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Abstract Detecting the location and identity of users is a
first step in creating context-aware applications for technolo-
gically-endowed environments. We propose a system that
makes use of motion detection, person tracking, face iden-
tification, feature-based identification, audio-based localiza-
tion, and audio-based identification modules, fusing infor-
mation with particle filters to obtain robust localization and
identification. The data streams are processed with the help
of the generic client-server middleware SmartFlow, result-
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ing in a flexible architecture that runs across different plat-
forms.
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1 Introduction

The spatio-temporal localization and recognition of people
through various sensors pose problems of great theoretical
and practical interest, in particular for home environments
and smart rooms. In these scenarios, context-awareness is
based on technologies like gesture and motion segmenta-
tion, unsupervised learning of human actions, determination
of the focus of attention or intelligent allocation of compu-
tational resources to different modalities.

In this work we aim at putting together different algo-
rithms for detection, tracking and identification, working in
a completely automatic way. Through the observation and
subsequent processing of the data captured using a large
number of sensors from multiple modalities, we try to de-
termine the identity and the spatial positions of people in
the room. As noted in [50], the full implications of real-time
human tracking only become concrete within the context
of applications. Obtaining this knowledge is the first step
in developing more elaborate smart applications like meet-
ing managers that track the speaker, gesture-based interfaces
that require the identity of the person performing a certain
gesture, systems that provide users with customized infor-
mation (as in MIT’s Oxygen project), or automatic activity
summarization systems.

We have collected two recordings and fully annotated
them for experimental evaluation. The implemented system
contains some modules that are not novel in themselves, but
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are adapted to the experimental setting. These modules are
also included in the exposition for completeness’ sake. A ro-
bust face recognition method is employed to identify per-
sons initially as they enter the smart room. For visual track-
ing, a recently proposed method based on probabilistic oc-
cupancy maps is extended and adapted to the experimental
setting. For visual recognition, a novel feature-based iden-
tification method is proposed that alleviates the shortcom-
ings of contemporary Bayesian approaches for dealing with
models constructed on-the-fly. For audio-based localization
and identification, we use recently developed state-of-the-
art methods. Initially, the performance of each modality is
separately measured. Then several methods for combining
different modalities are proposed and assessed, including
a particle filter based tracker that incorporates identity into
tracking for robust operation.

This paper is organized as follows. In Sect. 2 we briefly
describe our experimental setting including the sensors and
the collected data. The setup justifies our methodological
choices further on. In Sect. 3 we detail the methods we have
used for processing of visual sensor information, followed
by a similar exposition in Sect. 4 for audio sensors. Liter-
ature surveys of related methodologies are delegated to the
subsections, as we have numerous issues to deal with, span-
ning a large area of research. The particle filter-based track-
ing approach and our experimental results with multimodal
information are reported in Sect. 5, followed by conclusions
and future research directions in Sect. 6.

2 Experimental setup

2.1 The UPC smart room

In this study, audiovisual recordings of interactive small
working-group seminars have been used. These recordings
were collected at the UPC smart room, in accordance with
the “CHIL Room Setup” specifications [12]. Recordings
were performed at different dates (several months apart) to
ensure proper variability (face, hair, etc.) of the participants.
In the recordings, four people enter an empty room, one
by one. Once inside, they move around a central table, al-
ways in standing position, talk to each other, walk around
the room from time to time, and finally leave the room one
by one. The length of each recording is approximately five
minutes. For some algorithms a relatively large amount of
training data needs to be available. One of the recordings
was intended for training in those cases, and the second one
is used for testing without any further change or parameter
adjustment. The second recording is more difficult in terms
of tracking, as all subjects wear clothes of similar colours.
For additional training we have used a set of similar record-
ings from the CLEAR evaluation campaign [32].

Figure 1 depicts a brief description of the UPC smart-
room sensors and space conditions. The room has an en-
trance door, a big window and a table in the middle. The
window was closed during recordings to avoid illumina-
tion changes. However, small illumination changes can oc-
cur when the door is opened.

The room is monitored using six cameras: four fixed cam-
eras at the corners of the room (labeled Cam1 to Cam4 in
Fig. 1), one zenithal fish-eye camera at the ceiling (Cam8)
and one active camera (PTZ) aimed and zoomed at the entry
door to capture the faces of the incoming people at high res-
olution. Video is interlaced, recorded in compressed JPEG
format, at 25 fps and 768 × 576 resolution.

The audio sensor setup is composed by one NIST
Mark III 64-channel microphone array, three T-shaped
four-channel microphone clusters and eight tabletop micro-
phones. Audio is recorded in separate channels in wav for-
mat, at 44.100 sampling frequency.

Far-field conditions have been used for both audio and
video modalities. All data flows are timestamped and the
computers used to record the signals are synchronized us-
ing the network time protocol (NTP). This makes possible
to synchronize audio and video data. There is no manual
segmentation of the data. Each technology is supposed to
automatically segment the recorded signal. Figure 2 shows
a sample set of recordings from the room setup.

2.2 The middleware

The problem of interconnecting several algorithms that work
on data streams coming from a high number of sensors from
different modalities is far from trivial. Synchronization of
the different data flows, distributed computing and the in-
terconnection of the algorithms are issues that need to be
addressed.

To allow efficient communication of sensor data and dis-
tributed computation, it is useful to have a middleware that
provides infrastructure services. We propose to use the NIST
SmartFlow system that allows the transportation of large
amounts of data from sensors to recognition algorithms run-
ning on distributed, networked nodes [2]. The working in-
stallations of SmartFlow is reportedly able to support hun-
dreds of sensors [41]. In the present version of our system,
the integration was not completed, as some modules are im-
plemented with MATLAB, and data exchange of modules
was simulated. However, the architecture is set up in a mod-
ular fashion to allow complete implementation under Smart-
Flow.

Smartflow offers a great deal of data encapsulation for the
processing blocks, which are called “clients”. Each client
can output one or more flows for the benefit of other clients.
The communication over TCP/IP sockets is transparent to
the user, and handled by the middleware. The design of
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Fig. 1 The UPC smart room setup

Fig. 2 Sample camera
recordings from the first session.
(a)–(d) Four corner ceiling
cameras. (e) Center ceiling
camera. (f) Door camera

a working system is realized through a graphical user in-
terface, where clients are depicted as blocks and flows as
connections. The user can drag and drop client blocks onto
a map, connect the clients via flows, and activate these
processing blocks.

