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Abstract

A mixture of factor analyzer is a semiparametric den-
sity estimator that performs clustering and dimensional-
ity reduction in each cluster (component) simultaneously.
It performs nonlinear dimensionality reduction by model-
ing the density as a mixture of local linear models. The
approach can be used for classification by modeling each
class-conditional density using a mixture model and the
complete data is then a mixture of mixtures. We propose
an incremental mixture of factor analysis algorithm where
the number of components (local models) in the mixture and
the number of factors in each component (local dimension-
ality) are determined adaptively. Our results on different
pattern classification tasks prove the utility of our approach
and indicate that our algorithms find a good trade-off be-
tween model complexity and accuracy.1

1 Introduction

A mixture model is written as

p(x) =
J∑

j=1

p(x|Gj)P (Gj) (1)

where Gj stand for the components, P (Gj) is the prior prob-
ability, and p(x|Gj) is the probability that the data point
is generated by component j. In classification, each class-
conditional density is written as a separate mixture model
and the input is then a mixture of mixtures (MoM):

p(x|Ci) =
Ji∑

j=1

p(x|Gij)P (Gij) (2)

p(x) =
N∑

i=1

p(x|Ci)P (Ci) (3)
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During testing, all p(x|Ci) are calculated and the class
with the highest posterior is chosen using Bayes’ rule:
P (Ci|x) = P (Ci)p(x|Ci)/p(x).

In a mixture of Gaussians (MoG), each component of
Eq. 1 is a Gaussian: p(x|Gj) ∼ N (μj ,Σj). Similarly, a
mixture of mixtures of Gaussians (MoMoG) assumes that
each class is modeled with a number of Gaussian compo-
nents (Eq. 2). With complete covariance matrices Σj , the
number of parameters can be very large and this may cause
overfitting. With tied (shared) covariances, the number of
parameters decreases but this assumes the same input dis-
tribution in different components and may be a source of
bias. Another approach is to constrain the covariances to be
diagonal or spherical, but these discard valuable correlation
information.

Decreasing the number of parameters while still model-
ing the covariances is possible with a factor analysis (FA)
model, where Σj = ΛjΛT

j + Ψ, and using either Eq. 1 or
Eq. 2 we have a mixture of factor analyzers (MoFA) or a
mixture of mixtures of factor analyzers (MoMoFA), respec-
tively. This corresponds to assuming that a small number of
low-dimensional latent variables (factors) z cause the cor-
relation in component j: x− μj = Λjz + εj

Λj is called the factor loading matrix (for component
j) and shows the dependence of data points to each factor.
εj ∼ N (0, Ψ) is the Gaussian noise, where Ψ is a diagonal
matrix, interpreted as sensor noise common to all compo-
nents. When x is d-dimensional, Σj is d× d, whereas with
p < d factors, Λj is d× p.

Given a training set, the maximum likelihood estimates
can be calculated using the Expectation-Maximization
(EM) algorithm, which simultaneously places the compo-
nents in the input space (μj) and also finds the factors in
each component, performing dimensionality reduction in
each component, (Λj) [3, 5, 8]. However, this requires that
the number of components and the factors in each compo-
nent be specified in advance. In this paper, we propose an
incremental algorithm where components and factors are
added iteratively as needed, without requiring them to be
specified in advance, thereby better matching the complex-



ity of the mixture model to that of the data. The algorithm
is discussed in section 2, simulation results are given in sec-
tion 3, and we conclude in section 4.

2 Incremental Mixture of Factor Analysers

We introduce an incremental MoFA algorithm that starts
with a one-factor, one-component mixture and proceeds by
adding new factors or new components until some stopping
condition is satisfied. Our Incremental Mixture of Factor
Analysers (IMoFA) algorithm relies on fast heuristic met-
rics to single out one component for splitting and another
for factor addition. The pseudocode of the algorithm is
given in Fig. 1. To check complexity and alleviate overfit-
ting, the split and factor addition are tested on a validation
set, separate from the training set over which the parameters
are calculated, and the action that causes the greatest in-
crease in the validation likelihood is chosen. The algorithm
terminates when there is no improvement on the validation
likelihood.

algorithm IMoFA(train, validation)
[Λ, μ, Ψ]← train a 1-component, 1-factor model
oldLikelihood← -Infinity
/*Likelihoods are calculated on validation set*/
newLikelihood← likelihood(Λ, μ, Ψ)
while newLikelihood > oldLikelihood
/*Perform a single split*/

x← Select a component for splitting
[Λ1, μ1, Ψ1, π1]← EM(split x).
actionL(1)← likelihood(Λ1, μ1, Ψ1, π1)

/*Perform a single factor addition*/
y← Select a component to add a factor
[Λ2, μ2, Ψ2, π2]← EM(add factor to y).
actionL(2)← likelihood(Λ2, μ2, Ψ2, π2)

/*Select the best action*/
z← max(action(L1),action(L2))

