Runtime Verification of k-Mutual Exclusion for
SoCs

Selma Ikiz
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712, USA
Email: ikiz@ece.utexas.edu

Abstract— We present an efficient runtime verification environ-
ment for detecting mutual exclusion predicates. Such predicates
are important for keeping the safe operation of concurrent
systems. Our environment models execution traces as partial
order traces to increase scalability in runtime verification. We
compare two techniques implemented in POTA tool, namely k-
exclusion and computation slicing. The k-exclusion problem is
a generalization of the mutual exclusion problem in which up
to k processes may be in their critical sections at the same
time. Our k-exclusion algorithm exploits the fact that if there
is a k-exclusion violation then it is impossible to partition events
from critical sections into & queues. We earlier presented efficient
computation slicing algorithms to detect predicates from a subset
of temporal logic CTL. We performed experiments using POTA
tool on scalable protocols. Our comparison shows that k-exclusion
is substantially better than slicing both in terms of time and
space. In all fairness, slicing handles general class of predicates
from temporal logic CTL, whereas k-exclusion algorithm handles
only a very specific, nonetheless useful, class of mutual exclusion
predicates.

I. INTRODUCTION

Modern day hardware systems often consist of individual
IP blocks connected in meaningful arrangements carrying out
independent as well as cooperative objectives. Such Systems-
on-Chips (SoCs) are gradually becoming more and more
diverse and complicated, thereby gaining popularity. Their
enormous potential for re-using IP makes them economically
viable solutions to many products out in the market today.
The design of a SoC system can be very large and complex.
Because SoC’s have a large number of components, in general,
it is not feasible to give a formal proof of correctness (manual
or automatic). Therefore, extensive simulation is still the most
common technique used in verifying industrial systems. We
advocate the use of Predicate Detection (also called Runtime
Verification, Assertion Based Verification) that combines for-
mal methods and simulation. Specifically, predicate detection
enables efficient verification of predicates (or properties) from
a formal specification language on execution traces of actual
scalable systems.

We also advocate the use of a predicate detection technique
that works on Partial Order Simulation Traces instead of the
traditional total order simulation traces. We use the partial
order approach because it has several advantages over the
total order approach. Traditional simulation methodologies are

Alper Sen
Design Technology Organization,
Freescale Semiconductor Inc.
7700 W. Parmer Lane, Austin, TX 78729, USA
Email: alper.sen@freescale.com

woefully inadequate in presence of concurrency and subtle
synchronization. The bug in the system may appear only when
the delay in synchronization is different from the delay in the
simulation trace. A partial order trace model is a more faithful
representation of concurrency [10], that is, only the events
that have a causal dependency are ordered, e.g. the send of
a message and the receive of that message. A partial order
encodes possibly exponential number of total orders, therefore
we can analyze exponentially more number of traditional
traces. Hence, although our predicate detection technique is
based on simulation, it becomes scalable in terms of bug
detection thanks to partial order traces.

Programming, testing and debugging of concurrent pro-
grams is substantially more difficult than that of sequential
programs both in terms of correctness and efficiency. Today,
almost any large software application is an entire concurrent
system made of varying number of processes. These processes
often share resources which must be effectively protected
against concurrent access. This is usually achieved by exe-
cuting these actions in critical sections that are protected by
semaphores or locks. Hence, an important predicate detection
problem is to detect is whether the access to the critical
sections are mutually exclusive. This problem is the well
known mutual exclusion property. To ascertain this safety
property, it is vital to detect whether any two processes are
in their critical sections simultaneously, i.e., whether there is
a mutual exclusion violation in the computation. In this paper,
our goal is to detect mutual exclusion predicates based on
two algorithms namely k-exclusion and computation slicing.
This is the first study that shows some experimental results
for k-exclusion algorithm on simulation traces rather than
random partial order sets. Moreover, we define bounded sum
form (BSF) of predicates and show that BSF can be applied
more efficiently than disjunctive normal form (DNF) for some
predicates.

