
0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 1

MINIME: Pattern-Aware Multicore Benchmark
Synthesizer

Etem Deniz, Member, IEEE , Alper Sen, Senior Member, IEEE , Brian Kahne, Jim Holt, Senior
Member, IEEE

Abstract—We present a novel automated multicore benchmark synthesis framework with characterization and generation
components. Our framework uses parallel patterns in capturing important characteristics of multi-threaded applications and
generates synthetic multicore benchmarks from those applications. The resulting synthetic benchmarks are small, fast, portable,
human-readable, and they accurately reflect microarchitecture dependent and independent characteristics of the original
multicore applications. Also, they can use either Pthreads or MCA libraries. We implement our techniques in the MINIME
tool and generate synthetic benchmarks from PARSEC, Rodinia, and EEMBC MultibenchTM benchmarks on x86 and Power
Architecture R© platforms. We show that synthetic benchmarks are representative across a range of multicore machines with
different architectures, while being on average 21x faster and 14x smaller than original benchmarks.

Index Terms—Multicore Systems, Parallel Patterns, Synthetic Benchmarks.

F

1 INTRODUCTION

Thermal and power problems limit the performance
that single core processors can deliver. This has led
to the development of multicore systems. There is
a need for efficient parallel programming to fully
utilize these systems. Patterns, in our case, parallel
patterns, help ease the burden of parallel program-
ming by bringing best practices to commonly occur-
ring programming challenges. Parallel patterns are
high level characteristics that define the structure of
a multicore application in terms of communication
and data sharing behaviors. They provide a way to
design and create robust and understandable parallel
multicore applications rapidly. We use these high level
parallel pattern characteristics in developing synthetic
multicore benchmarks.

Benchmarks represent software workloads for cur-
rent and future multicore systems and they are used
for early design exploration and to evaluate perfor-
mance, power consumption, and reliability of new
multicore systems. Development of new multicore
systems requires a large number of benchmarks. At
the same time, there is an increase in simulation
runtimes of benchmarks that limits our ability to fully
explore the design space. We need to develop faster
benchmarks.

Existing benchmark suites such as PARSEC, Ro-
dinia as well as the embedded multicore benchmark
suite EEMBC MultiBench are big and rely on pres-

• E. Deniz and A. Sen are with the Department of Computer
Engineering, Bogazici University, Istanbul, Turkey 34342. E-mail:
etem.deniz@boun.edu.tr, alper.sen@boun.edu.tr. Brian Kahne and Jim
Holt are with Freescale Semiconductor Inc., Austin, TX, USA. E-mail:
brian.kahne@freescale.com,jim.holt@freescale.com

ence of shared memory architectures, or Pthreads,
OpenMP, and OpenCL libraries as well as uniform
CPU ISAs. Multicore systems may not be able to
use these benchmarks as they may not support such
architectures. There is a need for benchmarks suitable
for any given infrastructure, that is, SMP or message
passing architectures.

In order to solve above limitations, we need to
develop new benchmarks but benchmark develop-
ment process is time- and labor-intensive. We present
a novel synthetic benchmark synthesis approach us-
ing parallel patterns that addresses these limitations.
Synthetic benchmarks do not perform any useful
computation, yet they can approximate characteristics
of real-life applications. These benchmarks can be
generated by varying application characteristics or
can be derived from existing benchmarks. A synthetic
benchmark is smaller and faster than the original
benchmark that it is derived from hence it simulates
faster. In this work, we generate synthetic multicore
benchmarks that are fast, portable, and suitable for
any given infrastructure.

We experimentally validate our techniques by gen-
erating synthetic multicore benchmarks from PAR-
SEC, Rodinia, and EEMBC benchmark suites using
our MINIME tool. Our synthetics can use either
Pthreads or Multicore Association (MCA) libraries [1],
the latter allowing us to have infrastructure inde-
pendent benchmarks. Synthetic benchmarks are com-
pared with the original benchmarks using similarity
metrics based on both microarchitecture dependent
and independent characteristics. We found that syn-
thetic benchmarks are similar on average 92% to the
original benchmarks. We also found that the synthet-
ics that correctly captured the parallel patterns in the
originals have a high level of similarity.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 2

In particular, this paper makes the following con-
tributions.

• The key novelty of our approach is that we use
parallel patterns in generating synthetic multi-
core applications.

• We formalize parallel pattern recognition process
by presenting reference behaviors for each paral-
lel pattern type.

• We present an algorithm for synthetic multicore
benchmark generation.

• Our synthetics are portable since they are gener-
ated in a high level programming language, C, as
opposed to assembly in earlier works. Also, they
can be generated using either Pthreads or MCA
libraries.

• Our synthetics are suitable for embedded systems
and can run on any given infrastructure thanks
to using MCA libraries.

• Our synthetics can act as proxies for proprietary
customer applications that are not publicly avail-
able.

• We developed MINIME tool and experimentally
validate our techniques on both x86 and Power
Architecture systems using PARSEC, Rodinia and
EEMBC Multibench benchmark suites. Experi-
ments show that our synthetics are similar with
the originals with respect to several metrics. They
are also faster and smaller than originals and they
mimic the behavior of the original on different
microarchitectures.

• We study the impact of input changes on the
synthetics. We also perform correlation studies
to determine the importance of correct parallel
patterns in achieving high similarity.

2 PARALLEL PATTERNS

Architectural patterns are fundamental organizational
descriptions of common top-level structures observed
in a group of software systems [2]. One of the most
important decisions during the design of the overall
structure of a software system is the selection of
an architectural pattern. Architectural patterns allow
software developers to understand complex software
systems in larger conceptual blocks and their rela-
tions, thus reducing the adoption complexity and
providing less error prone applications.

Architectural design patterns have been developed
for object-oriented software and have been found to
be very useful [3]. Similarly, a parallel pattern lan-
guage which is a collection of design patterns, guiding
the users through the decision process in building a
system has been developed [4]. In a pattern language,
patterns are organized into a hierarchical structure
so that the user can design complex systems going
through the collection of patterns. A parallel pattern
language also provides domain-specific solutions to
the application designers in less time. In this paper, we

Fig. 1. Parallel Patterns for Software [5]

use the term parallel pattern as synonym for parallel
software architectural pattern.

There exist three classes of parallel patterns based
on organization of tasks, data, and flow of data.
Figure 1 shows parallel patterns in a decision tree [5].
Each parallel pattern has unique architectural charac-
teristics to exploit. When a work is divided among
several independent tasks, which cannot be paral-
lelized individually, the parallel pattern employed is
Task Parallelism (TP). The independent tasks may read
shared data, but they produce independent results. In
Divide and Conquer (DaC), a problem is structured to be
solved in sub-problems independently, and merging
the outputs later. This pattern is used to solve many
sorting, computational geometry, graph theory, and
numerical problems. Divide and conquer algorithms
can cause load-balancing problems when using non-
uniform sub-problems, but this can be resolved if the
sub-problems can be further reduced.

In data centric patterns, data is decomposed aligned
with the set of tasks. When the data decomposition is
linear, the parallel pattern that is employed is called
Geometric Decomposition (GD). In GD, data decompo-
sition can inherently deliver a natural load balanc-
ing process since data is partitioned into equal size.
Matrix, list, and vector operations are examples of
geometric decomposition. Parallel pattern used with
recursively defined data structures is called Recursive
Data (RD). Graph search and tree algorithms are
example usages of recursive data.

Apart from task parallelism and data parallelism,
if a series of ordered but independent computation
stages need to be applied on data, where each output
of a computation becomes input of a subsequent
computation, Pipeline (Pl) parallel pattern is used.
Each stage processes its data serially and all stages
run in parallel to increase the throughput. Event-based
Coordination (EbC) parallel pattern defines a set of
tasks that run concurrently where each event triggers
starting of a new task. In this pattern, the interaction
can take place at irregular and unpredictable intervals.

