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bstract. The accuracy of a three-dimensional (3-D) face recogni-
ion system depends on a correct registration that aligns the facial
urfaces and makes a comparison possible. The best results ob-
ained so far use a costly one-to-all registration approach, which
equires the registration of each facial surface to all faces in the
allery. We explore the approach of registering the new facial sur-

ace to an average face model (AFM), which automatically estab-
ishes correspondence to the preregistered gallery faces. We pro-
ose a new algorithm for constructing an AFM and show that it
orks better than a recent approach. We inspect thin-plate spline
nd iterative closest-point-based registration schemes under
anual or automatic landmark detection prior to registration. Ex-

ending the single-AFM approach, we consider employing category-
pecific alternative AFMs for registration and evaluate the effect on
ubsequent classification. We perform simulations with multiple
FMs that correspond to different clusters in the face shape space
nd compare these with gender- and morphology-based groupings.
e show that the automatic clustering approach separates the

aces into gender and morphology groups, consistent with the other
ace effect reported in the psychology literature. Last, we describe
nd analyze a regular resampling method, that significantly in-
reases the accuracy of registration. © 2008 SPIE and

S&T. �DOI: 10.1117/1.2896291�

Introduction
ith the advances in acquisition hardware and three-

imensional �3-D� recognition algorithms, 3-D face recog-
ition has become an important biometric modality.1 The
llumination effects that impair two-dimensional �2-D� face
ecognition are alleviated to a large degree when using the
urface of the face. Additionally, 3-D face recognition of-
ers new possibilities of representation when compared to
-D face recognition, and the choice of representation for

aper 07107SSR received Jun. 15, 2007; revised manuscript received Oct.
5, 2007; accepted for publication Nov. 28, 2007; published online Mar.
1, 2008. This paper is a revision of a paper presented at the SPIE Con-
erence on Vision Geometry XV, February 2007, San Jose, California. The
aper presented there appears �unrefereed� in SPIE Proceedings Vol. 6499.

017-9909/2008/17�1�/011006/14/$25.00 © 2008 SPIE and IS&T.
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the surface has a bearing on the accuracy and the speed of
the 3-D face recognition algorithm. For instance, selecting
a depth map to represent a 3-D face makes it possible to use
almost all the techniques developed for 2-D face recogni-
tion, whereas storing true 3-D information potentially in-
creases the accuracy.

The speed and accuracy bottleneck in 3-D face recogni-
tion is in the registration step, which follows the prepro-
cessing. Test faces need to be aligned to gallery faces for
comparison. Most of the algorithms start by coarsely align-
ing the faces, either by their centers of mass,2 the nose tip,3

or the eyes,4 or by fitting a plane to the face and aligning it
with that of the camera.5 Good registration of the images is
important for all local similarity measures.

In 3-D face classification applications, the most fre-
quently employed registration approach is the iterative
closest point �ICP� algorithm, which establishes a dense
correspondence between two point clouds in a rigid
manner.6 Typically, a test face is registered to each gallery
face separately,7–9 and a point set distance is adopted for
classification.

In the work of İrfanoğlu et al., an alternative and fast
method was proposed to register faces,10 where an average
face model �AFM� was employed to determine a single
point-to-point correspondence. The gallery faces, previ-
ously used in generating the AFM, are already in dense
correspondence with it. Thus, a single ICP is enough to
register a test face, which is much faster for a reasonably
sized gallery. This overcomes what has been reported as the
major drawback of ICP.8,11

In this paper, we explore and expand AFM-based regis-
tration. Our methodology is summarized in Sec. 2, where
we propose an approach that uses one AFM for each facial
category. Section 3 provides a brief summary of the rigid
and nonrigid registration methods that we use, along with a

description of the automatic landmarking algorithm. The

Jan–Mar 2008/Vol. 17(1)1
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ovel AFM construction algorithm is presented in Sec. 4,
here we also describe two different approaches for creat-

ng category-specific AFMs. We report our results on the
RGC version 1 face database in Sec. 5 and conclusions in
ec. 6.

Methodology
he goal of this paper is to investigate AFM-based regis-

ration for 3-D face recognition. Our setup therefore is a
ull 3-D face recognition system with preprocessing, land-
arking, registration, and recognition. This setup is shown

n Fig. 1, which shows the stages of processing for a new
uery.

The query image is first preprocessed to clear it from
maging artifacts, and a landmarking algorithm is run to
etect seven landmarks �eye and mouth corners and the
ose tip� on the face. The next step is a coarse registration,
hich is important for ICP, followed by rigid or nonrigid

egistration. The AFM �or multiple AFMs� are registered to
he test face, and after the dense correspondence is estab-
ished, the points that do not have correspondences in the
FM are removed. This effectively crops the face area and
roduces a set S of 3-D points. After the cropping, depth
alues on the test face are resampled from a regular x–y
rid. We have used a simple triangle-based nearest-
eighbor interpolation algorithm for this purpose.12 After
he dense correspondence, the point vectors representing
he faces are of the same size, and it becomes possible to
pply a principal components analysis �PCA� projection to
tore much smaller templates.

Figure 1 makes it clear that there are many design
hoices for the complete system, and each of these choices
manual versus automatic landmarking, type of coarse reg-
stration, single versus multiple AFMs, type of AFMs, rigid
ersus nonrigid registration, with or without regular resam-
ling, classification with or without PCA projection� has an
ffect on the performance. We have designed experiments

Fig. 1 The fully automatic 3-D face recognition
ways of using AFMs are shown together.
o show the contribution of each of these issues and in-

ournal of Electronic Imaging 011006-
spected whether a trade-off is offered by a particular
choice, or whether the setting indicates the superiority of
one approach over the other.

The first set of experiments deal with the stage prior to
the dense registration. The coarse registration in ICP and
the nonrigid thin-plate spline �TPS�–based registration both
require a couple of fiducial points for guidance. We evalu-
ate the effect of errors in landmark detection by using 3-D
ground-truth versus automatically located landmarks �Sec.
3.4�. This permits us to analyze the algorithms under real-
istic assumptions, as automatic landmarking errors are not
uniformly distributed. The details of the ICP and TPS meth-
ods are given in Secs. 3.2 and 3.3, respectively.

For coarse registration in ICP, we test four different
methods. Our results indicate that the simple heuristics
used in the literature leave room for improvement. Then we
propose a novel AFM construction method and obtain very
good registration results with a single, generic AFM.

