
Integrating Circuit Analyses
for Assertion-based Verification
of Programmable AMS Circuits

Dogan Ulus
Dept. of Electrical & Electronics Eng.

Bogazici University
Istanbul, Turkey

Email: dogan.ulus@boun.edu.tr

Alper Sen
Dept. of Computer Eng.

Bogazici University
Istanbul, Turkey

Email: alper.sen@boun.edu.tr

Faik Baskaya
Dept. of Electrical & Electronics Eng.

Bogazici University
Istanbul, Turkey

Email: faik.baskaya@boun.edu.tr

Abstract—Digitally-programmable analog circuits provide re-
configurability and flexibility for next-generation electronic sys-
tems and modern electronic systems need such circuits more
than ever. For verification of these circuits, the change in analog
characteristics according to digital inputs should be monitored
and checked to determine whether measured analog character-
istics satisfy desired conditions in a unified analog mixed-signal
(AMS) verification environment. Therefore, we integrate common
analog circuit analyses into an assertion-based verification flow,
and we verify time-varying analog characteristics of digitally-
programmable AMS circuits. We use results of DC, AC and
Fourier transform based analyses in our AMS assertion language,
and monitor violations caused by any change in digital inputs.
We show an application of our approach on a programmable
low-pass filter circuit where cut-off frequency can be digitally
controlled.

I. INTRODUCTION

There are growing demands for mixed-signal circuits es-
pecially for system-on-a-chip applications. However, a desire
for more functionality in a more compact device has increased
the level of complexity of these applications and made their
verification harder than ever. Especially bugs that can occur
at the boundaries of analog and digital blocks may remain
hidden until the very end because analog and digital blocks are
verified separately. To prevent such bugs and verify analog and
digital blocks together, some proven techniques from digital
domain have been extended toward analog domain in recent
years.

Among these digital techniques, assertion-based verification
(ABV) has gained popularity for its practicality and scalability.
Formal description of AMS properties and automatic evalua-
tion of simulation runs are two main benefits of ABV flow for
mixed-signal designs. Assertion-based methodology reduces
manual effort, increases reusability and leads to a productivity
increase in AMS verification.

These digital techniques are built on top of the analog
verification techniques such as circuit analyses. Assertions
can check properties from time-domain simulation (transient
analysis) results but these assertions are mostly safe operating
area checks, that observe voltages and currents in design. For

Temporal Layer

Boolean Layer

Analog Layer

DC
Analysis

AC
Analysis

Transient
Analysis

Fourier
Analysis

} AMS Assertion
Language

} Circuit
Analyses

Fig. 1. General structure of an assertion-based AMS verification environment
including circuit analyses

performance related properties, analog designers perform other
types of analog analyses for their designs besides transient
analysis. Therefore, assertions for other analog analyses and
their integration into mixed-signal time-domain verification
still remains a challenge.

In this paper, we integrate circuit analyses into assertion-
based verification flow and we verify a specific class of
mixed-signal circuits, that is digitally-programmable analog
circuits, where analog circuit characteristics can be controlled
by switching digital inputs. In Figure 1, we show our unified
assertion-based verification flow that includes circuit analyses
such as DC, AC, transient, Fourier transform based analyses
as well as digital verification. In our approach, assertion-
based flow can check and monitor results of circuit analyses
whenever a digital event changes the state of the analog circuit.

In the next section, we briefly give a summary of assertion-
based AMS verification from the literature. In Section III,
we present the grammar of our assertion language integrat-
ing circuit analyses for assertion based verification flow. In
Section IV, we explain DC, AC and Fourier transform based
analyses and their integration into mixed-signal verification
and we validate our approach on a programmable low-pass
filter circuit in Section V.