In a multi-threaded application that uses parallel
patterns, generally a big problem is divided into sub-
problems. In these applications, execution starts on
the main thread and the main thread creates worker
threads for solving sub-problems in parallel. In TP,

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 3

Fig. 2. MINIME: Pattern-Aware Multicore Benchmark
Synthesizer Architecture

communication is low and each thread can work on
problems with different sizes. The problem is divided
into sub-problems in DaC, so the worker threads
can solve the sub-problems independently with few
communications. In GD, each worker thread works
on one part of a big data with many communications.
RD is similar to GD but the big data such as a
graph is not partitioned equally. In Pl, each worker
thread does some work and passes the partial result
to the worker thread in the next stage. This results
in few communications between threads. When the
interactions between stages are not feed-forward, we
have EbC.

The above architectural patterns capture the essence
of multicore applications at a high level. This concept
has not been used in synthetic benchmark generation
before us and allows us to have portable benchmarks
that preserve both high level and low level character-
istics.

Figure 2 shows a high level view of our fully
automated framework MINIME. Our tool contains
three main modules: benchmark characterizer, parallel
pattern recognizer, and benchmark synthesizer. Next, we
explain these modules in detail.

3 MULTICORE BENCHMARK CHARACTERI-
ZATION

We use both microarchitecture independent and de-
pendent characteristics to obtain characteristics of an
application. These characteristics form an abstract
benchmark model. Our abstract benchmark model
captures the important high level and low level ap-
plication characteristics that potentially impact an
application’s performance and architectural pattern.
Note that at the cost of slightly reduced accuracy,
our benchmark model captures an application be-
havior with just a few microarchitecture independent
characteristics as compared to previous works [6],

[7] that use a high number of such characteristics.
As can be seen in Table 1, we analyze multicore
benchmark characteristics in four groups: Data Sharing
(DS), Thread Communication (TC), General Threading
(GT), and Performance, where each group also has sub-
characteristics. Our data sharing, thread communica-
tion, and general threading characteristics are similar
to [8]. We formalize them and add a new group
of performance characteristics here. While data shar-
ing, thread communication, and general threading
groups include high level (software architectural) sub-
characteristics, performance group includes low level
(non-software architectural) sub-characteristics except
Communication to Computation Ratio. We now de-
scribe each group in more detail.

TABLE 1
Multicore Benchmark Characteristics

Characteristics Sub-characteristics Level
Data Sharing Private, Read-only, Producer/Consumer, Mi-

gratory
High

Thread Com-
munication

None, Few, Many High

General
Threading
(per thread)

Program Counter (PC), Dynamic instruction
count, Creator thread, Creation time, Exit
time, Lifetime

High

Performance Instructions Per Cycle (IPC), Cache Miss Rate
(CMR), Branch Misprediction Rate (BMR)

Low

Communication to Computation Ratio (CCR) High

Data Sharing Characteristics: Sub-characteristics in
the data sharing group are private, read-only, produc-
er/consumer, and migratory, similar to [8], [9]. We have
formalized this concept in this work as follows. We
use #readers and #writers to indicate the unique
number of threads that read or write the same cache-
line, respectively. We use cachelines as our technique
uses binary instrumentation that models memory ac-
cesses per cacheline. If #readers = #writers = 1,
we say that the data has private sub-characteristic. If
#readers > 0 and #writers = 0, we say that the data
has read-only sub-characteristic. If multiple threads
access the same data and at least one operation is
write then this means that the data is shared be-
tween threads. Shared can be classified into two sub-
characteristics. If we have #readers > #writers, then
we have producer/consumer sub-characteristic. Other-
wise, we have #readers ≤ #writers and migratory
sub-characteristics, where a thread reads and writes
to a shared data item and this behavior is repeated
by many threads.

Thread Communication Characteristics: Sub-
characteristics in the thread communication group
are none, few, and many, similar to [8]. We have
formalized this concept in this work as follows.
The ratio of cachelines used for communication
to all cachelines used during execution gives
shared cachelines, denoted by sharedCL. We use
numTH to denote the total number of threads
during execution and commTH to denote pairwise
communicating threads and can be at most numTH2.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 4

When (commTH < numTH) and (sharedCL ≤
0.3), thread communication characteristic of an
application is none. When (commTH = numTH) and
(0.3 ≤ sharedCL ≤ 0.8), the thread communication
characteristic is few. When (commTH > numTH) and
(0.8 ≤ sharedCL ≤ 1), the thread communication
characteristic is many. For example, while threads
can communicate in any direction in geometric
decomposition, there exists a communication from a
thread in stage i to a thread in stage i+ 1 in pipeline
pattern.

General Threading Characteristics: We keep track
of the following general threading sub-characteristics
for each thread. These are program counter (PC), which
allows us to determine whether the threads are exe-
cuting the same task or not, dynamic instruction count,
which allows us to determine whether the threads
are balanced or unbalanced. We also keep track of
the creator and creation/exit time of each thread. We
calculate the lifetime of a thread by using the creation
and exit times of the thread.

Performance Characteristics: Sub-characteristics in
the performance group are microarchitecture depen-
dent characteristics including Instructions Per Cycle
(IPC), last level Cache Miss Rate (CMR), and Branch
Misprediction Rate (BMR) and microarchitecture in-
dependent characteristics including Communication to
Computation Ratio (CCR). These metrics are used com-
monly in the literature to assess performance of ap-
plications.

Characterization Tools: We use a dynamic binary
instrumentation tool, named DynamoRIO [10], which
is similar to Pin [11], for gathering above-mentioned
high level characteristics during the execution of an
application. DynamoRIO is an open source run-time
code manipulation system that supports code trans-
formations on any part of an application, while it
executes. We also use Umbra [12], which is an efficient
and scalable memory shadowing tool built on top
of DynamoRIO. We developed our characterizer as a
client of DynamoRIO and Umbra. Our client analyzes
the data sharing pattern of the application by observ-
ing cacheline accesses. Similarly, we use our client
to determine thread communication between threads.
We dynamically build a thread communication matrix
during the execution of an application, where two
threads are communicating if one thread writes to
a cacheline and the other one reads from the same
cacheline. For tracking general threading information,
our client wraps thread creation operations, detects
the program counter, dynamic instruction count, cre-
ator, and creation/exit time of each thread. We also
used perf tool [13] to obtain microarchitecture depen-
dent characteristics.

4 PARALLEL PATTERN RECOGNITION

We use k-Nearest Neighbor (kNN) classification
where k is 1 to decide the parallel pattern of an appli-

TABLE 2
Data Sharing [8], Thread Communication, and

General Threading Reference Behaviors

Char. Sub-char. TP DaC GD RD Pl EbC

D
at

a
Sh

ar
in

g Private **** * * **** * *
Read-only *** * ***
Prod/Cons ** ****
Migratory ** *** ** **** ****

T
hr

ea
d

C
om

m
. None **** *** *

Few * ** * * **** ****
Many * **** ****

G
en

er
al

T
hr

ea
di

ng

PC *** ** **** ****
Dyn. Inst. Count ** * **** ** ** ***

Creator **** ** **** *** *** *
Creation Time *** * **** ** *** **

Exit Time ** *** ** *
Lifetime ** ** **** * *** **

cation. In kNN, there exist two steps, which are the
construction of a classification model and the usage of
the model. In the first step, we use a set of reference
behaviors that capture the key characteristics that each
parallel pattern exhibits in order to construct a model
that recognizes the parallel patterns described above.
We use all high level characteristics but CCR given
in Table 1 as the key characteristics. We do not use
CCR because data sharing and thread communication
characteristics implicitly cover this information. We
developed our reference behaviors for each group
of characteristics by investigating the behavior of
threads for each pattern type in the literature [5]. We
then validated that these characteristics and reference
behaviors are indeed observed in multi-threaded ap-
plications for which we knew the pattern for. These
applications were not used in the experiments. We
describe the reference behaviors for each group of
characteristics and for each parallel pattern in Table 2
[8].The table entries are either empty, or they contain
single or multiple stars, where the higher number
of stars denote the higher likelihood of the corre-
sponding pattern to exhibit the sub-characteristics.
For example, in Table 2 all sub-characteristics are most
similar for threads in an application with GD pattern.