The k-exclusion problem was posed by Fischer, et al. [5]
as a generalization of the mutual exclusion problem in which
up to k processes may be in their critical sections at the same
time. The k-exclusion property is shown to be a special class
of bounded sum predicates [3] and solved by using a max-
flow algorithm. Our k-exclusion algorithm exploits the fact
that if there is a k-exclusion violation then it is impossible to

partition events from critical sections into k£ queues [4]. We
present an efficient, centralized and incremental algorithm.

Computation slicing was introduced in [1], [6], [13] as
an abstraction technique for analyzing traces of distributed
programs. Intuitively, a slice of a trace with respect to a
predicate p is a sub-trace that contains all the states of the
trace that satisfy p. Note that the set of states that satisfy
p may be large, so one could not simply enumerate all the
states efficiently either in space or time. A slice contains all
the states that satisfy p such that it is computed efficiently
(without traversing the state space) and represented concisely
(without explicit representation of individual states). Slicing
algorithms were developed for temporal logic predicates in [1].
Slicing based predicate detection approach was earlier shown
to bring exponential reduction both in terms of time and space
for verification of several safety and liveness predicates of
scalable protocols [1], [13].

We implemented our k-exclusion algorithm in Partial Order
Trace Analyzer (POTA) tool [13], which already implemented
slicing based algorithms. We perform experiments on scal-
able protocols such as Cache Coherence, Distributed Dining
Philosophers and PCI based System-on-Chip (SoC). All of
these protocols have to satisfy the mutual exclusion property.
Our comparison shows that k-exclusion is substantially better
than slicing both in terms of time and space. In all fairness,
slicing handles general class of predicates from temporal
logic CTL, whereas k-exclusion algorithm handles only a
very specific, nonetheless useful, class of mutual exclusion
predicates.

Related Work: Predicate detection in partial order traces is
a hard problem. Detecting even a 2-CNF predicate under EF
modality has been shown to be NP-complete, in general [6].
The idea of using temporal logic for analyzing simulation
traces has been attracting a lot of attention recently. We first
presented a temporal logic framework for partially ordered
execution traces in [12] and POTA tool for runtime verification
in [13], [14]. Some other examples of using temporal logic for
checking execution traces are the MaC tool [9], the Verisim
tool [2], and the JMPaX tool [15].

Our work can be applied just as well to concurrent and dis-
tributed programs and to behavioral hardware descriptions in
Verilog or VHDL. Several EDA companies provide Assertion
Based Verification support. However, all those tools use total
order simulation trace model, hence the coverage is limited.

II. MODEL

We assume a system consisting of processes denoted by
Py, ..., P,. Examples of processes are a thread in a program,
node sitting on a PCI bus or a cache in a cache coherence
protocol. Processes execute events. Events on the same process
are totally ordered. However, events on different processes are
only partially ordered. In this paper, we relax the partial order
restriction on the set of events and use directed graphs to
handle traces and slices with the same model.

We model a trace (or a computation) as a directed graph,
denoted by (E, —), with vertices as the set of events £ and

edges as —. We use event and vertex interchangeably. To limit
our attention to only those consistent global states that can
actually occur during an execution, we assume that the paths
in (E,—) contains at least the partial order relation.

A partial order relation known as Lamport’s happened-
before relation [10] has been used for modeling simulation
traces. We use a mechanism known as vector clocks to
represent the partial order relation. A vector clock assigns
timestamps to events such that the partial order relation
between events can be determined by using the timestamps.