Using a single AFM for registration and registering
separately to each gallery face are the two extreme ap-
proaches. Between these extremes, using a few category-
specific AFMs can be beneficial to accuracy and still be
computationally feasible. To test this hypothesis, we pro-
pose two different methods for generating category-specific
AFMs. What constitutes a facial category is an open issue;
we contrast an approach based on cognitive justifications
�detailed in Sec. 4.2� with one that is based on clustering on
the shape space �Sec. 4.3�. The cognitive approach allows
recognition scenarios to use category information �e.g., the
query for a male face is searched among the males only�.
But if the category information is not assumed to be avail-
able, it is still possible to register the test face to all of the
available AFMs and take the best registration �the one with
the smallest distance� as the outcome. We test both ap-
proaches in Sec. 5.

In the last part of this paper, we demonstrate that
resampling of depth values from a regular grid improves

l with average face models. Three alternative
mode
accuracy significantly, and we justify this improvement by

Jan–Mar 2008/Vol. 17(1)2
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detailed analysis. We also show that a good registration
nsures that a subspace projection can be used with little
ecrease in accuracy.

Registration Methods
e consider two different registration methods in this pa-

er. In the first method, termed TPS-based in the experi-
ents section, the test face is aligned to the average face
ith the TPS method, and the points not in correspondence
ith the AFM are cropped.10 This method deforms the test

ace to fit the AFM, and the amount of deformation is pro-
ortional to the number and spread of the landmarks. At the
imit of using all facial points as landmarks, the face de-
orms into the AFM, losing the discriminative information
ompletely. However, with a few landmarks, corresponding
acial structures are aligned.

In the second method, we use the iterative closest point
ethod to align the test face with the AFM. ICP is a rigid

egistration method; hence, the test face is not deformed at
ll. TPS-based methods are completely guided by the land-
arks, whereas ICP needs a coarse initialization. Intu-

tively, ICP will benefit from using category-specific AFMs,
s the rigid registration is not able to cope with shape dif-
erences very well. A more similar average face will ensure
hat the dense correspondence will be established between
oints that have better structural correspondence. The TPS-
ased method will also benefit from category-specific
FMs, albeit for another reason: A more similar average

ace means that the test surface will be deformed less, and
iscriminatory information will not be lost.

We review the ICP and TPS algorithms here, along with
he Procrustes analysis, the automatic landmark localization
lgorithm, and the regular resampling that are used by both.

.1 Procrustes Analysis
rocrustes analysis is a statistical tool for the analysis of
eometrical shapes.13 A shape �or equivalently a figure� P
n Rp is represented by l landmarks. Two figures P : l� p
nd P� : l� p are said to have the same shape, if they are
elated by a special similarity transformation:

P� = �P� + 1l�
T, �1�

here the parameters of the similarity transformation are a
otation matrix � : p� p, �� � =1, a translation vector � : p

1, a positive scaling factor �, and 1l is a vector of ones.
y using the generalized Procrustes analysis, it is possible

o derive a consensus shape for a collection of figures,14

hich is then used in registering new shapes into alignment
ith the collection by an affine transformation:

1. Center all shapes Pi:

M =
1

N
�
i=1

N

Pi, �2�

Pi = Pi − M . �3�

2. Bring the shapes to a common scale.
3. Set the consensus shape Y equal to the first shape P1,
as an initialization.

ournal of Electronic Imaging 011006-
4. For i=2,3 , . . . ,N, rotate Pi to fit Y. Y is reevaluated
after each update of Pi as

Y =
1

i
�
j=1

i

Pj . �4�

5. Repeat updating the Pi and Y, while monitoring the
residual sum-of-squares:

Sr = N�1 − tr�YtYt
T − Yt−1Yt−1

T �� , �5�

where Yt is the consensus at iteration t, and Yt−1 is the
consensus at iteration t−1. When Sr is below a
threshold �e.g., 0.0001, as suggested by Gower in
Ref. 14�, stop the iterations, and output the consensus
shape.

3.2 Iterative Closest Point
In this section, we summarize the ICP procedure as defined

in Ref. 6. Define the unit quaternion as a four vector qH
�

= �q0q1q2q3�T, with q0�0, and q0
2+q1

2+q2
2+q3

2=1. The
3�3 rotation matrix H generated by this quaternion is:

H = �q0
2 + q1

2 − q2
2 − q3

2 2�q1q2 − q0q3� 2�q1q3 + q0q2�
2�q1q2 + q0q3� q0

2 + q1
2 − q2

2 − q3
2 2�q2q3 − q0q1�

2�q1q3 − q0q2� 2�q2q3 + q0q1� q0
2 + q1

2 − q2
2 − q3

2 � .

�6�

Let qT
�= �q4q5q6�T be a translation vector. Together with qH,

they make up the complete registration state vector q�

= �qH
� �qT

��T. Let P= 	pi
�
 be a data point set to be aligned

with the model point set Y = 	yi
�
. The two models will have

the same number of points, and ICP will put the points with
the same indices into one-to-one correspondence. Denoting
the number of points in each model with N, the objective
function minimized by the ICP procedure is:

f�q�� =
1

N
�
i=1

N

�yi
� − H�qh

��pi
� − qT

��2. �7�

Denoting the center of mass of the point set P with �p, and
that of the model set with �y, the cross-covariance matrix
�py is given by:

�py =
1

N
�
i=1

N

��pi
� − �p

���yi
� − �y

��T� . �8�

The cyclic components of the matrix Aij = ��py −�py
T �ij are

used to form a column vector �= �A23 A31 A12�T, which in
turn is used to form a symmetric 4�4 matrix Q��py�:

Q��py� = �tr��py� �T

� �py + �py
T − tr��py�I


 , �9�

where I is the 3�3 identity matrix. The optimum rotation

is given by the unit eigenvector qH
�= �q0q1q2q3�T corre-

sponding to the maximum eigenvalue of the matrix Q��py�.

The optimum translation vector is given by:

Jan–Mar 2008/Vol. 17(1)3
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T = �y
� − H�qH

���p
� . �10�

e use q��P� to denote the point set P after the application
f the transformation represented by q�. The ICP algorithm
omputes and applies these transformations iteratively. A
tep-by-stop description of the algorithm follows:

1. Initialize ICP by setting P0= P, q0
�

= �1,0 ,0 ,0 ,0 ,0 ,0�T, and k=0. The registration is de-
fined relative to P0, which requires a coarse registra-
tion. Steps 2 to 5 are applied iteratively, until conver-
gence is achieved within a tolerance 	.