In the second step, we measure the Euclidean dis-
tance between each group of characteristics of the
application and characteristics of the reference behav-
ior defined in the model. The scores of the parallel
patterns are assigned to be inversely proportional to
the distances to the application characteristics for that
group, where the highest score is 100 and the lowest
score is 0. Hence, we calculate data sharing score,
thread communication score, and general threading
scores for each type of pattern. We then sum the scores
for each parallel pattern and the parallel pattern with
the highest total pattern score gives the parallel pat-
tern of the application.

We now give examples of parallel pattern recog-
nition. The parallel pattern of an application with
read-only and private data sharing characteristics, and
no inter-thread communication, where threads have

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 5

unique PCs, and threads are created by the same
thread at the beginning of the application is task
parallel. As a real example we can use an image recog-
nition application in which four separate identifica-
tion tasks share the same input image data and each
task is specialized to identify different objects such as
people or place in the image. An example of geometric
decomposition pattern can be an application with
many producer/consumer and few migratory data
sharing characteristics, many data dependent inter-
thread communication, and balanced threads that
share the same PC and created by the main thread
at the same time.

5 PATTERN-AWARE SYNTHETIC BENCH-
MARK GENERATION

We iteratively generate the synthetic benchmark code
in a fully automated manner without any user in-
tervention. The iterations continue until thresholds
for individual similarity scores and overall similarity
score are satisfied or the user defined threshold for the
number of iterations is reached. The iterative process
includes code generation for high level metrics, sim-
ilarity measurement between the original application
and the synthetic benchmark, and code generation
for low level metrics based on characteristics of the
original application. Next, we describe each step in
details.

5.1 Code Generation for High Level Metrics

The generated code consists of a main function and a
function for each task where a task can be executed
by one or more worker threads that are spawned from
any thread using the pthread create() function call. We
apply the algorithm given in Table 3 to generate the
function of each (worker) thread, ti. The characteris-
tics, hence the parallel pattern of the original appli-
cation, the particular thread ti, and the library type
(Pthreads, MCAPI, or MRAPI) are given as inputs to
the algorithm. The output of the algorithm is the code
block for thread ti. Each step of the algorithm defines
an operation and whether the operation in that step
is performed for that parallel pattern type (denoted
by X).

We also demonstrate our algorithm on a matrix
multiplication application in Section 5.4 and gener-
ate the synthetic given in Fig. 5. The synthetic is
commented with the corresponding algorithm steps.
Since the parallel pattern of the matrix multiplication
application is geometric decomposition, we perform
the steps given in column GD of Table 3.

• Step 1: Thread ti creates communication objects
that are used for data sharing. Communication
objects include shared memory, semaphores, mu-
texes for Pthreads/MRAPI library and endpoints,
scalar/packet channels for MCAPI library. We de-
termine these objects based on the parallel pattern

type and library used. Also, we use data shar-
ing and thread communication characteristics of
the original application to determine the objects.
For example, when we are synthesizing MCAPI
benchmarks, communication operations are mes-
sage send/receive for geometric decomposition
and recursive data patterns and packet/scalar
send/receive for pipeline and event-based coor-
dination patterns. Similarly, a task parallel bench-
mark uses barriers and a pipeline benchmark
uses semaphores between stages.

• Step 2: Thread ti performs initial computation
operations before splitting the problem. For ex-
ample, in divide and conquer parallel pattern, ti
splits the data into sub-partitions.

• Step 3: Thread ti creates child threads if they exist
for ti in the original application. In some parallel
patterns such as divide and conquer and recur-
sive data, threads can be created dynamically by
other threads during the execution.

• Step 4: Thread ti gets the references of commu-
nication objects created by other worker threads
at Step 1 (in case of Pthreads/MRAPI) or opens
communication channels (in case of MCAPI).

• Step 5: Parallel patterns except pipeline do not
need to execute this step as they do not run in a
loop.

• Step 6: Since threads need to access data before
performing computation on the data, we add
initial communication operations among threads
according to the thread communication charac-
teristics, thread communication matrix, of the
original application. These operations are either
read/write (in case of Pthreads/MRAPI) or mes-
sage/packet send/receive operations (in case of
MCAPI). We decide on the type of messages
and the number of operations in this step. We
also use mutex and semaphore objects in order
to provide thread synchronization and ordering.
For parallel patterns except task parallel, we add
communication operations between threads that
communicate in the original application.

• Step 7: After accessing the data either by reading
shared memory or receiving message(s), ti per-
forms computation operations on this data, an
increment in our case, and generates output data.

• Step 8: Thread ti performs similar operations as
done at Step 6 but this time the output data,
which is generated at Step 7, is used during
communication. For instance, in pipeline parallel
pattern, ti reads/receives the data from previous
stage at Step 6, then processes the data at Step
7, and writes/sends the data to the next stage as
seen in this step.

• Step 9: For pipeline parallel pattern, this is the
end point of the loop, which begins at Step 5.

• Step 10: Thread ti waits for child thread(s) to
complete if they were created at Step 3.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 6

TABLE 3
Algorithm for generating the code for a worker thread ti based on parallel pattern

Input Thread ti, Characteristics and parallel pattern of the original application, library of the synthetic
Output Code block for thread ti

Algorithm Steps

Step Operation TP DaC GD RD Pl EbC
Step 1 Create communication objects X X X X X
Step 2 Perform initial computation operations X X
Step 3 Create child threads, if they exist in the original application X X X
Step 4 Get/Open communication objects X X X
Step 5 Begin loop, if pattern is pipeline X
Step 6 Perform initial communication operations X X X X X
Step 7 Perform internal computation operations X X X X X X
Step 8 Perform final communication operations X X X X X
Step 9 End loop, if pattern is pipeline X
Step 10 Wait for child threads, if they exist in the original application X X X
Step 11 Perform final computation operations X X
Step 12 Delete/Release/Close communication objects X X X X X

• Step 11: If thread ti has child thread(s) then it
performs final computation operations after all
threads are exited. For example, in divide and
conquer parallel pattern, this is the operation
phase after joining the worker threads.

• Step 12: Thread ti deletes communication objects
created at Step 1. ti also releases or closes com-
munication objects, which are got or opened at
Step 4.

The synthetic benchmark preserves data sharing
characteristics of the original application by perform-
ing computation and communication operations de-
scribed in the algorithm. For example, for the syn-
thetic matrix multiplication example, the size of the
global shared variables is calculated by using pro-
ducer/consumer data sharing characteristic of the
original application. Also every thread performs equal
number of iterations on one part of the shared data in
a producer/consumer fashion according to the thread
communication characteristics of the original applica-
tion. Note that thread communication characteristics
are preserved using Step 6 and Step 8. Also, we make
sure that the synthetic preserves general threading
characteristics as follows. The synthetic uses the same
number of threads and each thread in the synthetic is
created by the same thread as the original. Since we
perform computation operations (Step 2, Step 7, Step
11) for each thread according to the lifetime relative to
other threads, the synthetic preserves the lifetime and
dynamic instruction count of each thread. Threads
that run different functions in the original application
run different functions in the synthetic.

Since our synthetics must have the same parallel
pattern as the original, our tool first checks whether
the parallel pattern of the synthetic is the same as
the original. If it is not, the problematic group of
characteristics is localized and then a synthetic with
a reconfigured group of data sharing, thread com-
munication, or general threading characteristics is
generated until the parallel pattern matches or the
number of iterations reaches the upper bound. For
example, in order to improve thread communication

characteristics, we either add the missing inter-thread
communications between threads in the synthetic that
exist in the original or remove the extra inter-thread
communications that exist in the synthetic but not in
the original. When we are improving thread commu-
nication similarity, we update operations at Step 6 and
Step 8. Once the parallel pattern of the original and
synthetic are the same, the synthetic preserves all 3
groups of high level characteristics including 13 sub-
characteristics.

5.2 Similarity Measurement
After the first candidate synthetic benchmark with the
correct parallel pattern is generated above, we use
similarity metrics that are IPC, CMR, BMR, CCR to
measure the similarity between the synthetic bench-
mark and the original application.