III. K-EXCLUSION ALGORITHM

The k-exclusion problem was posed by Fischer, et al. [5]
as a generalization of the mutual exclusion problem in which
up to k processes may be in their critical sections at the same
time. The k-exclusion property is shown to be a special case
of bounded sum predicates [3] and solved by using a max-
flow algorithm. Here we define bounded sum form (BSF) of
predicates to compare them in disjunctive normal form (DNF).
Some examples of predicates where BSF can be applied more
efficiently than DNF:

1) Two process mutual exclusion:

(DNF) \/i,jGO.H(nfl) (EF(CS; A CSJ’))
(BSF) (EF(CSO +CS1+...CS,_1 > 1))
2) At least one server is available:
(DNF) (EF(—availy A —availy A ... —availy,))
(BSF) (EF(—availy + —availy + . .. mavail, > n — 1))

3) K process mutual exclusion:

(DNF) V;, 41 ieo...(n—1)
(BSF) (EF(CSy +CS1 +...CS,—1 > K))

The k-exclusion violation can be detected by checking
whether more than k processes have executed their critical
section simultaneously (concurrently). However, a detection
algorithm that uses DNF form requires C'(n, k + 1) combina-
tion checks on computation trace for each disjunct. On the
other hand using a max-flow algorithm has O(E?.log(FE))
complexity. Our algorithm described below has a better com-
plexity.

Our k-exclusion algorithm exploits the fact that if there is a
k-exclusion violation then it is impossible to partition critical
section events into k queues (Dilworth’s Chain Partition) [4].
The k-exclusion algorithm is centralized and incremental.
We call the process checker process if it is executing the
algorithm (central process). Each process, whenever changes
its state, sends its local state along with its vector clock to
the checker process. When a new event arrives, the checker
process executes the algorithm if the new event is a critical
section event, otherwise discards it. The k-exclusion algorithm
rearranges the queues according to the new event and checks
whether the number of queues in the resultant arrangement is
more then k or not. The algorithm assumes that when a new
event arrives, all events that happened-before it have already
arrived and been processed. This is achieved by buffering the
new event if it violates the assumption and processing it later.
Whether to buffer an event can be determined efficiently by
examining its vector clock.

1 (EF(CSiO A\ CSZ‘I N CSzK))

Setup: The algorithm uses queues to store the events. Events
are stored in an increasing order so that head is the smallest
event and tail is the largest event in the queue. It keeps two
type of queue compositions: work and history. We refer to the
set of work and history queues as work and history space,
respectively. W7 represents the work space when jth element
arrives, while H/ represents the history space.

Execution: Whenever a new event arrives, k-exclusion tries
to append it to one of the queue tails. However, this might not
be always possible since new event may be concurrent to all
the queue tails. In this case, it calls the Merge function to
merge s queues into s — 1, if possible. The Merge function
takes s queues as input and returns three type of queue sets;
input queues @, output queues O, and history queues H'. K-
exclusion updates its work space according to input queues
of Merge, if there are s events that are mutually concurrent.
Otherwise, it uses the output queues of Merge. The history
space is updated by the history queues of Merge. Note that
s < k-1 at all times.

Merge Function: The Merge function begins with s queues
called input queues and s — 1 empty queues called output
queues, and a spanning tree that is formed by the input and
the output queues. The spanning tree has exactly k vertices
and k — 1 edges. An edge corresponds to an output queue and
a vertex corresponds to an input queue. Therefore each edge
has a label which identifies the output queue it corresponds
with. No labels are duplicated in the tree, thus each output
queue is represented once. Similarly, each input queue is
represented exactly once. At each step, it removes some
events from the input queues and append them to the output
queues. This relocating procedure continues until M erge finds
s concurrent events or one of the input queues becomes empty.
The spanning tree is used in the decision process of which
output queue to append the events. The algorithm maintains
the following invariant: If an edge between vertices ¢; and g;
is labeled as oy, then the heads of ¢; and g; are bigger than the
tail of oy. Intuitively,at a merge step, queue head a; is selected
for removal if it is less than one of the other input queue heads.
Merge updates its history and output queues if it witnesses s
or s — 1 concurrent events. It moves all the elements in output
queues to history queues. Splitting the events into work and
history queues reduces the number of comparisons for later
steps. After each Merge call, the heads of queues in the work
space are mutually incomparable. Any event happened before
them are placed into the history space. This splitting does not
affect the future comparisons and we prove that it is sufficient
to compare the new event to the events in work space [8].
Merge Example: An example for Merge is given in Figure
1 to show how the state of the tree and of the queues are
modified at each step. Figure 1a shows the initial setup. @, O,
and H' show the input, output and history queues, respectively,
while dashed lines show the edges in the spanning tree.
Remember that an edge labeled as an output queue between
input queues states that the tail of the output queue is less than
both of the input queue heads.