II. RELATED WORK

Several formal or semi-formal approaches for analog mixed-
signal (AMS) circuit verification are presented in [1] and [2].
Formal approaches like [3] and [4] use state-space discretiza-
tion and symbolic computations for AMS verification. Alter-
natively, works proposing semi-formal methods use simulation
traces to verify AMS properties. Expressive monitors and
checkers are crucial for simulation-based approach, therefore
several specification languages have been proposed to describe
assertions addressing different aspects of AMS verification.

In most monitoring techniques, predicates over real-valued
signals convert real-valued signals into Boolean signals and
temporal properties are monitored and checked in simulation
traces. Among them, Signal Temporal Logic (STL) [5], which
extends the Metric Interval Temporal Logic (MITL) [6], is
presented to monitor time-domain properties of continuous
signals. The underlying idea and logic of STL is extended with
many useful constructs such as auxiliary state machines in [7],
frequency-domain operators in [8] and haloes in [9]. Similarly,
specification languages in [10] and in [11] use assertions to
verify AMS designs but they use a discrete-time notion in
synchronization between analog and digital domains unlike a
continuous time notion as in STL.

Expansion towards frequency domain is a natural and re-
quired step for more feature-rich assertion-based verification.
Therefore, the authors of [10] include an FFT operator in
their analog layer but it is limited to amplitude measurement
only. In [8], the relation between time and frequency domain
is discussed from AMS assertion perspective, and Time-
Frequency Logic (TFL) is introduced. However, important
tools for analog verification such as DC, AC and other FFT-
based analyses are missing in current assertion languages. In
this paper, we investigate the benefits of integration between
circuit analyses and current assertion languages.

III. OUR AMS ASSERTION LANGUAGE

Analog mixed-signal (AMS) assertion languages consist
of several abstraction layers and are influenced by Property
Specification Language (PSL) [12]. Alongside Boolean and
Temporal layers as in PSL, AMS assertion languages introduce
an Analog layer to capture analog properties. In early AMS
assertion languages, analog layer is only capable to process
transient analysis results. However, other circuit analyses used
in traditional analog verification is crucial to verify all aspects
of analog design. Therefore, we extend our AMS assertion
language to handle other types of circuit analyses such DC,
AC and Fourier analysis.

We show the grammar of our AMS assertion language
in Table I. The temporal and boolean operators have their
usual semantics. DC, AC, TRAN and FFT operators denote
corresponding operators. Note that FFT operator needs pa-
rameters such as number of points and window function, which
we do not go into detail in Table I. WF operator denotes
custom waveforms to define desired values of measured circuit
properties. AC property operators, shown as A, calculate AC
properties like bandwidth BW from a given AC analysis.

TABLE I
OUR AMS ASSERTION LANGUAGE GRAMMAR

Temporal
Layer

TempExpr ::= }BoolExpr
| }TempExpr
| TempExpr • TempExpr
| ¬TempExpr

Boolean
Layer

BoolExpr ::= Signal = [ubound, lbound]
| BoolExpr • BoolExpr
| ¬BoolExpr

Analog
Layer

Signal ::= RawSignal� RawSignal
| RawSignal
| Const

RawSignal ::= dcExpr
| acExpr
| tranExpr
| fftExpr
| CustExpr

dcExpr ::= DC(Node)@{Events}
acExpr ::= A(AC(Node)@{Events})

tranExpr ::= TRAN(Node)
fftExpr ::= F(FFT (Signal, params)@{Events})

CustExpr ::= WF (Name)@{Events}
Events ::= Event

| Events, Event
} Temporal Operators DC DC Analysis Operator
• Binary Boolean Operators AC AC Analysis Operator
¬ Boolean Negation Operator TRAN Transient Analysis Operator
� Arithmetic Operators FFT Fourier Analysis Operator
A AC Property Operator WF Custom Waveform Operator
F Fourier Property Operator

Similarly, FFT property operators, shown as F , calculate FFT
properties like total harmonic distortion THD from a given
FFT analysis. An example property using our grammar is as
follows:

Always(BW(AC(V(out))@{e1}) = [10e6, 12e6])

where out denotes an output node of an analog filter. For
this assertion, whenever an event e1 occurs, bandwidth (BW)
operator in the analog layer calculates the bandwidth from AC
analysis results. Events can be defined as analog (such as a
signal crossing a voltage value) or digital events (a change in
corresponding digital signal) in our context. Then, bandwidth
value is checked to see whether it is between 10MHz and
12MHz in Boolean layer, and Always operator in Temporal
layer checks whether it is true for all simulation times.

