
March 9, 2001 9:48 WSPC/115-IJPRAI 00089

International Journal of Pattern Recognition and Artificial Intelligence
Vol. 15, No. 2 (2001) 359–374
c© World Scientific Publishing Company

UNDERSTANDING ARITHMETIC PROBLEMS IN TURKISH∗

A. C. CEM SAY

Department of Computer Engineering, Boǧaziçi University,
Bebek 80815, Istanbul, Turkey

This paper describes ALİ, the first computer program which can solve primary school-
level arithmetic problems stated in Turkish. This task involves several subtasks: morpho-
logical analysis of every word in the input, syntactic analysis of each sentence, semantic
analysis of words, providing a description of the commonsense world that is large enough
to enable the correct answering of the problems, and generating the answer in human-
readable form.

Keywords: Natural language processing; artificial intelligence; Turkish; commonsense;
syntactic parsing.

1. Introduction

In the early years of NLP research, a number of computer programs4,5,12 whose aim

was to solve mathematics or physics problems stated in English were developed.

These programs embodied a variety of approaches, ranging from relatively simple

pattern-matching techniques4 to ones involving more powerful parsing modules and

a quite detailed internal representation of the rules5,12 governing the aspects of the

world relevant to the target problems’ subject matter.

Building a “problem-solver” in this sense is a challenging task for many reasons.

One has to deal with all levels of natural language analysis: morphology, syntax,

and semantics. Since the answer to the problem has to be communicated to the user

in an easily comprehensible fashion, an (at least rudimentary) capability of natural

language generation also has to be attained. And, of course, the program must

be “intelligent” enough to be actually able to understand and to solve the input

problems; a reasonably wide portion of world knowledge has to be represented and

methods of obtaining new knowledge from old have to be coded.

We have built such a program, ALİ, for solving primary school-level mathematics

problems. Our program differs from the ones referred to above in the type of domain

knowledge that has to be handled, in the care that must be given to morphological

analysis (which is virtually nonexistent in others), and in the fact that it deals with

∗The programs mentioned in this paper are available to interested researchers.
Contact E-mail: say@boun.edu.tr

359



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

360 A. C. Cem Say

the Turkish language.

The rest of this paper, which is an enhanced version of Ref. 16, is structured as

follows: Sec. 2 is a brief look at previous representative work in the area of building

such “problem-solving” programs. In Sec. 3, the ALİ program is described stage by

stage, and illustrated by examples. Section 4 is a discussion and the conclusion.

2. Previous Work

2.1. STUDENT

Bobrow’s STUDENT4 was the first program for solving algebra “story problems.”

Coming as it does only a few years after the development of the conversation pro-

gram ELIZA,18 STUDENT employs a pattern matching technique which is similar

in origins to (albeit more advanced than) ELIZA. (As a “side benefit” of our ex-

amination of these programs, we built the first “Turkish-speaking” conversation

program; see Ref. 2.) STUDENT breaks up each sentence to its underlying “kernel

sentences” by a process guided by the existence of certain keywords in the input,

and the use of synonyms is made both to identify seemingly different phrases that

refer to the same thing, and to find the operators in matching the sentence’s form

with that of an equation which can then be solved using the program’s knowledge of

algebra. Essentially, the input sentence itself is converted to an equation through a

series of rewrites. When necessary, “background knowledge” about certain familiar

concepts, like

(DISTANCE EQUALS GAS CONSUMPTION TIMES NUMBER OF GALLONS OF GAS

USED)

from the program’s library can be used in addition to the facts in the input problem

during the computation of the answer from the givens.

When stuck, STUDENT asks the user for help in determining possible rela-

tionships among the concepts represented by the phrases that it has identified as

variables. Here is an example output of STUDENT (taken entirely from Ref. 4):

(THE PROBLEM TO BE SOLVED IS)

(TOM HAS TWICE AS MANY FISH AS MARY HAS GUPPIES . IF MARY HAS 3

GUPPIES , WHAT IS THE NUMBER OF FISH TOM HAS Q.)

(THE EQUATIONS TO BE SOLVED ARE)

(EQUAL G02520 (NUMBER OF FISH TOM (HAS / VERB)))

(EQUAL (NUMBER OF GUPPIES (MARY / PERSON) (HAS / VERB)) 3)

(EQUAL (NUMBER OF FISH TOM (HAS / VERB)) (TIMES 2 (NUMBER OF GUPPIES

(MARY / PERSON) (HAS /VERB))))

(THE NUMBER OF FISH TOM HAS IS 6)

Note that, at the level of individual words, the program is using an extremely

small amount of knowledge. It has not realized that Tom is a person, and it has no

idea what, for instance, guppies are. Still, it is able to give the correct answer for



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 361

this question.