Step 1: [1,0,0] is less then [2,0,0],and [1,1,0] and [2,0,0] are

History
queues H’
QOutput
queues O

0A OA 0o

——— -t S e e

' [L0g] [0,1,0']I' BOVO]\I [1,1.0]1" [0,1‘011'[I (11061220 & 200"
Input L1006 20 2304 [20d [220d 230 (1201 [2,3,0]1
queuesQ !
| [120)

History

queues H' [£000

0100

i
|
I R b
Output ! : : [200] [1,1,0]1
|
queuesO : : : [2,2,0]£ 1120]¢
i . 3
! . e -
| . -
|

Input
queues Q

Fig. 1.

An example for Merge

concurrent. Hence, [1,0,0] is placed in history queues (see
Figure 1b).

Step 2: [0,1,0] is less then [1,1,0],and [1,1,0] and [2,0,0] are
concurrent. Hence, [0,1,0] is placed in history queues (see
Figure 1c).

Step 3: [2,0,0] and [1,1,0] are both less then [2,2,0]. They are
placed in output queues (see Figure 1d).

Step 4: [1,2,0] and [2,2,0] are both less then [2,3,0]. They are
placed in output queues. Since there is an empty input queue,
Merge places the remaining events adhering to the spanning
tree (see Figure 1d).

k-exclusion example: Consider the computation in Figure 2.
Assume that the order of events arrived to checker process is
Ty, T1, T3, T4, T5, Tg, L7, T8, Tg,T10.We demonstrate two
steps where splitting the queues happens since other steps are
trivial.

H3: H*:
{} za O z1 O
—_—
w3 . w4
To I x1 O xz3 O xy O
x3
@ (b)
HS . H”:
9 O x1 O vz I o I
—_— Ta xr3
w6 . w7

&I x
3 I 4 I x5 O x¢ O x7 O
Zs Ze6

©

Fig. 2. (a) A computation (b) transition in steps 3 & 4 (c) transition in steps

1) Merge is successful: At time 4, the checker has seen
X? = {3, 21,23} and the new event is z4. There are two
queues in the work space and its content is as follows: ¢
contains xo and x3, and ¢ contains z1. There is no queue to
append x4 since both x; and z3 are incomparable with x4,
hence k-exclusion creates a new queue g3 and appends z4 to
qs3, and invokes Merge. Observe that s is three. Merge places
To in 01 and x; in 0o, and observes x3 and x4 as concurrent.
Since s — 1 is two, it appends the contents of output queues to
history queues. It places z3 in 01, x4 in 09, and returns queues
back, input queue being empty. Then, k-exclusion assigns the
output queues as work queues, and appends the history queues
of Merge to its history space. Figure 2b shows the transition
between time 3 and 4.

2) There are s mutually concurrent events: At time 6, the
checker has seen X6 = {5, 71,3, 74, 75,76} and the new
event is x7. There are two queues in the work space and their
contents are as follows: ¢; contains z3 and x5, and ¢» contains
x4 and xg. There is no queue to append x7 since both z5 and
z¢ are incomparable with x7, hence k-exclusion creates a new
queue g3 and appends z7 to g3, and makes a Merge call.
Merge places x3 in 01 and z4 in 09, and computes x5, Zg,
and xz7 as concurrent. Since s is three and there are three
mutually concurrent events, no reduction is possible. Merge
appends the contents of output queues to history queues, and
returns back. Then, k-exclusion assigns the input queues as
work queues, and appends the history queues of Merge to its
history space. Figure 2c shows the transition between time 6
and 7.