The synchronization of the clients is achieved by syn-
chronizing the time for each driving computer, and time-
stamping the flows. The network time protocol (NTP) is
used to synchronize the clients with the server time, and this
functionality is provided by SmartFlow. A separate client
is used to start the processing clients simultaneously. The
video streams are not completely in one-to-one correspon-
dence, as clients sometimes drop frames.

There are several drawbacks of SmartFlow. Handling
multiple flows is difficult, and clients cannot selectively sub-
scribe to parts of a data flow. An alternative middleware
called ChilFlow that alleviates some of these issues is cur-
rently in development under the CHIL project [1], but not
made available yet [44].

2.3 The information flow of the system

The main contribution of the paper is an intuitive way of
connecting different tracking and recognition methods to
perform multimodal tracking and identification in the smart
environment. Figure 3 depicts the information flow within
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Fig. 3 The flow of information
within the smart room
architecture

the system: When people enter the room, the face detec-
tion module detects the face on the PTZ camera, and marks
the face area, which is then identified by the face identifica-
tion module. This provides a reliable identification, which is
used to trigger the feature-based identification (FBI) mod-
ule. The FBI receives moving blobs that are detected and
tracked by the tracking module, and builds a feature model
for the identified person on-the-fly. The FBI module is thus
responsible for the continuity of tracked frames, and serves
as a weak biometrics system that can identify users in cases
where tracking fails, or stronger biometric information is not
available. Motion detection and tracking within the room are
performed using the data from the four corner cameras and
the ceiling camera.

The audio modules track people in the room via sound
localization, and identify them based on their speech char-
acteristics. Since sound and speech are not constantly avail-
able, this modality is mainly used for making the decisions
of the system more robust. The acoustic identification can
help the FBI module to re-assign true IDs to the detected
blobs in case of tracking failures due occlusions or colour
similarity. Similarly, acoustic localization is used to assign
the ID of the speaker to one of the tracked blobs.

3 Visual processing

The cameras in the system are responsible from motion
detection, tracking, face detection and identification, and
feature-based identification. State of the art methods in
tracking humans can be grouped according to single-camera
or multi-camera usage [17, 51]. In multiview approaches
several methods are deployed using colour information, blob
information or occupancy maps. When the scene is not

crowded, simple background-foreground separation in com-
bination with colour features can do the detection and track-
ing of the humans [23, 30]. In more crowded environments,
Haritaoğlu et al. use vertical projection of the blob to help
segment a big blob onto multiple humans [21]. Blob infor-
mation and trajectory prediction based on Kalman filtering
for occluded objects is used in [10].

3.1 Motion detection module

The motion detection module attempts to separate the
foreground from the background for its operation. Fore-
ground detection using background modeling is a common
computer vision task, particularly in the field of surveil-
lance [42]. The method we use is based on detecting moving
objects under the assumption that images of a scene without
moving objects show regularities, which can be modeled us-
ing statistical methods. The training set is constructed with
a short sequence of offline recording taken from the empty
room.

In order to adapt to illumination changes, we update the
training set by adding new samples. At any time t , the colour
value of pixel i can be written as Xi,t = [Ri,t ,Gi,t ,Bi,t ].

The recent history of every pixel within an image is
stacked as [Xi,1,Xi,2, . . . ,Xi,t−1] and modeled as a set of
Gaussian distributions. With this approach, the probability
of the current observation of a pixel i can be estimated us-
ing the model built from previous observations:

P(Xi,t |Xi,1, . . . ,Xi,t−1) =
t−1∑

j=1

wi,j ∗N (Xi,j ,μi,j , σ
2
i,j ),

(1)

where N is the Gaussian probability density function. μi,j

and σ 2
i,j are mean and covariance matrix of the Gaussian.

wi,j is the weight associated with the Gaussian. To make
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the process on-line, a matching process is carried out; a new
pixel is considered to belong to the background if it matches
with the current Gaussian component, i.e. if the distance be-
tween the pixel and the mean of the Gaussian in question
is less than ε. In this study we have chosen ε = 2 ∗ σ . If a
current pixel does not match the mean of the given distribu-
tion, then the parameters of the distribution are updated with
a higher weight, otherwise they are updated with a lower
weight wi,j . The adaptation procedure is as follows:

wi,t = (1 − α)wi,t−1 + αMi,t (2)

where α is learning rate, α ∈ [0,1] and 1/α determines the
speed of the adaptation process. The optimal value of α de-
pends on the illumination conditions and on the background.
It is empirically set to 0.1 in this work, and it has been ob-
served that the model is not sensitive to small perturbations
of it (because of the stable illumination conditions of the
recordings). Mi,t = 1 if the current pixel matches a model,
otherwise it is 0 for rest of the models. In a similar vein μ

and σ are updated as follows:

μi,t = (1 − λ)μi,t−1 + λXi,t , (3)

σ 2
i,t = (1 − λ)σ 2

i,t−1 + λ(Xi,t − μi,t )
T (Xi,t − μi,t ) (4)

where

λ = αN (Xt |μi,t−1, σi,t−1). (5)

We have used one second pixel history for modeling the
Gaussian distributions, i.e. 25 frames.

One significant advantage of this technique is, as the new
values are allowed to be part of the model, the old model
is not completely discarded. If the new values become stabi-
lized over time, the weighting changes accordingly, and new
values tend to have more weight as older values become less
important. Thus, if there is a movement of furniture within
the room, the background model is updated rather quickly;
and the same is true for lighting changes. The output of the
motion detection module is further processed by a standard
connected component analysis to remove motion fragments
smaller than 20 pixels.

3.2 Multi-camera localization and tracking

One of the major drawbacks of current tracking systems is
the lack of reliable features to keep track of moving humans
in unconstrained environments. The most popular visual fea-
tures in use are colour features and foreground segmentation
or movement features [25, 30, 49]. In this study, we use a
probabilistic occupancy map (POM) approach, related to the
algorithm proposed in [17], but simplified to deal with in-
door environments, where motion trajectories are short and

bursty when compared to the more consistent motion ex-
pected in an outdoor environment.

In the POM approach, the discretized occupancy map is
used to back-project the stub image of a person (a simple
rectangle) to each camera view. The overlaps between the
stubs and the detected motion images across multiple cam-
eras indicate the presence of a person at a given location.
Denote the set of blobs detected at time t by B t . Let Lt

k be a
Boolean variable that indicates the presence of an individual
at location k at time t . The algorithm starts by setting all Lt

k

to zero. Then the best candidate is iteratively selected as

arg max
k

P (Lt
k|B−

t ) (6)

where B−
t denotes the reduced set of blobs obtained by re-

moving blobs accounted for so far, and Lt
k is set to one if

a pixel support condition is satisfied (we have motion in the
corresponding area from at least two cameras). P(Lt

k|B−
t ) is

set proportional to the pixel overlap between the stubs and
the blobs. Thus, if the motion blob completely covers the
stubs in all four cameras, the probability of occupancy is set
to unity. Conversely, if no motion is detected in the stub lo-
cations across cameras, the probability of occupancy is zero.
The process automatically stops once the support condition
is no longer satisfied.