IV. CIRCUIT ANALYSES

Circuit analyses are well-defined ways of collecting in-
formation (metrics) about analog designs. Because circuit
analyses provide valuable metrics for verification, we see a
great benefit to integrate them into assertion-based mixed-
signal verification.

Among circuit analyses, DC operating point analysis de-
termines the quiescent state of circuits. AC analysis extracts
small-signal linear response of the circuit for a single fre-
quency input around the DC operating point. Transient analy-
sis computes time-domain response of the circuit by iteratively
solving the algebraic differential system of equations. Fourier
analysis, by using Fast Fourier Transform (FFT), returns power
spectrum of time-domain signal so that we can see how much
power resides in frequency components of that signal. We can
analyze noise and linearity characteristics of analog circuits

from power spectra. In a mixed-signal design environment,
digital verification techniques like assertions are still available
on top of circuit analyses.

In this paper, we focus on DC, AC and Fourier analyses
and their integration into AMS assertion languages. We use
transient analysis, which is essentially time-domain simulation
of analog circuits, as a bridge between DC, AC and Fourier
analyses in the verification of programmable analog circuits.
It means that we start a transient analysis and we pause
transient analysis whenever a digital event changing the state
of analog circuit occurs. Then, we check DC, AC or Fourier
characteristics of the circuit for that time instant. This way,
we can monitor and verify time-varying characteristics of
programmable analog circuits. We now describe each of these
circuit analyses in more detail.

A. DC Operating Point Analysis and DC Assertions

DC operating point analysis determines the quiescent state
or stable initial condition of the circuit. The quiescent state
is computed by the simulator with capacitances opened and
inductances short-circuited. It provides operating point infor-
mation before an small-signal (AC) analysis or a transient
analysis so it is the starting point in the analog design flow.

In regular flow of analog design, designers make assump-
tions and choices for DC values inside their analog blocks.
Assertions capture these assumptions and design choices and
they report if there is undesired situation. DC characteristics
of analog circuits include DC voltage levels of circuit nodes,
DC current values for circuit branches as well as operating
modes and conditions for circuit devices.

Related analog circuit specifications that can be extracted
via DC analysis include offset voltage values, offset voltage
drifts, bias current values, current drifts and operation modes
of transistor devices. For example, if intended DC voltage
level for the output node is between 0.85V and 0.95V for an
amplifier design, we can capture this specification in following
formula.

DC(V(out)) = [0.85, 0.95]

For time-invariant analog circuit blocks, DC analysis is
performed at the start of simulation and it is considered
as valid for all simulation. Therefore, single DC analysis
is sufficient to verify DC characteristics for time-invariant
systems. However, in case of circuits having time-varying
DC characteristics such as adaptive or digitally controlled
analog circuits, it is beneficial to integrate DC analysis checks
into time-domain simulation (transient analysis). This way,
the interaction between digital and analog domains can be
investigated in a single simulation environment. To ensure
desired DC characteristics during such a mixed-signal simu-
lation, we integrate DC analysis checks into AMS assertions.
For example, we want to check DC voltage level for the output
node of an amplifier with digitally-adjustable transconduc-
tance. Because transconductance adjustment by digital events
can shift DC voltage levels in the analog circuit, output DC

voltage level should be monitored and checked during time-
domain simulation via the following assertion.