The worst case complexity of k-exclusion algorithm is
O(k|E|?), where E is the set of critical section events, and k
is the allowed number of concurrent events. When k is one, the
complexity reduces to O(|p|.|E|), where |p| is the number of
temporal operators in a bounded sum predicate p in BSF. The
correctness discussion of the algorithm can be found in [8].

IV. COMPUTATION SLICE

Informally speaking, a computation slice (or a slice) is
a concise representation of all those global states of the
computation that satisfy a global predicate (or simply predicate
or property).

In the next two sections, we will illustrate the basic slicing
algorithm on a simple example. A formal treatment of slicing
algorithms can be found in [1].

A. Non-temporal Predicate Slicing

Figure 3c shows the slice of the computation in Figure 3a
with respect to the non-temporal predicate C'S; A C'S2, which
is a conjunction of two local predicates from the processes
P, and P;, respectively. We say that a predicate is local
if it only depends on variables of a single process. In the
figure, if a local predicate is true for an event of a process,
we represent it using an empty circle, otherwise with a filled
circle. Intuitively, to obtain the slice with respect to a local
predicate, we add an edge from the successor of a filled
circle back to it, thereby increasing the number of incoming

Final state

[1,0] [2.2] B2 1“2 ST (e ,,re)
,o Um0 w3 pm ()

D) (7 ()

[0,3] [0.4]

Initial state: (e, ,f,, }

Final state: {ey ,f; }

o f 7 i

Initial state: (e, ,f, } Final state: {e, .f; } Initial state: (e, .f, } ~ Final state: {e, ,f; }

©) (d)

Fig. 3. (a) A computation (b) its set of all reachable global states
(c) its slice with respect to C'S1 A C'Ss (d) its slice with respect to
EF(CS1 ACSa)

neighbors and disabling the local event that does not satisfy
the predicate from being a consistent global state of the newly
obtained trace. Now, we will further demonstrate why these
additional edges give us the slice by showing that addition
of edges results in removing consistent global states of the
computation that do not satisfy the predicate. Observe that,
the following global states, {eo, fo}.{eo, f1}, {eo, f2}, and
{eo, f3} of the computation in Figure 3¢ depicted in Figure 3b,
do not satisfy the local predicate C'S;. This is because in
all of these four states P, has executed only its initial event,
where local predicate C'S; is false. We then add the edge
(e1, €0) in Figure 3c. From the definition of a consistent global
state, any consistent global state of the slice, upon including
ep must include e;, which is an incoming neighbor. Since
all of the global states {eg,e1}, {eo, f1}, {€o, f2}. {eo, f3}
include ey, they must have included e; as well, which they
do not. Hence, they cannot belong to the consistent global
states of the slice. Also, note that if we added an edge from
(e2,€9) instead of (e1,eq), we would have eliminated states
such as {ej, f1}, which satisfy the predicate, from the slice.
This is because any consistent global state upon including e
must include es, due to transitivity of the incoming neighbors.
Similarly, we can reason about the additional edge (fs, f2) in
the slice. As a result, from the thirteen consistent global states
in Figure 3b, by adding two edges and not traversing the state
space, this exercise eliminates nine — retaining states {e1, f1},
{e1, f3}, {e2, f1}, and {eq, f3}, which are the only states of
the computation that satisfy C'S; A C'Sy. O

It has been shown that the slice exists for all predicates,
however it is, in general, intractable to compute the slice for
an arbitrary predicate [6]. Our approach to computation slicing
is based on exploiting the structure of the predicate itself.