The accuracy of this algorithm in terms of correct occu-
pancy detection on the first session is 96.3 per cent, allowing
at most a single grid square deviation from the ground truth.
The number of false detections are small, they amount to 5.5
per cent of the total detections. Of the true detections, 58.7
per cent are exact matches with the ground truth. The grid
size is set to roughly 40 cm., which is slightly denser than
[17] that uses 50 cm. On the more difficult second session,
the correct occupancy detection is 91.7 per cent, but there
are many more false detections (about 23 per cent of total
detections) due to moved furniture.

For continuous detection and identification, the output of
this module is combined with other types of information at
a later stage. In this mode of operation, it is not necessary to
select locations, and the POM is used to output probability
values for each grid location. Figure 4(b) illustrates the oc-
cupation probability distribution produced by the algorithm
for a sample frame. Only the four corner cameras are used
in computing the occupancy, the ceiling camera is just used
for ground truth annotation and visualization.

3.3 Face detection module

Face detection is needed for face identification and feature
based identification modules. In this module, the face of
each person present in the scene must be detected roughly
(i.e. a bounding box around a face will be the output of this
module).
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Fig. 4 The operation of POM
and FBI modules. (a) A sample
frame from the second session.
(b) The POM is computed
through motion detection in four
corner cameras. Darker colours
indicate higher probability.
(c)–(f) The posterior
probabilities under models of
individuals in the room,
computed by the FBI module.
The order of maps reflects the
relative positions of the persons
in the room. While the persons
in (c), (e) and (f) are
unambiguosly identified, the
model for the top-right person
produces high posterior
probabilities for two persons as
shown in (d). The assignment of
identities to occupied locations
that jointly maximizes the
posterior probability is able to
identify all persons correctly

For face detection, we use the OpenCV face detection
module that relies on the adaboosted cascade of Haar fea-
tures, i.e. the Viola-Jones algorithm [48]. The client that per-
forms face detection receives a video flow from a client that
in its turn directly receives its input from one of the cameras,
and outputs a flow that contains the bounding box of the de-
tected face. The face images captured by ceiling cameras
are too small for reliable detection or identification. Conse-
quently, only the door camera is used in face detection and
recognition.

3.4 Face identification module

During the last years, much research has been devoted to
video based face recognition (for an extensive review, see
Zhou et al. [52]). In addition to recognizing faces from sin-
gle image captures, the continuous monitoring environments
offer the possibility of multiple-still-based face recognition.

In this work, an existing technique for face recognition
in smart environments is used [29, 47]. The technique takes
advantage of the continuous monitoring of the environment
and combines the information of several images to perform
the recognition. Models for all individuals in the database
are created off-line using sequences of images collected at a
different date than the training and testing recordings.

The face recognition module takes motion tracking and
face detection for granted. This module therefore subscribes
to the face detection flow that indicates face locations, and
to the video flow to analyze the visual input coming from the
door camera. The combination of these modules results in a
completely automatic face detection/identification system.

The algorithm works with groups of face images pro-
vided by the face detection module. For each test sequence,
face images of the same individual are gathered into a group.
Then, for each group, the system compares these images
with the gallery images for each person. A PCA based ap-



J Multimodal User Interfaces

Fig. 5 Examples demonstrating variability in faces, acquired with the door camera. Variations due rotation, expression change and motion blur
are apparent

proach [27] has been used for comparison, which has the
low computational complexity that is necessary for online
applications. Individual decisions are combined into a single
decision for a group of images using the algorithm described
in [47].

The face detection module, by way of its construction,
forwards only frontal faces for identification, i.e. faces
where the two eyes, the nose and the mouth are visible. The
gallery images for each person are generated in a similar
automatic fashion. During training, candidate faces are nor-
malized to a size of 60 × 40 pixels and projected onto the
subspace spanned by the first 200 eigenvectors of the data
covariance matrix, created from the gallery images added
so far. The resulting vector is added to the model only if
it is sufficiently different from the vectors already present
in the model. The reader is referred to [47] for the details.
The subspace dimensionality is empirically determined, and
the number of eigenvectors is intentionally kept high to en-
sure reliable identification, as this is the point where we start
tracking individuals.

3.4.1 Experimental results

We have evaluated the face identification module combined
with the face detection module for the door camera (PTZ),
which records high resolution images as people enter the
room. Its positioning allows the capture of a head-and-
shoulders image with a resolution of 768 × 576 pixels. As
pre-processing, the images are downsampled by a factor of
two. This removes artifacts caused by interlacing.

The identification module operates in real-time, giving
one identification result each second, when a person is visi-

ble. Since the camera operates at 25 fps, up to 25 images ac-
quired in succession are used for each identification result.
The camera is positioned in a way to allow only one person
to be present in its field of view, as long as the entrance is
restricted to one person at a time.

As previously mentioned, the gallery models are created
with images of each person taken from a different record-
ing. We have used 20 training images per subject, and the
dataset was collected with four people participating in the
recordings.

Note that the input to the face ID system is the output of
the face detection module, so the results shown here do not
suppose perfect face detection. For the first session (TRA),
the face detection module outputs 172 groups of faces. Of
these 172 groups, only 111 (65 per cent) correspond to good
detections of frontal faces. The rest of the detections corre-
spond to non-frontal faces and false positives (35 per cent).

The identification module is able to give correct results in
all the correctly detected groups of faces. In the case of false
positives of the face detection module, the face identification
module correctly classifies all the cases in the Unknown/No
face class.

The high accuracy is the result of the fact that the face
recognition module was initially developed for handling
more difficult problems (i.e. more subjects and lower res-
olution of the images). The intra-subject and inter-subject
variation is illustrated in Fig. 5.

