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Abstract—We develop an assertion based verification solution
for analog mixed-signal designs. We introduce the halo concept
for analog signals to express them with their tolerance and
variation values in assertions. The halo of a signal provides a
relaxation over the signal and it defines an effective region for
that signal which can be used in assertion based verification.
Using haloes for analog signals allow us to define a new set
of comparison relations between two analog signals including
their equivalence. In our intended design flow, these new analog
signal operators are placed into the Analog layer of mixed-signal
assertion languages as an extension. We present experimental
results on a programmable switch and a VCO.

I. INTRODUCTION

As electronic market drivers push for more functionality in
more compact devices, level of system complexity has sky-
rocketed and becomes unmanageable without a significant
support from electronic design automation (EDA) industry.
Despite many ingenious solutions from EDA industry, the
ever-increasing pressure for larger and complex designs makes
electronic design process more vulnerable to faults. There-
fore, different verification methodologies has been studied
extensively in the past several years. Formal approaches like
model and equivalence checking have been developed to verify
designs to get a full verification coverage. However, since these
methods suffer from the state-explosion problem, less-formal
or semi-formal approaches have been gaining popularity in the
industry. Property-based or assertion-based verification is an
important part of the verification flow.

Verification methodologies are primarily developed for de-
signs in digital domain. However, many chips designed today
do not only consist of digital but also big analog and radio-
frequency (RF) modules. The portion of such modules in total
design has been increasing steadily over the years. Traditional
methods, which are mostly manual and ad-hoc, to verify
mixed-signal designs are too slow and error-prone to satisfy
today’s highly ambitious time-to-market and first-pass-silicon
requirements. For this reason, mixed-signal verification needs
a more structured and formal methodology to catch up with
the efficiency of digital verification.

Assertion-based verification (ABV) methodology for analog
mixed-signal designs is as an alternative to traditional methods
and it tries to reduce the manual effort and increase reusability
of the verification process by formalizing the specification of

the design and the evaluation of simulation results. Such an
automation is performed by specifying system properties in
a formal language or an assertion language. Then, simulation
results are checked according to this formal specification and
automatically it is decided whether the property is satisfied or
not.

Mixed-signal assertion languages have been developed in
recent years [1], [2], [3]. These languages are specified as a
set of specification layers where the top layer is the Temporal
layer, then comes the Boolean layer, and Analog layer. Al-
though the Temporal and Boolean layers are well understood
as they are similar to their digital counterparts, the analog
layer is still lacking expressiveness that the designers require.
Our contributions in this paper are on Analog layer in order to
express the analog signals more naturally. As analog signals
usually associated with some tolerance and variation values in
real world, operations over these signals should consider these
facts. We introduce the Halo concept to express tolerance and
variation values of analog signals in assertions. Essentially
a halo for an analog signal is a pair of boundary signals.
The region between these boundaries corresponds acceptable
values for the value of the analog signal. We show that the
concept of haloes is useful to express analog signals in a more
natural way in assertions.

The paper is organized as follows. We briefly explain gen-
eral characteristics and the structure of assertion languages for
mixed signal designs in Section II. In Section III, we introduce
the Halo concept. In Section IV, methods to calculate a halo
are explained. Booleanization of analog signals for real-valued
time are given in Section V and comparison operators for
haloes are defined in Section VI. We present two case studies,
one programmable switch and one VCO model, to show our
intended verfication flow in Section VII. Finally, we give a
related work in Section VIII, and conclude with a discussion
and future work in Section IX.

II. MIXED SIGNAL ASSERTION LANGUAGES

In existing assertion-based verification (ABV) flows, ver-
ification begins with system requirements. The verification
engineer translates these requirements into a formal assertion
language to check them automatically on simulation traces.
Proposed assertion languages in the literature such as [1], [2],
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[3] are usually based on Linear Temporal Logic (LTL) [4]
and they extend its expressiveness towards continuous-time
domain.

These mixed-signal assertion languages consist of several
abstraction layers and are influenced by Property Specification
Language (PSL) [5]. Table I shows a grammar for such mixed-
signal assertion language. Layers are vertically placed and
the information is passed upwards through the hierarchy. In
addition to PSL layers such as Boolean and Temporal layers,
mixed-signal assertion languages introduce a new layer to
capture analog properties. This Analog layer is responsible
for extracting information from analog signals and converting
them into boolean signals. For example, one may ask if the
voltage value of an analog signal is greater than 5V, and
then the Analog layer checks for instants that the condition
is satisfied and returns a boolean signal according to this
extracted information. After analog signals are converted into
boolean signals, one can apply Boolean operations on them
and check whether they satisfy some temporal properties or
not. The upper-level Boolean and Temporal layers are meant
to perform these operations in the verification flow.