B. Temporal Predicate Slicing

To illustrate predicate detection using computation slicing,
consider the computation in Figure 3a again. Let p = C'S7 A
C'Ss, and suppose we want to detect EF(p), that is, whether
there exists a global state of the computation that satisfies
p. Without computation slicing, we are forced to examine all
global states of the computation, thirteen in total, to decide
whether the computation satisfies the predicate. Alternatively,
we can compute the slice of the computation with respect to
the predicate EF(p) and use this slice for predicate detection.
For this purpose, first, we compute the slice with respect to
p as explained above. The slice is shown in Figure 3c. The
slice contains only four states C, D,V and W (see Figure 3b)
and has much fewer states than the computation itself —
exponentially smaller in many cases — resulting in substantial
savings. Next, using the slice in Figure 3c, we can obtain
the largest reachable state that satisfies p in the computation,
which is denoted by W. We also know from the definition
of EF(p) that every global state of the computation that can
reach W satisfies EF(p), e.g., states enclosed in the dashed
ellipse in Figure 3b. Therefore, applying this observation we
can compute the slice with respect to EF(p) as shown in
Figure 3d. In the slice, there are less number of vertices
than the computation and the slice and the computation have
the same set of global states up-to W. Finally, we check
whether the initial state of the computation is the same as the
initial state of the slice, since predicate detection is concerned
whether the initial state of a computation satisfies a given
predicate. If the answer is yes, then the predicate is satisfied,
otherwise not, and a counter-example is returned. In this case
the predicate p is satisfied, that is mutual exclusion is violated.

Note that the above temporal slicing algorithm returns all
consistent global states of the computation that satisfies the
given predicate not just one.

V. PREDICATE DETECTION USING SLICING

We present efficient computation slicing algorithms for a
subset of temporal logic CTL in [1]. The slices are computed
recursively starting from the deepest nesting of predicates and
applying the appropriate slicing algorithm, either temporal or
boolean, while proceeding outwards.

Predicate detection is concerned about checking whether
the initial consistent cut of a computation satisfies a given
predicate. Since the slice contains all consistent cuts of the
computation that satisfies the predicate, upon computing the
slice, we simply check whether the initial consistent cut of
the computation belongs to the slice. This can be done by
ascertaining whether both initial cuts of the computation and
the slice are the same.

Our predicate detection algorithm for a k-exclusion predi-
cate in DNF is as follows. First, we compute slices wrt each
conjunctive predicate p in every disjunct. Second, we obtain
the slices wrt EF for every disjunct. Third, we check whether
the initial cut of the computation is the same as the initial cut
of the slice wrt EF(p) for any disjunct.

The complexity of our trace based predicate detection
technique is polynomial in n, that is, O(|p|-n?|E|), where |p| is
the number of boolean and temporal operators in a predicate p,
FE is the set of vertices and n is the number of processes. How-
ever, this complexity is for a general class of temporal logic
predicates. When p is a 1-exclusion predicate, the complexity
can be reduced to O(n|E|), since the complexity of slicing wrt
conjunctive predicates is O(|E|/n) and instead of computing
the slices wrt EF(p), we check if the slice for p is empty or
not. Similarly, the complexity is C'(n,k+1).(k+1).|E|/n for
k-exclusion.

Note that slicing leads to efficient algorithms even for
predicates such as p; A p2, where p; has efficient slicing
algorithms but p, does not such as ps = x1+x2*x3 < 7. This
is because it is better to detect po on the slice for p; instead
of the computation, using say an exhaustive search algorithm,
since the the state space of the slice is much smaller than the
state space of the original computation.

VI. EXPERIMENTS

We ran experiments with our tool Partial Order Trace
Analyzer (POTA) with general slicing algorithms and the k-
exclusion algorithm for monitoring execution traces of pro-
grams for mutual exclusion violations. The tool contains
three modules; analyzer, translator, and instrumentor. POTA
instruments the given program by inserting code at the ap-
propriate places in the description to be monitored. The
instrumented description is such that it outputs the values
of variables relevant to the predicate in question and keeps
a vector clock. POTA also implements computation slicing
and k-exclusion algorithms. All experiments were performed
on a 3.06 Ghz Xeon processor machine running Linux. We
restricted the memory usage to 512MB, but did not set a
time limit. The two performance metrics we measured are
running time and memory usage. In the case of slicing both
metrics also include the overhead of computing the slice.
Further experimental results can be obtained from the website
[11]. As experimental testbeds, we chose distributed dining
philosophers, cache coherence and PCI protocols. We could
stretch our verification algorithms by incrementing both the
complexity and the number of processes in the systems, which
also demonstrates the effectiveness of the algorithms for very
large state spaces and complex designs.