2. Compute the closest points: Yk=C�Pk ,Y�. The com-
putational cost of this step is O�NpNy� in the worst
case, where Np is the number of points on the regis-
tered point cloud, and Ny is the number of points on
the model shape.

3. Compute the registration: qk
�=Q�P0 ,Yk�. The compu-

tational cost is O�Np�.
4. Apply the registration: Pk+1=qk

��P0�. The computa-
tional cost is O�Np�.

5. Terminate the iteration if the change in the mean
square error is below the preset threshold 	. A heu-
ristic value for 	 is a multiple of �tr��y��1/2, where �x

is the covariance matrix of the model shape, and the
square root of its trace is a rough indicator of model
shape size.

In our simulations, the test face acts as the model shape,
nd the cropped gallery face is aligned to it. The points of
he test scan that are put into one-to-one correspondence
ith the model are retained, and the rest are discarded. If

he registration is correct, this procedure automatically
ives a good cropping, possibly including hair and clutter
emoval. In rare cases where a streak of hair extends over
he face center, the registration and the subsequent classifi-
ation will be inaccurate.

Previous work on ICP shows that a good initialization is
ecessary for fast convergence and an accurate end result.
e compare several approaches for the coarse registration.

n our first approach, the point with the greatest depth value
s assumed to be the tip of the nose, and a translation is
ound to align it to the nose tip of the AFM. This is the
astest and simplest heuristic used in the literature,15 and
e expect it to perform well with near-frontal faces. In the

econd approach, we use the manually determined nose tip
i.e., ground truth� in the coarse alignment. In the third
pproach, we use the Procrustes analysis to bring seven
anually determined landmark points �inner and outer eye

orners, nose tip, and the mouth corners� into alignment
ith the average face model. Last, we use Procrustes analy-

is to align automatically determined landmarks with the
verage face model. The automatic landmarking errors are
ot random and cannot be simulated by injecting noise to
he manually determined landmarks, except by modeling
he specific landmarking procedure.

.3 Thin-Plate Splines
he TPS model expresses the bending energy of a thin
etal plate fixed at certain points.16 At the heart of the

odel is a special surface function:

ournal of Electronic Imaging 011006-
z�x,y� = − U�r� = − r2 log�r2� , �11�

with r= �x2+y2�1/2 equal to the Euclidean distance of point
�x ,y� to the origin.

For a set of anchor points Pi= �xi ,yi�, i=1. . .n, the TPS
interpolation is a vector-valued function f�x ,y�
= �fx�x ,y� , fy�x ,y�� that maps the anchor points to their
specified homologs Pi�= �xi� ,yi��, i=1. . .n and specifies a
surface that has the least possible bending, as measured by
an integral bending norm. We will give a summarizing
mathematical specification of the model here.

Define rij = �Pi− Pj� to be the distance between the points
i and j. Also define the following matrices:

K = �
0 U�r12� . . . U�r1n�

U�r21� 0 . . . U�r2n�
. . . . . . . . . . . .

U�rn1� U�rn2� . . . 0
� , �12�

P = �
1 x1 y1

1 x2 y2

. . . . . . . . .

1 xn yn

� , �13�

and

L = � K P

PT O

 , �14�

where O is a 3�3 matrix of zeros. Let V be a matrix made
up of the homologs of the anchor points:

V = �x1� x2� . . . xn�

y1� y2� . . . yn�

 . �15�

Define wi and the coefficients a1, ax, and ay as:

L−1�V�0,0,0� = �w1,w2, . . . ,wn,a1,ax,ay�T. �16�

The function f�x ,y� is defined as:

f�x,y� = a1 + axx + ayy + �
i=1

n

wiU��Pi − �x,y��� . �17�

f�x ,y� minimizes the nonnegative integral bending norm If

over all such interpolants:

If =� �
R2
�� �2f

�x2�2

+ 2� �2f

�x � y
�2

+ � �2f

�y2�2
dxdy . �18�

The TPS function f�x ,y� is invariant under rotations and
translations. It maps the landmarks Pi to their homologs Pi�,
and defines a smooth interpolation for the rest of the points
on the surface. Pi and Pi� taken together exactly specify the
function f�x ,y� and are therefore crucial to the accuracy of
the deformation. In the TPS-based registration method we
use, Pi are the landmarks defined on the average face
model, and Pi� are the corresponding landmarks of the test

scan.

Jan–Mar 2008/Vol. 17(1)4
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.4 Automatic Landmark Localization

egistration of facial images is usually guided by a few
ducial points of established correspondence �e.g., nose tip
nd eye and mouth corners�. These anchor points have a
reat influence on the resulting registration. There are very
ew completely automatic systems for face recognition.

ost research results are reported on cropped and aligned
aces, or the existence of a few manually located landmarks
s assumed. This is apparently necessary, because the qual-
ty of the landmarks can be of greater consequence to the
nal accuracy than the classification algorithm itself.

To understand the extent of the dependence on land-
arks, we have contrasted manually obtained ground-truth
ith the results from a recent automatic landmark localiza-

ion algorithm.17–19 In this section, we briefly summarize
his algorithm.

The method we employ is a coarse-to-fine approach,
ased on local feature information. The inner and outer eye
orners, the nose tip, and the mouth corners �seven land-
arks� are localized. These landmarks were selected be-

ause statistical information �rather than heuristics� can
uide the search, as they correspond to distinguishable lo-
al features �whereas the tip of the chin, for instance, does
ot correspond to a very clear local feature�. During the
raining phase, 7�7 patches are cropped from around each
andmark in the downsampled depth image �60�80�.
hese patches are points in a 49-dimensional space, and

heir distribution is modeled with a mixture of factor analy-
ers. We employ the Incremental Mixtures of Factor Ana-
yzers �IMoFA� algorithm that automatically tunes the

odel complexity to the complexity of the data
istribution.20

The main assumption in factor analysis is that the
–dimensional data x are generated in a p–dimensional
anifold, represented with z, with d�p. The vectors that

pan the lower dimensional manifold are called factors, and
he relationship between the factor space and the data space
s given by

− � = 
z + � , �19�

here � is the data mean, � is the factor loading matrix,
nd � models the independent variance at each data dimen-
ion. The IMoFA algorithm starts with a simple, one-factor
epresentation of the data and gradually increases the com-
lexity of the model while monitoring a separate validation
et. The resulting model is a mixture with components that
ave different numbers of factors, thereby modeling clus-
ers with different intrinsic dimensionality.