We use the error rate to quantify the similarity of
a synthetic benchmark and an original application.
Given a similarity metric, mt, and the value of mt
for the synthetic and original application as mtsyn
and mtorg, respectively, we define the error rate for
mt as, errorratemt = |(mtsyn − mtorg)|/mtorg. The
individual similarity scores range from 0 to 100 and
are calculated as [1 − errorratemt] × 100. Finally, we
calculate an overall similarity score (oss) as an equal
weighted average of all of the similarity scores.

5.3 Code Generation for Low Level Metrics
Once we know how to measure the similarity between
the original application and the synthetic benchmark,
at each iteration, we find the metric with the lowest
individual score below the user defined threshold and
improve the similarity for that score by adding code
blocks suitable for that metric. The iterations continue
until thresholds for individual similarity scores and
overall similarity score are satisfied or the user de-
fined threshold for the number of iterations is reached.

When issIPC is the lowest score, we either insert
a C code block with high (integer addition) or low
(division) IPC to the main function of the candidate
synthetic benchmark. When issCMR is the lowest
score and the CMR of the original is higher than the

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 7

1 for (i = 0 ; i < WORK SIZE ; i ++) { /∗∗ c o d e b l o c k t o i n c r e m e n t IPC ∗∗/
2 i r e s = i 1 + i 2 ; /∗ i n t i1 , i 2 ; ∗/
3 }
4 for (i = 0 ; i < WORK SIZE ; i ++) { /∗∗ c o d e b l o c k t o d e c r e m e n t IPC ∗∗/
5 dres = d1 / d2 ; /∗ d o u b l e d1 , d2 ; ∗/
6 }
7 for (i = 0 ; i < WORK SIZE ; i ++) { /∗∗ c o d e b l o c k t o i n c r e m e n t CMR ∗∗/
8 array [rand () % a r r a y S iz e] = 0 ; /∗ a r r a y S i z e i s l a r g e r than c a c h e ∗/
9 }

10 for (i = 0 ; i < WORK SIZE ; i ++) { /∗∗ c o d e b l o c k t o d e c r e m e n t CMR ∗∗/
11 for (a = 0 ; a < arrayS ize1 ; a++) { /∗ a r r a y S i z e 1 i s s m a l l e r than c a c h e ∗/
12 for (b = 0 ; b < arrayS ize2 ; b++) { /∗ a r r a y S i z e 2 i s s m a l l e r than c a c h e ∗/
13 array [a] [b] = 2 ∗ array [a] [b] ;
14 } } }
15 for (i = 0 ; i < WORK SIZE ; i ++) { /∗∗ c o d e b l o c k t o i n c r e m e n t BMR ∗∗/
16 randNum = rand () ;
17 r3 = randNum % 3 ;
18 i f (r3 == 0) { bres = b1 + b2 + (b1 / b2) ; /∗ i n t b1 , b2 , b r e s ; ∗/ }
19 i f (r3 == 1) { bres = b1 + b2 + (b1 / b2) ; }
20 r4 = randNum % 4 ;
21 i f (r4 == 0) { bres = b1 + b2 + (b1 / b2) ; }
22 i f (r4 == 1) { bres = b1 + b2 + (b1 / b2) ; }
23 r8 = randNum % 8 ;
24 i f (r8 == 0) { bres = b1 + b2 + (b1 / b2) ; }
25 i f (r8 == 1) { bres = b1 + b2 + (b1 / b2) ; }
26 i f (r8 == 2) { bres = b1 + b2 + (b1 / b2) ; }
27 i f (r8 == 3) { bres = b1 + b2 + (b1 / b2) ; }
28 }
29 for (i = 0 ; i < WORK SIZE ; i ++) { /∗∗ c o d e b l o c k t o d e c r e m e n t BMR ∗∗/
30 i f (workCount >= 0) { /∗ a lways t r u e p r e d i c t i o n ∗/
31 bres = b1 + b2 + (b1 / b2) ; /∗ i n t b1 , b2 , b r e s ; ∗/
32 } }

Fig. 3. Code block to increment/decrement IPC, CMR,
and BMR

CMR of the synthetic, then we insert a code block
that includes accesses to data that are not already
cached. Otherwise, we insert a new code block where
the data that are already in cache are accessed many
times. When issBMR is the lowest score and the
BMR of the original is higher than the BMR of the
synthetic, then we insert a new code block with many
branch mispredictions. Otherwise, we insert a new
code block with many true branch predictions. In the
case where issCCR is the lowest score and CCR of
the original is higher than CCR of the synthetic, then
we add communication operations to the synthetic.
Otherwise, our code block contains computations but
not communication operations. Note that adding a
new code block has side effects on other metrics.
However, new code blocks do not affect the high level
characteristics and do not change the parallel pattern
of the synthetic. Figure 3 shows the C code blocks
we use to increment/decrement IPC, CMR, and BMR.
Once the appropriate code blocks are inserted into
the synthetic, then we adjust WORK SIZE given
in the figure according to the IPC of the original
and synthetic. When the IPCs are close to each other,
we use a small value for WORK SIZE and vice
versa. Similarly, we adjust WORK SIZE for CMR
and BMR.

5.4 A Detailed Example
We demonstrate our technique on a multi-threaded
matrix multiplication application. Due to lack of
space, we omit the original code and only show the
synthetic in Fig. 5. This application has geometric
decomposition behavior where each matrix is divided
into 3 parts and each worker thread works on one
part. Note that we observe producer/consumer data
sharing pattern and many thread communication pat-
tern as expected in geometric decomposition. The

Fig. 4. Parallel Patterns Scores of Matrix Multiplication

1 typedef s t r u c t { unsigned i n t t i d ; } threadData ;
2 i n t globAddr1 [1 2 0 0] ; /∗ g l o b a l memory : i n p u t ∗/ / / S t ep 1
3 i n t globAddr2 [1 2 0 0] ; /∗ g l o b a l memory : o u tp ut ∗/ / / S t ep 1
4
5 void ∗task0 (void ∗param) {
6 threadData∗ td = (threadData∗) param ;
7 i n t input , output , op ; /∗ t h e v a r i a b l e s used in St ep 6 , 7 , 8 ∗/
8 /∗ c o d e b l o c k f o r worker t h r e a d 1 ∗/
9 i f (td−>t i d == 2) {

10 for (op = 0 ; op < 4 0 0 ; op++) { /∗ # o p e r a t i o n s d e c i d e d in St ep 7 ∗/
11 input = globAddr1 [op] ; /∗ r e a d from g l o b a l mem ∗/ / / S t ep 6
12 output = input ++; /∗ p e r f o r m c o m p u t a t i o n on i n p u t ∗/ / / S t ep 7
13 globAddr2 [op] = output ; /∗ w r i t e t o g l o b a l mem ∗/ / / S t ep 8
14 } }
15 /∗ c o d e b l o c k f o r worker t h r e a d 2 ∗/
16 /∗ c o d e b l o c k f o r worker t h r e a d 3 ∗/
17 return NULL;
18 }
19
20 i n t main (i n t argc , char ∗∗argv) {
21 /∗ i n i t i a l i z a t i o n s ∗/
22 /∗ c o d e b l o c k f o r c o m p u t a t i o n ∗/
23 /∗ c r e a t e and run a l l t h e t h r e a d s , th en wa i t f o r t h e t h r e a d s ∗/
24 /∗ c o d e b l o c k s f o r CMR, IPC , and BMR t o match s i m i l a r i t y ∗/
25 e x i t (0) ; /∗ g l o b a l memory i s removed a u t o m a t i c a l l y ∗/ / / S t ep 12
26 }

Fig. 5. Synthetic Matrix Multiplication Benchmark

general threading characteristics show that the PCs
and creator of threads are the same because we have 3
threads created by the main thread and all threads
execute the same function. Since each thread does
multiplication operations on equal size data, dynamic
instruction counts of the threads are similar. Also,
since all threads are created at the beginning of the
execution and their operation sizes are similar, we
have the same creation/exit times as well as similar
lifetimes.

Next, we recognize the parallel pattern of the orig-
inal application. Figure 4 shows the parallel pattern
recognition scores for data sharing, thread commu-
nication, and general threading characteristics in a
Kiviat diagram. Since geometric decomposition has
the highest score in total, our algorithm recognizes the
parallel pattern correctly as geometric decomposition.