A. Distributed Dining Philosophers

We use the Java protocol from [7] for this exercise. The
protocol consists of multiple philosophers who sit around a
table and spend their time thinking and eating. However, a
philosopher requires shared resources, such as forks, to eat.
The protocol coordinates access to the shared resources. Each
philosopher has 3 local states namely think, hungry, and
eat. The philosophers do not have a central server that they
can query for fork availability. Instead each philosopher has a
servant who communicates with the two neighboring servants
to negotiate the use of the forks. The servants send “need
left fork”, “need right fork”, “pass left fork”, and “pass right

fork” messages back and forth. Each fork is always in the
possession of some philosopher, one of the two on either side
of the fork. When a philosopher finishes eating, it labels its
two forks as dirty. A hungry philosopher’s servant is required
to give up a dirty fork in its possession, if asked for by
its hungry neighbor’s servant. This prevents starvation. We
check the following property. We require mutually exclusive
use of forks, that is, a shared resource should not be used by
more than one philosopher at a time. This can be ascertained
by checking whether two neighbor philosophers are eating
at the same time. This safety property can be stated as
Nijeo...cn—1) (AG(—eat; V —eat;)), where eat; denotes that
philosopher 1 is in eating state and j denotes the neighbor of
philosopher 7. We can check whether this property is violated
by checking the complement of the safety property, which is
Vijeo..in—1) (EF(eat; A eat;)).
Figure 4 displays our results for this property.

—e— POTA —s— POTA
10" -8 k-exclusion 10 - k-exclusion

=
5

,4
53
Memory(Mb)

=
1S

Time(ms)

_m--m- T
B e
oo
L L I I I 0.01 s L L L L
20 40 60 80 100 120 0 20 40 60 80 100 120

Number of processes Number of processes

-
T

L}

n

o
i

o

Fig. 4. Dining philosophers verification results for mutual exclusion property

B. Cache Coherence Protocol

The MSI (Modified Shared Invalid) cache coherence proto-
col is a protocol to maintain data consistency among a number
of caches connected to a central directory structure in a multi-
processor system. The protocol is a directory based scheme
in which individual processes snoop on all other processors’
activities over a shared directory. The details of the protocol
can be found in [11].

The property we checked on the MSI protocol is the
safety property, “two caches cannot be in the modified
state simultaneously”. The complement of the property is
EFsmod:i fied; A modi fied;, where i and j are cache identi-
fiers.

Figure 5 displays our results for this property. k-exclusion
took two millisecond and 1 MB to complete for 120 processes,
whereas, POTA took 390 seconds and 220 MB.Due to the
overhead associated in generating traces, we stopped generat-
ing traces for more than 120 processes.

C. PCI

The PCI Local Bus is a high performance bus with mul-
tiplexed address and data lines. It is used as an interconnect
mechanism between peripheral controller components or add-
in boards and processor/memory systems. Our example con-
tains an arbiter, and a parameterizable number of nodes that
can act either as a master or a target machine.

—— POTA —— POTA
10° [--® k-exclusion 10° M- k-exclusion

10t

10°F

Time(ms)
=
5
Memory(Mb)

m--m-a-a m--m--m) 2

0.01: ! L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Number of processes

Number of processes

Fig. 5. MSI verification results for for mutual exclusion property

In the SoC based on the PCI backbone, we have a para-
meterizable number of devices that are non-deterministically
sending requests to the arbiter for accessing the bus as a
master and interacting with each other. The safety property
that we verified is “there cannot be two masters of the bus”.
Symbolically, EF(master; A master;), where i and j are
device identifiers.

For this experiment, we have varied the number of nodes
from 10 to 120 for the safety property The reason for the less
number of nodes in the safety property experiments is that the
property, given in DNF, size is larger in this case (that is, every
possible combination of nodes ¢ and j exists in the property).
The related time and memory usage is displayed in Figure 6
for safety property. k-exclusion took two millisecond and 3
MB to complete for the worst case , whereas, POTA took 640
seconds and 390 MB.

