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Robust Facial Landmarking for Registration

Albert ALI SALAH!, Hatice CINAR?, Lale AKARUN!, Biilent SANKUR?

Abstract

Finding landmark positions on facial images is an important step in face registration and
normalization, for both 2D and 3D face recognition. In this paper, we inspect shortcomings
of existing approaches in the literature and compare several methods for performing auto-
matic landmarking on near-frontal faces in different scales. Two novel methods have been
employed to analyze facial features in coarse and fine scales successively. The first method
uses a mixture of factor analyzers to learn Gabor filter outputs on a coarse scale. The second
method is a template matching of block-based Discrete Cosine Transform (DCT) features. In
addition, a structural analysis subsystem is proposed that can determine false matches, and
correct their positions.

Key words:

LOCALISATION ROBUSTE DE POINTS CARACTERISTIQUES
SUR DES IMAGES FACIALES

Résumé

Trouver des points de reperes est une étape importante pour l’enregistrement et la nor-
malisation des visages et pour la reconnaissance 2D et 3D. Dans cet article, nous allons étu-
dier les faiblesses des travaux existants dans la litterature et comparer plusieurs méthodes
pour trouver automatiquement des points de reperes sur des figures frontales dans des
échelles différentes. Deux nouvelles méthodes furent employées pour analyser les traits
faciaux dans des échelles granulaires et précises successivement. La premiére utilisant un
mélange d’analyseurs factoriels pour procéder a des sorties de filtres de Gabor dans
I’échelle granulaire. La deuxiéme utilise des modeles fondés sur des traits de la transforma-
tion en cosinus discrete bidimensionnelle (DCT). En plus, un sous-systéme d’analyse structu-
rale a été proposé pour déterminer les points de repéres non concordant et pour corriger
leurs positions.
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L. INTRODUCTION

Facial feature localization is a critical first step in many subsequent tasks, such as face
recognition, pose normalization, expression understanding and face tracking. Although there
is not yet a general consensus, the fiduciary or first tier facial features, most often cited in the
literature, are the eyes or the eye corners, the tip of the nose and the mouth corners. Similarly,
second tier features are the eyebrows, the bridge of the nose, the tip of the chin, etc. The
importance of facial features stems from the fact that most face recognition algorithms in 2D
and/or 3D rely on accurate feature localization. This step is critical not only directly for reco-
gnition techniques based on features themselves, but indirectly for the global appearance-
based techniques that necessitate prior image normalization. For example, in 2D face
recognition, popular recognition techniques, such as eigenfaces or Fisherfaces, are very sen-
sitive to registration and scaling errors. For 3D face recognition, the widely used iterative
closest point (ICP) registration technique requires scale-normalized faces and a fairly accu-
rate initialization. In any case, both modalities require accurate and robust automatic land-
marking.

Despite the increasing volume of related literature, facial feature localization is still an
open problem. The existing localization techniques need improvements in accuracy on the
one side and in their robustness in adverse conditions on the other side. Major factors han-
dicapping facial feature localization can be listed as follows: The scale differences change
the local geometry of features (e.g. curvatures), and the sample density may not always be
adequate. Lighting variations and expressions cause non-linear effects on the value of face
image pixels. Both in-plane and out-of-plane rotation of the head causes major changes in
visual appearance. Self-occlusion and accessories such as hair, moustache and eyeglasses
give rise to another gamut of problems. In 3D acquisition, non-reflecting surfaces cause out-
lier holes or protrusions. Finally, appearance of facial features has great variability across
subjects.

Implicit in many landmarking techniques is the fact that the face has already been
detected and that one may even have conducted a coarse localization that enables us to focus
on the zones where the landmarks can potentially be found [13, 19, 20, 43]. Most registration
or even coarse facial landmarking algorithms are guided by heuristics [2, 5, 9, 20, 22, 37,
43]. For example, in 3D, the biggest protrusion is usually taken as the tip of the nose;
although, depending on the pose, chin or a streak of hair can be labeled erroneously as such
[29]. In 2D, one uses vertical projection histograms to initialize the eye and mouth regions,
where one assumes that the first and second histogram valleys correspond to the eye sockets
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and lips, respectively [11, 12, 20, 26, 31, 37, 39, 47]. In the same vein, morphological pro-
cessing of the face can be used to yield nose tip and eye sockets in 3D.

Another typical characteristic of facial landmarking is the serial search approach and
the concomitant chicken-and-egg problem [2, 5, 20, 21] due to the iteratively executed nor-
malization, registration and landmarking. For example, one often starts with one prominent
landmark, say tip of the nose in 3D or eye depressions in 2D, and based on this
ground-truth, proceeds to identify the other features [13]. A case in point is the mouth
localization in 2D, where having first identified the eyes, one uses the perpendicular bisec-
ting segment between the two eyes and the information of interocular distance to locate the
mouth position [37]. Lastly, based on this middle-of-the-mouth reference point, the mouth
corners are found.

As Brunelli and Poggio have stated [7], “features are only as good as they can be compu-
ted”. Therefore, the desiderata for good facial feature localization can be stated as follows: i)
Minimum possible dependence upon heuristics; ii) Robustness against pose, illumination,
expression and scale variations as well as against occlusions and disturbance from facial
accessories; iii) Being amenable to dynamic tracking; iv) High accuracy; v) Computational
feasibility; vi) Applicability to data collected under different conditions.

In this work, we propose and compare two novel approaches for high-accuracy facial
feature localization. We use low-level features to identify a host of possible coarse feature
locations. The candidate locations are then sieved through a scheme that looks at the struc-
tural information among them, and then the locations are refined in coarse-to-fine itera-
tions. These initial locations are refined by using independent Gabor features in one
method and by using DCT coefficients in a second method. Our methods are based on 2D
gray-level information.

The paper is structured as follows: In Section II, we review the literature on automatic
facial landmarking. Section III introduces two novel facial feature localization algorithms
proposed. Section IV. 1 summarizes the databases and the testing methodology. We
present our simulation results in Section IV.2. Section V concludes and indicates future
directions.