STUDENT is limited also in its syntactic and semantic capabilities (the entire

program is given as an appendix of Bobrow’s paper!) and its underlying algorithm

does not seem easily extendible to handle any problem domain other than this kind

of algebra.

2.2. ISAAC

Novak’s ISAAC12 is a LISP program which solves problems in the domain of rigid

body statics. Unlike STUDENT, ISAAC performs a “genuine” syntactic and se-

mantic analysis of the input text sentence by sentence. The ATN-like parser makes

use of semantic information to help it in its decisions. The semantic processor uses

background information about “canonical objects” in its repertory (like LEVER,

WEIGHT, SPRING, PIVOT, etc.) to flesh out the parts of the problem situation

not explained explicitly in the text. A program named EUCLID is called for any

necessary geometric computations and the construction of a geometric model of

the situation. This model is utilized to write the equations which stem from the

program’s knowledge of the laws of physics and which apply among the objects in

this particular situation. These equations are solved by a symbolic manipulation

package for the “desired unknowns” which have previously been identified by the

semantic analyzer, and the answer is printed out in the form of one or more noun

phrases. To illustrate its “deep” understanding of the problem, the program also

draws a diagram of the problem situation as part of its output. Here is a sample

input/output pair, with the drawing omitted12:

(A STEEL BEAM OF UNIFORM CROSS SECTION WEIGHS 2.50000E+8 DYNES)

(IF IT IS 500 CM LONG, WHAT FORCE IS NEEDED TO LIFT ONE END OF IT)

ANSWER: 1.25000E+8 DYNE

ISAAC was effectively “built around” 20 problems taken from a few high school

and college physics textbooks. The vocabulary of the program consists of about 200

words. But within this limitation, the problems of syntax, semantics, and internal

world-modeling have been approached carefully and “legitimately.” We adopted a

similar methodology in the construction of ALİ.

2.3. MECHO

MECHO5 is a collection of PROLOG programs which solves mechanics problems.

(Newtonian mechanics seems to attract writers of such programs, maybe because

its basic laws are simple enough to be coded easily, and yet hard enough so that the

programs are considered “intelligent” by laymen.) MECHO has solved, in particu-

lar, problems about pulleys, motion on smooth complex paths, and motion under

constant acceleration. The sentences in the input text are processed by the syn-

tactic parser to produce a collection of PROLOG facts representing the question.

The semantic routines are called by the parser with specific questions like “Can



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

362 A. C. Cem Say

this verb relate these objects?” during the syntactic analysis to determine the cor-

rect branch in the tree of possible parses. Certain words (like “pulley”) in the text

cause the “cueing” of “schemata” containing background knowledge about specific

problem types; this results in the creation of objects which, although not men-

tioned in the text, have to appear in a model of the explained kind of situation.

(Note the similarity to the use of canonical objects in ISAAC.) Once the text has

been translated into assertions, a general purpose equation extraction algorithm

is employed to write formulae for the “sought” quantities. Prediction questions,

e.g. those about the roller-coaster world (see for instance Ref. 13) which cannot be

answered using qualitative information alone are transformed into ones requiring

computation of one or more “soughts” and treated similarly. The equations are

solved by an algebra package. Memory limitations force the user to hand-feed the

results of one module to another. An example trace of a sequence of executions for

one problem is presented below5 (with a lot of messages about the proceeding of

the processing omitted).

| Two particles of mass B and C are connected by a light string

| passing over a smooth pulley.

{omitted stuff}
yes

|

| continue.

|

| Find the acceleration of the particle of mass B.

{omitted stuff}
FINAL ANSWERS ARE

tension1=-1*(g*c+b*-1*g)*(-1*b+(-c)):-1*b+b*g &

a1=-1*(g*c+b*-1*g)*(-1*b+(-c)):-1 & true

Note that an additional quantity representing the tension in the string, which is

introduced when the algorithm seeks an equation for the acceleration, is also com-

puted and output.

3. ALİ

In Ref. 4, Bobrow gives the following “operational” definition of “understanding”:

“A computer understands a subset of English if it accepts input sentences

which are members of this subset and answers questions based on informa-

tion contained in the input.”

In the spirit of this definition, we state that ALİ understands a subset of Turkish.