Then, we generate a miniaturized multicore syn-
thetic benchmark for the matrix multiplication appli-
cation using the algorithm given in Table 3. While
generating this synthetic, we set the individual sim-
ilarity score to 80 and overall similarity score to 90.
Although the initial candidate benchmark preserves
all high level characteristics, and the parallel pattern,
it has different IPC, CMR, and BMR values which are
0.75, 0.30, and 0.40, respectively, whereas for the same
performance characteristics the original has values
2.32, 0.17, and 0.55, respectively. The initial candi-

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 8

TABLE 4
Multicore machine configurations

Parameter System-I System-II System-III System-IV
#Cores 4 2x4 8 2

#Logical procs 8 2x8 8 4
DRAM 6 GB 32 GB 4 GB 4 GB
L1 I/D 32 KB, 8 way 32 KB, 4 way 32 KB, 8 way 32 KB, 8 way

L2 256 KB, 8 way 256 KB, 8 way 128 KB, 8 way 256 KB, 8 way
LLC (L3) 6 MB, 12 way 8 MB, 16 way 2 MB, 32 way 3 MB, 12 way
Branch 2-level 2-level 512-entry, 2-level

Predictor correl, 64-bit correl, 64-bit 2-bit correl, 64-bit
Architecture x86, 64-bit x86, 64-bit Power, 64-bit x86, 64-bit

Core i7 Xeon e5520 FSL, P4080ds Core i5

date synthetic benchmark has the following similarity
scores: issIPC = 33, issCMR = 24, issBMR = 73, issCCR

= 93, oss = 56. Since issCMR is the lowest score,
we first add a code block to decrement CMR. In the
following iterations, we add code blocks to increment
IPC and to increment BMR. After 3 iterations we
meet both individual and overall similarity scores as
follows: issIPC = 92, issCMR = 94, issBMR = 91,
issCCR = 94, oss = 93. The IPC, CMR, and BMR values
of the synthetic are 2.14, 0.18, and 0.50, respectively.
We show the final synthetic in Fig. 5. The execution
times of the original and synthetic are 0.08 and 0.02
seconds, respectively. Hence we have a 4x speedup.
We achieve large speedups for large scale applications
as will be shown in the experiments.

6 EXPERIMENTS

We performed experiments to validate our benchmark
characterization, pattern recognition, and benchmark
synthesis techniques. In order to show that our ap-
proach works across different architectures and dif-
ferent number of cores and cache sizes, we targeted 4
different actual multicore machines as shown in Table
4. During experiments, Intel SpeedStep R© and Hyper-
Threading technologies were enabled and threads
were not pinned to cores. We used gcc 4.6.1 for x86 64
Ubuntu Linux on System-I, System-II, and System-IV
and gcc 4.6.2 for P4080ds Linux on System-III. We
compiled original benchmarks with default options,
and synthetic benchmarks with ’-O0’ option so that
the compiler did not remove our code blocks.

We used PARSEC [14], Rodinia (OpenMP) [15],
and EEMBC MultiBench [16] benchmarks as orig-
inal benchmarks and generated synthetic bench-
marks that use Pthreads, MRAPI, or MCAPI libraries.
These benchmarks cover a big range of multicore
benchmarks that are available. PARSEC is a well-
known, open-source multi-threaded benchmark suite
with fundamental parallelism constructs. Rodinia is
a benchmark suite for heterogeneous computing and
covers a wide range of parallel communication pat-
terns, synchronization techniques, and power con-
sumption. EEMBC MultiBench uses a thread-based
API to establish a common programming model and
targets the evaluation of scalable symmetrical multi-
core processor (SMP) architectures with shared mem-
ory. We use EEMBC MultiBench benchmarks that are

multi-threaded and that have a single kernel. We used
the test input for PARSEC, default input for Rodinia,
and medium input for EEMBC MultiBench.

We implemented our techniques in MINIME tool
that consists of nearly 10K lines of C code. Our tool
and all of our benchmarks can be downloaded from
our website1. We ran the original and synthetic bench-
marks 10 times in order to obtain similarity scores.
We also set the maximum number of iterations to 40,
the overall similarity score to 90%, and individual
similarity scores to 80%. The similarity scores we
used are the maximum achievable scores with our
framework. Due to lack of space, we display results
for synthetic benchmarks that use Pthreads library
but we generated synthetic benchmarks for MRAPI
and MCAPI libraries as well and had similar results.
Also, due to compilation and binary instrumentation
problems, we do not list results for all applications in
these benchmark suites.

We generated two sets of synthetics, first on x86
ISAs (specifically on System-I) then on Power ISA.
This is because each ISA has different characteris-
tics and constraints that impact the behavior of a
benchmark such as stack operations, ISA-specific com-
plex operators, and calling conventions. Furthermore,
our high level characterization tools DynamoRIO and
Umbra currently support x86 ISA, hence we devised
another technique to generate the synthetic on Power
ISA. First, we generate the synthetic with high level
characteristics on System-I. We then start from this
synthetic on System-III and add code blocks for low
level characteristics on System-III. Note that the high
level structure of the synthetic benchmark does not
change going from x86 to Power ISA.
6.1 Evaluation of Benchmark Synthesis
Table 5 shows the results of our pattern recognition
and synthesis results on System-I. In the table, we
show the parallel pattern of the original benchmark
found by us through code analysis, the lines of code
(LOC), and the number of iterations (#iter) it takes to
generate the synthetic benchmark. We also validated
the parallel patterns of PARSEC benchmarks from
the literature since they are available. The column
Speedup(x) shows speedup obtained in terms of ex-
ecution time and the column CodeSize(x) refers to the
reduction in lines of code going from the original to
the synthetic.

When generating synthetics, we make sure that they
have exactly the same parallel patterns as the original
benchmarks. Our synthetics have the same number of
threads as the originals, hence they are not generated
for a specific number of cores. Recognizing and gener-
ating the parallel pattern correctly is the most impor-
tant step in a synthetic because recognizing a wrong
pattern can result in wrong communication and com-
putation behaviors as well as dissimilar performance

1. http://depend.cmpe.boun.edu.tr/tools/minime

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 9

TABLE 5
Pattern Recognition and Synthesis Results

Original Benchmark Synthetic Benchmark
Suite Benchmark LOC Parallel Pattern LOC #iter Speedup(x) CodeSize(x) Overall Similarity (%)

PA
R

SE
C

Blackscholes 1262 Task Parallel 124 2 10 10 95
Bodytrack 7696 Geometric Decomposition 403 16 11 19 90
Canneal 2794 Task Parallel 136 2 22 20 93
Dedup 7125 Pipeline 440 9 36 16 94

Facesim 20275 Task Parallel 127 5 15 159 94
Ferret 10765 Pipeline 1426 5 67 7 90

Fluidanimate 2784 Geometric Decomposition 330 2 15 8 90
Swaptions 1095 Task Parallel 144 2 13 7 91

X264 38546 Pipeline 940 12 26 41 92

R
od

in
ia

Kmeans 2146 Task Parallel 180 15 36 11 90
HotSpot 196 Geometric Decomposition 195 10 16 1 94

Back Propagation 478 Task Parallel 129 5 20 3 94
SRAD 495 Task Parallel 222 17 12 2 93

Breadth-First Search 125 Task Parallel 195 18 35 0 94
CFD Solver 1539 Task Parallel 243 11 10174 6 90

LU Decomposition 541 Geometric Decomposition 199 32 10 2 94
Heart Wall Tracking 2244 Task Parallel 180 16 34 12 90

Particle Filter 398 Geometric Decomposition 242 9 10 1 91
PathFinder 127 Geometric Decomposition 343 14 13 0 95

LavaMD 353 Geometric Decomposition 274 19 30 1 90

EE
M

BC
M

ul
ti

Be
nc

h idctrn01 655 Task Parallel 284 20 16 2 94
md5 188 Geometric Decomposition 332 10 10 0 94

ippktcheck 693 Geometric Decomposition 362 11 10 1 94
ipres 1508 Geometric Decomposition 343 36 42 4 90

rotatev2 804 Task Parallel 222 5 10 3 90
mp2decode 9089 Geometric Decomposition 622 12 11 14 93

characteristics in the synthetic. This can also result
in higher number of iterations to match the synthetic
with the original one or not be able to match at all. For
example, when we manually force the parallel pattern
of Ferret benchmark from PARSEC as task parallel
instead of pipeline, we obtain a synthetic with only
50% overall similarity score even after 20 iterations.
However, our pattern recognizer correctly recognizes
the parallel pattern as pipeline and our synthesizer
generates a synthetic in 5 iterations with 90% overall
similarity score. This observation explicitly indicates
a relationship between the high level architectural
pattern and performance characteristics, which we
will experimentally show later as well.