In the analog layer, extracting information from analog
signals can be done in several ways. Comparing analog
signals with other analog signals or constant values is the
most common way and it is the simplest method to convert
analog signals into boolean signals in practice. Therefore, early
ABV methodologies for mixed-signal designs only support
comparison operators in their Analog layers [1], [6], [7],
[8], [9]. Also, a limited set of frequency domain properties
have been checked using FFT to extract information from the
signals [2].

In this paper, we extend the Analog layer in a new direc-
tion. We introduce haloes for analog signals to express their
tolerance and variation values. Our proposed extension for the
Analog layer of mixed-signal assertion languages are shaded
in Table I, which shows our proposed grammar.

In the table, different symbols are used to represent different
types of operators. These operators are:

• Temporal Operators, } ∈ {G,F}
• Binary Boolean Operators, • ∈ {∧,∨,⇒}
• Boolean Negation Operator, ¬
• Halo Comparison Operators, �
• Halo Calculation Operator, H
• Arithmetic Operators, � ∈ {+,−, ∗, /}
The temporal and boolean operators have their usual seman-

tics and we define the halo operators in the next sections. An
arbitrary property using our grammar is as follows:

G((p ∧ q)⇒ F (G(H(x) SGT H(y + c))))

where p and q are Boolean signals, x and y are analog
signals, c is a constant and SGT is a halo comparison operator.

III. SIGNAL HALO CONCEPT

In astronomy a halo is defined as a circular band of
colored light visible around the sun or the moon. As a naive

TABLE I
THE AMS ASSERTION LANGUAGE GRAMMAR

Temporal
Layer

TempExpr ::= }BoolExpr
| }TempExpr
| TempExpr • TempExpr
| ¬TempExpr

Boolean
Layer

BoolExpr ::= HaloExpr � HaloExpr
| BoolExpr •BoolExpr
| ¬BoolExpr

Analog
Extension

HaloExpr ::= H(SignalExpr, params)
| SignalExpr

Analog
Layer

SignalExpr ::= AnalogSignal
| Const
| SignalExpr � SignalExpr

} Temporal Operators � Arithmetic Operators
• Binary Boolean Operators � Halo Comparison Operators
¬ Boolean Negation Operator H Halo Calculation Operator

interpretation, a halo is a kind of boundary for the object
at the center that determines its effective region. Translating
this notion into the analog signal domain, we define a pair of
boundaries (upper and lower) for each sample of the analog
signal we’re interested in and name this as the Signal Halo
or just the Halo, in short. Further, the area covered by these
boundaries in two-dimensional space of analog domain is
called as the Halo Region in the rest of the paper. To visualize
the halo concept, an arbitrary analog signal and its halo are
plotted in Figure 1. The methods to calculate such a halo for
an analog signal are explained in Section IV.

Fig. 1. An analog signal and its halo are plotted. The area between green
lines is called the halo region. The noisy analog signal has been low-pass
filtered and shifted up and down by a constant value to determine the halo.

A halo defines a tolerated region around the original analog
signal; therefore, provides a space to relax analog operations
and allows to assert more realistic properties by considering
the analog nature of signals. The most natural example would
be the equivalence of two analog signals. Normally, for an
analog designer, it is easy to compare two analog signals
– where one signal corresponds to the expected theoretical
signal and another one corresponds to the observed signal
from simulation– and say that they are both equivalent to
each other by visually inspecting two waveforms. On the
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Fig. 2. A sinusoidal analog signal with noise is compared with a reference
sinusoidal signal with the same frequency but amplified by a factor of 1.1. The
halo region covers the reference signal and the equivalence operator outputs
a boolean signal that shows that the signals are equivalent.

other hand, for a computer, concluding the same result is not
that straightforward. To do this, the algorithm should ignore
small differences between signals while ensuring the general
pattern. In other words, expressing analog signals together with
tolerances has an important role in the success of automated
analog verification and preventing false negatives that lead to
long debugging efforts. Defining a halo provides a way to
realize such a relaxation over analog signals.

