6], formal
validation of the translation from Simulink to C by means
of RTW is studied for a subset of built-in Simulink blocks.
However, to the best of our knowledge, formal equivalency
of the HDL code generated by Simulink HDL Coder is not
investigated in a study.

In the IC design industry, it is a common practice that
Simulink model is designed by the system designers and
the RTL counterpart is written by the design engineers. This
process may be error prone, even if the same designer writes
both code. So the equivalence between the Simulink model
and its RTL counterpart should be guaranteed in order not
to have misalignments. It is possible to use simulations on
system level and RTL designs for checking equivalence. How-
ever, this suffers from coverage, whereas formal equivalence
checking gives 100% coverage. In that respect, a methodology
for checking the equivalence between Simulink models and
their RTL implementation is required. In this paper, a formal
equivalence checking methodology for Simulink and RTL is
proposed.

A typical Simulink model comprises blocks from three
different domains: Built-in Simulink blocks, Stateflow charts,
and User-defined blocks. For a Simulink model comprising
blocks of all those three types, our methodology utilizes Mat-
lab’s HDL Coder and RTW tools, Mentor Graphics’ Catapult
C, and Synopsys’ Formality in the flow. To summarize the
proposed methodology, HDL files for built-in Simulink blocks
and Stateflow charts are generated by HDL Coder. Then, for
user defined blocks, which are in S-functions in our case, C
files are generated by RTW. Since HDL Coder is not able
produce HDL files for those blocks, the generated C files
are further arranged in a form to be fed to Catapult-C which
generates the RTL files. Finally, the integration of the RTL files
generated by both Simulink HDL Coder and Catapult-C forms
the complete RTL implementation of the design. At this point,

it may be questioned why automatically generated codes are
not used as RTL counterpart, but metrics like performance,
area and power are still better for manual implementation,
so it is the preferred implementation. In the last stage, both
the manual code and the automatically generated RTL designs
are loaded into Formality for formal equivalence checking.
Figure 1 illustrates our methodology, details of which will be
explained in the following sections.

II. METHODOLOGY

A. Simulink Background

Simulink is a software for modeling, simulating, and ana-
lyzing real time systems [7]. Simulink models consist of a set
of blocks that are connected by signals specifying the flow of
data. Models can be structured hierarchically with the help of
subsystems. Simulink provides predefined blocks, which are
organized under several block libraries, like math operations
and lookup tables.

In addition to predefined blocks, Simulink models can in-
clude state machines designed by Stateflow. Stateflow extends
Simulink with a design environment for developing state charts
and flow graphs. Furthermore, Simulink user defined blocks
can be added to Simulink by means of Matlab functions
or System-functions (S-functions). S-functions are written in
C in a pre-defined format just like function calls used for
built-in Simulink blocks. After compilation of those files to
Matlab executable mex files, S-functions can be integrated to
Simulink. This predefined integration process is automated by
means of S-function builder functionality of Simulink, which
generates files in the predefined format as C files.

Simulink provides two tools for automatic code generation:
(i) HDL Coder generates portable, synthesizable VHDL or
Verilog code from user defined functions, Simulink blocks,
and Stateflow charts, (ii) RTW generates C and C++ code
from Simulink diagrams, Stateflow charts, and user defined
functions.

B. Building of the Methodology

In a typical digital IC Design flow, in which Simulink
is utilized for system level design, it is a common practice
that Simulink model and its RTL design counterpart are
verified separately in their own domains. This simulation-
based practice suffers from incompleteness of equivalence
checking. Nonexistence of a methodology for formal equiv-
alence checking of Simulink models is mostly due to the
fact that Simulink lacks formal semantics. That has motivated
several studies working on translating Simulink models to a
semantically equivalent formal model. In [8], formal model is
HyVisual, whereas in [9], it is Hybrid Automata, and in [10],
it is Input/Output Extended Finite Automata.