From the table, it can also be seen that the synthetics
are much smaller and faster hence less complex than
the originals leading to high simulation speeds, which
is one of the main goals of this study. The average
speedup is 21x (without CFD Solver) and the av-
erage code reduction is 14x. Note that CodeSize(x) is
denoted as 0 in some cases. This corresponds to the
cases where the original code size is very small hence
the synthetic code size is larger than the original, yet
the synthetic can run much faster. The execution time
of CFD Solver benchmark from Rodinia is 305.22
seconds, which is the longest among all benchmarks
and the execution time of the synthetic is 0.03 seconds.
Hence, we have 10174x speedup. It is clear that when
the execution time or the code size of an original
benchmark is high, we have a larger speedup or code
size reduction.

In most cases, we generate the synthetic after 20
iterations. When the value of any characteristic of
an original benchmark is too low or too high, the

WORK SIZE of the code block we add to the syn-
thetic becomes larger. This results in high influence on
other characteristics that we try to match and man-
aging these side effects requires more iterations and
may result in lower similarity scores. For example,
LU Decomposition took 32 iterations because the
cache miss rate of the original benchmark is very
low. Similarly, ipres took 36 iterations because the
branch misprediction rate of the original benchmark
is very high. Also, the execution time of the synthetic
benchmark increases with the increasing iteration size.

In the table, we show the overall similarity scores
for System-I where the average is 92%. The aver-
age overall similarity scores are 91%, 92%, and 90%
for System-II, System-III, and System-IV, respectively.
These scores show that synthetics are above the range
set by the user (90%) and have high degree of simi-
larity with the originals.

6.2 Assessing Similarity
We next compare the similarity of our synthetic
benchmarks with the original benchmarks using simi-
larity metrics described in Section 5. These metrics are
IPC, CMR, BMR, and CCR. Due to lack of space, we
do not show results for CCR. We calculated the error
between the synthetic benchmark and the original
benchmark with respect to each of these metrics. We
also present the average error for each metric.

Figures 6, 7, and 8 compare IPC, CMR, and BMR
between the synthetic and original benchmarks, re-
spectively, for the four systems. The average errors on
System-I are 8%, 10%, 6%, and 8% and the maximum
errors are 16%, 17%, 18%, 17% for IPC, CMR, BMR,
and CCR, respectively. We also measured the similar-
ity scores for Instruction and Data Level 1 cache hit

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 10

Fig. 6. Comparison of IPC between the synthetic and original benchmarks. The synthetic generated on System-I
is used on System-II and System-IV and re-synthesized for System-III.

Fig. 7. Comparison of CMR between the synthetic and the original benchmarks. The synthetic generated on
System-I is used on System-II and System-IV and re-synthesized for System-III.

Fig. 8. Comparison of BMR between the synthetic and the original benchmarks. The synthetic generated on
System-I is used on System-II and System-IV and re-synthesized for System-III.

rates on System-I and the average errors are 1% and
5%, respectively. We obtain similar results on other
systems where the average errors for Instruction and
Data Level 1 cache hit rate are smaller than 2% and
7%, respectively. The results show that all synthetics

are similar to the originals within the bounds set by
the user and are acceptable for a high level synthetic
benchmark.

We observe that improving one individual score can
worsen other scores, that is, the added code block

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 11

can have side effects. For example, at iteration 10
of ippktcheck, issCMR and issBMR are 65 and 90,
respectively. Hence, we add a code block to improve
CMR score. However, after addition of this code block
at iteration 11, issCMR and issBMR become 84 and
82, respectively. That is, BMR score is decreased.
Although this show that the addition of code blocks
can have side effects, using our algorithm given in
Table 3, synthetics have been successfully generated
for the given similarity scores. If the user wants to
obtain synthetics with much higher similarity, match
instruction mix, or match Cycles Per Instruction (CPI)
stack, we can use inline assembly in our code blocks
as an alternative technique. However, this will lead to
synthetics that are not portable, hence we chose not
to follow this technique.

6.3 Assessing Architecture Changes

We next compare hardware configuration indepen-
dence (portability) of our synthetics by first generat-
ing the synthetic on System-I and then executing the
same synthetic on System-II and System-IV. Note that
we could not use this synthetic on System-III as it has
a different ISA as described above. When we used the
synthetic generated on System-I on System-III, high
level characteristics of this synthetic such as parallel
pattern matched but low level characteristics did not
match as expected.

Figure 6 compares the IPC between the synthetic
and original benchmarks on four systems, where the
synthetic generated on System-I is used on System-
II and System-IV. We see that when the IPC of the
original benchmark changes from System-I to System-
II and System-IV, the IPC of the synthetic benchmark
changes similarly, which is what we want for portabil-
ity. The average IPC error on four systems is 8%, 9%,
9%, and 9% and the maximum IPC error is 16%, 14%,
16%, and 16%, respectively. For example, the IPC of
Kmeans benchmark is 1.64, 1.09, and 1.22 on System-
I, System-II, and System-IV, while the IPC of the syn-
thetic benchmark is 1.84, 1.20, and 1.33, respectively.
The average CMR error on four systems is 10%, 10%,
8%, and 10% and the maximum CMR error is 17%,
20%, 15%, and 17%, respectively. The average BMR
error on four systems is 6%, 7%, 10%, and 6% and
the maximum BMR error is 18%, 17%, 20%, and 18%,
respectively. We obtain similar results for CCR and
Instruction and Data Level 1 cache hit rates. Hence,
our synthetics are portable across different hardware
configurations.

6.4 Assessing Input Changes

We analyze the impact of input changes on char-
acteristics of original and synthetic benchmarks. In
particular, we test whether we can use the synthetic
that is generated for a particular input size, say small,
as a synthetic for other input sizes, say medium or
large. To test this claim, one can check whether the

individual and overall similarity scores are met, when
the synthetic for a particular input size is used for
other input sizes. For this purpose, we run origi-
nal benchmarks from PARSEC, Rodinia, and EEMBC
MultiBench with small, medium, and large inputs.

We observed that when input sizes change, indi-
vidual similarity scores for high level characteristics
are met for all benchmarks but individual similarity
scores for low level characteristics are not met for
some benchmarks. In particular, when we consider
all low level characteristics, we observe that for 18
of the 26 benchmarks, a single synthetic for one input
type can be used for other input sizes. Due to lack
of space we display only the IPC values of original
benchmarks for small, medium, and large inputs on
System-I in Figure 9. From the figure, we see that
for ipres benchmark, IPC values remain nearly the
same for different inputs (0.63, 0.65, and 0.63 for small,
medium, and large inputs, respectively). This is also
the case for other low level characteristics of this
benchmark. Hence, we can use the same synthetic
generated for one input size for different input sizes.
Whereas, for Blackscholes benchmark, IPC values
change drastically (0.68, 0.95, and 1.03 for small,
medium, and large inputs, respectively). Hence, we
cannot use the synthetic, say for the small input size
for other input sizes, as the similarity scores do not
match.

6.5 Correlation between Parallel Pattern Score
and Overall Similarity Score
We ran regressions to analyze the correlation between
high level characteristics and the parallel pattern. We
found that the combination of data sharing and thread
communication characteristics has the highest corre-
lation with the parallel pattern where the correlation
coefficient is 0.91.