Two more examples are shown in Figure 2 and Figure 3 to
demonstrate the usefulness of the halo concept. In part a) of
these examples, an analog signal, shown in blue, is composed
of a main frequency component and several side components.
Then, we want to compare the analog signal with a reference
signal, shown in red, that is a sinusoidal at the frequency
that equals to the analog signal’s main frequency. The only
difference between the first example and the second is the
amplitude of reference signals plotted. Practically, a computer
is too precise to conclude that the blue signal and the red
signals are equivalent. However, we define haloes around the
signals, shown in green, and compare using the haloes. In
Figure 2, the reference signal always remains inside the halo
region of the analog signal; so the output Boolean equivalence
signal in part b) has a true value for each time instant and we
can conclude that the signals are equivalent for that period,
as the designer would conclude. However, in Figure 3, the
reference signal leaves the halo region for some time instants
so we cannot say that the signals are equivalent.

We relaxed the signal comparison up to some point and

Fig. 3. A sinusoidal analog signal with noise is compared with a reference
sinusoidal signal with the same frequency but amplified by a factor of 1.2.
The halo region does not cover the reference signal for some points and the
equivalence operator outputs a boolean signal that shows that the signals are
not always equivalent.

introduced a tolerated region for signal equivalence via a halo.
This relaxed behavior of equivalence due to haloes is closer to
the understanding of an analog designer, when he checks for
equivalence of signals with certain tolerances in mind rather
than a stricter comparison that leads to false negatives.

IV. CALCULATING THE HALO

A halo is basically a pair of boundary signals (upper and
lower) for analog signals. Since analog signals are represented
by their sampled versions for verification in practice, we
calculate a pair of boundary values for each sample point of
the analog signal to calculate a halo.

Computing boundary values for an analog signal may be
done in various ways. We propose four methods for computing
boundary values.

• Absolute Method. Adding and subtracting a constant
value from the original signal value is a very intuitive
and simple way to calculate the boundaries. In this case,
the shape of the boundaries is exactly the same as the
signal except that they are shifted up or down by the
constant value.

• Relative Method. For some signal types and applications,
absolute tolerances may not be desired. Instead, we
may want high precision around zero and less precision
for values far from zero. To provide such a behavior,
boundary value is calculated with a relative value given
as a percentage.
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Fig. 4. An analog signal (blue) and its haloes (green) calculated by different
methods

• Low-Pass Filter (LPF) Method. Absolute and Relative
methods calculate the boundaries for each sample in-
dividually but we may want that the boundary values
only represent the general pattern of the signal rather
than individual sharp changes in the signal that is usually
caused by noise. To provide such a behavior, we use a
low-pass filtered version of the original signal as the base
for other methods.

• Monte-Carlo Method. A number of analog signals ob-
tained by Monte-Carlo simulations are used to calculate
a halo. Simply maximum and minimum values of these
signals for each sample point are considered as upper and
lower boundaries, respectively.

In Figure 4, we show an arbitrary signal and its haloes
calculated using four different halo calculation methods.

V. BOOLEANIZATION OF ANALOG SIGNALS

We define analog (real-valued or continuous) signals as
functions from the time-domain T = R+ to a state-space
X ⊆ Rn, where n is the number of predicates, as in [1].
The Booleanization of an analog signal corresponds to a
transformation of the state-space X of the signal into Boolean
values using a predicate such that µ : X→ B. After using such
predicates over analog signals, the analog signal a : T → X

is transformed into a Boolean signal w : T→ B.
Rise and Fall events in Boolean signals correspond some

qualitative changes in analog signals and a Boolean signal
can be fully identified by its Rise and Fall events. Therefore,
a Boolean signal is nothing but a sequence of such events.
In our implementation, each Boolean event (Rise and Fall) in
a Boolean signal is associated with a time-stamp. We prefer
to use continuous-time notion to express time. This means
that Rise and Fall events can happen at any time and it

is independent from any type of clocking mechanism. The
benefits of such an approach is presented in [10].

Although we want to express Boolean signals in continuous-
time, analog signals are represented by their sampled versions
in practice. This means that a predicate that we use to
booleanize an analog signal should return a continuous-time
boolean signal from a sampled analog signal. For such a
duty, we implement a predicate which determines if an analog
signal is Greater-than-zero or not and returns a continuous-
time Boolean signal. This is a base method for us, and all
other comparison operators can be derived from this method.
This method sequentially checks each sample value of the
analog signal, and searches for a change in the output value.
Whenever a change happens, it places the corresponding event
(either Rise or Fall) at that time instant. For example, if
the current signal sample value is positive, and the previous
sample value is negative, this means that the output value of
Greater-than-zero operator is changed at some time between
the current and the previous samples. We use linear interpo-
lation to calculate the exact zero-crossing time, denoted by
tZeroCross, and we place a Rise event at the zero-cross instant.
Similarly, we place a Fall event to the zero-cross instant if
the previous sample value is positive, and the current sample
value is negative. If there is no change at the output, no event
is placed. All possible cases for successive analog samples an
and an+1, where n denotes sample index. The corresponding
time-stamp and event are displayed in Table II.