At the beginning of this project, we randomly selected 23 “pure-text” problems

from a Turkish mathematics textbook3 for third year primary school students.

Apart from a few minor changes which we introduced since we felt that the original



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 363

forms of some of the questions were grammatically wrong, the program accepts

the problems as they appear in the textbook, and presents the answers in a neat

fashion, usually in the form of a sentence. The knowledge of mathematics required

for the solution of these problems is restricted to the four arithmetic operations and

basic facts about geometric figures like triangles and squares. The “commonsense”

knowledge required is wide, and ranges from items like “Cows are animals” to

“There are 52 weeks in a year.”

ALİ is in the form of several executable Turbo-PROLOG project files, linked

through an MS-DOS batch file, running on an IBM-compatible PC.

When the program starts execution, an editor screen is activated, and the user

is expected to enter the problem text, obeying the orthographical rules imposed by

the analyzer. When the completion of entry is signaled, the text file containing the

problem is passed to the morphological parser.

We will follow the processing of a simple example throughout this section. Other

examples will be presented when necessary for the explanation of the program’s

more advanced features. Our first example is:

bir yılda kaç hafta bulunur ?|

(“How many weeks are there in a year?”, or, more precisely, “How many weeks are

found in a year?”) (This is the first problem to be solved successfully by ALİ.)

3.1. Morphological level

Unlike English, Turkish has a rich morphological structure, and hence unlike the

programs described in Sec. 2, ALİ has to carry out a morphological analysis of each

word in the input before proceeding with the syntactic parsing. In this stage, a text

tagger obtained by slightly modifying a morphological parser for Turkish originally

constructed for a Turkish–Azeri machine translation project8 is called. The usage of

this general-purpose parser means that ALİ’s “syntactic” vocabulary is much larger

(on the order of 20 000 words) than those of ISAAC and MECHO. (The “semantic”

vocabulary is comparatively limited, as explained in Sec. 3.3.)

The text tagger has some shortcomings, most of which stem from the some-

what specialized nature of the sublanguage under consideration. For exam-

ple, “words” like “15’ten” (“from 15”) which appear in some counting prob-

lems involve a vowel harmony rule that requires the pronunciation of the

number to be known. ALİ contains a morphological postprocessor which goes

through such cases where the text tagger has failed, and produces the appro-

priate morphological parses. For the above example, a predicate which con-

verts numbers (“15”) to the corresponding words (“on beş”) is employed, and

the parse representing that the root “15” has taken the ablative suffix is ob-

tained.

The result of the morphological phase is passed to the syntax analysis phase in

the form of a list of lists (one for each sentence) of lists (one for each word) of lists



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

364 A. C. Cem Say

[[<"bir",[<adjective;root(adjective("bir"))>]>,

<"yılda",[<noun;root(noun("yıl")),case(locative)>]>,

<"kaç",[<adjective;root(adjective("kaç"))>,

<verb;root(verb("kaç"))>]>,

<"hafta",[<noun;root(noun("hafta"))>]>,

<"bulunur",[<verb;root(verb("bul")),voice(passive),tense(aorist)>]>

]]

Fig. 1. Morphological parse of the example problem.

representing possible morphological parses.

Figure 1 shows the result of the morphological parsing stage for our example

problem. As seen, all possible parses of each word are listed. The parse lists start

with the word’s final syntactic category (e.g. “adjective”), and go on with the root

and the suffixes (if they exist). In our example, two separate parses have been found

for the word “kaç,” which means both “how many” and “run away.” It is up to the

later stages to find out which one of these is the correct meaning in this context.

3.2. Syntactic level

The syntax analysis phase finds, for each sentence in the problem, all distinct parses

possible according to our grammar, through forced backtracking. Initially, we had

planned to perform the complete (syntactic + semantic) processing of a sentence

before proceeding with the next sentence, but the memory limitations of the partic-

ular implementation of PROLOG that we use rendered such an approach impossible

for a program of this size. In ALİ’s present form, semantic processing starts only

after parsing of all sentences has been completed, and takes a file containing the

results of the parser as input.

Unlike ISAAC and MECHO, the usage of semantic information is kept to a min-

imum during parsing. One example where we do use such knowledge is as follows:

the parser checks whether the second word in a phrase like “5 metre ip” (“5 meters

of rope”) is “unit-like” or not. Only if the second word is unit-like does the parser

assign the special noun phrase structure 〈Measurement + Unit + Noun Phrase〉 to

this group of words.