For the second session (TEST), the face detection mod-
ule outputs 23 groups of well detected faces at the entrance
stage. Of these, 8 (35 per cent) are correctly identified and 15
are classified in the Unknown/No face class. For the first ses-
sion, recorded a few weeks after the collection of the images
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used to generate the gallery, all the face groups are correctly
identified. The second data set was collected several months
later. As a result, many of the detected groups of faces are
classified in the Unknown/No face class, as PCA is not ro-
bust against time variability in the face images. But even in
that case, the system can be used for reliable identification,
because all the participants are correctly identified at least
once when they enter, and there are no wrong initializations.
Note that the models can be automatically updated during
each system operation to avoid excessive time variability.
See [47] for further details. For scenarios where the number
of users prohibits reliable face recognition at the door, an
RFID-based identification can serve as a foolproof initializa-
tion method. The rest of the system requires no modification
to accommodate such a change.

3.5 Feature based identification module

In order to ensure robust identification in the room, we rely
on weak or unanticipated sensor correlations and patterns
for sensing. For this purpose, we propose to use features
that are easy to capture, present most of the time, and help-
ful when the strong modalities (e.g. face or speech) are un-
reliable. This is particularly important in the smart-room
scenario, where the ceiling cameras usually cannot capture
discriminative face images. Most proposed systems for this
type of application rely on continuous tracking of identified
people in the room. Important approaches that are previ-
ously proposed and successfully used are Kalman filters [24]
and particle filters [33]. However, tracking multiple people
for a long period is difficult, there is little possibility of re-
covering from mistakes.

The feature based identification (FBI) module we pro-
pose aims at identifying persons in the room when the track-
ing or speaker identification results are not available, or not
discriminatory. The primary assumption behind the opera-
tion of this module is that the variability in a user’s appear-
ance for a single camera is relatively low for a single ses-
sion (this case is termed intra session in [47]), and a user
model created on-the-fly can provide us with useful infor-
mation [45]. We use the following general procedure for this
purpose: Whenever a person is reliably identified (i.e. when
the face identification or speaker identification modules re-
turn a result with high confidence1), the tracking cameras

1The confidence depends on the modality. For face identification, we
set a threshold on the RML of the class with the highest M(Cj ). The
probabilistic nature of detection precludes hundred per cent confidence
in classification, but a high ratio of probability for the highest proba-
bility class and its successor is usually indicative of a good decision.
Since the posterior is normalized, a threshold of 90 per cent means that
the best candidate is about ten times more likely than its successor. In
practice, the face identification part of the system is very accurate, and
consequently very robust to the actual value of the threshold.

forward the detected motion blobs to the FBI module. Then,
the pixel intensities within the motion blobs are modeled sta-
tistically, and this statistical model is used to produce pos-
terior probabilities for identification purposes. Typically, the
system creates one model per person per camera, immedi-
ately after the person enters the room, as this is the point
where the door camera acquires the face image. Using a sep-
arate module for each camera makes a colour-based calibra-
tion across cameras unnecessary. In the remainder of this
section, we describe the operation of FBI in more detail. We
have omitted camera indices for simplicity.

The colour modeling for the subjects is based on the
assumption that the pixels are independent and identically
distributed, following a distribution on the RGB (or HSV)
space. Fleuret et al. argue that this approach is sufficient in
practice, and a body area based segmentation is not neces-
sary [17]. For a set of pixels X, and a set of classes C, where
each class Ci is modeled with a mixture model Gi , the pos-
terior probability of class Ci with evidence X is written as:

p(Ci |X) = p(Ci )p(X|Ci )

p(X)
, (7)

and p(X) is equivalent to
∏n

j=1 p(xj ), a product over the
pixels in the set X = {x1, x2, . . . , xn}. We can assume that
p(Ci ) are uniformly distributed for simplicity, or we can
use it to inject some previous knowledge, e.g. the previous
positions and velocities of people can be used to condition
p(Ci ).

There are two problems with this formulation. First of all,
the model construction is performed on the fly, and might be
incomplete. The model indicates the presence of a subset of
features belonging to class Ci , but not necessarily the ab-
sence of the rest. However, the evidence of each pixel xj

contributes to the probability term in (7). Consequently, for
a very low p(xj |Ci ), the presence of xj serves as a strong
negative evidence against class Ci . The second problem is
the possible presence of small clusters of distinguishing fea-
tures (e.g. a small colourful badge). Even if we assume that
the model has captured this feature in the distribution, the
likelihood under the class model will suffer from the small
component prior, and this feature will not contribute much
to the overall likelihood.

The first problem can be solved by using only ‘positive’
evidence for each class. We can produce a ranked list S i =
{xj } from X for each class, which sorts the pixels according
to their likelihood values with respect to the model of Ci :

p(xj |Ci ) ≥ p(xj+1|Ci ), ∀j = 1 . . . n. (8)

Then, Si (τ ) is used for computing the posterior instead of
X:

p(Ci |X) ∼ p(Ci |Si (τ )) (9)
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Fig. 6 Colour distribution for a
sample subject in the RGB
space, where each pixel is
projected to each of the 2D axial
planes (red = 255, green = 255,
and blue = 0, respectively) to
show the 3D point distribution
from three different views. The
distribution calls for non-zero
covariances, and multiple
components

with τ representing the fraction of pixels that are retained.
For τ = 1, the whole S i = X is consulted for evidence.

The second problem involves the presence of small, dis-
criminative features. The distinguishing characteristic of
these features is that even though their class-conditional
probability is small, it is much smaller under models of the
other classes. We can use this fact to select these features
by looking at the likelihood ratios instead of the likelihood
itself. We retain (9), but change (8) accordingly:

p(xj |Ci )

maxm p(xj |Cm)
≥ p(xj+1|Ci )

maxk p(xj+1|Ck)
, ∀j = 1 . . . n (10)

with i �= k, i �= m.
To build statistical models Gi for the users of the smart

room, we contrast several approaches of increasing com-
plexity in the RGB or HSV space. Our simplest approach is a
single Gaussian, followed by a mixture of Gaussians with ei-
ther 2 or 3 components, or a mixture of factor analysers with
arbitrary number of components. For the last approach, we
use the IMoFA algorithm that tailors the mixture complexity
automatically to the dataset [39]. When modeling the colour
distribution of a subject, the spherical or diagonal covariance
assumptions are usually not justified, and we use full co-
variance for the Gaussian models. Figure 6 shows a sample
colour distribution, which illustrates this point graphically.

We evaluate the FBI models for about 8.000 blobs ex-
tracted from four camera sequences. The ground truth for
comparison is obtained from the manual annotation. Fig-
ure 7 shows the accuracy of the different approaches for
different values of τ , which is the threshold of discrimina-
tiveness.