VI. HALO COMPARISON

After we obtain haloes for analog signals, we need to
compare these haloes for the booleanization of the analog
signals. However, this is different from an ordinary comparison
because a halo has two values to be compared rather than a
single value. Furthermore, a halo divides the space into three
regions (upper, inner and lower) unlike an analog signal that
divides it into two regions (upper and lower). This difference
makes comparison of haloes more complex, and we obtain six
different possibilities of comparison.

Let a1 and a2 be two sampled analog signals, S1 and S2

be the haloes for a1 and a2, respectively. Haloes S1 and S2

are represented by tuples (un, ln) for each sample point, n.
Real numbers, un and ln correspond to the upper and lower
boundary values of the halo, Sn, where un ≥ ln. Then, we
can define six comparison relations between two haloes, S1

TABLE II
COMPUTATION A BOOLEAN SIGNAL FROM SAMPLE VALUES

an an+1 Timestamp Event
– + tZeroCross Rise
– 0 N/A No Event
– – N/A No Event
0 + tn Rise
0 0 N/A No Event
0 – N/A No Event
+ + N/A No Event
+ 0 tn+1 Fall
+ – tZeroCross Fall
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and S2. We named these six relations as strictly-greater-than
(sgt), nearly-greater-than (ngt), covers (cvr), is-covered (cvd),
nearly-less-than (nlt), and strictly-less-than (slt).

Each relation is calculated by comparing the upper and the
lower boundaries of the first halo with the upper and the lower
boundaries of the second halo. Although a single comparison
may be enough to define some halo comparison relations (e.g.
sgt), we show all comparisons for the sake of completeness.

sgt = (u1 ≥ u2) ∧ (u1 ≥ l2) ∧ (l1 > u2) ∧ (l1 > l2)

ngt = (u1 ≥ u2) ∧ (u1 ≥ l2) ∧ (l1 ≤ u2) ∧ (l1 > l2)

cvr = (u1 ≥ u2) ∧ (u1 ≥ l2) ∧ (l1 ≤ u2) ∧ (l1 ≤ l2)

cvd = (u1 ≤ u2) ∧ (u1 ≥ l2) ∧ (l1 ≤ u2) ∧ (l1 ≥ l2)

nlt = (u1 < u2) ∧ (u1 ≥ l2) ∧ (l1 ≤ u2) ∧ (l1 ≤ l2)

slt = (u1 < u2) ∧ (u1 < l2) ∧ (l1 ≤ u2) ∧ (l1 ≤ l2)

Fig. 5. Two haloes with five sample-points

In Figure 5, we display two haloes –straight lines and
dashed lines– each with only five sample-points for analog
signals. We apply halo comparison operators to these haloes
and the results are plotted in Figure 6.

VII. CASE STUDIES

We show the viability of our approach for AMS verification
on two case studies. As the first case study, we use a
programmable switch circuit with local memory. The property
that we want to check is that the output of the circuit should
follow the input if the memory value is logic high.

Simulation waveforms, a : in, a : out and a : on correspond
to the input, output and the memory value, respectively. We
show these waveforms in the first three plot of Figure 7. We
convert the analog waveform, a : on, to a boolean signal,
b : on, via a threshold which is Vdd/2. This booleanization
is essentially a comparison-with-zero operation, and it can be
formally written as b : on = (a : on − Vdd/2 > 0). For our
case, Vdd = 2.5V .

For the next step, we calculate a halo for the input signal, a :
in because we want to check if the output signal, a : out, stays
in the boundaries of the input halo. By this way, we can say if
the output follows the input or not. In our case, we calculate

Fig. 6. Comparison of haloes in Figure 5 using halo comparison operators

the input halo using Absolute method with 0.01V margin. It
means we allow a constant tolerance of ±0.01 around the input
signal. Note that the output signal is exactly the same with
input signal in the ideal world. However, it is never the case
in the real life; therefore, we should allow small differences,
and we are doing such a relaxation by using haloes.