During the testing phase, this generative model is used
o produce likelihoods for each point on the image. The
ighest-likelihood locations for each landmark are passed
o GOLLUM �Gaussian Outlier Localization with Likeli-
ood Margins�, a structural correction algorithm that can
ecover from localization errors.17 The remaining errors are
ocations on the face with characteristics that are statisti-
ally similar to the landmark in question, and they conform
o the general face pattern within a margin, as they have
assed through structural correction. For instance, the cor-
ers of the eyebrows may be selected as eye corners, or the
left between the chin and the mouth may be detected as

he mouth. The landmark detection was performed on the

ournal of Electronic Imaging 011006-
3-D depth map, which is found to be less informative than
2-D images but much more robust to illumination
changes.18

The coarse localization is complemented with a fine-
level search on the original 480�640 range image. In the
fine-level search, only a relatively small �41�41� area
around the coarsely located landmark is searched. The first
and second depth gradients are estimated in vertical and
horizontal directions and convolved with kernels learned
during the training stage. Each kernel is a map with values
��1�, and the cascade of kernels is constructed incremen-
tally to produce the maximum output for the desired land-
mark shape. These kernel outputs are combined, and the
highest response is taken as an indicator of the presence of
the sought landmark. This approach is computationally
simple, fast, and improves the quality of the coarse land-
marks. See Ref. 19 for more details on the automatic land-
marking procedure.

3.5 Regular Resampling
The sampling of 3-D information can be a cause of error in
the comparison stage. We have used a simple triangle-based
nearest-neighbor interpolation for regular resampling of
depth information from the aligned models.12 The method
relies on a Delaunay tesellation of the original data, such
that none of the original data points are contained in any
circumspheres of the simplices of the tesellation. Then, for
each x and y position of the regular grid, the nearest vertex
in the tesellation is located, and its depth value is used. The
grid boundaries are derived from the generic cropped AFM,
at the resolution of the range sensor. Consequently, the ef-
fect on the AFM is that the points are slightly moved to
conform with a regular x–y grid. We will provide a graphi-
cal intuition on why regular resampling is beneficial in Sec.

Fig. 2 The AFM generated with the method of İrfanoglu et al.10
5.

Jan–Mar 2008/Vol. 17(1)5
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Average Face Models
n Ref. 10, a method for generating the AFM was de-
cribed. In this method, training faces are manually land-
arked, and the TPS method is used to register all the

raining faces to a consensus shape. One of the faces is
elected to be the AFM candidate, and from each of its
ertices, distances to each other training face are computed.
f a vertex has no corresponding point in every training face
loser than a threshold value, that vertex is trimmed. The
rimmed vertices are usually the ones at the boundaries of
he face area. The remaining vertices, and their correspond-
ng closest points for each training face are averaged to
reate the final AFM. This procedure creates a very smooth
acial surface, as shown in Fig. 2.

In this section, we describe a novel method of generat-
ng the AFM, which is experimentally determined to pro-
uce better results. We also describe two methods of gen-
rating category-specific AFMs, a cognitive method that is
ased on the other-race effect, and a clustering approach
hat is based on clustering in the shape space, respectively.

.1 Construction of an AFM
sing a set of landmarked training faces, we generate an
FM with the following procedure:

1. Using Procrustes analysis, a consensus landmark dis-
tribution is found on the training set.

2. The landmarks of the consensus shape are rectified to
present a fully frontal face, centered at the origin of
the 3-D coordinate system. This heuristic is used to

Fig. 3 Average faces for differen
facilitate the use of the transformed range image in

ournal of Electronic Imaging 011006-
later stages. Rectification is achieved by rotating the
face so that the eye and mouth planes, as found by
fitting surfaces to the appropriate landmarks, are par-
allel to the x axis and the z axis as much as possible.

3. TPS deformation is computed for the training faces,
which warps the landmarks of each face to the con-
sensus shape perfectly and interpolates the rest of the
points.

4. The depth values of the interpolated face are resa-
mpled from a regular x-y grid. This ensures that all
added faces have points with overlapping x and y
values, and the depth values are given for matching
points. For the simple range image representation,
this extra offline computation leads to much faster
online model comparison.

5. A cropping mask is defined to encompass the facial
area, and faces are cropped before they are added to
the average face model. For creating this mask, we
calculate the maximum distance from the nose tip to
any landmark in the consensus shape. We add a 10
percent margin to this distance and retain all points
closer than this value to the nose.

6. After all the training faces are added, depth values are
simply averaged. Samples of AFMs generated with
this method can be seen in Fig. 3.

The database we use was collected with a laser sensor
that typically generates holes �especially at the eyes and the
mouth� or other artifacts. The preprocessing sometimes
falls short of repairing larger errors. On the other hand, the

ology and gender combinations.
proposed AFM generation method is robust with respect to

Jan–Mar 2008/Vol. 17(1)6
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he number of images: Generating AFMs with a training set
hree times bigger than the original set resulted in very
imilar AFMs, with an average of 0.4��0.3� mm point-to-
oint distance to the old AFMs. Since the landmark loca-
ions are retained, the facial characteristics are not
moothed out, even when a large number of samples are
sed for AFM generation.

.2 Cognitive Approach to Multiple AFM Generation
hen humans see faces, they perceive each face individu-

lly, and not merely as specimens of a generic object
ategory.21 The mechanism that operates for enhanced
ithin-category recognition is what we can call expertise of

hat category. Tong et al. remark that expertise-related vi-
ual judgements involve enhanced within-category dis-
rimination, as opposed to between-category discrimina-
ion, the former requiring a magnification of differences in
imilar objects, and the latter calling for a neglecting of
ifferences to group similar items together.22

People have great difficulty recognizing faces of another
ace if they are not exposed to these faces for prolonged
eriods. This phenomenon is termed the other-race effect.
n the light of the Tong et al. experiments, it seems reason-
ble that during the acquisition of face expertise, the trans-
ormations learned by the visual cortex serve to magnify
he differences between individual faces, as indicated by
he statistical distribution of the encountered facial features.
y this reasoning, the other-race effect suggests that differ-
nt face morphologies exhibit different statistical distribu-
ions of distinguishing characteristics. Valentine has previ-
usly employed principal component analysis to find
ifferent subspace projections and obtained results that
imic the other-race effect.23

We stress that our aim is not to detect the race of a
erson; therefore, we use the term morphology to denote
imilar facial surface morphology characteristics. Based on
he cognitive cues, we predict better recognition rates if the
aces are clustered into morphological or gender groups
hat exhibit greater intragroup similarity and the discrimi-
ative features are learned within each group separately.
his is not trivially true for all pattern recognition applica-

ions, as the grouping reduces the number of training
amples and consequently runs the risk of impairing learn-
ng conditions. In this approach, the gender and morphol-
gy were determined manually, by visual inspection of the
aces.