For our specific case of digital IC design, counterparts
of the system level models are mostly implemented in Ver-
ilog/VHDL. Those two languages are both standardized by
IEEE, and they can constitute a suitable domain with for-
mal semantics into which the Simulink level models can be
translated. For our case, we opted for Verilog. As the formal

equivalence checking part is considered, there already exist
commercial formal equivalence checking tools like Formality
and Conformal. Since Verilog is decided to be the common
formal representation domain for both the system level and
HDL level designs, a flow for translating a Simulink model
into a Verilog implementation is needed first.

In order for a flow to be qualified for conversion from
Simulink models into HDL, it should be able to handle all
three types of blocks used in Simulink modeling. For a large
number of built-in Simulink blocks referred in the distribution
document and Stateflow charts, HDL Coder can generate HDL
codes. For user-defined blocks, which are defined as S-function
blocks, HDL Coder is not able to generate HDL. In order to
convert those blocks into HDL, a different approach should
be applied. RTW can be employed to generate C files from
S-functions. Those C files are in the form of functions and
the operation relaized by an S-function is described by the
function called ”outputs wrapper”. For the final phase of HDL
generation from C files, Catapult C Synthesis tool is utilized
[11]. As C files from RTW are input to Catapult C and
outputs wrapper function is set as top level, HDL files for
S-functions are generated. By integration of these HDL code
for the S-functions to the code generated by the HDL Coder,
the complete Verilog representation for the Simulink model is
obtained. The final phase of our methodology is to check for
formal equivalence of automatically generated HDL code and
its manually implemented counterpart. Although this phase
could be completed by any available formal checker, in our
case we deployed Formality [12]. A visual representation of
our methodology is depicted in Figure 1.

SIMULINK

MODEL

HDL
CODER

 REAL TIME
WORKSHOP CATAPULT C

FORMALITY

INTEGRATION

MANUAL HDL

DESIGN
HDL Files - Verilog

HDL Files - Verilog

C Files

Verilog
Files

Verilog
Files

EQUAL

NOT EQUAL

Fig. 1. Formal Equivalence Checking Methodology.

C. A Simple Simulink Example

In order to demonstrate the operation of the methodology,
we use a simple design in Figure 2 including built-in Simulink
blocks, a Stateflow chart and a user-defined S-function block
as a case study. Add1 and UnitDelay1 blocks form the built-in

Fig. 2. Case study with built-in Simulink, Stateflow and S-function blocks.

Simulink block part of the design, realizing a counter, which
counts in steps input by In1. Following the built-in blocks,
Two State subsystem is a Stateflow chart shown in Figure 3.
Stateflow charts are put under subsystems as a requirement of
HDL Coder. The last block named Subsystem is a user-defined
S-function, which outputs the difference of its inputs and the
addition of inputs from Out1 and Out2, respectively. I/O’s,
their datatypes and functionality realized by the S-function
are all entered by the S-function builder block of Simulink
via GUI.

Fig. 3. Two State Subsystem and its state diagram.

An HDL Coder run on the design generates HDL for built-
in Simulink blocks and Stateflow chart, but reports failure for
the S-function block. Hence, as mentioned earlier, C files are
generated for the S-function block by means of RTW and those
files are input to Catapult C. Setting outputs wrapper function
as top level, Catapult generates the HDL files corresponding to
the S-function. After the integration of the code for S-function,
automatically generated HDL and manually written code are
input to Formality, where formal equivalence is checked and
successfully verified.

III. EXPERIMENTS

We now demonstrate the applicability of our methodology
on complex designs. These designs are Configurable Finite
Impulse Response (FIR) and Least Mean Squares (LMS)
filters, being distributed in the MATLAB package and AES,
being a design of a well-known and published encryption
standard.

1) Configurable FIR Filter: This design is a configurable
pipelined symmetric 32 tap FIR filter. It is designed in a 4 stage
pipelined structure. It has 4 adders/multipliers/accumulators in
each stage and there are 16 coefficient addressable registers in
the design. The top level of the Simulink model is as shown
in Figure 4.