Ultimately, we write the desired property in our assertion
language as follows:

G(b : on⇒ (a : out CV D H(a : in)))

where G is Always operator of temporal logic, CV D is our
covered-by operator and H is our halo calculation procedure.
In English, we can write this property such: For all time
instants, a : out is covered by the halo of a : in when b : on
is True.

In Figure 7, we show evaluation steps for the property above
and the property is satisfied in this case. First three plots are
the waveforms coming from the simulator. In fourth, we show
the booleanization of a : on signal via a threshold. In fifth,
we show a : in (blue), H(a : in) (green) and a : out (red)
in a combined and zoomed view. In this plot, we can see the
output signal, a : out, is inside the halo region of the input
signal, a : in. Following three plots show the evaluation of
sub-formulas in the property.

In the second case, we use a voltage-controlled oscillator
(VCO) model with linear, quadratic, and cubic gain parame-
ters. The higher order quadratic and cubic effects are meant to
model the non-linearity in real designs; however, non-linearity
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Fig. 7. Step-by-step property evaluation for programmable switch

is undesired for VCO operation. Therefore, we simulate the
model without these higher order effects to get our golden
reference VCO output signal. Then, we perform Monte Carlo
simulation by varying quadratic and cubic gains to generate
a halo for the VCO output signal. Halo generation by Monte
Carlo simulations is explained in Section VI. Generated halo
then can be used in assertions to check if the desired property
is satisfied or not. In the first plot of Figure 8, we show the
VCO input analog signal. In the second plot, we show the
halo of the VCO output signal (out) obtained through Monte
Carlo method and the halo of the reference VCO output signal
(ref ), shown as green signal. In the third and fourth plots,
we test whether ((out CV R ref) ∨ (out CV D ref)) and
((out CV R ref) ∨ (out CV D ref) ∨ (out NLT ref) ∨
(out NGT ref)), respectively. These properties mean differ-
ent equivalence specifications between signals in time domain.

This example show that we can use haloes to express
process variations over signals, and we can check if there
is a case that process variation causes a violation in the
specification given.

VIII. RELATED WORK

Several approaches have been proposed in the literature
for the verification of analog mixed-signal designs. Formal
approaches like [11], [12], [13], [14], [15], [16] and semi-
formal approaches like [1], [2], [3], [17] are two main branches
in the field. Mathematical origins of these approaches have

Fig. 8. VCO property checking

been studied over decades but practical studies are newly
emerging in both academia and industry.

Maler and Nickovic [18], [19] presented Signal Temporal
Logic, STL, to monitor temporal properties of continuous
signals by extending Metric Interval Time Logic, MITL [10].
It checks properties in an offline fashion after the simulation is
completed. They extend the checking process to a semi-online
version in [20]. They also developed an Analog Monitoring
Tool [21]. The tool checks properties defined in STL over sim-
ulation traces and it works seamlessly with various industry-
standard waveform formats. However, although temporal layer
in STL is based on real-time and it provides expressive
constructs for verification, STL’s analog layer is limited to
basic arithmetic operations and analog signals are converted
to booleans with basic comparison operators. This reduces the
overall quality of analog verification.

As a part of another research effort, Lammermann et al. [2]
present an online temporal checker module as SystemC-AMS
library. It uses clock-based time notion rather than true real-
time and adds some dedicated operators for analog layer. They
use Fast Fourier Transform (FFT) to check frequency domain
properties from simulation traces. This is a good direction
because time domain specifications are only a part of analog
verification that designers use.

Accellara has a working group to extend System Verilog
Assertions (SVA) with analog extensions and to create an
assertion language called ASVA [7]. EDA vendors like Ca-
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dence and Synopsys present AMS assertions to increase the
verification capability of their AMS design flows [8], [9].

IX. CONCLUSION

We introduce the halo concept for analog signals. A halo
provides a way to express analog signal tolerances and
variations. Using haloes in assertions instead of the signal
itself provides a more relaxed property-checking, and makes
assertions variation-aware. This is a natural extension of the
analog designers approach in verification.

We define a new set of comparison operations for haloes
and use them in assertions. These new operators extend the
Analog layer of mixed-signal assertion languages, and can be
used in existing verification flows.

We propose four methods to calculate a halo for an analog
signal, namely Absolute, Relative, Low-Pass filter, and Monte
Carlo methods. We performed two case studies using haloes.

In the future, we plan to use haloes during the process of
booleanization and perform further experiments.
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