The actual parsing algorithm we use is a modification of the difference list

recognition framework, explained in Refs. 6 and 7. This is a top–down, left-to-right

parser which is very easy to write in PROLOG. Our version for Turkish is somewhat

more complicated than the one in Ref. 7, since, where Ref. 7 uses a simple list of

words to keep the sentence, we employ a more complex structure, as described at

the end of Sec. 3.1. The predicate which consumes terminals from that list has also

been modified, so that no possible distinction arising from multiple morphological

parses for a word is overlooked.



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 365

S→ NP V

S→ NP NP V

S→ NP NP NP V

S→ AdvP AdvP V

S→ AdvP AdvP AdvP V

S→ NP NP AdvP V

S→ AdvP NP AdvP V

S→ Sise S {Sise is of the form “S + ise”, i.e. “If S”}

Fig. 2. The S rules.

The grammar itself covers all sentences appearing in our target problem set

adequately, and is a rather expressive subset of Turkish. Figure 2 contains a sum-

mary of the sentence rules in our grammar. Whether Turkish has a legitimate verb

phrase structure has been under investigation by linguists.10 For no reason other

than ease of coding, we adopted the idea that the language has no verb phrase

complex in this work, as can be seen in the figure. Turkish allows “free” deletion of

sentence constituents, such that any one or more of the constituents may be missing

from the sentence. The lack of NP in a rule may be due to this general property

of the language or to the fact that the imperative constructions universally lack

an overt subject. The rules of Fig. 2 involve additional checks (not indicated in

the figure) about the agreement of the subject NP and the verb of the sentence in

their “person” attributes. (In the right-hand sides, if there is only one nominative

NounPhrase, then it is the subject of the sentence. If two nominative NP’s exist,

the first one is the subject.)

Since checks about, among other things, the number of objects that specific verbs

can take, are not implemented, the grammar clearly overgenerates. Most (ideally,

all but one) of the parses for each sentence will be simply “wasted” by the semantic

processor, since semantic routines corresponding to them will not be found.

Let us continue following our example problem. Since the problem contains a

single sentence, the list in Fig. 1 has a single element, namely, the list containing

all parses of all the words. Since the word “kaç” has two possible parses, we obtain

two candidate sequences for this sentence (Fig. 3). These sequences are checked for

compliance with our grammar by attempting to match them with the rules, some

of which are shown in Fig. 2. The PROLOG clause in Fig. 4 is the implementa-

tion of the second rule in Fig. 2. As a result of the syntactic analysis stage, the

correct syntactic parse of our sentence will be found to match the particular rule

described in Fig. 4, and that parse (Fig. 5) will be passed to the semantic stage for

further processing.



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

366 A. C. Cem Say

[<"bir",<adjective;root(adjective("bir"))>>,

<"yılda",<noun;root(noun("yıl")),case(locative)>>,

<"kaç",<adjective;root(adjective("kaç"))>>,

<"hafta",<noun;root(noun("hafta"))>>,

<"bulunur",<verb;root(verb("bul")),voice(passive),tense(aorist)>>

]

[<"bir",<adjective;root(adjective("bir"))>>,

<"yılda",<noun;root(noun("yıl")),case(locative)>>,

<"kaç",<verb;root(verb("kaç"))>>,

<"hafta",<noun;root(noun("hafta"))>>,

<"bulunur",<verb;root(verb("bul")),voice(passive),tense(aorist)>>

]

Fig. 3. Two candidate sequences corresponding to the example sentence.

s(s([np(NP1,loc,Ag1,Poss1),np(NP2,nom,AgrSubj,Poss2),

vp(V,Tense,CTense,Sense,AgrVerb,Voice)]),Input,Rest):-

np(np(NP1,loc,Ag1,Poss1),Input,P1),

np(np(NP2,nom,AgrSubj,Poss2),P1,P2),

vp(vp(V,Tense,CTense,Sense,AgrVerb,Voice),P2,Rest),

agree(AgrSubj,AgrVerb).

Fig. 4. A sentence rule in PROLOG.

pa(1,s([np([adj([adj("bir")]),np([noun([noun("yıl")])],loc,sg3,

poss(frpos))],loc,sg3,poss(frpos)),np([adj([adj("kaç")]),

np([noun([noun("hafta")])],nom,sg3,poss(frpos))],nom,sg3,

poss(frpos)),vp([verb([verb("bul")],frcs,frpos,frmo,aorist,

frct,positive,sg3,passive)],aorist,frct,positive,sg3,passive)])).