Our results confirm our prediction that consulting posi-
tive evidence is a better approach. The trend for accuracy

decrease with the increasing proportion of consulted pixels
is apparent from Fig. 7. This decrease is less for mixtures
with larger number of components (most notably the IMoFA
models) that are able to model the distributions more ac-
curately. The accuracy peaks surprisingly early, suggesting
that consulting around twenty per cent of the pixels should
be enough. The figure also indicates a slight superiority of
the HSV space to the RGB space.

4 Audio processing

A total of 20 microphones were used to track speakers in
the room. Of these, 12 omni-directional microphones were
placed on the walls in three T-shaped groups of four mi-
crophones each. In addition to these arrays, four directional
and four omni-directional microphones were placed on the
table. The data were collected at a rate of 44.100 kHz, 2
bytes per sample, and downsampled to 16.000 kHz as a pre-
processing step.

4.1 Acoustic localization module

Many approaches to the task of acoustic source localiza-
tion in smart environments have been proposed in the lit-
erature. Their main distinguishing characteristic is the way
they gather spatial clues from the acoustic signals, and how
this information is processed to obtain a reliable 3D posi-
tion in the room space. Spatial features, like the Time Differ-
ence of Arrival (TDOA) between a pair of microphones [37]
or the Direction of Arrival (DOA) of sound to a micro-
phone array can be obtained on the basis of cross-correlation
techniques [34], High Resolution Spectral Estimation tech-
niques [35] or by source-to-microphone impulse response
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Fig. 7 Accuracy of the FBI
module for different statistical
models. Consulting only the
more discriminative pixels as
indicated by the threshold on the
x-axis is beneficial

estimation [14]. Depending on such features, the source po-

sition that agrees most with the data streams and with the

given geometry is selected. Conventional acoustic localiza-

tion systems also include a tracking stage that smooths the
raw position measurements to increase precision according

to a motion model. These techniques need several synchro-

nized high-quality microphones.

The acoustic localization system used in this work is
based on the SRP-PHAT localization method, which is

known to perform robustly in most scenarios. The SRP-

PHAT algorithm (also known as Global Coherence Field

[16]) tackles the task of acoustic localization in a robust
and efficient way. In general, the basic operation of local-

ization techniques based on steered response power (SRP)

is to search the room space for a maximum in the power

of the received sound source signal using a delay-and-sum

or a filter-and-sum beamformer. In the simplest case, the
output of the delay-and-sum beamformer is the sum of the

signals of each microphone with the adequate steering de-

lays for the position that is explored. The SRP-PHAT al-

gorithm consists of exploring the 3D space while searching
for the maximum of the contribution of the PHAT-weighted

cross-correlations between all the microphone pairs. The

SRP-PHAT algorithm performs very robustly due the PHAT

weighting, keeping the simplicity of the steered beamformer
approach.

Consider a smart-room provided with a set of N micro-

phones from which we choose M microphone pairs. Let x
denote a R3 position in space. Then the time delay of ar-

rival TDOAi,j of an hypothetic acoustic source located at x
between two microphones i, j with position mi and mj is:

TDOAi,j = ‖ x − mi ‖ − ‖ x − mj ‖
s

, (11)

where s is the speed of sound.
The 3D room space is then quantized into a grid of posi-

tions with typical separations of 5–10 centimeters. The theo-
retical TDOA τx,i,j from grid locations to each microphone
pair are pre-calculated and stored. During the operation,
PHAT-weighted cross-correlations of each microphone pair
are estimated for each frame [34]. These can be expressed
in terms of the inverse Fourier transform of the estimated
cross-power spectral density Gm1m2(f ) as follows:

Rmimj
(τ ) =

∫ ∞

−∞
Gmimj

(f )

|Gmimj
(f )|e

j2πf τ df . (12)

The estimated acoustic source is the grid location that
maximizes the contribution of the cross-correlation of all
microphone pairs:

x̂ = arg max
x

∑

i,j ∈ S

Rmimj
(τx,i,j ), (13)

where S is the set of microphone pairs. The sum of the con-
tributions of each microphone pair cross-correlation gives a
value of confidence for the estimated position, which can be
used in conjunction with a threshold to detect acoustic activ-
ity and to filter out noise. In our work, we use a threshold of
0.5 for each microphone cluster. It is important to note that
in the case of concurrent speakers or acoustic events, this
technique will only provide an estimation for the dominant
acoustic source at each iteration.
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Table 1 SAD performance
Dataset Eval time Eval speech Missed speech FA speech

TRA 281.19 s 201.39 s 9.65 s 1.82 s

TEST 422.93 s 371.42 s 10.68 s 6.82 s

The experimental results obtained with the localization
module are given in Sect. 5, as they are used jointly with the
speaker identification module.

4.2 Speaker segmentation and identification module

Tracking of speakers inside the room involves both audio
segmentation and speaker identification, two tasks particu-
larly researched in the context of spoken document index-
ing. Recently, automatic segmentation and clustering of au-
dio segments based on speaker identity received renewed at-
tention, and applied to the problem of detecting cases where
a speaker intervenes in a conversation [4, 31, 38].

In speaker segmentation, the identification of speakers is
not required and no assumptions are made about the number
of speakers or the speaker characteristics [6, 7]. On the other
hand, speaker tracking aims at detecting regions uttered by a
given speaker, for which a speaker model is trained before-
hand.

Most of the proposed applications in the literature analyse
the tracking problem in three parts:

1. Detecting the segments that contain speech.
2. Detecting the speaker turn.
3. Identifying the speaker.

Our speaker identification system is based on Hidden
Markov Models (HMMs), which allow for a global segmen-
tation of the audio sequence with the maximum a posteri-
ori (MAP) approach that is optimal in the maximum likeli-
hood sense [36]. The HMMs are used to model speaker fea-
tures and to encode the temporal evolution of the speech seg-
ments. The algorithm segments the audio signal into several
clusters using a minimum duration of the speaker turn para-
meter, and assigns the most likely identity from the closed
database of target speakers to each segment. We have col-
lected a small database from four speakers, and one minute
of speech per speaker was collected in the room to estimate
the initial models.

The algorithm starts with several stages of pre-processing.
The input signals from each microphone channel are first
Wiener-filtered using the implementation of the QIO front-
end system [3]. These channels are then fed into the Beam-
forming code implemented by ICSI in order to obtain a
single enhanced channel for further processing [5]. This
processed output channel is analyzed by the Speech Activity
Detector (SAD) module of UPC, described in [46] in order
to obtain the speech segments. The non-speech segments

Fig. 8 The schematic outline of the speaker identification and segmen-
tation system

are not considered any further. The enhanced speech data
are parameterized using 19 Mel Frequency Cepstral Coef-
ficients (MFCC) features and fed into an iterative cluster-
ing system, based on [28]. However, the system described
in [28] is designed with the diarization task in focus, and
therefore oblivious to the identity. Consequently, the algo-
rithm is modified to take into account prior knowledge of
speakers, as well as general sound characteristics of a meet-
ing scenario. In the remainder of this section we treat each
of the stages briefly, for completeness’ sake.