The model consists of two main parts: a finite state machine,
which is modeled using Stateflow, and a datapath, which is
implemented using generic Simulink blocks. The Stateflow
part comprises 5 states and is implemented using functions
and truth-table structures. The datapath is designed in pipeline
form including 3 subsystems, pre add (4 adders), mult (4
multipliers) and acc (4 adders/delay elements) in addition to 8
delay elements with 3 adders. The proposed methodology was
followed and the formal equivalence of the manually written
HDL code was verified after fixing the errors on the manual
implementation side.

Fig. 4. The top level of Configurable FIR Filter Simulink Model.

2) LMS Filter: This design takes input signal, desired
signal, Step Size and Reset Weights as inputs and outputs
the error. Input signal is filtered and the difference between
filtered signal and desired signal is fed back, as can be seen in
Figure 5. Each of the 4 blocks on the figure comprises 10 LMS
Taps and 10 adders. Each tap is designed using 2 multipliers,
2 delay elements, one switch and one adder.

Fig. 5. The system model of LMS filter.

Following the methodology, the HDL code was generated
and verified to be formally equivalent to the manually written
one.

3) AES: AES is an encryption standard, specifications of
which have been published by The National Institute of Stan-
dards and Technology (NIST) [13]. The AES cipher operates
on 128 bits and uses cipher keys with 128, 192 or 256 bits in
length. All the AES cipher transformations are performed on
a two dimensional 4x4 array of bytes. AES cipher performs
a set of four transformations (SubBytes, ShiftRows, Mix-
Columns, and AddRoundKey) on the array for certain number
of rounds depending on the cipher key length. For our case,
we chose cipher key of 128 bits, which requires 10 rounds of
transformation. First AddRoundKey transformation is applied,
then in the first 9 rounds, SubBytes, ShiftRows, MixColumns,
and AddRoundKey transformations are applied respectively.
In the last round SubBytes, ShiftRows, and AddRoundKey
transformations are applied.

The manual HDL implementation of AES was obtained
from [14] by rewriting SystemVerilog implementation as Ver-
ilog. The hierarchy of the implementation is shown in Figure 6.
In that design AES128 Key Expand module, which generates

the keys, is pipelined with the AES128 cipher top module.
While the AES128 cipher top module performs an iteration
of the encryption transformations on the array using the
previously generated keys, the AES128 Key Expand produces
the next round’s keys. AES128 Rcon calculates a parameter
for AES128 Key Expand for key generation process.

Fig. 6. The hierarchy of the manual implementation for AES 128 [14].

For the Simulink model design, built-in Simulink models
and S-functions were used. MixColumn transformation, which
is a matrix multiplication operation, was implemented utilizing
S-function builder, since it can be expressed more easily in
software language. The remaining parts of the model were
realized using built-in Simulink blocks.

By following our proposed methodology, the HDL code for
MixColumn transformation was generated by the application
of RTW and Catapult C in succession. For Simulink design
except MixColumn transformation, HDL codes were produced
by means of HDL Coder. Then Formality confirmed the formal
equivalence of the Simulink model and the manual implemen-
tation. It should be noted that by means of our methodology,
we found that AES128 Rcon was not implemented correctly
in our manual RTL, while we were running Formality.

Some metrics for the discussed experiments are given in
Table 1. For HDL generation, we utilized a dual-core computer
with 2.4 GHz clock speed, and 4 GB RAM. For equivalency
check, we used an 8-CPU workstation with 16 GB RAM.
As it can be seen from the table, our flow executes in a
reasonable time. Considering the total durations needed for
executing flow, which are the sums of HDL generation times
and equivalency check times for each experiment, it can be
said that those durations correlate with the number of registers.
Furthermore, for each experiment, it is seen that the number of
RTL lines generated automatically is greater than the number
of RTL lines written manually, which is an expected result.