II. LITERATURE SURVEY ON FACIAL FEATURE DETECTION

I1.1. Schemes Based on 2D Information

The various approaches in the literature for facial feature localization can be classified as
appearance-based, geometric-based and structure-based. The majority of approaches use a
preprocessing stage for initial coarse localization, using horizontal and vertical gray-level
[4], or edge field projections, followed by some histogram valley detection filter [43]. A
second commonality between methods is that most use a coarse-to-fine localization to reduce
the computational load [2, 9, 13, 18, 22, 23, 31, 38, 40]. Some algorithms employ a skin
colour-based scene segmentation to detect the face first [5, 11, 12, 13, 26, 47], and further
colour segmentation for lip detection [27, 32].
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Appearance-based approaches aim to find basis vectors to represent the face and its facial
features. Examples of transformations used are principal components analysis (pcA) [1, 31],
Gabor wavelets [18, 37, 38, 40], independent components analysis (ICA) [1], discrete cosine
transform (DCT) [46] and Gaussian derivative filters [2, 19]. These transform features capture
and model facial features under statistical variability when selected and processed with
machine learning techniques like boosted cascade detectors [11, 12, 13], support vector
machines (svM) [1], and multi-layer perceptrons (MLP) [9, 31].

Geometric-based methods use prior knowledge about the face position, and constrain
the landmark search by heuristic rules that involve angles, distances, and areas [37, 39,
46]. Structural information is an extension of geometric information that is used in valida-
ting localized features. For example, Wiskott et al. analyze faces with a graph that models
the relative positions of fiducial points, and a set of templates for each landmark for fea-
ture response comparison [41, 42]. Other approaches that use the structural information in
addition to local similarity enable more flexible graph transforms to represent displace-
ments of fiducial point positions, and search these positions to maximize feature responses
under landmark configuration constraints [13, 44]. For these models, the optimization pro-
cess is plagued by local minima, which makes a good -and often manual- initialization
necessary [6]. Table 1 summarizes the facial feature extraction methods in 2D face
images.

I1.2. Schemes Based on 3D Information

3D information is not commonly used in finding facial fiducial points, since 3D face ima-
ging and handling of the resulting data volume are still not mainstream techniques. Further-
more outlier noise makes reliable processing difficult. However, when the scale of the faces
are known, ICP can be used to register the face to a 3D template, thereby greatly constraining
the possible locations for each facial landmark [24]. In [40], the method with 40-dimensional
2D Gabor jets [41] is extended to a 324-dimensional 3D jet method (36-dimensional point
signatures from a 3 X 3 neighbourhood of each landmark). Colbry et al. employ surface cur-
vature-based shape indices under geometrical constraints to locate features on frontal 3D
faces [13]. Their method has been generalized to the multi-pose case with the aid of 2D
information, such as the output of Harris corner detector on the gray-level information and
related geometrical constraints. Conde et al. use svM classifiers trained on spin images for a
purely 3D approach [14]. As their proposed method requires great computational resources,
they constrain the search for the landmarks by using apriori knowledge about the face. In
[5], the 3D information plays a secondary or support role, in filtering out the background, and
to compute intra-feature distances in geometry-based heuristics. In [16], 3D information is
used to assist 2D in filtering out the background, and a comparison between 2D and 3D
methods under relatively controlled illumination conditions indicates superiority of the 2D
approaches. A summary of methods based on 3D information, totally or partially, is given in
Table II.
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TaBLE I. — Summary of 2D facial landmarking methods.

Sommaire des methodes pour trouver des points de reperes sur des images 2D.

Reference

Coarse Localization

Fine Localization

Chen, Zhang, Zhang [11]

Gaussian mixture based feature model + 3D shape model

Cristinacce, Cootes, Scott [15]

Assumed given

Boosted Haar wavelet-like features
and classifiers

Smeraldi, Bigun [38]

30 dimensional Gabor response of
each point + SVM

Gabor responses of the complete retinal
field + SVM

Feris, Gemmell, Toyama,
Kriiger [18]

Template matching using
Hierarchical Gabor
‘Wavelet Network (GWN)
representation of faces

Template matching using Hierarchical
Gabor Wavelet Network (GWN)
representation of features

Lai, Yuen, Chen, Lao, Kawade
[26]

Color segmentation (skin,
lip) + edge map

Vertical projection of thresholded
image obtained from the coarse level

Shakunaga, Ogawa, Oki [36]

PCA on canonical
positions of features +
structural matching

PCA

Ryu, Oh [31]

Vertical and horizontal
projections of face edge map

PCA on coordinates of the feature edge
map + MLP for template matching

Shih, Chuang [37]

Edge projections + geometric
model of facial features

Not present

Arca, Campadelli,
Lanzarotti [2]

Color segmentation (Skin
and lip) + SVM

Geometrical heuristics

Geometrical heuristics on
DCT coded images +

Zobel, Gebhard, Paulus, Denzler, Probabilistic model, based on Not present
Niemann [46] coupled structured
representation of feature
locations
Gourier, Hall, Crowley [19] Gaussian derivatives (Gx, Gy,
GXX, ny, ny) + Not present

clustering to 10 centroids

Antonini, Popovici, Thiran [1]

Corner detection

Feature extraction using PCA and ICA
projections of windows surrounding
the corner points + SVM
for template matching
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TABLE II. — Facial landmarking methods that use 3D information.

Sommaire des méthodes qui utilisent I'information 3D.