Next, we analyze the correlation between the par-
allel pattern score and the overall similarity score. In
order to check this correlation, from a given original
application, we generated six synthetic benchmarks
each using a different parallel pattern and only one
having the correct pattern. Note that these synthetics
are obtained only after one iteration step and no
code blocks have been added for matching similarity
metrics. We then calculate the total pattern score
and overall similarity score for each synthetic. We
observed that when the synthetic gets the highest
total pattern score, that is, when it has the correct
parallel pattern, we also have the highest overall
similarity score. For example, the overall similarity
score for Bodytrack is 61, when it has the correct
parallel pattern and it is between 24 and 30 for other
parallel patterns. Similarly, the overall similarity score
for ippktcheck is 72 for the correct parallel pattern
and between 36 and 61 for other parallel patterns.
Moreover, there exists a linear correlation between the
total pattern score and the overall similarity score.

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 12

Fig. 9. IPC values of original benchmarks for small, medium, and large inputs on System-I.

Correlation coefficient for Bodytrack is 0.96 and
it is 0.88 for ippktcheck. The average correlation
coefficient is 0.68 for all benchmarks used during
experiments.

6.6 Discussion

Our techniques allow designers to use synthetic
benchmarks in the early design stage of multicore
systems where benchmarks need to be run frequently
on hardware models, hence there is a need for
high speed. However, when design matures, orig-
inal benchmarks should be used for final accurate
performance evaluation. When using synthetics for
design space exploration, performance evaluation, or
bottleneck identification, one should note the charac-
teristics that are kept similar in synthetics with respect
to the originals and use synthetics for performance
evaluation of such characteristics. For example, our
synthetics should not be used for compiler optimiza-
tion studies since our code blocks do not necessarily
perform useful computation hence they can be re-
moved by a compiler. Since some applications have
inherently many inputs some of which could not be
covered in the early design stage, generating different
synthetics for each input as we did in Section 6.4
cannot solve the input change issue. We also assume
that the application has a well-defined parallel pattern
as synthetic generation is based on parallel patterns.
Note that all the benchmarks that we used utilizes
only a single parallel pattern and we are not aware of
a benchmark suite with multiple patterns.

Our experiments showed that synthetic bench-
marks are portable across different architectures in-
cluding different number of processors and cache
sizes. We observed that if the number of cores or cache
sizes are increased by more than 2x or decreased by
more than 0.5x from the base configuration that the
synthetic was generated on, then our synthetic may
no longer be portable. This is because big changes in
architectures result in big changes in CPU stall times
and cache conflicts and preserving these changes in
the synthetic benchmark requires collecting a large
number of characteristics, which is costly and results
in slower synthesis process. Whereas, we capture an

application’s behaviors with just a few characteristics
at the cost of potentially reduced sensitivity to archi-
tecture changes. For example, the CMR of Ferret
changes from 33.1 to 14.1 and the CMR of the corre-
sponding synthetic changes from 29.0 to 20.7 going
from a system with 6 MB cache to a new system
with 20 MB cache (> 2x change). Although CMRs of
both the original and the synthetic decrease, the rate
of decrease is not similar. Finally, we note that the
portability of a synthetic benchmark also depends on
the application that it is generated from. For example,
if an application uses only 1 MB of 4 MB system cache,
moving the application to a new system with 20 MB
cache does not break the portability of the synthetic
benchmark.
7 RELATED WORK

Gamma et al. [3] introduced design patterns for
object-oriented programming, similarly architectural
patterns for parallel applications are given in [2].
Explicit knowledge of parallel pattern composition
semantics has been exploited in previous work [17] to
meet performance and power goals. Our parallel pat-
tern recognition work is based on the work by Poovey
et al. [8] where they implement pattern recognition
in software. We have formalized this concept and
presented new reference behaviors for thread commu-
nication and general threading. They detect parallel
patterns from PARSEC and SPLASH-2 benchmarks.
The accuracy of their pattern recognition technique
is 50%, whereas we have a complete match on pat-
terns in PARSEC. Also, in [18], the same authors use
parallel patterns for dynamic thread mapping where
they implement pattern recognition in hardware for
speed purposes since their algorithm needs to work
dynamically and periodically during the execution
of the program. Since we only need to run pattern
recognition once and not during the execution of a
program, a software solution as in [8] suffices.

There has been prior work on characterizing bench-
marks mentioned in this paper. In [14], the authors
analyze several characteristics such as data locality,
effects of different cache block size, degree of par-
allelization, and temporal and spatial behavior of
communication for PARSEC. Che at al. [15] present

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 13

characteristics of Rodinia benchmarks based on inher-
ent architectural characteristics, parallelization, syn-
chronization, communication overhead, and power
consumption. A comparison of PARSEC and Rodinia
benchmark suites is given in [19], using instruction
mix, working set, and sharing behavior characteris-
tics. Their work shows that many of the workloads
in Rodinia and PARSEC capture different aspects of
performance metrics and they complete each other.
Poovey et al. [20] characterized the EEMBC bench-
marks on different ISAs using trace-driven simula-
tion. They used microarchitecture independent char-
acteristics such as dynamic instruction percentages
(integer, floating-point, load, store, branch, e.g.) and
microarchitecture dependent characteristics such as
cache miss rate and branch misprediction ratios. They
mainly focus on the analysis of the similarity of
performance characteristics among benchmarks.

There has been several works to understand and
optimize the performance of workloads by using per-
formance counters [21], [22], [23]. These studies use
microarchitecture dependent metrics like cycles per
instruction, cache miss rate, and branch misprediction
rate. In [24] and [25] the authors propose microarchi-
tecture independent metrics for characterizing work-
loads.

Several works use statistical simulation for syn-
thetic workload generation [26], [27], [28], [29]. How-
ever, in these works mainly single threaded applica-
tions and microarchitecture dependent characteristics
have been used, whereas our work targets multi-
threaded applications and uses microarchitecture in-
dependent characteristics.

So far, synthetic benchmarks have mainly been
developed for sequential applications [6], [30]. There
are some recent synthetics for multi-threaded appli-
cations in [23], [31], and [7] that target performance
and power characteristics and may have lower error
rates. These synthetics do not target embedded mul-
ticore systems, which we can, thanks to using MCA
libraries. Also, their synthetics use low level assem-
bly language, whereas we generate multi-threaded
benchmarks as readable and portable C code. We
do not use simulators, which may consume a long
time, for gathering application characteristics, rather
we use dynamic binary instrumentation and perfor-
mance counters. The number of characteristics we
use (13) is smaller than theirs (around 40). Finally
and most importantly, we use an even higher level
of characteristics, that is, the parallel pattern that
captures inherent characteristics of a multi-threaded
application.

Portability of synthetics with changing microarchi-
tectures has been studied in the literature [7], [24],
[25]. In [32] and [33], the authors use LLVM compiler
to generate ISA independent portable benchmarks.
In particular, they generate synthetics for P4080ds
system and their average error in IPC is 37.9% with

maximum error of 212%. In [34], the authors generate
portable and human-readable communication bench-
marks in C for MPI applications. Their synthetics pre-
serve only the communication characteristics and the
execution time of original applications. In our work,
we generate portable and human-readable synthetics.
We performed portability experiments with changing
microarchitectures as well as ISAs. Our synthetics
target Pthreads applications and they preserve several
high level and low level characteristics of the origi-
nals, while being faster than the originals.

Jung et al. [35] proposed a random synthetic pro-
gram generator that is used to train machine learning
models by collecting low level characteristics from the
source code of an application. Then they use these
models to predict and modify the application and its
characteristics by using the best data structures for a
given input/architecture combination. This approach
is orthogonal to our approach. In that, we instrument
the binary of the application to collect both low
level and high level characteristics including thread
communication and data sharing to generate a fast
synthetic benchmark that preserves the characteristics
of the application.

In this work, we extended our preliminary work
[36] in which we generated synthetic benchmarks
in C using MCA libraries for embedded multicore
systems. The improvements we made are described
in the contributions section of the introduction.

Multicore Communications API (MCAPI) which
is a lightweight message passing API and Multi-
core Resource API (MRAPI) which specifies essen-
tial application-level resource management capabili-
ties are two of the standards developed by Multicore
Association (MCA) [1], [37] for closely distributed
embedded systems. Since these standards are new
they are lacking benchmarks. Our benchmarks will
also serve to proliferate the usage of these standards
among potential users.