/*Update the parameters*/
[Λ, μ, Ψ, π]← [Λz, μz, Ψz, πz]
oldLikelihood← newLikelihood
newLikelihood← likelihood(Λ, μ, Ψ, π)

end
return [Λ, μ, Ψ, π]

end

Figure 1. IMoFA Algorithm

IMoFA algorithm given in Fig. 1 is unsupervised. In
the case of a classification problem, we can use it to fit a
MoFA to examples of each class seperately (Eq.2). This is a
likelihood-based approach (IMoFA-L) where the likelihood
of each class is maximized separately. We have also im-

plemented a discriminative-based variant of this algorithm
(IMoFA-A) that adds factors and components while moni-
toring classification accuracy on the validation set, instead
of the likelihood. All class models are needed to calculate
accuracy, thus they can no longer be trained separately. We
start with one-factor, one-component models for each class,
and at each iteration add a component/factor to the class
having the highest Type 2 error (accepted samples of other
classes) and check for improvement, except that we use ac-
curacy on the validation set, instead of the likelihood.

For the incremental algorithm to be accurate and effi-
cient, the candidate component and factor should be placed
and initialized intelligently.

2.1 Component Addition

Adding a new component by splitting an existing one in-
volves two decisions: which component to split, and how to
split it. Our approach is to split the component that looks
least likely to a Gaussian, i.e., unimodal. We have tested
several likelihood and kurtosis-based methods to test the
non-Gaussianity of the data under each component and se-
lected a multivariate kurtosis metric [6]. For a multinor-
mal distribution, the multivariate kurtosis takes the value
β2,d = d(d + 2), and if the underlying population is multi-
variate normal with mean μ, the sample counterpart of β2,d,
namely b2,d, has the following asymptotic distribution as the
number of samples N →∞:

b2,d − d(d + 2)[
8d(d+2)

N

] 1
2
∼ N (0, 1) (4)

with

b2,d =
1
N

N∑
t=1

[
(xt − μ)TΣ−1(xt − μ)

]2
(5)

We adapt this metric to the mixture model by using
the“soft count” ht

j ≡ E[Gj |xt]:

γj = {bj
2,d − d(d + 2)}

[
8d(d + 2)∑N

t=1 ht
j

]− 1
2

(6)

bj
2,d =

1∑N
l=1 hl

j

N∑
t=1

ht
j

[
(xt − μj)

T Σ−1
j (xt − μj)

]2

(7)
The component with greatest γj is the one that looks

least like a unimodal multivariate normal, and is selected
for splitting. We locate its mean and go one standard devia-
tion in either way along the principal direction of the com-
ponent. Two points obtained this way are used to initialize
EM. Our simulations showed that this method works better
than random splits or initializing from potential outliers.
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Figure 2. Residual factor addition converges
faster than random addition. ‘×’ indicate that
a new factor is added.

2.2 Factor Addition

The basic factor analysis uses the factor loading matrix
Λ to model all the covariances, and part of the variances.
Hence a natural way to select the component to add a factor
is to look at the difference between the sample covariance
and modeled covariance for each component, and consider
the one with greatest difference for factor addition. Once
the component is selected, the new factor can be randomly
initialized, in which case the EM procedure is expected to
take it to a local optimum. We propose a method of initializ-
ing the new factor that we call residual factor addition that
works better (see Fig.2).

Given a component Gj and a data point xt, we can find
the expected value of zt. Actually, E[zt|xt,Gj] is the p-
dimensional data point if we intend to employ the factor
analyser as a dimensionality reduction method. If we wish
to restore the original data point from the dimensionality-
reduced zt, we will multiply it with the factor loading ma-
trix: x̃t

j = ΛjE[zt|xt,Gj ]

However, unless we use the complete eigenvectors in Σj

(or some equivalent basis), x̃t
j will not exactly coincide with

xt. The residual error is: et
j = xt − x̃t

j . When we add the
new factor column Λj,p+1 to Λj , it will make a contribu-
tion to the re-estimated value of each xt in the direction
of Λj,p+1 with the magnitude of z t

p+1. The residual fac-
tor addition aims at minimizing these residuals by selecting
Λj,p+1 to be the principal direction (the eigenvector with
the largest eigenvalue) of the residual vectors. This new
factor is used in bootstrapping the EM procedure.

3 Simulation Results

We tested our algorithm with eight datasets. Pendig-
its, Optdigits, Waveform and Segment are taken from UCI
Repository [1]. We used the ORL face data for male-female
classification [7] and a pre-processed 10-class selection of
Vistex texture database [9]. We have the Yeast microarray
gene expression data [2], and a 20-class phoneme data dis-
tributed with LVQ package of the Helsinki University of
Technology [4]. For each of those datasets, one third of the
training set is used for validation (See Table 1 for details).

Table 1. Datasets
Dataset Training Test Dimensions Classes

PEN 5,494 3,498 16 10
OPT 2,880 1,797 64 10
ORL 400 cv10 256 2
VIS 2,700 910 169 10

YEAST 208 cv7 79 5
LVQ 1,929 1,929 20 16

WAVE 300 4,700 21 3
SEG 700 1,610 14 7

On these datasets, we tested MoG, MoFA, MoMoG, Mo-
MoFA and IMoFA algorithms with different parameters.
EM runs are initialized with k-means clustering. We re-
port the configuration that produces the highest likelihood
on the validation set (See Table 2). The average classifica-
tion accuracy and number of parameters are reported for 10
independent runs on the test sets. We used 10-fold cross-
validation in ORL, and 7-fold cross-validation on Yeast.