Reference Coarse Localization Fine Localization
Boehnen, Russ [5] Cascaded smoothing, minimum- and z-filtering + 2D and 3D geometry
Colbry, Stockman, Jain [13] Interpoint statistics + heuristics Shape index + Harris edge detector
Conde et al.[14] Curvature analysis + heuristics Spin images + SVM
Irfanoglu, Gokberk, Akarun [24] ICP based registration Curvature — and surface normal-based

heuristics

Cinar Akakin, Salah, Akarun, 2D IMoFA-L + structural IMoFA-L projection vs. DCT
Sankur [16] correction coefficients on 2D and 3D + SVM

III. TWO NOVEL FACIAL LANDMARKING ALGORITHMS

Similar to many other facial feature localization algorithms, our methods employ a
two-stage coarse-to-fine landmarking approach: In order to build a computationally efficient
system, we start by searching potential landmark zones on downsampled 2D images. The
coarse landmarking is performed with the Gabor factor analysis algorithm described in Sec-
tion III.1. Method 1 complements the coarse search by a structural correction scheme. The
coarse level process is used as the first step in fine localization of landmarks. In Section II1.2,
we present Method 2, which achieves accurate landmarking by complementing the coarse
localization by a method based on DCT features. These methods learn different feature models
from the actual landmark neighborhoods during the training phase.

II1.1. Algorithm-1: Gabor Factor Analysis and Structural Information

The first algorithm takes a generative modeling approach for landmark localization at a
coarse stage. By modeling the distributions of local features with a state-of-the-art unsuper-
vised model we achieve robust localization. Searching for each landmark independently pro-
tects the system against misleading local similarity values caused by missing or occluded
landmarks. Figure 1 summarizes the landmarking scheme where a coarse localization is per-
formed using the Gabor factor analysis algorithm, followed by a structural correction.

Gabor wavelets are often used in the literature to extract local discriminating features [28,
38]. The image is initially convolved with a Gabor kernel as below:
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Coarse
Down Gabor Likelihood Conspicuity Structural | localization
—> i > > 5 > > § —»
sampling features computation maps correction

FIG 1. — Coarse landmark localization starts with computation of Gabor wavelets on downsampled images.
Conspicuity maps for each landmark are computed by summing the likelihoods under mixtures of factor
analyzers models. The most conspicuous locations are sent to the structural analysis subsystem for
correction.

La localisation granulaire commence avec le calcul des ondelettes de Gabor sur la texture
sous-échantillonnée. Pour chaque point de repére, une carte de saillance est obtenue par la somme
des vraisemblances indiquée par les mélanges des analyseurs factoriels. Les points avec les meilleures
vraisemblances sont passées au sous-systeme d’analyse structurale pour correction.

Y 2 l_().T (_ 2/ %T};T ) 4 4 - 02
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where )_)c= (x, y) is the given pixel, j = w + 8v, and (w, v) defines the orientation and scale
parameters of the Gabor kernels, respectively, and standard deviation of the Gaussian func-
tion ¢ is 2m. The first factor in the Gabor kernel represents the Gaussian envelope and the
second factor represents the complex sinusoidal function, known as the carrier. The term,
¢ 92/2 in the square brackets compensates for the DC value.

II1.1.1. Preprocessing

To reduce the computational burden, we downsample the high resolution face images. For
the UND database, we have used a downsampling factor of eight (from the size 480 X 640
down to 60 X 80), which is a good compromise between precision and computational parsi-
mony. An additional benefit of downsampling is the dramatic reduction in the number of can-
didate points to be tested, from approximately 300,000 to 1,500-2,000 with the addition of
3D masking. We use the 7 X 7 neighbourhood as a feature generation window, producing
49-dimensional feature vectors for each point at each orientation in the coarse scale (See
Figure 5 for the size of the feature generation window).

The Gabor filter outputs are obtained in 8 orientations at a single scale. In the notation of
Eq.1, this corresponds to scale v € {3} and orientations w € {0, 1, 2, 3,4, 5, 6, 7}. In the
training phase, the landmarks u are manually labeled, and the resulting filter outputs are
min-max normalized. Our simulations have indicated that using more scale parameters or
larger windows do not contribute to the overall accuracy.
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I11.1.2. Gabor Factor Analysis
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FIG 2. — This diagram shows the trained IMoFA-L model. There are 7X 8 mixtures,
one per landmark perorientation. The number of squares indicate the number of components,
and the size of each square is proportional to the number of factors in that component.

Ce diagrame montre les modéles IMoFA-L. Il y a 7 X 8 melanges, un par point de repére
et par orientation. Le nombre de carrés indiquant le nombre de composants, et la taille de chaque
carré est proportionelles au nombre de facteurs dans le composant.

To model the distribution of these 49-dimensional features, we have employed an Incre-
mental Mixtures of Factor Analyzers (IMoFA-L), which places a number of Gaussian distri-
butions with arbitrary covariance on the data [34]. We opted for this method as Yang et al.
have shown that a mixture of factor analyzers outperforms PCA in a face detection applica-
tion [45]. The IMoFA-L model is convenient as it reduces the time and space complexity of
the mixture model and it automatically finds a trade-off between accuracy and complexity
(see Appendix A). Thus, complex patterns in the data are modeled with more components,
and with more factors per component (e.g. mouth corners ml and mr), whereas simple pat-
terns (e.g. nose) are modeled with smaller number of parameters. In Figure 2, the trained
model is depicted graphically. If we look at the second orientation channel (second row of
squares), the mixture for the outer corner of the left eye (leo) is a depicted as a single, large
square, which means there is a single component with a large number of factors. The number
of factors stands for the intrinsic dimensionality of the feature distribution, and a large num-
ber means there is variation in many directions. Conversely, if the number of components is
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large, as in the left mouth corner (ml) for the same orientation, there exist a number of diffe-
rent structures, modeled as clusters in the feature space. IMoFA-L allocates these compo-
nents and factors automatically.