4.2.1 Speech activity detection

The SAD module used in this work is based on a support
vector machine (SVM) classifier [40]. The performance of
this system was shown to be good in the 2006 Rich Tran-
scription SAD Evaluations (RT06) [46]. A GMM-based sys-
tem that ranked among the best systems in the RT06 evalu-
ation was selected as a baseline for performance compari-
son [46].

For classical audio and speech processing techniques that
involve GMMs, the training data are in the order of several
hundred thousand examples. However, SVM training usu-
ally involves far less training samples, as the benefit of ad-
ditional samples is marginal, and training becomes infeasi-
ble under too large training sets. In this work we use the
NIST RT05 and RT06 datasets for samples of Speech and
Non-Speech classes and employ proximal SVMs (PSVM)
in the same way as proposed in [46] to reduce the amount
of data for training without losing accuracy. Unlike conven-
tional SVM, PSVM solves a single square system of linear
equations and thus it is very fast to train [18]. We penalize
errors from the Speech class more in comparison to errors
from the Non-Speech class. The performance of the SAD
algorithm is shown in Table 1.
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Fig. 9 (a) An ergodic HMM
models the acoustic data with 5
states, each composed of S

sub-states sharing the same
GMM model. (b) Steps of the
iterative segmentation and
identification algorithm

4.2.2 Speaker modeling

The Person Identification (PID) problem consists of recog-
nizing a particular speaker from a segment of speech spo-
ken by a single speaker. The assumptions under which we
build our system are matched training and testing condi-
tions, far-field data acquisition, limited amount of training
data, and no a-priori knowledge about the room environ-
ment. The speech characteristics of each speaker in the sys-
tem are modeled with Gaussian Mixture Models (GMMs).
Diagonal covariance matrices are assumed, and the number
of components per mixture is set to 32. The large number
of components assures that the statistical learning is robust,
and its use is further justified by the availability of a very
large training set.

The speech parameterization is based on a short-term es-
timation of the spectrum energy in several sub-bands. The
beamformed channel is analysed in frames of 30 millisec-
onds at intervals of 10 milliseconds and 16 kHz of sam-
pling frequency. The algorithm commences by processing
each data window by subtracting the mean amplitude, sup-
posing the DC offset is constant throughout the waveform.
A Hamming window was applied to each frame and an FFT
is computed. The FFT amplitudes are then averaged in 19
overlapped triangular filters, with central frequencies and
bandwidths defined according to the Mel scale. The scheme
we present follows the classical procedure used to obtain the
Mel-Frequency Cepstral Coefficients (MFCC) [15].

The parameters of the model are estimated from speech
samples of the speakers using the Baum-Welch algorithm
[36]. Although this procedure is sensitive to initial condi-
tions when the training data are few, under the present con-

ditions, 15 iterations are demonstrably enough for robust pa-
rameter convergence. In addition to the speaker models, a
Universal Background Model (UBM) is estimated to deal
with cases that do not match any of the speakers.

4.2.3 Iterative segmentation system

Our segmentation algorithm models the acoustic data us-
ing an ergodic Hidden Markov Model (HMM) with 5 states,
four for the modeled speakers and one for the UBM, respec-
tively. Each state contains a set of S sub-states as shown
in Fig. 9(a), each identical in terms of parameters. These
sub-states are used to enforce a minimum speaker duration
constraint, and they model the spectral features of speakers
via Gaussian mixtures with shared parameters. The transi-
tion probabilities between subsequent sub-states are set to
unity, except for the last sub-state where the self-transition
probability is set to α and transition probability to any other
state is set to β = 1/#states. Thus, once a segment exceeds
the MD, the HMM state transitions no longer influence the
turn length; turn length is solely governed by acoustics [6].
Since we do not impose prior assumptions for the average
turn length, we adjust the values of α and β so that α = ∑

β .
Using the HMM classifier for segmentation brings a

number of advantages. The minimum duration constraint
and the extension to additional classes/states can easily be
imposed. For instance, it is possible to vary the MD by sim-
ply changing the number of sub-states within each class. It
is also possible to impose different MD constraints for dif-
ferent acoustic classes.

Figure 9(b) depicts the flow of the algorithm. The MD is
empirically set to 3 seconds. After the segmentation and the
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Table 2 Diarization
performance Dataset Scored Missed FA SPK errors DER

TRA 164.28 s 12.50 s 1.82 s 18.75 s 20.12%

TEST 315.99 s 11.08 s 6.82 s 81.28 s 31.39%

Fig. 10 Diarization Error Rate (DER) for training and test datasets.
The final gap in the DER at the last iteration is due to the change (1.5
seconds instead of 3 seconds) in the minimum duration of the speaker
turn

Viterbi decoding, an initial clustering of each class is ob-
tained. These Speaker and Event clusters are then merged
with the initial enrollment data, and the class models are
re-trained by means of a MAP adaptation of the mean. Af-
ter the adaptation, a final segmentation is conducted with a
lower value of the MD (set to 1.5 seconds) and a final seg-
mentation/identification hypothesis is obtained.

During the segmentation, some verification techniques
have been also used. The emission probabilities of each
state are normalized with the frame score computed from
the UBM model by using the Log-Likelihood Ratio (LLR)
method at score-level [9]:

L̂λ(X) = Lλ(X) − LUBM(X) (14)

where X denotes the segmented sequence, Lλ(X) denotes
the likelihood under class model λ and LUBM(X) is the like-
lihood under the UBM, trained with the complete training
sequence.

4.2.4 Assessment protocol and results

We briefly recall here the content of the corpus, as well as
the assessment rules for the speaker tracking task we have
used to carry out the experiments. The training sequence
(TRA) is of around 5 minutes of duration, and it is used to
determine the model parameters. All modeled speakers and

other classes of acoustic events are present in the recordings.
Background noise, overlapping speech, door slam, laugh,
and steps are some examples of these events. Brief silences
of a speaker between talk segments were not labeled if
smaller than 500 ms. One minute of audio per class was used
for the training of each speaker and the event class. Finally,
an audio sequence of roughly 7 minutes was employed to
benchmark the performance of the approach (TEST).