.3 Clustering Approach to Multiple AFM
Generation

f our hypothesis of metaclassification is correct, we expect
orphology and gender to be discriminating dimensions of

he face space. However, we do not want to categorize
aces into races explicitly, as this approach has ethical con-
equences. Can the gender and race determination during
he training �and possibly, in the testing� stage be evaded?
or our simulation purposes, we have roughly assigned fa-
ial images into African, Asian, and Caucasian morphologi-
al face classes. The other-race effect suggests that racial-
orphology-based clusters exist in the face space, and an

nsupervised clustering method can recover those clusters,
mong other meaningful structures. Thus, it is not neces-

ary to recover the race and gender of a person; the clus-

ournal of Electronic Imaging 011006-
tering will hopefully provide us with a useful set of average
faces to serve in metaclassification with increased discrimi-
nation within clusters.

By performing a shape space–based clustering, we will
also answer an interesting question: Are gender and racial
morphology major factors in determining the face shape?
The intuitive answer is affirmative, but the clustering pro-
vides us with an explicit way to test this hypothesis.

We propose to take a straightforward race- and gender-
blind clustering approach with the k-means algorithm. The
clustering is performed on the aligned coordinates of seven
facial landmarks. We specify the number of clusters for the
shapes and initialize the cluster consensus shapes by ran-
dom selection from the training samples. At each iteration,
we align the training samples to the consensus shapes of the
clusters via Procrustes analysis and assign each sample to
the cluster with least-average distance to the cluster consen-
sus. We then reestimate the cluster consensus shapes from
the samples assigned to the cluster and iterate until the total
distance stabilizes. The number of clusters was set to six to
allow comparison with the cognitive approach.

The clustering gives us a number of cluster consensus
shapes and assigns each training face to one of these clus-
ters, without ensuring that all morphological categories are
represented. We apply our AFM generation algorithm to
these reduced training sets separately, and obtain one AFM
for each cluster. These models can be seen in Fig. 4.

5 Experiments

5.1 The 3-D Face Database
We use the FRGC 2D-3D version 1 face database in our
experiments.24 The database contains 943 near-frontal
depth images from 275 subjects, stored in a point cloud
representation. The laser scanner that was used to collect
the database samples points from the surface of the face in
regular intervals. Although the number of points per face
can be different according to distance to the scanner at the
time of acquisition, the coordinates of the points are given
in a proper metric scale.

We use images from 195 subjects, with one training face
in the gallery and 1 to 4 test faces �for a total of 659 test
faces�. This experimental setup is used in Ref. 33, and we
chose to use the same setup to allow a direct comparison
with a host of techniques. Subjects with only a single image

Fig. 4 Shape space cluster means.
in the dataset and images with incorrect texture-depth cor-

Jan–Mar 2008/Vol. 17(1)7
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espondence are not used. We work only with 3-D informa-
ion for landmarking and registration; 2-D is not used at all.

e design a number of experiments to answer various
uestions. Each subsection deals with a particular question
nd reports relevant simulation results. The overall system
as many dimensions, ruling out a factorial experimenta-
ion protocol.

For each method, we run a recognition experiment and a
erification experiment. For the recognition experiments,
he rank-1 recognition rate �R1� is reported. The point set
ifference �PSD� is used as a distance metric for recogni-
ion. In the verification experiments, each of the 659 test
aces is used for one genuine and 194 false claims. Thus,
he number of false claims is two orders of magnitude
igher. The equal error rate �EER�, for which the false ac-
eptance rate is equal to the false rejection rate, is reported
nder these conditions.

.2 Preprocessing
he preprocessing of 3-D information consists of several
teps. Missing points and holes can be filled by local inter-
olation or by making use of facial symmetry.25 However,
t is a well-known fact that faces are not truly symmetrical.
aussian smoothing and linear interpolation are used to

liminate irregularities in both texture and range
mages.2,3,26 Background clutter and hair artifacts axe usu-
lly manually removed in the literature,2,3,27 whereas in our
pproach, the cropping of the face area is fully automatic.

If there is excessive acquisition noise in a dataset, it will
e difficult to assess the accuracy of algorithms, as the
eterioration due to noise can be more pronounced than
mprovement due to a better algorithm. Datasets are fre-
uently cleared of noisy samples.26,28 Mean and median
lters are also employed to reduce local noise.5,26 The pre-

Fig. 5 Accuracy of the automatic landmarking
landmark in millimeters.
rocessing used in this paper includes a 9�9 mean and a

ournal of Electronic Imaging 011006-
9�9 median filter applied in succession, followed by linear
interpolation for filling the gaps. The filter sizes are experi-
mentally determined and are not optimized for actual shape
sizes.

5.3 Automatic Landmarking
Figure 5 shows the accuracy of the automatic landmarking
procedure in terms of millimeter-distance from the manu-
ally obtained ground-truth. The evaluation considers one to
ten candidates for each landmark location, as indicated by
the x axis. The curves begin at the average distance for the
best candidate and decrease as better locations are found
among the candidates. The manually annotated ground-
truth is accurate up to several millimeters, and a lower dis-
tance to the ground-truth indicates a better localization. The
quality of landmarking also depends on the type of land-
mark; the nose tip is easier to find in 3-D, as expected.29–32

The reader is referred to Ref. 19 for more details on the
performance of the algorithm.

5.4 Classification
The most natural way of classification for point sets in
dense correspondence is using the point set distance �PSD�
measure. Since all points are in full correspondence, we
have two 3-D vectors of the same length, and the PSD is
simply the sum of all Euclidean distances of the points in
the query and gallery faces:

arg min
j

�
i�S

�xi − ai,j� , �20�

where xi is the i’th point of the test scan, and ai,j is the i’th
point of the j’th gallery sample. S denotes the set of points

od, as indicated by average distance to true
meth
put into dense correspondence.