Let u denote one of the directional Gabor feature vectors (49-dimensional in our case),
that is, the 0'th Gabor filter output computed on the 49-points of a 7 X 7 neighborhood for
any feature 1=1.7. Without loss of generality, we leave out the feature subscript to simplify
the equations. The mixture of Gaussians (MoG) model is written as:

@) Pe) = > poul G) py (G),
J

where 6 subscript denotes one of the eight orientations, Gj is a Gaussian component cha-
racterized by a mean vector and a covariance matrix, and denoted by N(/,tj, Zj) ‘Po (Gj) is the
prior probability of the component i along orientation 6, and p 4(u |G j) is the probability that
a feature u is generated by that component i. Sahbi and Boujemaa have previously modeled
salient features of faces with single full-covariance Gaussian distributions [33]. However,
our simulations have shown that a mixture of Gaussians works better than a single full-cova-
riance Gaussian.

Notice that Gabor orientations are treated separately to keep the overall complexity low,
so that we forsake any covariance information between different orientations. The local ana-
lysis proceeds by computing the likelihood of each feature generation window for being one
of the candidate features by summing the scores of the 8 orientations (each a separate mix-
ture model). The highest likelihood score among all the visited positions indicates the land-
mark location, where the likelihood for a generic feature is given by:

8
3) Licanre =@ =11 > po(ul G) py (G)
J

This search over the face pixels is repeated for each one of the / features sought until one
candidate is found for each feature. In our first tier scheme / is seven, composed of four eye
corners, two mouth corners and the nose tip.

I11.1.3. Correction via Structural Analysis

The refining stage of the method is based on the structural analysis that aims at detecting
erroneous or missing landmarks and correcting them. In an earlier study, Burl and Perona
have assumed that false alarms are distributed independently from each other and are inde-
pendent from the feature location [8]. If this assumption is correct, a structural model that
searches features at their expected locations will be able to single out false alarms. However,
this is a simplifying assumption, and a more truthful model can take the correlations bet-
ween false alarms (e.g. moustaches cause failures at both mouth corners) at the expense of
being more complex. Burl and Perona have modeled the joint distribution of the landmark
coordinates with a single multivariate Gaussian, and they base the affine correction of the
face solely on the eye landmarks. However, their scheme fails if the eyes are incorrectly
detected in the first place. Our system is more robust in that we do not assume the correctness
of any particular landmark. Instead, subsets of landmarks are used to validate mutually the
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location of other landmarks: that is, we have multiple sequential tests. The second difference
is that we model the position of a landmark given the other landmarks, with a bivariate
Gaussian distribution, making the complete model a mixture of bivariate Gaussians. The
parameters of these Gaussians are learned during the training phase.

Traditional face graphs incorporate structural information in the framework of an energy
minimization problem, where any deviation from the nominal distance between landmarks
(conceptualized as edges of the face graph) is penalized. These approaches bring in a non-
uniform energy gradient around the landmark, as perturbations of landmark locations affect
the graph edge lengths in ways dependent upon the direction of the perturbation [13, 25, 42,
44]. Emphasizing a directionality for perturbations is meaningful if a large number of land-
marks that follow common contour segments are modeled, as displacing a landmark in one
direction makes the next landmark more likely to be displaced in that direction. However, for
a small set of landmarks, this sort of constraint imposed by the face graph is not justified. Our
simulations indicate that the Gaussian mixture model is very successful in modeling the land-
mark distributions.

In our proposed scheme, subsets of located landmarks take turns as support sets. For each
such support set, we perform normalization involving translation, rotation and scaling with
respect to the subset coordinates. The subsets are taken three at a time and then the rest of the
landmarks are compared to their relative expected locations. A support set is validated if the
ensemble of landmarks normalized vis-a-vis the chosen subset gives a high structural fitting
score. Any incorrectly localized landmark in the support set will badly distort the positio-
ning of the other landmarks during normalization, and result in a poor fitting score.

We learn the spatial distribution of the normalized landmarks for each possible support
set, as each support set corresponds to a different normalization. If we have a support set
size of i, and / landmarks in total, the number of possible support sets is C(/, i), where C(.) is
the combination operator. For example, a support set of size three from within seven land-
marks results in 35 support combinations. For each such combination, we model the distri-
bution of the remaining landmark positions (after normalization) with a mixture of
Gaussians. In the testing phase of a support set, the likelihood of the non-support feature
locations is calculated.

In the normalization process, the centroid of the support set landmarks are first translated
to the origin, then they are scaled so that the average distance of the support landmarks to the
origin is fixed, and finally they are rotated to align one of the landmarks in the support set
(arbitrarily selected to be the one with the smallest index) with the y-axis. The covariance
matrix of this landmark will be singular after rotation, as it varies on a single dimension only.
In order to remedy this situation, we use an additional minimization step (see Appendix B).

During testing of a support set, if at least one landmark outside the support set is accep-
table, then the corresponding support set is accepted as correct. A non-support landmark j is
assumed to be acceptable, if its likelihood under the model is higher than a fixed threshold:

4) Ll 1, %) > T (k)

We conceptualize this threshold as isodensity lines around its expected location, as illus-
trated in Figure 3. We heuristically determine the threshold in the following manner. The
covariance can be visualised as an ellipsoid around the data distribution. We scale the cova-
riance matrix by a scalar k, and obtain a larger ellipsoid (shown in Figure 3 and in Figure 7).
To obtain the likelihood value on any point of this ellipsoid, we select an eigenvector of the
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covariance matrix, and displace the mean in that direction by an amount proportional to the
square-root of the corresponding eigenvalue. This gives us the threshold:

) T (k) = L(,LL +v Vu Z

where Z ’ is the scaled covariance matrix Zj = kZZ] u/ : is an eigenvalue of Z vj is the cor-
respondmg eigenvector, and L is the likelihood function, as defined prev1ously For our simu-
lations we have chosen k = 4, although larger (but not smaller) values can be considered.
Setting k to a smaller value means that the structural subsystem will label more points as
outliers, and will be forced to re-estimate them. Conversely, if k is too large, some of the
close outliers will be missed.

The non-support landmarks are labeled as acceptable or unacceptable according to their
agreement with learned models under that support set. An unacceptable landmark, say the n’th
landmark that yields a likelihood score below threshold, is replaced by the backprojection (i.e.
reverse rotation, scaling and translation with respect to the local coordinate system) of the
expected landmark location, y,. The support sets are searched until the non-support landmarks
validate one of them (see Section IV.2.2 for a discussion of this stopping criterion).