Always(DC(V(out))@{e1} = [0.85, 0.95])

where e1 is denoted as a digital event such as a change in
digital control inputs. This assertion monitors DC value of
output node and checks if it satisfies the desired condition
when event e1 occurs anytime during simulation.

B. AC Analysis and AC Assertions

Traditionally, designers analyze analog circuits by exciting
them with a single-frequency input signal, and they measure
the output signal to see how the magnitude and phase of the
input signal is changed by the circuit. In general, only linear
analog circuits can be analyzed using this technique; therefore,
a nonlinear circuit should be linearized by assuming input sig-
nals are small enough. This technique, called as small-signal
analysis or AC analysis, is a common and useful procedure
when analyzing frequency response of analog circuits.

Related analog circuit specifications that can be extracted
via AC analysis include DC gain, bandwidth, phase margin,
gain margin and roll-off slopes. In Figure 2, we show an
example AC analysis plot where we can see measured AC
metrics for the output node of a low-pass filter circuit. We can
write assertions to check whether measured metrics satisfy the
specifications in assertion-based verification. For example, if
desired value for DC gain is between 0dB and -0.5dB for a
low-pass filter design, this specification is captured as:

dcgain(AC(V(out))) = [0, -0.5]

In linear time-invariant (LTI) analog blocks, AC analysis
is performed at the start of simulation after DC analysis and
it is considered as valid for all simulation. Therefore, single
AC analysis is sufficient to verify AC characteristics for LTI

Fig. 2. An example AC analysis plot and measured AC specifications

Freq(Hz)

Magnitude(dB)

Time

e1

e2

e3

AC Analysis

Fig. 3. Monitoring time-varying AC characteristics in the middle of time-
domain circuit simulation. A new AC analysis is performed when an event
changes the state of the circuit.

systems. However, in case of circuits having time-varying AC
characteristics such as adaptive or digitally controlled analog
circuits, it is beneficial to integrate AC analysis checks into
time-domain simulation (transient analysis) as we did for DC
assertions.

For example, if we want to check DC gain value for a low-
pass filter with digitally-adjustable cut-off frequency, then we
write the following assertion to capture DC gain property.

Always(dcgain(AC(V(out))@{e1, e2, e3}) = [0, -0.5])

where e1 e2 and e3 are denoted as discrete events such as
changes in digital control inputs. In Figure 3, we illustrate
how AC analysis is performed in the middle of a time-domain
simulation. During time-domain simulation, AC analysis is
performed for time instants when events e1, e2, e3 occur. Then,
our assertion monitors DC gain at the output node from AC
analysis results and checks if it always satisfies the desired
condition when these events occur.

An important limitation for us: Although current simulators
can perform AC analysis in the middle of transient analysis,
they use current node voltages for AC analysis instead of
performing true DC analysis. This limitation makes each AC
analysis which are performed at exact event time wrong.
Therefore, we solve this problem practically by delaying
corresponding event times (until DC voltages are stabilized)
for AC analyses. With simulators allowing event-driven DC
and AC analysis, analysis and verification of time-varying
analog circuits are easier and more comfortable.

C. Fourier Analysis for Noise and Linearity

Noise and linearity characteristics of analog circuits deter-
mine the range of useful signals that the circuit processes as
intended. The smallest value of signals that can occur is limited

by the noise floor of the circuit whereas the the largest value
of signals is limited by nonlinearity of the circuit. Therefore,
we use Fast Fourier Transform (FFT) based analyses to verify
dynamic range of analog circuits in practice.

Dynamic range metrics include total harmonic distortion
(THD), signal-to-noise and distortion ratio (SNDR) and spuri-
ous free dynamic range (SFDR). We can extract these metrics
by performing a FFT to get the power spectrum of time-
domain simulation results if the circuit is excited with a
single-frequency input. On the other hand, we should consider
all factors to compute a healthy FFT such as number of
points, windowing choice and sampling frequency during these
analyses.