Fig. 5. Syntactic parse of the example sentence.

3.3. Semantic level

The semantic processor’s input is the problem text and all parses of each of the

sentences in the problem. It considers each sentence S to see if S has a parse which

matches one of the semantic “templates” that are defined in its code. If a parse

successfully matches a semantic template, a corresponding action is performed by

the computer. This “action” may be the output of some information (for question

or command sentences) or simply a modification of the internal world model of

the program.

The templates describe simple sentence forms (i.e. with no subordinate clauses).

Presently the only rule in our grammar that allows sentences with subordinate

clauses is

S→ SiseS .



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 367

Sentences with parses of this form, like “97 simitin 68 tanesi satılırsa kaç simit

kalır?” (“How many simits (a Turkish bakery product) are left if 68 out of

97 simits are sold?”) are treated by the semantic processor as two consecutive

“nonconditional” simple sentences. For instance, the above-mentioned sentence is

handled as “97 simitin 68 tanesi satılır. Kaç simit kalır?” (“68 out of 97 simits are

sold. How many simits are left?”) and the two new sentences are matched separately

to different templates. This treatment of the conditional is adequate for all texts

in our target set; for a general purpose application, this approach would certainly

have severe weaknesses.

The semantic templates have been prepared after a careful examination and

classification of the “types” of sentences that appear in our target set of problems.

The categories we identified are as follows:

1. Declarations about the existence of a certain amount of Things in a certain

Location.

Example: “Bir fabrikada 217 işçi vardı.” (“There were 217 workers in a factory.”)

2. Declarations about changes (increases or decreases) in the amounts of previously

mentioned Things.

Example: “Sonra 65 öǧrenci daha geldi.” (“Later, 65 more students arrived.”)

3. Commands about counting in a certain range.

Example: “36’dan sıfıra kadar dörder dörder sayınız.” (“Count down from 36 to

zero in fours.”)

4. Questions (or “find” commands) about the amounts of Things. (These may re-

quire arithmetic operations and commonsense knowledge to compute. The word

“amount” is used very loosely here, and the length of, say, the perimeter of a

geometric figure may also be sought in this regard.

Example: “Geriye kaç kilogram havuç kalır?” (“How many kilograms of carrots

are left?”)

5. “Multiplication” questions about the amount of Things in k (an integer)

Locations. (The amount of Things in one such Location must be already stated

or otherwise known.)

Example: “9 perde kaç metre bezden yapılır?” (“How many meters of cloth are

needed to make 9 curtains?”)

(Note that our main example “How many weeks are there in a year?” is a very

simple specimen of this type.)

6. Declarations about “linear” relationships between two quantities linked by an

action.

Example: “Bir bakkal günde 28 şişe süt satıyor.” (“A grocer sells 28 bottles of

milk in a day.”)

7. “Multiplication” questions about the kind of linear relationships mentioned

in (6).

Example: “15 günde kaç şişe süt satıyor?” (“How many bottles of milk does

he/she sell in 15 days?”)



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

368 A. C. Cem Say

The basic idea is to have one such template which will handle all the (possibly

syntactically differing) sentence parses for each of these semantic categories. Parses

with verbs which have the same semantic effect for our purposes are rearranged by a

semantic preprocessor before a match with the appropriate template is attempted.

For example, although the verbs “çıkmak” (“to get out”), “ölmek” (“to die”),

“emekli olmak” (“to go to retirement”), “satılmak” (“to be sold”), and indeed,

“satmak” (“to sell”) all indicate a decrease-like (type 2) meaning, the noun phrase

whose referent is the entities that are decreasing appears in the subject position for

“to get out”, but in the direct object position for “to sell”. The preprocessor notices

this and passes the constituents to the semantic template in a standard order.

Once a template is matched, the computer performs certain checks and opera-

tions on the constituents (usually noun phrases) of the parse at hand. For example,

a parse of the form NPaccusative V(“bul”)imperative, 2ndperson (“Find” NP) will match

a template of type 4, and cause a predicate named compute np, whose function is,

as its name suggests, to compute a number, a unit, and, if possible, a “type name”

describing the referent of the NP. Possible results of this predicate are tuples like

〈5, m, kumaş〉 (“5 m of cloth”), 〈2, tane, elma〉 (“2 apples”), 〈4,cm〉. “Computing”

a noun phrase may involve resolving pronouns, making use of commonsense knowl-

edge, and arithmetic operations. See Secs. 3.4 and 3.6 for further details of, and

examples about, this process. Section 3.5 will briefly explain how natural language

answers are generated by the templates for questions and commands. The semantic

processor terminates successfully if it has been able to match a template to each of

the sentences in the input text.