The metric used to evaluate the performance of the sys-
tem is the Diarization Error Rate (DER), which is also used
in the NIST RT 2006 evaluation campaign. It is computed
by first finding an optimal one-to-one mapping of the ref-
erence speaker ID to the system output ID, and then ob-
taining the error as the percentage of time that the system
assigns a wrong speaker label. The results given in Table 2
are the time-weighted DER averages for the two evaluation
sets. The relation of DER with the number of performed it-
erations is given in Fig. 10.

5 Multimodal tracking and identification

The purpose of the system is to identify each user as they
enter through the door and then track them during the com-
plete session. To have robust tracking and identification of
all persons at the same time, we have used a multimodal ap-
proach. In this section we describe this approach.

The most reliable component of the system is identified
as the face detection and recognition module. For this rea-
son, the identification starts at the door, where the PTZ cam-
era identifies the person. Typically, a single identification
result is enough to bootstrap the system, although multiple
subsequent identifications can be used in conjunction to bol-
ster the confidence of the system. With the present setup, we
have not seen any need for further fusion of results, as we
have perfect identification at this stage.

Once the person is identified, one FBI model per camera
is created on the fly. This operation is fast, and based on
results shown in Sect. 3.5, we use 3-component Gaussian
mixtures on the HSV colour space as FBI models for each
person. The POM module (Sect. 3.2) provides the motion
blobs used for FBI modeling.

When acoustic information is available, the acoustic lo-
calization of the sound source is jointly considered with
speaker identification output. We use a particle filter based
tracker to combine audio and vision based identification and
localization information [11, 20]. This algorithm is used to
estimate the 2D position and the identity of a person jointly.
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5.1 Particle filter-based tracking

The particle filter (PF) is a useful technique for tracking
and estimation tasks, especially when the estimated motion
uncertainty is not accurately modeled with Gaussian dis-
tributions [22]. They were previously employed for audio-
visual multi-person tracking [19, 54], multimodal event de-
tection [53] and for active speaker tracking [13, 33] success-
fully. In [54] the PF model incorporates the 3D location and
velocity of tracked objects, and it is also employed for cali-
brating the sensors. In [33] the PF model is used for 3D lo-
cations only, and the motion of the object is modeled with a
Gaussian diffusion equation. In [13], the 2D ground position
of the person and the height are tracked for a multiple person
activity tracking system. While these kind of systems pro-
duce good tracking results, the spatio-temporal covariance
matrices used for differentiating tracked persons are not ro-
bust enough to recover tracks once two tracks are confused.
The tracking system proposed in this section includes the
ground position, the identity, and whether a person is speak-
ing or not. The addition of independent identification gives
the system flexibility to recover from tracking errors, and the
identity of the tracked persons can be preserved in cases of
track confusion.

Our approach is based on a multi-hypothesis tracker
that approximates the filtered posterior distribution by a set
of weighted particles. The standard particle filter assigns
weights to particles based on a likelihood score, and then
propagates these weighted particles according to a motion
model. The optimal solution to multi-target tracking using
the PF is the joint particle filter, but its computational load
increases dramatically with the number of tracked targets,
since every particle estimates the location of all targets in
the scene simultaneously. To deal with the computational
complexity, a set of decoupled PFs are used (one per target)
in [26], and an interaction model is defined to ensure track
coherence.

Let us denote the position of a person at an instant t as xt .
Estimating the position given a set of observations z1:t can
be formulated as a state space estimate problem, described
by the following state process equation:

xt = f(xt−1,vt ), (15)

and the observation equation:

zt = h(xt ,nt ), (16)

where f is a function describing the state propagation, and
h is an observation function modeling the relation between
the hidden state xt and its observable counterpart zt . The
functions f and h are possibly nonlinear and the noise com-
ponents vt and nt are assumed to be independent stochastic
processes with a given distribution.

To solve the tracking problem from a Bayesian perspec-
tive, we need to calculate the probability distribution func-

tion p(xt |z1:t ), and this can be done recursively. The predic-
tion step uses the process equation (15) to obtain the prior
probability distribution function (henceforth denoted as pdf)
by means of the Chapman-Kolmogorov integral:

p (xt |z1:t−1) =
∫

p (xt |xt−1)p (xt−1|z1:t−1) dxt−1, (17)

with p (xt−1|z1:t−1) known from the previous iteration and
p (xt |xt−1) is determined by (15). When a measurement zt

becomes available, it may be used to update the prior pdf via
Bayes’ rule:

p (xt |z1:t ) = p (zt |xt ) p (xt |z1:t−1)∫
p (zt |xt ) p (xt |z1:t−1) dxt

, (18)

where p (zt |xt ) is the likelihood statistics derived from (16).
However, the posterior pdf p (xt |z1:t ) in (18) can not be
computed analytically unless linear-Gaussian models are
adopted, in which case the Kalman filter provides the op-
timal solution.

Particle Filtering (PF) is a technique for implementing a
recursive Bayesian filter by Monte Carlo simulations. The
posterior density function p (xt |z1:t ) is represented by a set
of random samples (particles) with associated weights:

p (xt |z1:t ) ≈
Ns∑

j=1

w
j
t δ(xt − xt

j ), (19)

where w
j
t are the weights associated to the particles satisfy-

ing
∑Ns

j=1 w
j
t = 1. As the number of samples Ns increases,

the characterization of posterior pdf improves, and the PF
approaches the optimal Bayes estimate.

The principal steps in the PF algorithm are:

1. Resample: The particles are resampled according to their
scores. This operation results in the same number of par-
ticles, but particles with high scores are duplicated, while
particles with low scores are dropped.

2. Apply motion model: Predict the new set of particles by
propagating the resampled set according to a model of
the target’s motion.

3. Score: Form the likelihood function p(zt |xt ), assign
weights to the new particles according to the likelihood
function wi

t = p(zt |xi
t ), and normalize the weights so

that
∑

i w
i
t = 1.

4. Average: The location of the target is estimated as the
weighted sum of all the particles. E[xt ] = ∑N

i=1 wi
t ∗ xi

t .

The state we want to estimate is the position and identity
of each person. The propagation model for the particles is
modeled by adding white noise to the positions and by ran-
domly changing a given percentage of the identities. Likeli-
hood functions used for scoring are computed separately for
each modality. For a given filter, the best state at time t is
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obtained by computing an histogram of the identities of the
particles and selecting the maximum to decide the identity.
The mean and the variance for the particle positions are es-
timated, and used in deciding whether the filter is tracking a
person or not.