Table I. Some metrics for the experiments.
Parameter Conf FIR LMS Filter AES
registers 1155 1312 408
HDL gen time (sec) 13.1 36.1 27.5
RTL lines (Auto) 1424 6611 12138
RTL lines (Manual) 882 552 1103
Eqv check time (sec) 100.3 180.9 47.4

IV. CONCLUSION

Simulink is a widely used system level design platform in
the IC Design industry. Traditional workflow in those projects
is that the system is designed in Simulink and verified by
Simulink simulations; then, RTL implementation is done and
verified. In this workflow, a notion of formal equivalence
between Simulink model and its HDL counterpart was miss-
ing. In this paper, we proposed a methodology addressing
that problem. Our methodology was exercised by standard-
ized, publicly distributed complex designs and proven to be
working. As our methodology is dependent on off-the-shelf
tools, we are limited by the capabilities of such tools. Our
methodology can potentially be adoptedin IC Design Projects
as we further investigate and improve our methodology.

As Simulink is also used in modeling Analog/Mixed Signal
designs, extension of our methodology to check for equiva-
lence of Analog/Mixed Signal models and their Verilog AMS
counterpart will be our future work.

ACKNOWLEDGMENT

Muharrem Orkun Saglamdemir was partially supported by
Ericsson Microelectronics Design Center. Alper Sen was sup-
ported in part by Marie Curie European Reintegration Grant
within the 7th European Community Framework Programme,
and the Turkish Academy of Sciences.

REFERENCES

[1] D. Auger, Programmable hardware systems using model-based design,
Proceedings of IET and Electronics Weekly Conference on Programmable
Hardware Systems, London, 2008.

[2] P. Urard, A. Maalej, R. Guizzetti, N. Chawla, V. Krishnaswamy, Leverag-
ing sequential equivalence checking to enable system-level to RTL flows,
Proceedings of 45th ACM/IEEE Design Automation Conference, 2008.

[3] D. Markovic, C. Chang, B. Richards, H. So, B. Nikolic, R.W. Brodersen,
ASIC Design and Verification in an FPGA Environment, Proceedings of
IEEE Custom Integrated Circuits Conference, 2007.

[4] D. Araki, A. Nakamura, M. Miyama, Model-based SoC design using
ESL environment, Proceedings of International System on Chip Design
Conference, 2010.

[5] S.M. Aziz and S. Sharma, New Methodologies for High Level Modeling
and Synthesis of Low Density Parity Check Decoders, Proceedings of
11th International Conference on Computer and Information Technology,
Bangladesh, 2008.

[6] M. Ryabtsev, O. Strichman, Translation validation: From Simulink to C,
Computer Aided Verication, Vol. 5643, Springer, 2009.

[7] http://www.mathworks.com/products/simulink/.
[8] R. Ray, Automated Translation of MATLAB Simulink/Stateflow Models to

an Intermediate Format in HyVisual, Master of Science Project Report,
Chennai Mathematical Institute, 2007.

[9] A. Agrawal, G. Simon and G. Karsai, Semantic Translation of
Simulink/Stateflow models to Hybrid Automata, Electronic Notes in
Theoretical Computer Science, Vol. 109, December, 2004.

[10] C. Zhou, R. Kumar, Modeling Simulink Diagrams using Input/Output
Extended Finite Automata, Proceedings of 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference, 2009.

[11] http://www.mentor.com/esl/catapult/overview.
[12] http://www.synopsys.com/tools/verification/formalequivalence/pages/

formality.aspx.
[13] National Institute of Standards and Technology, Federal Information

Processing Standards Publication 197, 2001.
[14] B. Hakhamaneshi, A Hardware Implementation of the Advanced Encryp-

tion Standard Using SystemVerilog, Master of Science Project Report,
California State University Computer Engineering Department, 2009.