In Figure 4, we illustrate an example power spectrum plot,
which shows the power of each frequency component along
frequency axis. The biggest peak implies the fundamental
frequency (13MHz in this case), where most of the power is
concentrated, and we can see noise and distortion components
in other frequencies.

1) Total Harmonic Distortion: The total harmonic distor-
tion (THD) of a signal is the ratio of the total power of all
second and higher harmonic components to the power of the
fundamental harmonic (first harmonic) for that signal. Because
a nonlinear system produces second, third and higher-order
distortion components at the harmonics of the input (funda-
mental) frequency, when excited with a sinusoidal source, it
is used as measurement for the nonlinearity of a system. THD
metric is calculated by the formula below, and is expressed in
gain (dB) or percentage.

THD = 10 log
H2

D2 +H2
D3 + · · ·+H2

Dn

H2
D1

Fig. 4. Power Spectrum Example

Fig. 5. THD Example

where H2
D1, H2

D2, H2
D2 and H2

Dn represent power value of
first-, second-, third- and n-th order harmonics, respectively.

In Figure 5, we illustrate an example THD analysis of an
analog circuit, which is excited by an input frequency of 1.3
MHz. In the normalized power spectrum of output signal, we
can see the biggest peak at 1.3 MHz, which is the fundamental
frequency, and a few smaller peaks at the integer-multiples
of fundamental frequency, which are called harmonics. Then,
THD operator calculates the ratio of the power of fundamental
frequency and the power of all other harmonics. We write an
assertion to monitor time-varying THD characteristics of any
weakly nonlinear analog circuit as follows:

Always(THD(FFT(V(out))@{e1}) = [0, 2.5])

This assertion checks if calculated THD value always sat-
isfies the desired specification at the time instants when event
e1 occurs.

2) Signal-to-Noise and Distortion Ratio: Another widely-
used metric for noise and linearity specification is Signal-to-
Noise-and-Distortion Ratio (SNDR). It is the ratio of signal
power to power sum of all other spectral components, and
expressed in dB. SNDR is a good indicator about system’s
performance because it takes both distortion and noise com-
ponents into account. SNDR is calculated by using the formula
below:

SNDR = 10 log
Psignal

Pnoise + Pdistortion

where Psignal, Pnoise and Pdistortion denote the value of
power of signal, noise and distortion components. We write

an assertion to monitor time-varying SNDR characteristics of
any weakly nonlinear analog circuit as follows:

Always(SNDR(FFT(V(out))@{e1}) = [30, Inf])

This assertion checks if calculated SNDR value always
satisfies the desired specification at the time instants when
event e1 occurs.

3) Spurious Free Dynamic Range: Spurious-free dynamic
range (SFDR) is the ratio of the input signal to the peak
spurious component. Spurs can occur at the harmonics of
fundamental frequency because of nonlinearity or at other
frequency values because of mismatches in the circuit. In
Figure 6, we illustrate an example SFDR analysis of an analog
circuit. In the normalized power spectrum, we see that the
ratio of the input signal power and the power of biggest peak
component (third harmonic) is 23 dB.

We write an assertion to monitor time-varying SFDR char-
acteristics of any weakly nonlinear analog circuit as follows:

Always(SFDR(FFT(V(out))@{e1}) = [20, Inf])

This assertion checks if calculated SFDR value always
satisfies the desired specification at the time instants when
the event e1 occurred.

V. CASE STUDY

In a typical receiver system used in communication appli-
cations, three basic operations are performed: amplification,
filtering and data conversion. Programmable gain amplifiers
(PGAs), low-pass filters (LPFs), analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) are designed
to implement these operations in actual circuits. In next-
generation applications, these circuits should be very flexible

Fig. 6. SFDR Example

−

+

−

+

gmOTA = k · gm0gmOTA = k · gm0

Vin

Vout

C1 C2

Vx

Fig. 7. The programmable low-pass filter circuit

and capable of adapting their performance to different stan-
dard requirements with reduced power consumption [13]. To
achieve this, we need to design and verify analog circuits
with digital control of biasing, gain, circuit- and stage-level
reconfiguration, block power down/up. Therefore, we present a
digitally-programmable continuous-time Gm-C low-pass filter
design to show how our assertion based verification for mixed-
signal systems using circuit analyses can be used.