In MoG simulations, the best solutions were with un-
restricted (full) covariances. MoFA and MoMoFA models
were tested with 1−10 factors per component, and again the
highest-likelihood solutions were produced by the model
with a maximum number of parameters. For a fixed num-
ber of components in MoMoFA, the increase in likelihood
is approximately linear with the number fo factors. How-
ever in MoMoG models, the unrestricted cases are never
taken as a result of overlearning; either diagonal or spheri-
cal covariances (but with maximum number of components
per class) are selected. The preference of unrestricted MoG
over other MoG options and the general preference of Mo-
MoFA models to MoMoG models show that the correlation
information is too valuable to discard.

Increasing the number of parameters in IMoFA tends
to increase the likelihood, but these changes can be due
to samples that lie closest to the component means, where
small changes have the most effect. This is a wasteful in-
crease for classification purposes. By monitoring classifi-
cation accuracy, IMoFA-A finds solutions with lower like-
lihood but with equal accuracy for much fewer parameters.



Figure 3. Components in IMoFA-L for Pendig-
its. Different styles prompt introducing of
more components.

4 Conclusions

Our simulation results indicate that the incremental mix-
ture of factor analysers is capable of finding reasonable
points in the complexity vs. accuracy curve. Compared to
fixed-parameter MoG and MoFA models, IMoFA-L finds
high-likelihood solutions with a moderate number of pa-
rameters. Similarly, IMoFA-A finds highly accurate solu-
tions with a moderate number of parameters.

Modeling a class with more than one component is use-
ful if samples of the class are generated by different pro-
cesses, like the allomorphs of digits. The incremental al-
gorithm allows automatic allocation of more components to
classes with many alternative structures (See Fig. 3). In a
dataset where this is not the case, increasing the number of
components quickly leads to overlearning, as the compo-
nents impose superficial clusters on the data. Our proposed
incremental algorithm checks for improvement after each
component addition on a separate validation set and does
not permit such overfitting.

The number of factors is a parameters of different na-
ture; it can be increased up to the number of dimensions
in order to model the sample covariance better and has a
smaller overlearning effect. The benefit of constraining it is
mostly to keep the time and space complexity low. Our sim-
ulations show that when the incremental algorithm assigns
a small number of components to a class, it usually assigns
a greater number of factors to those components.

Our proposed incremental algorithms tailor the mixture
structure, i.e., the components and the factors in each com-
ponent, automatically to the input density. The mixture
model incrementally fits a nonlinear model to the data as
a mixture of locally linear models. The component means
and factors tell us respectively the positions and important
dimensions of correlation in each local model, thereby al-
lowing knowledge extraction and increased interpretability.

Table 2. Simulation Results
Method Accuracy Par. Accuracy Par.

MoG 98.50 ± 0.0 1529 95.76 ± 0.0 18909

MoMoG P 98.72 ± 0.1 4589 O 92.98 ± 0.5 6049

MoFA E 95.20 ± 0.0 1625 P 96.92 ± 0.0 6669

MoMoFA N 99.35 ± 0.2 8865 T 97.94 ± 0.4 30109

IMoFA-L 97.93 ± 0.4 2699 92.92 ± 0.6 7629

IMoFA-A 97.63 ± 0.7 1106 93.84 ± 0.2 3819

MoG 87.25 ± 4.3 66305 35.60 ± 0.0 145349

MoMoG O 98.25 ± 1.7 5129 V 73.82 ± 1.1 8549

MoFA R 99.00 ± 1.3 5889 I 62.53 ± 0.0 18768

MoMoFA L 99.25 ± 1.2 28425 S 58.29 ± 1.2 93168

IMoFA-L 98.50 ± 1.3 8068 70.40 ± 1.7 29493

IMoFA-A 97.75 ± 0.8 2407 70.71 ± 1.2 12688

MoG Y 63.78 ± 4.3 16199 88.96 ± 0.0 3695

MoMoG E 93.37 ± 6.0 2384 L 86.15 ± 1.1 14783

MoFA A 92.35 ± 6.0 2453 V 87.56 ± 0.0 3555

MoMoFA S 93.88 ± 7.4 7203 Q 89.24 ± 0.6 17699

IMoFA-L T 91.33 ± 6.8 3151 89.44 ± 0.6 1749

IMoFA-A 94.39 ± 4.5 1321 90.31 ± 0.5 1512

MoG 77.89 ± 0.0 758 88.57 ± 0.0 839

MoMoG W 74.57 ± 1.7 3035 S 89.65 ± 2.1 3359

MoFA A 75.85 ± 0.0 716 E 65.78 ± 0.0 1098

MoMoFA V 73.53 ± 0.8 3500 G 88.89 ± 1.3 419

IMoFA-L E 82.55 ± 0.5 195 85.13 ± 2.4 603

IMoFA-A 80.92 ± 1.5 466 90.29 ± 1.4 568
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