Jan–Mar 2008/Vol. 17(1)8
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In the cases where we employ regular resampling, the x
nd y coordinates of these points are the same across all
amples, and therefore need not be taken into account. The
-D PSD becomes equivalent to an L1 distance computed
n the depth values, and for classification, the smallest L1
istance between gallery images and the test images is
ought to indicate the correct class j:

rg min
j

�
i�S

�xi
z − ai,j

z � , �21�

here xi
z is the depth value of the i’th point of the test scan,

nd ai,j
z is the depth value of the i’th point of the j’th gallery

ample.
For authentication, a threshold 	 is used to validate the

laimed identity j:

�
i�S

�zi − ai,j� � 	 , �22�

nd 	 can be used to tune a trade-off between false accep-
ance rate �FAR� and false rejection rate �FRR�. The equal
rror rate �EER� is the reported error rate for the particular
for which FAR and FRR are equal on the test set. While

t makes sense to use one-to-one ICP for the authentication
etting in practice, obtaining a lower EER by just changing
he AFM set is still indicative of a better registration, and
herefore it is reported for some of our simulations. Further-
ore, by storing only the projection coefficients for gallery

aces, the storage requirement can be greatly reduced. �For
nstance, instead of about 32,000 3-D points, a 50-
imensional vector can be stored per subject.� In this case,
he subject-specific 3-D model is not available for registra-
ion, and an AFM will be used for authentication.

.5 Coarse Registration
able 1 shows the effect of coarse alignment methods on
CP-based registration. As we have suspected, the nose-tip
euristic performs the worst. Automatic localization of
even landmarks and using Procrustes alignment works bet-
er than the nose-tip heuristic. For ICP, using the nose
round-truth works well in this dataset, because the faces
e deal with are mostly upright and frontal. Ideally, three

andmarks should be used to accomodate greater pose dif-
erences in 3-D. Finally, the seven manual landmarks with
he Procrustes analysis give us an upper bound on the per-
ormance of the ICP-PSD method.

We have also contrasted our AFM construction method
ith the method of Irfanoğlu et al.10 on ICP. Manual land-
arks were used, and initialization was by Procrustes

Table 1 Effect of coarse alignment on ICP.

Nose-tip
heuristic

Automatic
landmarks

+ Procrustes
Nose ground

truth

Manual
landmarks

+ Procrustes

1 82.85 87.86 90.60 92.11

ER 14.25 8.12 6.60 6.20
lignment. With their smoother AFM, a rank-1 recognition

ournal of Electronic Imaging 011006-
rate of 86.34 was achieved, as opposed to our 92.11 per-
cent. Similarly, the EER was higher with their AFM by
more than 2 percent.

5.6 Meta-Classification
Do metaclassification and more specialized individual ex-
perts increase discrimination? We have tested this hypoth-
esis by employing the average faces that are generated from
groups of training faces. We have grouped the training
samples for gender and morphology and generated average
face models �AFM� for each group. Figure 3 shows range
images obtained for the average face, for male and female
averages, for three morphological group averages �roughly
Caucasian, Asian, and African�, and for all combinations,
respectively. The morphology does not correspond to a
clear-cut distinction. The morphological group of a given
face will be determined by its proximity to the average face
of the group.

In Table 2, the authentication experiment results with or
without specific average faces are shown for TPS-based
registration. We have supplied both the generic-AFM-based
system and the specific-AFM-based system with the cat-
egorical information, which improves the accuracy by it-
self. However, any improvement in the specific system with
regard to the corresponding generic system is strictly due to
better registration. We have computed distances between
the test face and the gallery faces with an L1 distance met-
ric and trimmed the worst 2 percent of the correspondences.
The EER without any use of categorical information is
20.10 percent. The results reported under these conditions
show that specific AFM usage is beneficial in this case. We
stress that the main purpose of the PSD is to evaluate the
effect of AFM usage; the EER is generally too high for
these experiments because of deformations in the registra-
tion, but the gain obtained by introducing specific models is
more pronounced in comparison to ICP-based experiments.

The point set distance after aligning the face to the fe-
male and male averages can be used in gender classifica-
tion. This simple method works with 80 percent accuracy.

5.7 Shape Space Clustering
The shape space method divides the training samples into
clusters of similar size. The number of clusters should be
small to have a maximal computational gain and can be
increased as long as the accuracy increase is considered
worth the computational cost. However, the number of
training samples per cluster should be sufficiently high �de-
pending on the quality of the range data and preprocess-
ing�; otherwise, the constructed AFM will be poor. We have

Table 2 Simulation of TPS registration with deformation EER.

Gender Morphology
Gender and
morphology

Generic AFM 16.79 18.50 13.87

Specific AFM 14.64 16.97 11.47
specified six clusters, to allow a comparison with the full

Jan–Mar 2008/Vol. 17(1)9
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orphology-gender combination case, and we ran our al-
orithm on the training part of the FRGC version 1 dataset.
igure 4 shows the cluster means.

Table 3 shows recognition rates for ICP- and TPS-based
ystems with manual or automatic landmarks. The first row
hows the results obtained with a single generic AFM. The
ext three rows show results with gender-, morphology-,
nd gender+morphology–based specific AFMs. The results
or the last row are obtained with six shape space–derived
lusters. For this last case, the registration does not benefit
rom the injection of categorical information, and each test
ample is compared with all the training samples. The best
esult is obtained with shape space–derived specific AFM
nd ICP �93.78 percent�. As a baseline experiment, we have
lso tested one-to-all ICP, where each test face is registered
o each gallery face for distance computation. With manual
andmarks, we have obtained 89.07 percent rank-1 recog-
ition rate, which further demonstrates the usefulness of
FM-based registration.
We have also tested adding the previously excluded

ingle-image subjects to the gallery. This decreases the ac-
uracy of all the recognition methods, as the 195-class
roblem becomes a 275-class problem. The ICP method
with manual landmarks and generic AFM� suffers 2.6 per-
ent accuracy loss with the enriched gallery.

Our cognitively motivated subspace hypothesis is con-
rmed, if the shape space clustering automatically creates
lusters with a dominant gender, or puts samples from one
ace into a single group. �Currently available 3-D face
atasets do not have a balanced morphology-gender distri-
ution, where the cognitive hypothesis can be tested more
horoughly.� This is what more or less happens, and we do
ave clusters dominant in a single gender or a single mor-
hology. This effect is more pronounced when we increase
he size of the training set by neutral images of 371 subjects
rom the FRGC version 2 dataset. Figure 6 shows the dis-
ribution of morphology and gender in each group as pie
harts.