Designers can implement filter designs in both digital and
analog domains. Domain selection includes many design trade-
offs and challenges. Although filtering at digital domain is
preferred over analog domain, because of digital domain’s
robustness and scalability, the overwhelming requirements for
following data conversion step make programmable analog
filters attractive for new generation mixed-signal applications.
Among two common programmable analog filter methods,
active-RC and Gm-C circuit techniques, Gm-C technique is
preferred for high-frequency and low-power applications.

To demonstrate our approach, we have designed a digitally-
programmable low-pass Gm-C filter by using architectures and
ideas presented in [14] and [15] for 0.18um technology and we
simulated the circuit with Eldo SPICE simulator. In following
figures, SPICE notation is used for numbers in plots. (M stands
for milli, and MEG for mega in SPICE.) Schematic of the filter
circuit can be seen in Figure 7, where amplifier blocks in the
circuit are classified as operational transconductance amplifier
(OTA). Cut-off frequency for this circuit is determined using
the following equation:

fc = k × gm0

2π
√
C1 · C2

× 0.6412 (1)

where fc denotes cut-off frequency of the filter, gm denotes
transconductance value of amplifiers, C1, C2 denote capacitor
values in the circuit and k value provides programmability for
this filter. We can change cut-off frequency of the low-pass
filter during operation by changing k.

As in [15], we achieve such programmability in actual
circuit by connecting three OTAs parallel where OTAs have
binary weighted transconductance values, gm0, 2gm0 and
4gm0, respectively. Each OTA has a dedicated digital control
bit to drive transistor switches inside the OTA circuit and this
way we can turn it on or off. Because transconductance values
of parallel OTAs are added up if OTAs are turned-on, we can
control overall transconductance by adjusting three control bits
of OTAs. The k value represents binary-coded decimal 3-bit

digital input and it is connected to control bits of OTAs for
transconductance adjustment.

Note that k = 0, thus binary ”000”, is an invalid value
for low-pass filter circuit according to Equation 1. Therefore,
before starting to check circuit characteristics, we write an
assertion to ensure that k is never equal to zero. We captured
this property as follows:

Always(k[0] ∨ k[1] ∨ k[2]) (A0)

where k[n] denotes Boolean value of nth bit binary-coded
decimal k. This assertion warns if all bits of k is logic zero,
thus k = 0.

In verification of programmable analog filters, we should
check DC operating points of different states. The simulator
performs a DC analysis and computes DC levels of all nodes.
Then, we check if these values satisfy desired conditions for
all time instants. However, changing 3-bit digital k value can
disrupt DC levels in the circuit and cause a shift in DC level
of the output node. On the other hand, ensuring that DC levels
remains in a specified range is important for robustness of a
system time-varying characteristics. Therefore, the simulator
performs a DC analysis whenever a change in k occurs and
we check DC levels for each change during simulation. In
Figure 8, we illustrate the change in DC level of the output
node based on time and varying k. If we want to keep the
value of output DC level of the filter between 880mV and
920mV, we write this property:

Always(DC(V(out))@{ek} = [880m, 920m]) (A1)

where ek denotes an event for a change in k determined by
digital inputs. In Figure 8, we can see that varying DC level for
output node is always between specified values so the assertion
is satisfied. However, a stricter requirement for output DC level
such as [895m, 905m] would fail for this circuit. We annotate
the results of these checks in the form of boolean signals in
Figure 8.

Fig. 8. Monitoring time-varying DC level of the filter output according to
k.