The structural analysis subsystem can locate and correct one to three incorrect landmarks.
Additionally, the landmarks that do not conform to any of the stored permutation patterns are
labeled as failures. These are the cases where the local feature detector fails for some reason
(e.g. because of a moustache), and it is important to be able to detect such failures as well.
This part of our work is usable as a post-processing block with any landmarking method for
failure detection and correction.

Distributions and thresholds based on covariance

left eye out O
left eye in@
0 mouth left

right eye in

FiG 3. — Thresholds for outlier detection are shown as ellipsoids around landmark clusters. The support set
consists of the corners of the left eye and the nose. As the normalization is based on the landmarks of the
support set, they have smaller variations.

Les seuils de détection des valeurs abérrantes sont montrés comme des elli psoides autour
de clusters de points de repéres. L’ensemble de support consiste par des coins de I’il gauche
et le point de nez. Ces points ont moins des variations parce que la normalisation est basée sur eux.
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I11.1.4. Fine Localization

For the fine level (i.e. 480 X 640 images), a window around the coarse landmark location
is searched for the best candidate. We have used another batch of IMoFA-L mixtures to com-
pute the best candidate, trained on patches of fine-resolution images. For the UND database,
we have selected a 9 X 9 search window. Note that since the upsampling factor is eight, a
9 X 9 window essentially corresponds to searching an area 10% larger than the corresponding
coarse-level pixel found by the coarse landmarking scheme. We have evaluated window sizes
up to 41 X 41; and observed that window sizes larger than 9 X 9 deteriorate performance. For
the more challenging BANCA dataset, the accuracy peaked for a larger search window.

II1.2. Algorithm-2: DCT-based Facial Feature Extraction

In our second approach, instead of using the Gabor wavelets, we have used comparatively
low-frequency DCT features [17, 30]. In fact, DCT coefficients can also capture the statistical
shape variations and can be a faster alternative for facial landmark detection, compared to
local Gabor feature analysis.

I11.2.1. Preprocessing

The coarse level process described in Section III.1 is used as the first step. An area of
size 9 X 9 around the coarse landmark is probed by cutting 15 X 15 feature patches for each
point in the area. DCT coefficients are extracted from these patches and analyzed on a
block-by-block basis. Given an image block from the search window f(x, y), where y,
x={0, 1, ..., K-1}, we decompose it in terms of orthogonal 2-D DCT basis functions. The
result is a matrix C(v, ) containing DCT coefficients:

K-1 K-1

(6) C, uy=aW) o) > > fO, )IPG, x, v, u) for v, u=0, 1, ..., K-1,
y=0x=0
\/; forv=20
where a(v) = and By v 1) = COS[(Zy + 1)m] COS[ (2x+ l)uﬂ:}
2K 2K

zforv=1, 2,..,.K-1
VK

The DCT coefficient values can be regarded as the relative presence of 2D spatial patterns
contained in the visited locality. Once the coefficients of the DCT output matrix are computed,
they are re-organized by a zigzag scanning pattern. This selection favours the highenergy,
low-frequency coefficients, in agreement with the amount of information stored in them. The
first coefficient (DC value) is removed, since it only represents the average intensity value of
the block. The remaining (AC) coefficients denote the intensity changes or gray-level shape
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variations over the image block. Those in the upper diagonal (119 coefficients) are chosen
and z-normalized to form the feature vector.

I11.2.2. pcT Feature Matching

In the training phase, k-means clustering is performed on the z-normalized DCT coeffi-
cients to obtain eight codebook vectors separately for each facial landmark. During testing,
when the coarse locations of fiducial points of a test image are given, z-normalized 15 X 15
DCT coefficients are calculated for 9 X9 = 81 neighbourhood points of the coarse location.
For each of the 81 candidate points, the Euclidean distances to eight cluster centroids are
computed. The minimum Euclidean distance is assigned as the matching score. Within the
search neighbourhood, the candidate with the best matching score (i.e. the minimum distance
to any centroid) is selected as the fine-tuned facial feature location.

IV. EXPERIMENTAL RESULTS

IV.1. Databases and Testing Methodology

We have employed the University of Notre Dame (UND) database in our experiments
(Sections IV.2-IV.4) [10] and a subset of the BANCA dataset for a more challenging set of
experiments (Section IV.5) [3]. The UND data consists of 942 2D images at 480 X 640 resolu-
tion. The ground truth is created by manually landmarking the seven points: That is, four eye
corners, nose tip, mouth corners. The data are randomly split into training (707 samples),
and test sets (235 samples). A validation set of 235 samples is separated from the training set
to tune the model parameters whenever necessary. The face is assumed to be roughly locali-
zed. For UND, we use the associated depth mask for this purpose, which eliminates most of
the background, but not the shoulders and the neck.

To measure the performance of the feature localizers, we have used two criteria:

a) The feature localization error as a function of the search basin size, the latter centered
on the true landmark. As the extent of the search basin increases, the computational
effort increases quadratically while the chances of finding the landmark increases. This
measure is used for the coarse stage.

b) The successful landmark detection performance. A landmark is considered correctly
detected if its deviation from the true landmark position is less than a given threshold,
called the acceptance threshold. We use relative distances, where all distances are nor-
malized to the inter-eye distance. This measure is used for the fine stage.
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A good feature detector should have high accuracy and should converge to the true fea-
ture starting from any point within a large basin of attraction. If the correct localization pro-
bability flattens out after an initial monotonic growth with the increasing size of the search
window, this indicates the robustness of the scheme. We contrast our method with two
methods for facial feature localization: Lades et al. [25] and Wiskott et al. [41]. Lades et al.
have employed Gabor wavelet jets, with five scales and eight different orientations, resulting
in 40-dimensional feature vectors overall. Wiskott et al. also use Gabor jets, but extend this
idea by including the phase information of Gabor jets. Both methods store the features extra-
cted from the training set as bunch models. During testing, features extracted from the test
image are compared with all templates in the bunch, and the minimum distance to any tem-
plate is used for candidate selection.