.8 Regular Resampling and Subspace Projection
n this section, we apply the eigenface method to 3-D range
mages registered to different AFMs with ICP. A projection
rom the space of 3-D points can be computed only if the
umber of points is the same for each query and gallery
ace. Our method ensures that this is indeed the case. If the

Table 3 Comparison of spec

Manual
landmark + ICP la

Generic 92.11

Gender 90.14

Morphology 89.98

Gender and morphology 91.05

Shape space derived 93.78
ccuracy loss after the projection is small, this means that

ournal of Electronic Imaging 011006-1
the registration was successful, and the selected subspace
dimensionality is sufficient to capture the discriminative di-
mensions of variation.

The depth values of the range images are not sampled
regularly from an x-y grid, and so far we have computed
3-D point distances, instead of a simpler one-dimensional
�1-D� comparison based on the depth. Since we deal with
aligned shapes in dense correspondence, applying a regular
resampling will make it possible to discard two dimensions
from the point cloud, making the subsequent comparison
and subspace projection easier. We will also show that the
regular resampling helps classification by making the dis-
tance measurement more accurate.

The dimensionality of the subspace is determined heu-
ristically. We set the number of eigenvectors so that at least
95 percent of the variance is accounted for. The eigenface
method is contrasted with the PSD method, which, due to
regular resampling, uses the sum of squared distances of
depth values only.

The regular resampling lightens the computational bur-
den of comparing the test sample with gallery images. Fur-
thermore, the computed projection allows us to store much
smaller gallery faces. For example, in experiments with the
generic AFM, roughly 32,000-dimensional face vectors are
represented with 50-dimensional vectors after the subspace
projection. This means that the comparison with gallery
faces will be much faster. Table 4 shows that the accuracy
loss due to subspace projection does not exceed 1 percent,
if there are sufficient training samples. For the gender and
morphology combination, the training set is very limited,
and consequently there are only 15 eigenvectors with non-
zero eigenvalues in one of the groups. �Henceforth, we de-
note the number of eigenvectors with p.� This number is
too small to represent the facial variation, and the accuracy
decrease is about 3 percent. The morphology results were
obtained with p=33, and the gender results with p=49. For
the results in this section, we have grouped African faces
and Caucasian faces into a single category, as we had too
few samples from the African category �i.e., two clusters
for morphology, and four clusters for gender and morphol-
ogy runs�.

Before analyzing the results, we will give some addi-
tional experimental results reported on this dataset. In Ref.
33, Gökberk et al. use the same experimental protocol as
ours to compare a wealth of classification methods: point

s; rank-1 recognition rates.

matic
k + ICP

Manual
landmark + TPS

Automatic
landmark + TPS

.86 52.20 42.64

.65 54.63 45.52

.80 53.87 44.92

.49 56.90 47.95

.20 47.65 41.58
ific AFM

Auto
ndmar

87

86

86

86

91
set difference; non-negative matrix factorization �NMF�;
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nd independent component analysis �ICA� coefficients for
oint clouds; discrete cosine transform �DCT�, discrete
ourier transform �DFT�, PCA, linear discriminant analysis
LDA�, and ICA projections on depth images; shape indi-
es; mean and principal curvatures; 3-D voxel DFT coeffi-
ients; and 2-D Gabor wavelet coefficients. Manually an-
otated landmark positions were used for an AFM-based
CP registration �with an AFM generated with the method

Fig. 6 Shape space clustering distributions on
and morphology distributions are shown in sepa
nantly male clusters and three dominantly fem
gender. The African class has too few samples

Table 4 Subspace projection after

Manual
landmark PSD landm

Generic 98.18

Gender 96.81

Morphology 96.51

Gender and morphology 96.97

Shape space derived 98.18
ournal of Electronic Imaging 011006-1
of Irfanoğlu et al.10�. The best classification results are
based on shape indices �90.06 percent�, principal directions
�91.88 percent�, and surface normals �89.07 percent�. The
best accuracy after classifier fusion is 93.63 percent, ob-
tained with modified plurality voting.33

For projection-based methods, the input dimensionality
needs to be fixed. Subsequently, PCA is not directly appli-
cable in 3-D prior to the cropping �which in turn uses the

iched training set. For each cluster, the gender
ie charts. For six clusters, we have three domi-
usters, and one dominantly Asian cluster per
te a perceptible effect.

sampling; rank-1 recognition rates.

al
igenface

Automatic
landmark PSD

Automatic
landmark Eigenface

3 98.03 97.88

1 95.30 95.90

5 95.60 94.84

8 94.99 91.96

2 98.03 96.81
the enr
rate p
ale cl

to crea
ICP+re

Manu
ark E

98.0

96.2

96.0

93.7

97.7
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lignment�, as we have different number of 3-D points per
ubject. It is possible to apply PCA on the range image
ithout 3-D registration, by using the landmarks to define a
ounding box on the range image. In Ref. 34, this approach
s used, where manual landmarking is followed by rescal-
ng of the face area to a fixed bounding box. By using a
ropping mask, the effect of boundaries were reduced, and
PCA transformation was used to compute Mahalanobis

osine distance for classification. With an experimental
etup on the FRGC version 1 dataset very similar to ours
198 training and 670 probe images were used, subjects
ith a single image are excluded�, the reported accuracy is
7.04 percent.

The ICP results reported in Table 4 are much better than
he results reported in Table 3 and the results reported in the
iterature. With the generic AFM and the automatic land-
arks �i.e., the fully automatic system� the PSD method
ithout resampling has a rank-1 recognition rate of 87.86
ercent, whereas after resampling, it has 98.03 percent ac-
uracy. The reason is depicted graphically in Fig. 7. The
acial surface �shown symbolically as a dotted line in the

ig. 7 Regular resampling for ICP is beneficial. Registered surfaces
re shown as dotted lines. Surface points are depicted with triangles
efore resampling and with squares after resampling.

Fig. 8 Mean point-to-point distance differences
are subtracted from the distances to the closes
uniformly on the face surface. �b� Regular samp

nose, where the registration is most accurate.

ournal of Electronic Imaging 011006-1
figure� is irregularly sampled by the laser scanner �two
points per facial surface, shown as black triangles�. The
ICP registration brings these surfaces into alignment by
global rigid matching. Hence, the corresponding points
may not be in close alignment locally, although the sum of
all displacement vectors is at a local minimum.