In our implementation, the interaction between filters is
modeled by iterating the last two steps. If a particle enters
the quantized space occupied by another filter tracking a per-
son, the weight of this particle is set to zero. When a particle
randomly changes its identity and takes on the identity of
another filter with a higher score, the weight of this particle
is also set to zero.

5.1.1 Video evaluation

In order to implement a PF that takes into account visual
information solely, the visual likelihood evaluation function
must be defined. We used a combination of POM and FBI
by multiplying both terms. POM gives a probability of oc-
cupancy for each grid location and FBI gives the posterior
probabilities for all subjects at each grid position.

Function p(zt |xt ) can be seen as the likelihood of a parti-
cle belonging to the position corresponding to a person. For
a given particle j occupying a room position, the likelihood
may be formulated by multiplying the probabilities from
POM and FBI, which will give the weight for the particle.

The particle filters are initialized with 10,000 particles
distributed randomly across the room. Each particle is char-
acterized by its position and its identity. The number of par-
ticles, as well as the other parameters of the PF are optimized
on the training set, and used without any modifications on
the test set.

5.1.2 Multimodal evaluation

In the multimodal case, acoustic information is added to
the visual information. Each modality (visual localization—
POM, visual identification—FBI, acoustic localization—
AcLoc, and acoustic identification—SpkId) provides prob-
abilities for localization and identification. Combination of
modalities is achieved by means of a weighted sum rule,
with weights obtained experimentally on the training set.

wi
t = w1 ∗ (POM ∗ FBI) + w2 ∗ (AcLoc ∗ SpkId). (20)

The same number of particles and same parameters are used
as in the video evaluation.

5.2 Experimental results

For both tracking evaluations, we have used the metrics
proposed in [8]. The Multiple Object Tracking Precision
(MOTP) shows a tracker’s ability to estimate precise ob-
ject positions, whereas the Multiple Object Tracking Ac-
curacy (MOTA) expresses the performance for estimating

Table 3 Tracking performance

Data sets Visual Visual+Acoustic

MOTA MOTP MOTA MOTP

TRA 65.4% 337 mm 67.2% 307 mm

TEST 23.0% 291 mm 40.9% 256 mm

the correct number of objects, and keeping to consistent
trajectories. MOTP scores the average metric error when
estimating multiple target centroids, while MOTA evalu-
ates the percentage of frames where the targets have been
missed, wrongly detected or mismatched. MOTA is the sum
of all errors made by the tracker (i.e. false positives, misses,
mismatches) over all frames, averaged by the total num-
ber of ground truth points. It is similar to accuracy metrics
widely used in other domains and gives a very intuitive mea-
sure of the tracker’s performance, independent of its abil-
ity to determine exact person locations. Low MOTP and
high MOTA scores are preferred, indicating low metric error
when estimating multiple target positions and high tracking
performance, respectively. These metrics are preferred over
receiver-operator characteristic (ROC) curves, since track-
ing imposes several constraints (e.g. one and only one track
per person) on each detected person, independent of a con-
fidence threshold that can be varied to generate the ROC
curve.

Results in Table 3 show that the tracking is highly suc-
cessful on the training recording. Even though video track-
ing is good, the audio modalities result in an improvement
of the performance and precision of the system. For the test
recording, the results are poorer, as the visual identification
is much more difficult. The FBI module has problems dis-
criminating the individuals as they wear similar clothing.
Subsequently, the benefit of using additional acoustic infor-
mation is marked for this recording. The results indicate that
persons can be detected with a precision in position of about
30 cm or less, which is sufficient for discrimination unless
they stand very close to one another. In [43], multiperson
tracking and identification results for the CLEAR 2006 cam-
paign are reported. The MOTP values of the submitted sys-
tems are between 195–233 mm, whereas the MOTA values
vary between 4.33–62.20%.2 MOTA will be equal to 100%
only if there are no false positives, no misses and no iden-
tity mismatches in the tracking. For the reported results, the
MOTA loss is mainly due misses, whereas the percentage of
false positives is very low.

For multimodal identification, the scoring must take into
account the position of the identified target. An identifica-
tion hypothesis is considered a correct match if the identity

2These values are obtained on different experimental conditions, and
only reported to give an idea of the expected range for MOTA and
MOTP metrics.
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Table 4 Identification performance

Data sets Visual Visual+Acoustic

Matches Misses FP Matches Misses FP

TRA 81.4% 18.6% 0.0% 83.8% 16.2% 4.2%

TEST 49.3% 50.7% 3.0% 64.5% 35.5% 1.0%

agrees with the ground truth and the detected position of the
identified target is within a certain distance (i.e. 50 cm) to
the actual position of the individual. We also report misses
and false positives.

Table 4 shows the results for identification, for both train-
ing and test recordings. Results are similar to the ones ob-
tained for tracking, with very good performance on the train-
ing set and a passable performance for the test set. The im-
provement obtained by using the acoustic modality is much
more obvious in the more difficult test set. The presence of
tracking (as opposed to frame by frame processing) ensures
that the number of false positives are small.

6 Conclusions and future work

In this paper we have evaluated several methods for moni-
toring a room for the purposes of locating and identifying a
set of individuals. We worked with different modalities from
multiple sensors to observe a single environment and to gen-
erate multimodal data streams. These streams are processed
with the help of a generic client-server middleware called
SmartFlow and signal processing modules. The system is
designed to operate in a completely automatic fashion, there
is no manual segmentation or user intervention.

Modules for visual motion detection, visual face track-
ing, visual face identification, visual feature-based identifi-
cation, audio-based localization, and audio-based identifica-
tion were implemented. Our proposed system is based on
multi-tier information processing, where available modali-
ties are fused into a final decision through a particle-filter
based tracker. The simple tracking and identification system
that is based on a probabilistic occupancy map and on-the-
fly colour feature modeling works effectively, as demon-
strated by its stand-alone accuracy. The presence of addi-
tional information from the auditory modality increases the
accuracy.

The collected database consists of two relatively small
audio-visual streams, but it represents a realistic application
testbed with multiple persons interacting and moving around
a room. Both the visual and auditory channels result in high
identification rates, with some superiority of visual informa-
tion over acoustic information.

The present work represents an initial step in a series of
increasingly challenging research questions, including auto-
matic recognition of a set of gestures and pose estimation.

One obvious future direction is to work with more difficult
datasets (e.g. the CLEAR 2006 and 2007 datasets). The test-
ing of the proposed methods on these proprietary benchmark
datasets is planned. The components that make up the sys-
tem are not computationally intensive, and a real-time im-
plementation of the approach is currently under study.
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