IV.2. Performance of the Coarse Localization Method

V.2.1. The Gabor Factor Analysis Approach

For the Gabor factor approach as explained in Section III.1, we downsampled the images
of the UND dataset down to size 60 X 80, and then, obtained mixture distributions of Gabor
features. The test images were similarly processed. The likelihood of pixels to correspond to
a facial landmark is computed using Eq.3 of Section III. 1.2. This likelihood is called the
feature conspicuity map, and is obtained by summing the eight likelihood maps, one for each
orientation. The per-orientation conspicuity maps for the left eye outer corner are illustrated
in Figure 4, while the seven inset images in Figure 5(b) show the total (summed) conspicuity
maps for each of the seven landmarks. For any one of the landmarks, the peak of the summed
conspicuity map is taken as the identified facial landmark. All the identified landmarks are
pictured in Figure 5(a).

FI1G 4. — Likelihood based conspicuity maps obtained from IMoFA-L outputs for the outer corner
of the left eye. Lighter locations indicate higher values.

Des cartes de saillance obtenues par I’application de IMoFA-L pour trouver
les vraisemblances au coin extemale de I’oeil gauche. Les valeurs élevées sont plus claires.
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FIG 5. — a) Left image: The correctly located landmarks on the downsampled intensity image;
7 X7 neighbourhoods are shown. b) Right inset images: The total conspicuity maps for each landmark.
Points lacking depth are trimmed. The landmarks correspond to to global maximum of the respective maps.

a) Image gauche: Les points de repéres correctement localisés sur la texture sous — échantillonée;
Les voisinages sont montrés avec des boites 7 X 7. b) Images droites: Les cartes de saillance
pour chaque point de repere. Les points manquant en profondeur ne sont pas traitées.

Les points trouvés sont des maxima globaux.

Figure 6 shows the localization mean square error (in pixels) versus search window size
in the reduced resolution face images. Note that one pixel error shown on this figure (coarse
localizations) corresponds to eight pixels in the high-resolution images. The IMoFA-L coarse
localization scheme, computed over 7 X 7 windows, outperforms the Wiscott et al. and Lades
et al. local feature analysis schemes explained in Section IV. 1.

The most plausible explanation for the relative success of our method is that both bunch-
based methods are template matching methods, while the IMoFA-L is a generative method
that models the feature distribution probabilistically. Also, it should be noted that increasing
the number of training samples is beneficial for the IMoFA-L method, but not recommended
for the bunch methods, as the increased number of comparisons linearly increase computa-
tion time for only marginal improvement [41]. This observation was validated by our simu-
lations.

IV.2.2. Structural Analysis

The structural analysis subsystem can be viewed as a hypothesis testing labeling step.
Given the seven landmark candidates, the role of the structural analysis is to validate these
candidates based upon configurational information. The permutations of landmark triplets
are tested in descending order given by the product of reliabilities of landmarks in the cor-
responding support sets. Our simulations have shown that three is the optimum number of
landmarks for support set size.

Once a support set is found to validate at least one other landmark, we accept it as cor-
rect, and use it to re-estimate the invalid landmarks: that is, those that did not survive the
likelihood thresholding. With this scheme, the average number of support sets we need to
test is 1.2 in UND, and 3.0 in the BANCA dataset. Conversely, we can evaluate all the support
sets and select the best. This resulted in two per cent accuracy increase for the coarse locali-
zation, with acceptable extra computational load.
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F1G 6. — Coarse localization errors (in pixels) for increasing sized search basins around true landmarks.
When the search basin is large, IMOFA-L based similarity does not deviate from the landmark
as the Gabor jet similarity metrics proposed in [25] and [41].

L’erreur moyenne (en pixelles) contre la taille de voisinage autour des points de repéres réels
sur les images granulaires. Pour un grand voisinage, IMoFA-L est plus consistante que les méthodes
basées sur les jets de Gabor, proposées par [25] et [41].

For 235 test samples, the structural analysis re-estimates 120 landmark locations, and
correctly tags five samples as poorly labeled (i.e. more than two landmarks out of seven are
misplaced). The average localization error was shown to be around one pixel (corresponds to
eight pixels in the original resolution) for neighbourhood sizes up to 18 pixels in Figure 6.
The coarse landmarking is performed over the whole image, and the average localization
error for all landmarks is 1.54 pixels. The usefulness of the structural analysis is proven when
it reduces this error to 0.52 pixels via backprojections.

Figure 7 shows the coarse localization result on a sample image, where the structural sub-
system successfully determines that the mouth corners are incorrectly labeled. The backpro-
jection remedies this situation by asserting correctly the expected locations.

We tested the subsystem further by supplying it with systematically disrupted landmark
information. We have given the system first one and then two incorrect landmarks that
deviate from their true locations by at least 10 pixels. The structural subsystem was able to
detect and correct 99 per cent of the cases.

16/26 ANN. TELECOMMUN., 62, n° 1-2, 2007



2040-Her/Teleco 62/1-2 29/12/06 12:35 Page %4

1624 A. ALI SALAH — ROBUST FACIAL LANDMARKING FOR REGISTRATION

Incorrect Landmarks

Support Set

Backprojected
Locations

FiG 7. — The coarse localization results projected to the original image. The gray boxes are 41 X 41
neighbourhoods. The ellipsoids indicate the expected locations for each landmark outside the support set.
Landmarks in the support set, detected incorrect landmarks and their backprojected coarse
locations are shown.

Les points trouvés par le systéme granulaire sur I’image originale. Leurs voisinages sont montrés
avec des boites grises 41 X41. Les ellipsoides indiquent les locations attendues pour des points
en dehors du set de support. Les points dans le set de support, les point incorrects,
et leur positions corrigées sont indiqués.