It has to be stressed that the very specialized subject domain makes such a

use of templates feasible. Of course, for general purpose text understanding, this

approach would be impractical, to say the least, and a much more advanced scheme,

possibly in the lines of Schank’s CD theory17 would be needed.

As for our main example, we have already stated that this sentence matches

template type 5. The semantic processor searches for two noun phrases (one locative

and one nominative) in the sentence. The syntactic parsing result seen in Fig. 5

satisfies these conditions. The locative noun phrase, that is,

np([adj([adj("bir")]),np([noun([noun("yıl")])],loc,sg3,poss(frpos))],

loc,sg3,poss(frpos))

shows that the Location in which the Things whose amount is being asked will be

sought is one (”bir”) year (”yıl”), and the nominative noun phrase, that is,

np([adj([adj("kaç")]),np([noun([noun("hafta")])],nom,sg3,

poss(frpos))],nom,sg3,poss(frpos))

shows that the Things whose amount is being asked are weeks (“hafta”).



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 369

3.4. World knowledge

It has been known for a long time that any reasonably general purpose AI program

must have access to a huge amount of commonsense knowledge about the world.

This knowledge is what the authors of mathematics problems, novels or encyclo-

pedia entries assume that their readers already know, and hence do not explicitly

mention. Research about how best to represent this information is a “hot topic” of

AI, and has been going on in earnest since the 1970’s.9 Lenat’s CYC11 is currently

the closest to a general purpose commonsense-base, and one of the aims of such

programs is, in fact, to serve as the commonsense checker routine to NLP programs

like ALİ. In the absence of the chance of easily incorporating such a comprehensive

engine to ALİ, we went on to design our own representation of the world that the

program has to possess in order to solve the target problems successfully. Here is a

taste of what this model contains:

We have an “isa” hierarchy14 which is used mainly for identifying referents of

noun phrases. For example, in the semantic processing of the last sentence of the

problem

“Bir çiftlikte 255 koyun, 67 kuzu, 8 inek vardır. Bunların hepsi kaç hayvan eder?”

(“There are 255 sheep, 67 lambs, 8 cows on a farm. How many heads of animals

are there on this farm?”) the template of type 4 which matches that parse tries

to satisfy the predicate compute np for the noun phrase “bunların hepsi” (“all of

these”), with the aid of additional information from the other noun phrase in the

question, “kaç hayvan” (“how many animals”). The pronoun resolution routine

makes use of the facts

isa(inek,hayvan) {a cow is an animal} isa(kuzu,hayvan), {a lamb is an animal}
etc. in the commonsense database.

Commonsense information can be “learned” during processing as well. For in-

stance, consider the problem

“Bir kamyonun deposunda 67 lt mazot vardı. Şoför 145 lt daha aldı. Kamyondaki

mazotun hepsi kaç litre olur?” (“There were 67 lt of diesel oil in the tank of a truck.

The driver bought another 145 lt. What is the total amount of diesel oil (in liters)

in the truck?”)

Processing of the first sentence adds, in effect, the following facts to the dynamic

context maintained by the program:

haspart (kamyon,depo) {“tank” is a part of “truck”}
containment(depo,[[(67,lt,mazot)]],past) {“tank” contained 67 lt of “diesel

oil” in the past}

When the words “kamyondaki mazotun” (“of the diesel oil in the truck”) are

met during the processing of the last sentence, a rule saying that “if D is a part



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

370 A. C. Cem Say

of K, then K contains whatever D contains” is employed to come up with the

correct answer.

Stock information items like “1 hour contains 60 minutes”, written in the format

of the dynamic context, are loaded from a file at the beginning of the program,

to handle such “pure knowledge” questions among the target problems. Our main

example’s processing makes use of such an item, namely “1 year contains 52 weeks”.

This fact is found after a search with the index value for “hafta” (“week”), and the

answer number is calculated to be 1*52 = 52.

Needless to say, this commonsense base lacks in both breadth and width, and

has to be updated seriously if it is to be used for any wider application.

3.5. Answer generation

As mentioned above, question or command sentences require the production of

screen output by ALİ. For the answer to be intelligible, the best strategy is to give

it in the form of a sentence. We use a simplistic but adequate method of language

generation for this purpose.

All of the problems under consideration require one of two forms of answer.