As the next step, we verify time-varying AC characteris-
tics of the filter. Design specification states that the cutoff
frequency of the filter should be changed linearly depending
on the value of k factor. According to Equation 1, cutoff
frequency of the filter should be equal to k × 3 MHz (eg.
3 MHz if k=1, 12 MHz if k=4) in the ideal case if we select
circuit parameters, gm0, C1 and C2 as 60µA/V, 4pF and 1pF,
respectively. For monitoring cutoff frequency, we performed
an AC analysis whenever k changed. We captured this property
as follows:

Always(BW(AC(V(out)))@{ek} - WF(Id)
= [-0.3e6, 0.3e6]) (A2)

where WF(Id) denotes a custom waveform (reference wave-
form) for desired values of cutoff frequency, and we check
if the error value between actual values and desired values
resides in a margin of tolerance. For each change in k, AC
analysis returns a frequency response plot, that can be seen
in Figure 9 as a combined plot. Bandwidth operator (BW)
computes cutoff frequency from each AC analysis, and we
plot cutoff frequency value of the filter versus time plot in
Figure 10.

In Figure 10, we see that cutoff frequency values are
not always in specified range so the assertion we wrote for
cutoff frequency monitoring fails. According to Equation 1,
incorrect transconductance values of operational transconduc-
tance amplifiers (OTAs) can lead to this erroneous behavior.
Therefore, we write the following assertions to check whether
transconductance values of both OTAs in the filter circuit
satisfy desired values.

Always(GM(AC(V(x)), AC(V(in)), AC(V(out)))@{ek}
- WF(Id) = [-5e6, 5e6]) (A3)

Always(GM(AC(V(out)), AC(V(x)), AC(V(out)))@{ek}
- WF(Id) = [-5e6, 5e6]) (A4)

Fig. 9. AC analysis results obtained during time-domain simulation whenever
k changes. We annotate the plots with calculated bandwidth values.

Fig. 10. Monitoring time-varying cutoff frequency value of the filter
according to k factor.

where GM operator calculates transconductance value using
AC analysis results of input and output nodes of OTAs, and
WF(Id) denotes a custom waveform for desired values of
transconductance. This way we can trace the error up to
the smallest circuit block and we can say which block is
not working properly. Note that tracing error is an important
benefit of our verification flow. Although writing assertions
in hierarchical manner still requires design expertise, the
checking process is now automatic, standardized and less
error-prone.

Ultimately, a filter is designed to implement a linear opera-
tion however actual implementations of filter circuits (or any
other circuit that implements a linear operation) are slightly
nonlinear because of nonlinearity of transistor devices. FFT-
based THD and SNDR metrics are used to measure the amount
of nonlinearity of designs from transient simulation results. We
captured THD and SNDR specifications as follows:

Always(THD(FFT(V(out)))@{ek} = [0, 3]) (A5)

Always(SNDR(FFT(V(out)))@{ek} = [30, Inf]) (A6)

Fig. 11. Monitoring time-varying THD and SNDR values of the filter
according to k.

In Figure 11, we plot the output node of the filter and
monitor THD and SNDR properties for our filter design
according to the change in k and we annotate calculated
THD and SNDR values on the plot. We see that THD and
SNDR values are not always in specified range so THD and
SNDR specifications are not satisfied for all k. Unsatisfied
linearity specifications usually do not have easy fixes and
designers may require a change in circuit topology to achieve
desired linearity. However, the same assertions can be used for
several topologies; therefore, verification effort across different
topologies is reduced compared to manual verification.

VI. CONCLUSION

Any simulation-based AMS verification methodology would
be incomplete without an integrated support for circuit anal-
yses. Therefore, we integrated circuit analyses such as DC,
AC and Fourier analyses into assertion based verification flow,
and proposed an AMS language including support for these
analyses as well as transient analysis. This is a required step
for a more unified and expressive environment for assertion
based AMS verification. We performed our experiments on a
specific class of analog circuits, digitally-programmable ana-
log circuits whose analog characteristics can change in time.
In future, we will analyze the applicability of our approach
for other cases that include time-varying characteristics such
as analog circuits with aging transistors.