IV.3. Fine Landmark Localization

The second tier of the algorithm consists in refining the landmark localization based upon
the coarse homing result of the first tier. We revert thus to the original resolution of images,
that is, 480 X 640. For each landmark, we search a 9 X 9 window around the coarse localiza-
tion result with two different second tier methods.

The refining with the bCT method consists in searching at and around the zones indicated
by the first tier landmarks. New landmark positions are searched using the DCT templates.
The refinement with the IMoFA-L method is similar to the first tier procedure.

In Figure 8, it is observed that the IMoFA results are not as successful as they were in the
coarse model. The reason is that the patches we have used in high-resolution images do not
contain sufficiently rich structural information to learn reliable local models. Increasing patch
size, on the other hand, increases the dimensionality of the problem, thus necessitating either
substantially many more training samples for learning, or various constraints to guide
learning.
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We evaluate the proposed methods and the competitor algorithms on the high resolution
images. As localization accuracy depends on the landmark type, we compare the correct
localization percentages for each landmark type separately. A landmark is assumed to be cor-
rectly localized, if it has a pixel distance smaller than a threshold, whose values are given in
the horizontal axis. The IMoFA method performs better than the baseline, but the DCT
method seems to perform the best (See Figure 8). The method with Lades et al. similarity
measure is not shown as it is always worse than Wiskott et al.’s measure. The mouth corners
are harder to localize in general.

Figure 9 shows a more detailed analysis of the DCT method. Assuming that five per cent
of the inter-eye distance (calculated from interpolated eye-centres) is an acceptable threshold
for the deviation of the located landmark from the ground truth, and deeming three correct
landmarks as sufficient (as in [13]), we have 97.5 per cent correct localization. For a 10 per
cent threshold, we have 99.6 per cent correct localization. This is comparable to 99.8 per
cent detection reported in [13] and 99.6 in [5] for the same data set. We believe our method is
more robust, as we do not employ feature-specific heuristics. For instance in [13], the tip of
the head is used to constrain the search area for the nose. However, locating the tip of the
head can be even more difficult than locating the nose, because the hair is difficult to

segment.
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F1G 8. — Comparison of proposed methods for fine localization, around a 9 X 9 neighbourhood of the coarse
landmarks, shown separately for each landmark type

Les comparaisons des méthodes proposées pour la localisation exacte dans un voisinage 9 X 9
autour des points granulaires, montrées séparément pour chaque type de points.
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DCT Method for Fine Localization
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FIG 9. — The n'™ plot from the left shows the correct localization percentage, if we assume that locating n
landmarks (out of seven) are sufficient.

La leme ligne montre le pourcentage de la localisation exacte, avec la supposition de trouver
un nombre « n » de points (de sept point des repéres en total) est suffisante.

IV.4. Running Time

To give a rough idea of the temporal complexity of different parts of the algorithm, we
report running times on a computer with a 587 MHz Pentium M processor and 512 Mb RAM
using non-optimized MATLAB 6.5 code. In the coarse localization part, the Gabor wavelet
coefficients extraction on the 60 X 80 image takes 0.06 seconds for one landmark in eight
orientations. Then, the computation of a single conspicuity map under the IMoFA-L model
takes approximately 0.6 seconds. This is an average value, as the complexity of the model
changes depending on the number of factors and components. The computation of all the
conspicuity master maps takes 0.6 X 8 X 7 = 33.6 seconds. The structural correction of a
single test sample takes 0.3 seconds on the average. The computation of DCT coefficients for
a single 9 X 9 window (81 X 25 X 25 = 50.625 coefficients) takes about 5 seconds, which is
indicative of the computation speed of MATLAB. The template matching part for eight code-
book vectors takes only 0.05 seconds.
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IV.S. Experiments in Challenging Environments

To test the applicability of our method in a more challenging environment, we have per-
formed additional tests on a subset of the English part of the BANCA dataset [3]. This dataset
contains significant illumination, pose, and background and face clutter variations, such as
eyeglasses and hair, and presents major challenges for feature localization. From the BANCA
dataset, three representative sessions with different environmental conditions were selected.
50 subjects from each session contributed one image for training, one image for validation
and one image for the test set.

For the coarse level, all parameter settings were retained. Images are downsampled by
eight (from to 576 X 720 to 72 X 90) and eight Gabor channels are used. Search area is the
coarsely located face. Figure 10 shows coarse localization examples on the downsampled
faces for three sessions that increase in difficulty. It is observed that when eyeglasses occlude
the eye corners, facial landmarks cannot be recovered.

(h)

FiG 10. — Samples from sessions 1, 5, and 10 of the English part of the BANCA dataset.
The crosses are initial detections, the dots are final landmarks after structural correction. Facial hair as in
sample (c) and eyeglasses as in samples (f) and (i) make detection difficult.
Les examples de la 1'¢, 5¢ et 10° session de la partie anglaise de jeu de données BANCA.
Les croix sont des points initiaux, les points sont les points des repéres finaux apres correction structurelle.
La barbe (comme dans (c)) et les lunettes (comme dans (f) et (i)) rendent la détection difficile.
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FiG 10. — Performance of bcT method for fine localization, around a 16 X 16 neighbourhood
of the coarse landmarks, shown separately for each landmark type. In the legend DCT 256-50 means that 50
DCT coefficients out of 256 are chosen.

Figure 11. Les résultats de la méthode DCT pour la localisation exacte, dans un voisinage 16 X 16 autour
des points granulaires, montrées séparément pour chaque type de points. DCT 256-50 veut dire
que 50 coefficients de 256 sont choisis.

In order to obtain the fine localization results of BANCA database, we used the k-means
classifier as mentioned in section II1.2.2. Figure 11 shows the fine localization results for
individual landmarks. It is observed that both eye corner and mouth corner localization
results suffer due to occlusions and large pose changes.