8 CONCLUSIONS AND FUTURE WORK

We developed a fully automated framework, MIN-
IME, capable of generating infrastructure independent
synthetic multicore benchmarks. Our main novelty
comes from using parallel patterns for generating syn-
thetics. These high level characteristics are essential
in capturing the behavior of multicore applications
such as data sharing and thread communication. Our
synthetic benchmarks are readable and portable since
they are generated in a high level programming lan-
guage, C, as opposed to assembly in earlier works.
Also, they can use either Pthreads or MCA libraries.
Synthetic benchmarks are suitable for embedded mul-
ticore systems and can run on any given infrastructure
thanks to using MCA libraries.

We experimentally validated MINIME on both x86
and Power Architecture systems using PARSEC, Ro-
dinia, and EEMBC Multibench benchmark suites. Ex-

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2349522, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. V, NO. N, 2013 14

periments show that our synthetic benchmarks are
similar with the original benchmarks with respect to
several metrics. They are also faster (on average 21x)
and smaller (on average 14x) than original bench-
marks and they mimic the behavior of the original
on different microarchitectures. We performed corre-
lation studies to determine the importance of correct
parallel patterns in achieving high similarity. We also
studied the impact of input changes on the synthetics.

In the future, we plan to generate synthetic bench-
marks that preserve power consumption characteris-
tics. Also, we plan to detect composition of parallel
patterns and changes of patterns over application
phases.

ACKNOWLEDGMENTS

This research was supported in part by Semiconduc-
tor Research Corporation under task 2082.001, BU
Research Fund 7223, and the Turkish Academy of
Sciences.
REFERENCES
[1] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and

F. Schirrmeister, “Software Standards for the Multicore Era,”
IEEE Micro, vol. 29, no. 3, pp. 40–51, 2009.

[2] J. L. Ortega-Arjona and G. Roberts, “Architectural Patterns
for Parallel Programming,” in European Conference on Pattern
Languages of Programs (EuroPLoP), 1998.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, 1st ed.
Addison-Wesley Professional, Nov. 1994.

[4] K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A. Sanders,
“A Design Pattern Language for Engineering (Parallel) Soft-
ware: Merging the PLPP and OPL Projects,” in Workshop on
Parallel Programming Patterns (ParaPLoP), 2010.

[5] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming. Addison-Wesley, 2005.

[6] A. Joshi, L. Eeckhout, R. H. B. Jr., and L. K. John, “Perfor-
mance Cloning: A Technique for Disseminating Proprietary
Applications as Benchmarks,” in IEEE International Symposium
on Workload Characterization, 2006.

[7] K. Ganesan and L. K. John, “Automatic generation of minia-
turized synthetic proxies for target applications to efficiently
design multicore processors,” IEEE Transactions on Computers,
vol. 63, no. 4, pp. 833–846, 2014.

[8] J. A. Poovey, B. P. Railing, and T. M. Conte, “Parallel Pattern
Detection for Architectural Improvements,” in USENIX confer-
ence on Hot topic in parallelism (HotPar), 2011.

[9] N. Barrow-Williams, C. Fensch, and S. Moore, “A commu-
nication characterisation of Splash-2 and Parsec,” in IEEE
International Symposium on Workload Characterization, 2009.

[10] “DynamoRIO Dynamic Instrumentation Tool Platform,
http://dynamorio.org/,” 2013.

[11] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation,” in ACM Conference on Programming Language
Design and Implementation, 2005.

[12] Q. Zhao, D. Bruening, and S. Amarasinghe, “Umbra: Efficient
and Scalable Memory Shadowing,” in IEEE/ACM International
Symposium on Code Generation and Optimization, 2010.

[13] “Linux profiling with performance counters,
https://perf.wiki.kernel.org,” 2013.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions,” in International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in IEEE International Symposium
on Workload Characterization, 2009.

[16] “Embedded Microprocessor Benchmark Consortium,
http://www.eembc.org,” 2013.

[17] J. Holt and H. Hoffmann, “SEEC-AP: Self-Aware Software
Architecture Patterns,” in International Workshop on Computing
in Heterogeneous, Autonomous ’N’ Goal-oriented Environments
(CHANGE), 2012.

[18] J. A. Poovey, M. C. Railing, and T. M. Conte, “Pattern-
Aware Dynamic Thread Mapping Mechanisms for Asymmet-
ric Manycore Architectures,” Georgia Institute of Technology,
Tech. Rep., 2011.

[19] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A Characterization of the Rodinia Benchmark
Suite with Comparison to Contemporary CMP Workloads,”
in IEEE International Symposium on Workload Characterization,
2010.

[20] J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On, “A
Benchmark Characterization of the EEMBC Benchmark Suite,”
IEEE Micro, vol. 29, no. 5, pp. 18–29, 2009.

[21] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Quan-
tifying the Impact of Input Data Sets on Program Behavior and
its Applications,” Journal of Instruction-Level Parallelism, vol. 5,
pp. 1–33, 2 2003.

[22] S. Bird, A. Phansalkar, L. K. John, A. Mercas, and R. Idukuru,
“Performance Characterization of SPEC CPU Benchmarks
on Intel’s Core Microarchitecture based processor,” in SPEC
Benchmark Workshop, Jan. 2007.

[23] K. Ganesan, L. K. John, V. Salapura, and J. C. Sexton, “A
Performance Counter Based Workload Characterization on
Blue Gene/P,” in International Conference on Parallel Processing
(ICPP), 2008.

[24] K. Hoste and L. Eeckhout, “Comparing Benchmarks Using
Key Microarchitecture-Independent Characteristics,” in IEEE
International Symposium on Workload Characterization, 2006.

[25] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Mea-
suring Benchmark Similarity Using Inherent Program Charac-
teristics,” IEEE Transactions on Computers, vol. 55, pp. 769–782,
2006.

[26] M. Oskin, F. T. Chong, and M. Farrens, “HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor
Designs,” in International Symposium on Computer Architecture,
2000.

[27] S. Nussbaum and J. E. Smith, “Modeling Superscalar Proces-
sors via Statistical Simulation,” in International Conference on
Parallel Architectures and Compilation Techniques, 2001.

[28] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and
L. K. John, “Control Flow Modeling in Statistical Simulation
for Accurate and Efficient Processor Design Studies,” in Inter-
national Symposium on Computer Architecture, 2004.

[29] L. V. Ertvelde and L. Eeckhout, “Benchmark Synthesis for
Architecture and Compiler Exploration,” in IEEE International
Symposium on Workload Characterization, 2010.

[30] A. Joshi, L. Eeckhout, and L. John, “The Return of Synthetic
Benchmarks,” in SPEC Benchmark Workshop, 2008.

[31] C. Hughes and T. Li, “Accelerating Multi-core Processor De-
sign Space Evaluation using Automatic Multi-threaded Work-
load Synthesis,” in IEEE International Symposium on Workload
Characterization, 2008.

[32] J. Jo, L. K. John, M. Reese, and J. Holt, “Validation of Synthetic
Benchmarks by Measurement,” in Workshop on Unique Chips
and Systems (UCAS), 2010.

[33] L. K. John, J. Jo, , and K. Ganesan, “Workload Synthesis
for a Communications SoC,” in Workshop on SoC Architecture,
Accelerators and Workloads, 2011.

[34] V. Deshpande, X. Wu, and F. Mueller, “Auto-generation
of Communication Benchmark Traces,” SIGMETRICS Perfor-
mance Evaluation Review, vol. 40, no. 2, pp. 99–105, 2012.

[35] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande, “Brainy:
Effective Selection of Data Structures,” in ACM Conference on
Programming Language Design and Implementation, 2011.

[36] E. Deniz, A. Sen, J. Holt, and B. Kahne, “Using Software Ar-
chitectural Patterns for Synthetic Embedded Multicore Bench-
mark Development,” in IEEE International Symposium on Work-
load Characterization, 2012.

[37] “Multicore Association, http://www.multicore-
association.org,” 2013.