—— POTA
| = k-exclusion

—— POTA
—B- k-exclusion

100+

Time(ms)
o
2
T
Memory(l

0 20 40 60 80 100 120 0 20 40 60 80 100 120

f pr
Number of processes Number of processes

Fig. 6. SoC verification results for mutual exclusion property

VII. CONCLUSION

We presented a comparison of two techniques for detecting
mutual exclusion violations. Our experimental results using
POTA tool show that the the specialized k-exclusion algorithm
performs substantially better than the slicing based algorithm.
In all fairness, the slicing based algorithms are meant for
general classes of predicates, hence do not exploit the prop-
erties of mutual exclusion predicates as k-exclusion algorithm
does. Also, although the complexity of the slicing based
algorithm specifically for 1-exclusion is similar to that of k-
exclusion algorithm, we believe that due to the implementation
overhead we obtain poor slicing performance. Nonetheless,
for mutual exclusion predicates we have a very efficient and
scalable algorithm implemented in POTA. For future work, we
would like to investigate whether the ideas used in k-exclusion

algorithm can be used for other types of predicate detection
as well.

[1]

[2]

[3]

[4]

[6]

[7]

[9]

(10]

(1]
[12]

[13]

[14]

[15]

REFERENCES

A. Sen and V. K. Garg. Detecting Temporal Logic Predicates in
Distributed Programs Using Computation Slicing. In Proceedings of
the 7th International Conference on Principles of Distributed Systems
(OPODIS), La Martinique, France, December 2003.

K. Bhargavan, C. A. Gunter, I. Lee, O. Sokolsky, M. Kim, D. Obradovic,
and M. Viswanathan. Verisim: Formal Analysis of Network Simulations.
IEEE Transactions on Software Engineering, 28(2):129-145, 2002.

C. Chase and V. K. Garg. Efficient Detection of Restricted Classes
of Global Predicates. In Proceedings of the Workshop on Distributed
Algorithms (WDAG), pages 303-317, France, September 1995.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, Cambridge, UK, 1990.

M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource Allocation
with Immunity to Process Failure. In Proceedings of the 20th IEEE
Symposium on the Foundations of Computer Science (FOCS), pages
234-254. IEEE Computer Society Press, 1979.

V. K. Garg. Elements of Distributed Computing. John Wiley & Sons,
2002.

S. Hartley. Concurrent Programming: The Java Programming Language.
Oxford University Press, 1998.

S. Ikiz and V. K. Garg. Efficient Incremental Optimal Chain Par-
tition of Distributed Program Traces. In Proceedings of the IEEE
International Conference on Distributed Computing Systems (ICDCS),
Lisbon,Portugal, July 2006.

M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-
MaC: a Run-time Assurance Tool for Java Programs. In Proceedings of
the 1st International Workshop on Runtime Verification (RV), volume 55
of ENTCS. Elsevier Science Publishers, 2001.

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM (CACM), 21(7):558-565, July
1978.

Partial Order Trace Analyzer (POTA) web site, 2003.
http://maple.ece.utexas.edu/ sen/POTA.html.

A. Sen and V. K. Garg. Detecting Temporal Logic Predicates on the
Happened-Before Model. In Proceedings of the 16th International Par-
allel and Distributed Processing Symposium (IPDPS), Fort Lauderdale,
Florida, April 2002.

A. Sen and V. K. Garg. Partial Order Trace Analyzer (POTA) for Dis-
tributed Programs. In Proceedings of the 3rd International Workshop on
Runtime Verification (RV), volume 89 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2003.

A. Sen and V. K. Garg. Formal Verification of Simulation Traces Using
Computation Slicing. IEEE Transactions on Computers, 56(4), 2007.
K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysis of Multi-
threaded Programs. In Proceedings of the Symposium on the Foundations
of Software Engineering (FSE), 2003.