For a five percent threshold and three correct landmarks, we have 75.5 per cent correct
localization. For a 10 per cent threshold, we have 94 per cent correct localization. The drop in
the accuracy is the partly attributed to the presence of eyeglasses, but also to illumination
and pose changes. The lack of 3D information for eliminating the background results in an
increase in the number of false positives.

ANN. TELECOMMUN., 62, n° 1-2, 2007 21/26



2040-Her/Teleco 62/1-2 29/12/06 12:35 Page %9

A. ALI SALAH — ROBUST FACIAL LANDMARKING FOR REGISTRATION 1629

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced and tested a two-tier method of facial landmarking. The

coarse level features are extracted by Gabor wavelets, and then each facial feature is lear-
ned by a separate model. The configurational information of the landmarks is also integrated
into the localization method. The robustness and satisfactory performance of the coarse land-
marking are due in part to the elimination of outlier positions with configurational informa-
tion, and partly due to observing the image with 56 X 56 windows (7 X7 after
downsampling), which are sizes commensurate with the facial features.

The structural subsystem is a used as a post-processing block to detect and correct locali-
zation failures. We should also remark that the proposed method is not necessarily specific to
faces, but is applicable to any other objects and defined feature sets. One byproduct of the
structural analysis is that it can roughly locate facial features that are not rich in texture, like
cheeks, chin, or features under total occlusion of a facial accessory.

An important aspect of our approach is its independence from any heuristics or initiali-
zation of the landmark points. Examples of heuristics are the detection of hair ceiling line
and then extrapolating the midline going through the nose, or to find depressions of the verti-
cal projection for mouth and eye socket candidates. While heuristics seem to simplify the
problem, they actually push the problem back one level without solving it.

The output positions of the coarse stage are fed into the fine localization stage. This stage,
using a DCT-based scheme, finds more accurate feature positions. In the final analysis, the
proposed method outperforms its competitor methods in the literature ([25] and [42]).

One possible extension of our method is to 3D facial data (See [35]). The face informa-
tion can be given in terms of depth information on a lattice or as 3D point cloud. The useful-
ness of 3D face information emerges when the 2D information is compromised (e.g. under
severe illumination distortion [5]), and in assisting the 2D scheme which has to operate with
inadequate information. A case in point is the nose tip, which is not particularly rich in tex-
ture information [40]. Our preliminary studies indicate that 3D provides for a marginal loca-
lization improvement over 2D methods. Thus the role of 3D depth information is limited to
eliminating background clutter and to localizing some landmarks better (e.g. the nose).

The BANCA database, with pose difficulties and background clutter indicated some of the
limitations of the facial feature localizer. Thus, the scheme needs to be further improved
against pose self-occlusions.
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Appendix A — Mixtures of Factor Analysers

The Gabor detectors yield 49-dimensional outputs in our scheme (7 X 7 window) and
1,225 parameters are involved for each mixture component (49 mean and 49 X 48/2= 1,176
covariance terms). Such high dimensional spaces run the risk of overfitting as the consequent
number of model parameters is large. One solution would be restricting them to be diagonal
to reduce the number sacrificing some valuable covariance shape information. A good alter-
native method to reduce the number of parameters is the factor analysis model, where the
data (denoted with x) are assumed to be generated in a lower dimensional latent space:

@) x—,ujzAjz+£

Here, u; denotes the d-dimensional component mean, Aj is the (dxp) factor loading matrix
that maps the data from the p-dimensional generative space to the d-dimensional space, z are
the latent variables and € is the Gaussian sensor noise. In other words, the covariances of the
Gaussian components (Zj) are not restricted to be spherical or diagonal, but given as

®) L= A A+

(with p<<d) and Y is the diagonal variance due to sensor noise. Thus the number of parame-
ters is reduced from O(d?) to O(pd), yet the covariances are still modeled. To automatically
determine the number of components and the values of the loading factors, we employ the
IMoFA-L algorithm proposed in [34]. The IMoFA-L algorithm starts with a single Gaussian
component derived from a single factor placed on the data, and incrementally adds compo-
nents and factors to the mixture. At each step, a multivariate kurtosis based metric is
employed to split the component that looks least unimodal. For factor addition the discre-
pancy between the real and modeled covariances are monitored. The algorithm proceeds by
interrupting EM (Expectation-Maximization procedure) to add a component to the mixture
or a factor to a component. A validation set is used to control the complexity of the final
model.

Appendix B — Removing the Singularity in the Structural Analysis

Let X; :[xj, yj]T denote the normalized 2D coordinates of the i’th landmark with respect to
the origin in a particular support set. The likelihood of a single landmark vector x under
Gaussian assumption N(u, X,) is written as

©) L g, 5) = — ¢ T3 (omlep

If we denote the rotation function with r(x, 6), the joint likelihood of all landmark points
to be maximized, that incorporates the structural a priori information, is expressed as

l
=1l ¢ (x; 6), 1, Z))

structure =1

(10) L
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Maximizing this expression is equivalent to minimizing the following expression:

!
(11 migr;; (r (x;, ) — )" =7 (r (x;, 6) — 11)
with
x;cos 60— y.sin
(12) rx, 0)=|" !
J x; sin 9+yj cos 0

We use a Levenberg-Marquard (LM) procedure to minimize this expression. The first
landmark in the support set is excluded from the minimization, as it varies in one dimension
only. Since the initial rotation brings the landmarks very close to the global minimum and the
function is smooth, two or three iterations are sufficient to find the solution. The resulting
rotation is applied, and the distribution parameters of the landmarks are re-estimated. The
LM procedure is only used to perturb the landmark positions to remove the singularity in
the distribution of the first landmark, which is an artifact, generated by the normalization
procedure.

In the 3D case, we only need to change the rotation expression accordingly:

X cos () —cos(—6) —cos(@)sin(-6) sin(@) qrx
(13) r({y], 6, (p):{ sin (- 6) cos(— 6) 0 }{y}
Z — sin(¢@) cos(—06) sin(@)sin (—0)  cos(p) z

where 0 is the azimuth, and ¢ is the elevation angle.
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