Regular resampling produces depth values at regular x
and y intervals �shown as black squares�. These points give
a more realistic indication of the distance between the two
surfaces, unless the absolute depth gradient is very high. In
the latter case, small displacements in the x-y plane will
result in big changes in depth, making an irregular, point-
to-point 3-D comparison the logical choice. However, the
facial surface as represented by a range image has few
points with sharp depth changes �i.e., the nose ridge, mouth
and eye corners, and face boundary�. Our cropping proce-
dure eliminates the face boundary, and greatly reduces the
number of these points. Consequently, the regular resam-
pling is indispensable for AFM-based registration.

When we inspect the samples that are classified cor-
rectly after resampling, but not before, we see that the error
due to point irregularities is large enough to disturb classi-
fication. Figure 8 depicts the mean distance differences be-
tween the correct class and the incorrect class for these
samples. For samples with irregular point distributions, the
point-to-point distance terms have a large variance, and this
error is distributed all over the face, as shown with light
color. However, for regular resampled point distributions,
large areas on the face have very low error, as shown with
dark color. As we predicted, the error in resampled faces
peaks for locations with greater depth gradient, and espe-
cially for the nose ridge. Since the nose ridge is a relatively
small area of the face, increased error here is compensated
by decreased error on the larger facial surfaces. Further-

sification. The distances to the correct sample
le. �a� Irregularly sampled points create errors
duces the errors on the inner face, close to the
in clas
t samp
ling re
Jan–Mar 2008/Vol. 17(1)2
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ore, the nose ridge error is increased for competing
lasses as well. Consequently, the nose area becomes useful
n discrimination, even though sometimes it is the highest-
rror area during registration with the correct gallery
ample.

The resampling does not have a high computational cost,
s the points are already ordered in the range image. For
ne-to-all ICP, it is possible to perform a similar resam-
ling. However, if the gallery faces are not in alignment,
he resampling has to be performed online for each gallery
ace separately. Another benefit of using the AFM is that
he resampling is performed just once for each test face,
nd the computation is offline for gallery samples.

When we experiment with race and gender information,
e make sure that for each comparison, the training and

est samples are registered to the same AFM. For example,
n the simulations where the gender is available, we register
male test face with the male AFM before comparing it to

he male faces in the gallery, but we use the female AFM
or comparisons with female gallery faces. Thus, we have
wo options when using categorical AFMs: We can either
nject ground-truth information �for instance, by setting in-
ragroup distances to infinity�, or we can let the system
ecide on the face category by picking the match with the
mallest distance, like we do for shape space clustering–
ased categories. The results reported in Table 4 are ob-
ained with the latter method. Our simulations show that
njecting the ground-truth increases the accuracy only by
.5 to 1 percent. This means that for this dataset, cross-
ender and cross-morphology errors are relatively rare, and
e obtain categorical information with great accuracy by

imply selecting the best gallery face.
Another issue we have considered was the number of

oints in different AFMs. The AFM for the females con-
ains roughly 20 percent fewer points that the AFM for the
ales. In our first experiments, we have used a single mask

o crop faces in all categories. This procedure gives faces
ith equal numbers of points. The results of Table 4 are
btained by allowing each category to have a different
umber of points after cropping, and by normalizing the
uclidean distances accordingly. For the gender case, this
rocedure increased the recognition accuracy by a half per-
ent.

Conclusions
e have evaluated ICP- and TPS-based registration of 3-D

aces under automatic and manual landmarking. For real-
ime 3-D face recognition, the computational requirements
f the algorithms must be taken into consideration. The
uch slower ICP method is viable only if the registration is

peeded up through the use of average face models. We
ave proposed an AFM-based method for this purpose and
emonstrated its usefulness. By extending the paradigm to
ultiple AFMs, we have proposed two approaches for gen-

rating category-specific AFMs and contrasted these. Last,
e have proposed a regular resampling step that increases

he accuracy and speed of classification.
Our results show that ICP is superior to the faster TPS-

ased method in accuracy. Simulations with improved non-
igid approaches have shown that these methods depend

eavily on the accuracy of landmarks and also require a

ournal of Electronic Imaging 011006-1
greater number of those.19 However, the beneficial effect
from specific AFM use is more evident in TPS methods that
use either automatic or manual landmarks.

We propose a cognitively based approach and a cluster-
ing approach to generating specific AFMs. Clustering on
shape space produces good AFMs, increases the accuracy
of registration, but also reveals natural groups depending
on morphology and gender in the face space. This is inter-
esting, as it provides an indication that the other-race effect
has a physical basis even for the 3-D information contained
in a face.

The reasoning behind multiple AFM usage is that cat-
egorical information can act as a filter to reduce the candi-
dates for recognition, and an average face more similar to
the test face can ensure a better registration. In the case that
cross-gender and cross-morphology confusions are rela-
tively rare, the injection of categorical information does not
increase the accuracy.

Another observation regarding multiple AFMs is that
specific AFM models have different numbers of points. A
male face usually contains 20 percent more points than a
female face, simply because female human faces are typi-
cally smaller. When we align a face to the female and the
male AFMs, the distribution of distances is different in the
center of the face and at the periphery. Using a smaller
AFM �the one for the females, or Asians, for instance� will
effectively remove the points close to the periphery from
the distance calculation. This can be an issue for one-to-all
ICP approaches as well.

Our experimental results have also confirmed that ICP is
sensitive to initialization and that automatic landmarking as
a preprocessing step is beneficial to ICP. Manual inspection
showed that none of the test cases had gross registration
deficiencies in the fully automatic method. The nose-tip
heuristic may be useful in frontal faces, but the hair, cloth-
ing, and sometimes the chin can be erroneously detected as
the nose tip. The error due to incorrect nose localization can
be gauged by looking at the results of the simulations that
use the ground-truth for the nose in initialization. We
should also keep in mind that the database we use is made
up of near-frontal faces. The nose-tip heuristic will perform
worse in other pose settings. On the other hand, our results
confirm that the nose tip is more important for the registra-
tion than any other landmark we have used.

The resampling procedure we propose is based on the
relative flatness of the facial surface and the fact that crop-
ping eliminates the facial boundary, where the cheeks can
produce a sharp depth gradient in the frontal view. With
this method, the error due to irregular sampling by the laser
scanner is compensated, and there is a significant increase
in the accuracy. As a result of AFM-based registration, the
cropped models have the same number of points, and these
points are matched on the depth map after resampling. This
helps us in projecting the depth map to a much lower di-
mensional manifold via PCA, while retaining a high recog-
nition accuracy. We obtain the best results with ICP and
shape space clustered AFMs, and our reported results with
resampling are significantly better than results reported in
the literature without resampling for the same experimental

protocol.
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