They are either counting commands, which necessitate the display of a sequence of

integers on the screen, or “calculation” problems requiring a single number as the

result. The template for counting problems has its special purpose answer generator,

which simply prints out the appropriate sequence. For example, the problem

“15’ten geriye doǧru üçer üçer sayınız.” (“Count backward in threes, starting with

15.”) gets the answer

15

12

9

6

3

0

The generator employed by all the other templates works as follows: if the verb

of the sentence is in imperative form (“bulunuz” = “find”), then the generator

takes the number computed by the previous routines in the template and the unit

quantified by this number and prints them out.

Example:

“Kenar uzunlukları 3, 4, 5 cm olan bir üçgenin çevre uzunluǧunu bulunuz.” (“Find

the perimeter of a triangle the lengths of whose sides are 3, 4, 5 cm.”)

Yanıt: {Answer}
12 cm

If the verb is not imperative, a technique that we call “kaç-replacement” is used:



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 371

the word “kaç” (“how many”) in the sentence is replaced by the computed number,

and this sentence is printed out. For question sentences in which no word has first

or second person suffixes, as is the case with all of our target problems, this method

causes no syntactic and semantic anomalies, and produces a natural form of answer.

Example:

“2615 civcivin 73 tanesi ölürse geriye kaç civciv kalır?” (“How many chicks remain

if 73 out of 2615 chicks die?”)

2615 civcivin 73 tanesi ölürse geriye 2542 civciv kalır. (“2542 chicks

remain if 73 out of 2615 chicks die.”)

And the processing or our main example results in

bir yılda 52 hafta bulunur. (“There are 52 weeks in a year.”)

3.6. Further examples

Here are some more problems that ALİ has solved, presented in the program’s own

input/output format:

----------

36 kg elmanın dörtte biri kaç kilogram eder ?|

(“What is the weight (in kilograms) of one fourth of 36 kg of apples?”)

{Semantic template used: Type 4}

36 kg elmanın dörtte biri 9 kilogram eder.

(“The weight of one fourth of 36 kg of apples is 9 kilograms.”)

Note that the program is able to compute “verbal fractions” like “dörtte bir” (“one

fourth”), and knows that “kg” and “kilogram” are the same thing.

----------

bir fabrikada 217 işçi vardı . 15 işçi çıktı . 7 işçi emekli oldu .

fabrikada kaç işçi kalır ?|

(“There were 217 workers in a factory. 15 workers left. 7 workers retired. How many

workers remain in the factory?”)

{Semantic templates used: Type 1, Type 2, Type 2, Type 4}

fabrikada 195 işçi kalır.

(“195 workers remain in the factory.”)

The nonstandard spelling requirements can be eliminated easily through a

preprocessor.

----------

çevre uzunluǧu 40 cm olan bir karenin bir kenarının uzunluǧu kaç cm

olur ?|



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

372 A. C. Cem Say

(“What is the length of one side of a square whose perimeter is 40 cm?”)

{Semantic template used: Type 4}

çevre uzunluǧu 40 cm olan bir karenin bir kenarının uzunluǧu 10 cm

olur.

(“The length of one side of a square whose perimeter is 40 cm is 10 cm.”)

----------

bir kasabada cumhuriyet bayramı törenine ilkokuldan 186 öǧrenci ,

ortaokuldan 49 öǧrenci katıldı . bunların hepsi kaç kişi olur ?|

(“In a town, 186 students from the primary school and 49 students from the sec-

ondary school participated in the celebrations of Republic Day. What is the total

number (in persons) of these?”)

bunların hepsi 235 kişi olur.

(“The total of these is 235 persons.”) See Ref. 15 for other examples.

4. Conclusion

This paper has presented ALİ (“Aritmetikçi-Lisan İşleyici” = “Arithmetician-

Language Processor”), the first (and, in the time of writing this manuscript, the

most advanced) “problem-solver” computer program for the Turkish language.

The various stages of the program have been developed quite independently from

each other and can be replaced by programs of similar functionality from other

sources with relatively little effort. So ALİ can be used as a test-bed for the perfor-

mance of competing algorithms and representations for morphological or syntactic

parsing, semantic representation, etc.

Our work on ALİ will continue on many fronts. Employing other parsing al-

gorithms for better handling of Turkish syntax, which differs from Indo-European

languages in its almost free word order, among other things, is on our agenda.

The semantics processor currently has a somewhat shallow representation of con-

cepts, where the actual Turkish strings like “öǧrenci” (“student”) are used in,

say, isa facts in the model. This has the consequence that, for a synonym (e.g.