ACKNOWLEDGMENT

This work was supported in part by Semiconductor Re-
search Corporation under task 2082.001, Marie Curie Euro-
pean Reintegration Grant within the 7th European Commu-
nity Framework Programme, and the Turkish Academy of
Sciences.

REFERENCES

[1] E. Barke, D. Grabowski, H. Graeb, L. Hedrich, S. Heinen, R. Popp,
S. Steinhorst, and Y. Wang, “Formal approaches to analog circuit
verification,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), 2009, pp. 724–729.

[2] M. H. Zaki, S. Tahar, and G. Bois, “Review: Formal verification of
analog and mixed signal designs: A survey,” Microelectron. J., pp. 1395–
1404, 2008.

[3] S. Steinhorst and L. Hedrich, “Analog assertion-based verification on
partial state space representations using ASL,” in Proceedings of the
Forum on Specification and Design Languages (FDL), 2012, pp. 98–
104.

[4] G. Al-Sammane, M. Zaki, and S. Tahar, “A symbolic methodology for
the verification of analog and mixed signal designs,” in Proceedings
of the Conference on Design, Automation and Test in Europe (DATE),
2007, pp. 249–254.

[5] O. Maler and D. Ničković, “Monitoring properties of analog and mixed-
signal circuits,” International Journal on Software Tools for Technology
Transfer, pp. 1–22, 2012.

[6] R. Alur, T. Feder, and T. Henzinger, “The benefits of relaxing punctu-
ality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–146, 1996.

[7] S. Mukherjee, P. Dasgupta, and S. Mukhopadhyay, “Auxiliary spec-
ifications for context-sensitive monitoring of ams assertions,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 10, pp. 1446–1457, 2011.

[8] A. Donze, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka,
“On temporal logic and signal processing,” in Proceedings of the
Symposium on Automated Technology for Verification and Analysis
(ATVA), 2012, pp. 92–106.

[9] D. Ulus and A. Sen, “Using haloes in mixed-signal assertion based
verification,” in Proceedings of the Workshop on High Level Design
Validation and Test (HLDVT), 2012, pp. 49–55.

[10] S. Lämmermann, J. Ruf, T. Kropf, W. Rosenstiel, A. Viehl, A. Jesser,
and L. Hedrich, “Towards assertion-based verification of heterogeneous
system designs,” in Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE), 2010, pp. 1171–1176.

[11] R. Mukhopadhyay, S. K. Panda, P. Dasgupta, and J. Gough, “Instru-
menting AMS assertion verification on commercial platforms,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 14, no. 2, 2009.

[12] H. Foster, E. Marschner, and Y. Wolfsthal, “IEEE 1850 PSL: The next
generation,” in Proceedings of Design and Verification Conference and
Exhibition (DVCON), 2005.

[13] J. M. de la Rosa, R. Castro-Lopez, A. Morgado, E. C. Becerra-Alvarez,
R. del Rio, F. V. Fernandez, and B. Perez-Verdu, “Adaptive CMOS
analog circuits for 4G mobile terminals –review and state-of-the-art
survey,” Microelectronics Journal, vol. 40, no. 1, pp. 156 – 176, 2009.

[14] R. L. Geiger and E. Sanchez-Sinencio, “Active filter design using op-
erational transconductance amplifiers: A tutorial,” Circuits and Devices
Magazine, IEEE, vol. 1, no. 2, pp. 20–32, 1985.

[15] S. Pavan, Y. P. Tsividis, and K. Nagaraj, “Widely programmable high-
frequency continuous-time filters in digital cmos technology,” Solid-State
Circuits, IEEE Journal of, vol. 35, no. 4, pp. 503–511, 2000.