“talebe” = “student”) of an internally modeled word to be handled equivalently

by the program, duplicate model fragments containing its surface form have to be

added. We plan to introduce a better solution to this problem, making use of an

online synonyms–antonyms dictionary1 that we developed separately.

Acknowledgments

Thanks are due to my colleagues İlker Hamzaoǧlu, Levent Akın and Sumru Özsoy

for their contributions to various stages of this project. ALİ was partially supported

by Grant no. 93A0152 of the Boǧaziçi University Research Fund.



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

Understanding Arithmetic Problems in Turkish 373

References

1. K. Arıcan and T. Yemliha, “Synonyms and antonyms dictionary for Turkish,”
B. S. Thesis, Department of Computer Engineering, Boǧaziçi University, 1993.

2. Ç. Aytekin, A. C. C. Say and E. Akçok, “ELIZA speaks Turkish: a conversation
program for an agglutinative language,” Third Turkish Symp. Artificial Intelligence
and Neural Networks, Ankara, 1994, p. 435.

3. M. Barış, M. K. Sümer, M. Zeytin and T. Yücel, İlk Öǧretim Matematik 3, Ders
Kitapları A. Ş., İstanbul, 1992.

4. D. Bobrow, “Natural language input for a computer problem-solving system,”
Semantic Information Processing, ed. M. Minsky, MIT Press, Cambridge, MA, 1968,
pp. 135–215.

5. A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne and M. Palmer, “MECHO: a
program to solve mechanics problems,” Working Paper 50, Department of Artificial
Intelligence, Edinburgh University, 1979.

6. A. Gal, G. Lapalme, P. Saint-Dizier and H. Somers, Prolog for Natural Language
Processing, John Wiley, Chichester, 1991.

7. G. Gazdar and C. Mellish, Natural Language Processing in Prolog: An Introduction
to Computational Linguistics, Addison-Wesley, Wokingham, 1989.

8. İ. Hamzaoǧlu, “Machine translation from Turkish to other Turkic languages and an
implementation for the Azeri language,” M. S. Thesis, Department of Computer En-
gineering, Boǧaziçi University, 1993.

9. J. R. Hobbs and R. C. Moore (eds.), Formal Theories of the Commonsense World,
Ablex, Norwood, NJ, 1985.

10. J. Kornfilt, “On configurationality in Turkish,” Proc. 5th Int. Conf. Turkish Linguis-
tics, School of Oriental and African Studies, London, 1990.

11. D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt and M. Shepherd, “CYC: toward
programs with common sense,” Commun. ACM 33 (1990) 30–49.

12. G. Novak, “Computer understanding of physics problems stated in natural language,”
Ph.D. Thesis, Department of Computer Science, University of Texas at Austin, 1976.

13. M. Pakkan and A. C. C. Say, “Qualitative collision detection in the roller coaster
world,” Proc. Ninth Turkish Symp. Computer and Information Sciences, Antalya,
1994, pp. 583–590.

14. E. Rich and K. Knight, Artificial Intelligence, 2nd edition, McGraw Hill, NY, 1991.
15. A. C. C. Say, “Bilgisayarla Türkçe anlama,” Galatasaray Üniversitesi Mühendislik

Bilimleri Dergisi 1 (1998) 37–53.
16. A. C. C. Say, H. L. Akın and A. S. Özsoy, “A program which solves arithmetic prob-

lems in Turkish,” Proc. Ninth Turkish Symp. Computer and Information Sciences,
Antalya, 1994, pp. 550–557.

17. R. C. Schank and R. P. Abelson, Scripts, Plans, Goals, and Understanding, Lawrence
Erlbaum, Hillsdale, NJ, 1977.

18. J. Weizenbaum, “ELIZA: A computer program for the study of natural language
communication between man and machine,” Commun. ACM 9 (1966) 36–44.



March 9, 2001 9:48 WSPC/115-IJPRAI 00089

374 A. C. Cem Say

A. C. Cem Say re-
ceived the B.S. and
Ph.D. degrees, both in
computer engineering,
from the Department of
Computer Engineering,
Boǧaziçi University, Is-
tanbul, Turkey, in 1987
and 1992, respectively.
He has been a faculty

member in the same department since 1992.
His past employers include the Turkish Naval
Inventory Control Center.

His research interests are natural lan-
guage understanding, qualitative reasoning
algorithms, and qualitative representations.


